|
import os |
|
from tqdm import tqdm |
|
import json |
|
import os |
|
import openai |
|
from tqdm import tqdm |
|
import argparse |
|
import multiprocessing |
|
from copy import deepcopy |
|
from functools import partial |
|
|
|
prompt_library = { |
|
"MCQ": "In this problem, only one option will be correct. Give a detailed solution and end the solution with the final answer.", |
|
"MCQ(multiple)": "In this problem, multiple options can be correct. Give a detailed solution and end the solution with the final answer.", |
|
"Integer": "In this problem, the final answer will be a non-negative integer. Give a detailed solution and end the solution with the final answer.", |
|
"Numeric": "In this problem, the final will be a numeric value. Give the numerical answer correct upto the 2nd decimal digit. Give a detailed solution and end the solution with the final answer.", |
|
} |
|
|
|
few_shot_examples = json.load(open('data/few_shot_examples.json')) |
|
|
|
|
|
def write_in_file(response_file, response_dict, question, mode, model_nickname): |
|
if os.path.exists(response_file): |
|
with open(response_file, 'r') as infile: |
|
responses = json.load(infile) |
|
else: |
|
responses = [] |
|
|
|
found = False |
|
for i, old_resp in enumerate(responses): |
|
if old_resp['description'] == question['description'] and old_resp['index'] == question['index']: |
|
responses[i][f"{model_nickname}_{mode}_response" ] = response_dict[f"{model_nickname}_{mode}_response"] |
|
found = True |
|
break |
|
|
|
if not found: |
|
responses.append(response_dict) |
|
|
|
json.dump(sorted(responses, key=lambda elem: (elem['description'], elem['index'])), open(response_file, 'w'), indent=4) |
|
print(f"####UPDATED {response_file}, Current size : {len(responses)}####") |
|
|
|
|
|
def get_response(question,model, model_nickname, mode, response_file, lock): |
|
|
|
response_dict = deepcopy(question) |
|
prefix_prompt = prompt_library[question['type']] |
|
suffix_prompt = "" |
|
|
|
if mode in ['CoT', 'CoT+SC', 'CoT+Exam'] : |
|
suffix_prompt = "Let's think step by step.\n" |
|
|
|
ques = question["question"] |
|
stripped_ques = ques.replace("\n\n", "\n").strip() |
|
if mode in ['CoT+OneShot', 'CoT', 'CoT+SC', 'CoT+Exam']: |
|
if mode == 'CoT+Exam': |
|
if response_dict['type'] in ['MCQ', 'MCQ(multiple)']: |
|
if response_dict['type'] == 'MCQ': |
|
exam_prompt = "If the answer is wrong, you'll be given -1 marks. If the answer is correct, you'll be given +3 marks. If you're unsure of the answer, you can skip the question, and you'll be given 0 marks." |
|
else: |
|
exam_prompt = "If any of the options in the final answer is wrong, you'll be given -2 marks. If all the options are correct, you'll be given +4 marks. If some of the options are correct, you'll be given +1 for each correct option. If you're unsure of the answer, you can skip the question, and you'll be given 0 marks." |
|
prompt = prefix_prompt + " " + exam_prompt + "\n\n" + "Problem: " + stripped_ques + "\nSolution: " + suffix_prompt |
|
else: |
|
print("No point doing this for Numeric/Integer questions since there is no negative marking...") |
|
breakpoint() |
|
else: |
|
if mode == 'CoT+OneShot': |
|
ex = few_shot_examples[question['subject']][question['type']] |
|
prompt = prefix_prompt + "\n\n" + "Problem: " + ex['problem'] + "\nSolution: " + ex['solution'] + "\n\n" + "Problem: " + stripped_ques + "\nSolution: " |
|
else: |
|
prompt = prefix_prompt + "\n\n" + "Problem: " + stripped_ques + "\nSolution: " + suffix_prompt |
|
else: |
|
prompt = prefix_prompt + "\n\n" + "Problem: " + stripped_ques + suffix_prompt |
|
prompt = prompt.strip() |
|
response_dict[f"prompt"] = prompt |
|
num_retries = 0 |
|
print(f'Question: {question["description"]}, Index: {question["index"]}, Model: {model_nickname}, Mode: {mode}, query begins') |
|
|
|
while True: |
|
try: |
|
if model in ["text-davinci-003", "text-davinci-002", 'davinci-002']: |
|
response = openai.Completion.create( |
|
model=model, |
|
prompt=prompt, |
|
max_tokens=2048, |
|
temperature=0 if mode in ['CoT', 'normal', 'CoT+Exam'] else 0.5, |
|
n=1 if mode in ['CoT', 'normal', 'CoT+Exam'] else 3 |
|
) |
|
else: |
|
response = openai.ChatCompletion.create( |
|
model=model, |
|
messages=[ |
|
{"role": "system", "content": ""}, |
|
{"role": "user", "content": prompt} |
|
], |
|
max_tokens=2048, |
|
temperature=0 if mode in ['CoT+OneShot', 'CoT', 'normal', 'CoT+Exam'] else 0.5, |
|
n=1 if mode in ['CoT+OneShot', 'CoT', 'normal', 'CoT+Exam'] else 8 |
|
) |
|
|
|
lock.acquire() |
|
response_dict[f"{model_nickname}_{mode}_response"] = response |
|
write_in_file(response_file, response_dict, question, mode, model_nickname) |
|
lock.release() |
|
break |
|
|
|
except Exception as e: |
|
num_retries += 1 |
|
print("Failure!", e) |
|
return |
|
|
|
def main(): |
|
''' |
|
The code can restart from the already done questions in case there is a failure midpoint. |
|
''' |
|
args = argparse.ArgumentParser() |
|
args.add_argument('--model', default='gpt-3.5-turbo') |
|
args.add_argument('--data', default='data/dataset.json') |
|
args.add_argument('--mode', default='normal') |
|
args.add_argument('--num_procs', default=1, type=int) |
|
args.add_argument('--max_questions', default=1, type=int) |
|
args = args.parse_args() |
|
|
|
openai.organization = os.getenv("OPENAI_ORG") |
|
openai.api_key = os.getenv("OPENAI_API_KEY") |
|
|
|
model_nickname = { |
|
"davinci-002": "davinci-002", |
|
"text-davinci-003": "GPT3", |
|
"gpt-3.5-turbo": "GPT3.5", |
|
"gpt-4-0613": "GPT4_0613", |
|
"gpt-4-0314": "GPT4" |
|
} |
|
assert args.model in model_nickname.keys() |
|
assert args.mode in ['normal', 'CoT', 'CoT+OneShot', 'CoT+Exam', 'CoT+SC'] |
|
|
|
out_file_dir = f'responses/{model_nickname[args.model]}_{args.mode}_responses' |
|
out_file = os.path.join(out_file_dir, 'responses.json') |
|
questions = json.load(open(args.data)) |
|
|
|
rem_ques = [] |
|
|
|
if os.path.exists(out_file): |
|
|
|
for question in tqdm(questions[:args.max_questions]): |
|
if os.path.exists(out_file): |
|
with open(out_file, 'r') as infile: |
|
responses = json.load(infile) |
|
found = False |
|
|
|
for i, old_resp in enumerate(responses): |
|
if question['type'] in ['Numeric', 'Integer'] and args.mode == 'CoT+Exam': |
|
found = True |
|
if old_resp['description'] == question['description'] and old_resp['index'] == question['index']: |
|
|
|
found = all([old_resp.get( |
|
f"{model_nickname[args.model]}_{args.mode}_response", False) for model in [args.model]]) |
|
if found: |
|
print("This question has already been done") |
|
else: |
|
rem_ques.append(question) |
|
else: |
|
os.makedirs(out_file_dir, exist_ok=True) |
|
if args.mode == 'CoT+Exam': |
|
rem_ques = [] |
|
for q in questions: |
|
if q['type'] in ['MCQ', 'MCQ(multiple)']: |
|
rem_ques.append(q) |
|
else: |
|
rem_ques = questions[:args.max_questions] |
|
print(f"There are {len(rem_ques)} problems remaining") |
|
|
|
manager = multiprocessing.Manager() |
|
lock = manager.Lock() |
|
pool = multiprocessing.Pool(args.num_procs) |
|
f = partial(get_response, model=args.model, model_nickname=model_nickname[args.model], mode=args.mode, response_file=out_file, lock=lock) |
|
pool.map(f, rem_ques) |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|