token_dtype
stringclasses 1
value | s
int64 16
16
| h
int64 16
16
| w
int64 16
16
| vocab_size
int64 262k
262k
| hz
int64 30
30
| tokenizer_ckpt
stringclasses 1
value | num_images
int64 105k
398k
|
---|---|---|---|---|---|---|---|
uint32 | 16 | 16 | 16 | 262,144 | 30 | imagenet_256_L.ckpt | 272,926 |
uint32 | 16 | 16 | 16 | 262,144 | 30 | imagenet_256_L.ckpt | 323,861 |
uint32 | 16 | 16 | 16 | 262,144 | 30 | imagenet_256_L.ckpt | 243,571 |
uint32 | 16 | 16 | 16 | 262,144 | 30 | imagenet_256_L.ckpt | 360,770 |
uint32 | 16 | 16 | 16 | 262,144 | 30 | imagenet_256_L.ckpt | 359,038 |
uint32 | 16 | 16 | 16 | 262,144 | 30 | imagenet_256_L.ckpt | 291,702 |
uint32 | 16 | 16 | 16 | 262,144 | 30 | imagenet_256_L.ckpt | 333,751 |
uint32 | 16 | 16 | 16 | 262,144 | 30 | imagenet_256_L.ckpt | 397,589 |
uint32 | 16 | 16 | 16 | 262,144 | 30 | imagenet_256_L.ckpt | 325,630 |
uint32 | 16 | 16 | 16 | 262,144 | 30 | imagenet_256_L.ckpt | 338,587 |
uint32 | 16 | 16 | 16 | 262,144 | 30 | imagenet_256_L.ckpt | 104,622 |
CyberOrigin Dataset
Our data includes information from home services, the logistics industry, and laboratory scenarios. For more details, please refer to our Offical Data Website
contents of the dataset:
cyber_pipette # dataset root path
└── data/
├── metadata_ID1_240808.json
├── segment_ids_ID1_240808.bin # for each frame segment_ids uniquely points to the segment index that frame i came from. You may want to use this to separate non-contiguous frames from different videos (transitions).
├── videos_ID1_240808.bin # 16x16 image patches at 30hz, each patch is vector-quantized into 2^18 possible integer values. These can be decoded into 256x256 RGB images using the provided magvit2.ckpt weights.
├── ...
└── ...
{
"task": "Pipette",
"total_episodes": 8589,
"total_frames": 3352047,
"token_dtype": "uint32",
"vocab_size": 262144,
"fps": 30,
"manipulation_type": "Bi-Manual",
"language_annotation": "None",
"scene_type": "Table Top",
"data_collect_method": "Directly Collection on Human"
}
- Downloads last month
- 157