|
--- |
|
annotations_creators: [] |
|
language: |
|
- en |
|
language_creators: |
|
- found |
|
license: |
|
- mit |
|
multilinguality: |
|
- monolingual |
|
pretty_name: laion-aesthetics-12m-umap |
|
size_categories: [] |
|
source_datasets: [] |
|
tags: |
|
- laion |
|
- stable-diffuson |
|
- text2img |
|
task_categories: [] |
|
task_ids: [] |
|
--- |
|
|
|
# LAION-Aesthetics :: CLIP → UMAP |
|
|
|
This dataset is a CLIP (text) → UMAP embedding of the [LAION-Aesthetics dataset](https://laion.ai/blog/laion-aesthetics/) - specifically the [`improved_aesthetics_6plus` version](https://huggingface.co/datasets/ChristophSchuhmann/improved_aesthetics_6plus), which filters the full dataset to images with scores of > 6 under the "aesthetic" filtering model. |
|
|
|
Thanks LAION for this amazing corpus! |
|
|
|
--- |
|
|
|
The dataset here includes coordinates for 3x separate UMAP fits using different values for the `n_neighbors` parameter - `10`, `30`, and `60` - which are broken out as separate columns with different suffixes: |
|
|
|
- `n_neighbors=10` → (`x_nn10`, `y_nn10`) |
|
- `n_neighbors=30` → (`x_nn30`, `y_nn30`) |
|
- `n_neighbors=60` → (`x_nn60`, `y_nn60`) |
|
|
|
### `nn10` |
|
|
|
![nn10](https://user-images.githubusercontent.com/814168/189763846-efa9ecc9-3d57-469b-9d4e-02ddc1723265.jpg) |
|
|
|
### `nn30` |
|
|
|
![nn30](https://user-images.githubusercontent.com/814168/189763863-a67d4bb1-e043-48ec-8c5a-38dce960731b.jpg) |
|
|
|
### `nn60` |
|
|
|
(The version from [Twitter](https://twitter.com/clured/status/1565399157606580224).) |
|
|
|
![nn60](https://user-images.githubusercontent.com/814168/189763872-5847cde5-e03b-45e1-a9be-d95966bc5ded.jpg) |
|
|
|
## Pipeline |
|
|
|
The script for producing this can be found here: |
|
|
|
https://github.com/davidmcclure/loam-viz/blob/laion/laion.py |
|
|
|
And is very simple - just using the `openai/clip-vit-base-patch32` model out-of-the-box to encode the text captions: |
|
|
|
```python |
|
@app.command() |
|
def clip( |
|
src: str, |
|
dst: str, |
|
text_col: str = 'TEXT', |
|
limit: Optional[int] = typer.Option(None), |
|
batch_size: int = typer.Option(512), |
|
): |
|
"""Embed with CLIP.""" |
|
df = pd.read_parquet(src) |
|
|
|
if limit: |
|
df = df.head(limit) |
|
|
|
tokenizer = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32') |
|
model = CLIPTextModel.from_pretrained('openai/clip-vit-base-patch32') |
|
|
|
model = model.to(device) |
|
|
|
texts = df[text_col].tolist() |
|
|
|
embeds = [] |
|
for batch in chunked_iter(tqdm(texts), batch_size): |
|
|
|
enc = tokenizer( |
|
batch, |
|
return_tensors='pt', |
|
padding=True, |
|
truncation=True, |
|
) |
|
|
|
enc = enc.to(device) |
|
|
|
with torch.no_grad(): |
|
res = model(**enc) |
|
|
|
embeds.append(res.pooler_output.to('cpu')) |
|
|
|
embeds = torch.cat(embeds).numpy() |
|
|
|
np.save(dst, embeds) |
|
|
|
print(embeds.shape) |
|
``` |
|
|
|
Then using `cuml.GaussianRandomProjection` to do an initial squeeze to 64d (which gets the embedding tensor small enough to fit onto a single GPU for the UMAP) - |
|
|
|
```python |
|
@app.command() |
|
def random_projection(src: str, dst: str, dim: int = 64): |
|
"""Random projection on an embedding matrix.""" |
|
rmm.reinitialize(managed_memory=True) |
|
|
|
embeds = np.load(src) |
|
|
|
rp = cuml.GaussianRandomProjection(n_components=dim) |
|
embeds = rp.fit_transform(embeds) |
|
|
|
np.save(dst, embeds) |
|
print(embeds.shape) |
|
``` |
|
|
|
And then `cuml.UMAP` to get from 64d -> 2d - |
|
|
|
```python |
|
@app.command() |
|
def umap( |
|
df_src: str, |
|
embeds_src: str, |
|
dst: str, |
|
n_neighbors: int = typer.Option(30), |
|
n_epochs: int = typer.Option(1000), |
|
negative_sample_rate: int = typer.Option(20), |
|
): |
|
"""UMAP to 2d.""" |
|
rmm.reinitialize(managed_memory=True) |
|
|
|
df = pd.read_parquet(df_src) |
|
|
|
embeds = np.load(embeds_src) |
|
|
|
embeds = embeds.astype('float16') |
|
|
|
print(embeds.shape) |
|
print(embeds.dtype) |
|
|
|
reducer = cuml.UMAP( |
|
n_neighbors=n_neighbors, |
|
n_epochs=n_epochs, |
|
negative_sample_rate=negative_sample_rate, |
|
verbose=True, |
|
) |
|
|
|
x = reducer.fit_transform(embeds) |
|
|
|
df['x'] = x[:,0] |
|
df['y'] = x[:,1] |
|
|
|
df.to_parquet(dst) |
|
print(df) |
|
``` |