|
# File: diffusion-models-class-main/unit2/finetune_model.py |
|
import wandb |
|
import numpy as np |
|
import torch, torchvision |
|
import torch.nn.functional as F |
|
from PIL import Image |
|
from tqdm.auto import tqdm |
|
from fastcore.script import call_parse |
|
from torchvision import transforms |
|
from diffusers import DDPMPipeline |
|
from diffusers import DDIMScheduler |
|
from datasets import load_dataset |
|
from matplotlib import pyplot as plt |
|
|
|
@call_parse |
|
def train(image_size=256, batch_size=16, grad_accumulation_steps=2, num_epochs=1, start_model='google/ddpm-bedroom-256', dataset_name='huggan/wikiart', device='cuda', model_save_name='wikiart_1e', wandb_project='dm_finetune', log_samples_every=250, save_model_every=2500): |
|
wandb.init(project=wandb_project, config=locals()) |
|
image_pipe = DDPMPipeline.from_pretrained(start_model) |
|
image_pipe.to(device) |
|
sampling_scheduler = DDIMScheduler.from_config(start_model) |
|
sampling_scheduler.set_timesteps(num_inference_steps=50) |
|
dataset = load_dataset(dataset_name, split='train') |
|
preprocess = transforms.Compose([transforms.Resize((image_size, image_size)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]) |
|
|
|
def transform(examples): |
|
images = [preprocess(image.convert('RGB')) for image in examples['image']] |
|
return {'images': images} |
|
dataset.set_transform(transform) |
|
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True) |
|
optimizer = torch.optim.AdamW(image_pipe.unet.parameters(), lr=1e-05) |
|
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9) |
|
for epoch in range(num_epochs): |
|
for (step, batch) in tqdm(enumerate(train_dataloader), total=len(train_dataloader)): |
|
clean_images = batch['images'].to(device) |
|
noise = torch.randn(clean_images.shape).to(clean_images.device) |
|
bs = clean_images.shape[0] |
|
timesteps = torch.randint(0, image_pipe.scheduler.num_train_timesteps, (bs,), device=clean_images.device).long() |
|
noisy_images = image_pipe.scheduler.add_noise(clean_images, noise, timesteps) |
|
noise_pred = image_pipe.unet(noisy_images, timesteps, return_dict=False)[0] |
|
loss = F.mse_loss(noise_pred, noise) |
|
wandb.log({'loss': loss.item()}) |
|
loss.backward() |
|
if (step + 1) % grad_accumulation_steps == 0: |
|
optimizer.step() |
|
optimizer.zero_grad() |
|
if (step + 1) % log_samples_every == 0: |
|
x = torch.randn(8, 3, 256, 256).to(device) |
|
for (i, t) in tqdm(enumerate(sampling_scheduler.timesteps)): |
|
model_input = sampling_scheduler.scale_model_input(x, t) |
|
with torch.no_grad(): |
|
noise_pred = image_pipe.unet(model_input, t)['sample'] |
|
x = sampling_scheduler.step(noise_pred, t, x).prev_sample |
|
grid = torchvision.utils.make_grid(x, nrow=4) |
|
im = grid.permute(1, 2, 0).cpu().clip(-1, 1) * 0.5 + 0.5 |
|
im = Image.fromarray(np.array(im * 255).astype(np.uint8)) |
|
wandb.log({'Sample generations': wandb.Image(im)}) |
|
if (step + 1) % save_model_every == 0: |
|
image_pipe.save_pretrained(model_save_name + f'step_{step + 1}') |
|
scheduler.step() |
|
image_pipe.save_pretrained(model_save_name) |
|
wandb.finish() |
|
|
|
|