token_dtype
stringclasses
1 value
s
int64
16
16
h
int64
16
16
w
int64
16
16
vocab_size
int64
262k
262k
hz
int64
15
15
tokenizer_ckpt
stringclasses
1 value
num_images
int64
19.3k
70.9k
uint32
16
16
16
262,144
15
imagenet_256_L.ckpt
45,217
uint32
16
16
16
262,144
15
imagenet_256_L.ckpt
35,949
uint32
16
16
16
262,144
15
imagenet_256_L.ckpt
51,201
uint32
16
16
16
262,144
15
imagenet_256_L.ckpt
70,944
uint32
16
16
16
262,144
15
imagenet_256_L.ckpt
54,056
uint32
16
16
16
262,144
15
imagenet_256_L.ckpt
54,632
uint32
16
16
16
262,144
15
imagenet_256_L.ckpt
38,277
uint32
16
16
16
262,144
15
imagenet_256_L.ckpt
19,252
uint32
16
16
16
262,144
15
imagenet_256_L.ckpt
32,772
uint32
16
16
16
262,144
15
imagenet_256_L.ckpt
28,951

CyberOrigin Dataset

Our data includes information from home services, the logistics industry, and laboratory scenarios. For more details, please refer to our Offical Data Website

contents of the dataset:

alita # dataset root path
  └── data/
      ├── metadata_Traj01.json
      ├── segment_ids_Traj01.bin # for each frame segment_ids uniquely points to the segment index that frame i came from. You may want to use this to separate non-contiguous frames from different videos (transitions).
      ├── videos_Traj01.bin # 16x16 image patches at 15hz, each patch is vector-quantized into 2^18 possible integer values. These can be decoded into 256x256 RGB images using the provided magvit2.ckpt weights.
      ├── ...
  └── ...
{
    "task": "ALITA",
    "total_episodes": ,
    "total_frames": ,
    "token_dtype": "uint32",
    "vocab_size": 262144,
    "fps": 15,
    "language_annotation": "None",
}
Downloads last month
10
Edit dataset card