conv_ai_3_ru / README.md
d0rj's picture
Create README.md
3996204
|
raw
history blame
2.87 kB
---
annotations_creators:
- crowdsourced
language_creators:
- translated
language:
- ru
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- conv_ai_3
task_categories:
- conversational
- text-classification
task_ids:
- text-scoring
paperswithcode_id: null
pretty_name: conv_ai_3 (ru)
tags:
- evaluating-dialogue-systems
dataset_info:
features:
- name: topic_id
dtype: int32
- name: initial_request
dtype: string
- name: topic_desc
dtype: string
- name: clarification_need
dtype: int32
- name: facet_id
dtype: string
- name: facet_desc
dtype: string
- name: question_id
dtype: string
- name: question
dtype: string
- name: answer
dtype: string
config_name: conv_ai_3
splits:
- name: train
num_examples: 9176
- name: validation
num_examples: 2313
---
# Dataset Card for d0rj/conv_ai_3_ru
## Dataset Description
- **Homepage:** https://github.com/aliannejadi/ClariQ
- **Repository:** https://github.com/aliannejadi/ClariQ
- **Paper:** https://arxiv.org/abs/2009.11352
### Dataset Summary
This is translated version of [conv_ai_3](https://huggingface.co/datasets/conv_ai_3) dataset to Russian language.
### Languages
Russian (translated from English).
## Dataset Structure
### Data Fields
- `topic_id`: the ID of the topic (`initial_request`).
- `initial_request`: the query (text) that initiates the conversation.
- `topic_desc`: a full description of the topic as it appears in the TREC Web Track data.
- `clarification_need`: a label from 1 to 4, indicating how much it is needed to clarify a topic. If an `initial_request` is self-contained and would not need any clarification, the label would be 1. While if a `initial_request` is absolutely ambiguous, making it impossible for a search engine to guess the user's right intent before clarification, the label would be 4.
- `facet_id`: the ID of the facet.
- `facet_desc`: a full description of the facet (information need) as it appears in the TREC Web Track data.
- `question_id`: the ID of the question..
- `question`: a clarifying question that the system can pose to the user for the current topic and facet.
- `answer`: an answer to the clarifying question, assuming that the user is in the context of the current row (i.e., the user's initial query is `initial_request`, their information need is `facet_desc`, and `question` has been posed to the user).
### Citation Information
@misc{aliannejadi2020convai3,
title={ConvAI3: Generating Clarifying Questions for Open-Domain Dialogue Systems (ClariQ)},
author={Mohammad Aliannejadi and Julia Kiseleva and Aleksandr Chuklin and Jeff Dalton and Mikhail Burtsev},
year={2020},
eprint={2009.11352},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
### Contributions
Thanks to [@rkc007](https://github.com/rkc007) for adding this dataset.