Datasets:
ddrg
/

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
id
int64
-30,985
55.9k
text
stringlengths
5
437k
32,460
30 = 2220422932^3 + \left(-2218888517\right)^3 + (-283059965) \cdot (-283059965) \cdot (-283059965)
9,583
\left(\sqrt{z + d}\right)^2 = \sqrt{G + m} * \sqrt{G + m}\Longrightarrow G + m = z + d
-6,693
80/100 + 3/100 = 8/10 + \dfrac{1}{100}\times 3
-14,550
1 + 5 \cdot 7 = 1 + 35 = 1 + 35 = 36
15,023
\dfrac{x - y}{x^2 - y \cdot y} = \frac{1}{y + x}
-5,133
\dfrac{66.6}{1000} = \frac{66.6}{1000}
26,406
\tfrac{6}{35} = 3/5*\frac{2}{7}
20,175
\frac{1}{54}\cdot 4 = \frac{\dfrac{1}{2}}{2}\cdot 8\cdot \frac{1}{27}
17,157
i^{-1} = i^{1 + 2 \times (-1)} = \dfrac{i}{i^2} = i/(-1) = -i
6,302
0 = k\cdot 3 + (-1) \Rightarrow k = 1/3
1,448
m = 3/2*y rightarrow 2/3*m = y
2,443
\left\lfloor{\frac{90000}{35}}\right\rfloor = 2571
2,919
\frac{1}{20} = \frac14 - \frac{1}{5}
40,555
\frac{1}{3}*3 = 1 = 3 + 2\left(-1\right)
10,843
y\cos(a) = \sin(a) x \Rightarrow -x^2 \sin^2(a)*2 = -y^2 \cos^2(a)*2
17,016
\mathbb{E}[\sum_{l=1}^x X_l] = \sum_{l=1}^x \mathbb{E}[X_l]
13,601
0 = x^3 + b^3 + h \cdot h \cdot h - 3 \cdot x \cdot b \cdot h = (x + b + h) \cdot \left(x^2 + b^2 + h^2 - x \cdot b - b \cdot h - h \cdot x\right)
7,202
2 + 2 + 2 + 2 + \dotsm = -\frac12
-7,793
\frac{1}{-4}\cdot (20\cdot i - 20) = -\frac{20}{-4} + i\cdot 20/\left(-4\right)
28,915
z^6 + z^5 + z^4 + z^3 = (z^3 + z) \cdot \left(z^2 + z^3\right)
7,100
90/100 \cdot \left(1 - \frac{75}{100}\right) = \frac{25}{100} \cdot 90 \cdot \frac{1}{100} = 9/40
27,794
m \cdot 0 = m + (-1)^m \cdot 0 = m = 0 + \left(-1\right)^0 \cdot m = 0 \cdot m
-26,432
16 = 24 \times 2/3
45,561
195 = 3*5*13
37,180
t^2 + 2\cdot y\cdot t + \left(-1\right) = 0 \Rightarrow -y ± \sqrt{1 + y^2} = t
11,270
1 = (1^{1.5})^{\frac{1}{2}}
46,411
\sin{4 \cdot x}/\sin{x} = \dfrac{1}{e^{i \cdot x} - e^{-i \cdot x}} \cdot \left(e^{4 \cdot i \cdot x} - e^{-4 \cdot i \cdot x}\right) = e^{3 \cdot i \cdot x} + e^{i \cdot x} + e^{-i \cdot x} + e^{-3 \cdot i \cdot x} = 2 \cdot \cos{x} + 2 \cdot \cos{3 \cdot x}
-21,055
6/8 = \frac34\cdot 2/2
3,552
E(T_1) + \cdots + E(T_x) = E(T_1 + \cdots + T_x)
6,773
\cos{6z} = \cos(5z + z)
-30,916
3 \cdot b + 6 = 3 \cdot b + 6
21,852
\alpha \times |Z|^2 + \beta \times |Z^2| = \alpha \times |Z|^2 + \beta \times |Z|^2 = (\alpha + \beta) \times |Z|^2
18,533
\dfrac{D\cdot x}{D} = 1 \Rightarrow x\cdot D = D
-18,319
\frac{42 + y^2 - y\cdot 13}{y^2 - 7\cdot y} = \frac{(y + 6\cdot \left(-1\right))\cdot (y + 7\cdot (-1))}{(y + 7\cdot (-1))\cdot y}
-4,552
-\frac{5}{x + 2} - \frac{1}{x + (-1)} = \frac{3 - 6*x}{x^2 + x + 2*\left(-1\right)}
-19,342
\frac48\tfrac13 = \tfrac{1}{\dfrac143 \cdot 8}
1,050
21 \cdot z/20 = \frac{z}{5} \cdot 4 + \dfrac{z}{4}
23,389
Y_2\cdot A_1 = A_1\cdot Y_2
23,629
(\tfrac{u}{2} + w/2)*2 = u + w
-20,651
\frac{t\cdot (-18)}{3\cdot t + 30\cdot (-1)} = \tfrac33\cdot \frac{(-6)\cdot t}{t + 10\cdot (-1)}
15,532
b = \arcsin{h} rightarrow \sin{b} = h
-15,685
\frac{1}{s^{12}*x^{15}*(\frac{1}{x^5*s^4})^4} = \frac{\tfrac{1}{x^{15}}*\frac{1}{s^{12}}}{\dfrac{1}{x^{20}}*\frac{1}{s^{16}}}
-19,488
\phantom{\dfrac{1}{9} \times \dfrac{8}{5}} = \dfrac{1 \times 8}{9 \times 5} = \dfrac{8}{45}
24,708
1 - \sin^2{z} = \cos^2{z} = (1 + \cos{2*z})/2
-12,428
\frac{1}{2}*116 = 58
-12,117
1/6 = \frac{x}{6*\pi}*6*\pi = x
-10,267
-\tfrac{45 \cdot (-1) + 45 \cdot y}{y \cdot 15 + 60 \cdot (-1)} = 15/15 \cdot \left(-\frac{1}{4 \cdot (-1) + y} \cdot (3 \cdot y + 3 \cdot (-1))\right)
-154
\frac{10!}{(3(-1) + 10)!} = 10\cdot 9\cdot 8
29,559
-1/24 = \dfrac{1}{2} + 2/2 + \dots
23,145
1! + 2! + \dots + n! + (n + 1)! \leq 2n! + (n + 1)! = \left(n + 3\right) n! \leq 2(n + 1) n!
11,212
\binom{-1}{q} = (\left(-1\right)*\left(-2*\dotsm*(-1 - q + 1)\right))/q! = (-1)^q
-20,622
5/5 \cdot \frac{1}{i \cdot 6} \cdot (-8 \cdot i + 4 \cdot (-1)) = \dfrac{1}{30 \cdot i} \cdot (20 \cdot (-1) - i \cdot 40)
2,647
x*x^N = x^{1 + N}
18,294
-z^2 \cdot 2 + (z^2 + 1) \cdot (z^2 + 1) = z^4 + 1
1,039
(1/4)^{1/2} = \dfrac{1}{2}
-19,575
7\cdot \frac{1}{3}/9 = 7/(9\cdot 3) = 7/27
-20,825
\frac{1}{\left(-1\right) + n} \cdot ((-4) \cdot n) \cdot 7/7 = \frac{1}{7 \cdot n + 7 \cdot (-1)} \cdot (n \cdot (-28))
-11,646
22\cdot i - 15 + 8 = -7 + 22\cdot i
6,332
n = n + (-1) + 1 = n + 2\cdot (-1) + 2 = \dotsm = (n + 1)/2 + (n + (-1))/2
-16,690
-5\cdot y = -5\cdot y\cdot \left(-5\cdot y\right) + -5\cdot y\cdot \left(-7\right) = 25\cdot y^2 + 35\cdot y = 25\cdot y^2 + 35\cdot y
-29,144
18 = 4\cdot 4 + 1\cdot 2
-19,683
20/9 = \frac{4}{9} \cdot 5
8,496
4 \lt z \cdot z \implies 0 \lt (2 + z) \cdot (z + 2 \cdot \left(-1\right))
51,751
1 = i^0
29,559
1/2 + \frac{2}{2} + ... = -1/24
-12,841
3/4 = 18/24
28,679
2\cdot 5\cdot \dfrac{5!}{2!} = 600
-20,286
\frac13 \cdot 3 \cdot (-10/7) = -30/21
7,844
-\frac{1}{1 + x} + 1/x = \dfrac{1}{x + x \times x}
-3,338
6\times \sqrt{2} = \sqrt{2}\times \left(4 + 3 + (-1)\right)
-1,423
-\frac{8}{3}\cdot 3/5 = ((-8)\cdot \frac13)/(5\cdot 1/3)
-2,886
7*\sqrt{2} = (5 + 4 + 2*\left(-1\right))*\sqrt{2}
808
\cos(x) = (e^{ix} + e^{-ix})/2 = \overline{\cos(x)} = \frac{1}{2}\left(e^{-ix} + e^{ix}\right)
20,064
(a - b)/(b*a) = -1/a + 1/b
29,492
4! \binom{5}{4}*4! = 5!*4!
-20,665
\frac33 \frac16(y + 9(-1)) = \frac{1}{18}(y*3 + 27 \left(-1\right))
-10,491
\dfrac{20}{z \cdot z\cdot 16} = 2/2\cdot \dfrac{10}{8\cdot z^2}
1,688
(x + (-1))*\left(x + 2*\left(-1\right)\right)*(x + 3*\left(-1\right)) = x^3 - 6*x^2 + x*11 + 6*(-1)
1,332
\tfrac{\tfrac{F'}{F}\cdot \frac{K}{F}}{K \cap F'/F} = K\cdot F'/F
22,322
4\cdot3/2=6
13,205
x + 4x = 1x + 4x = (1+4)x = 5x
5,313
1/2 + \tfrac{1}{3} + 1/3 = 7/6
-20,083
\frac{1}{4(-1) + z*4}\left(-14 z + 10 (-1)\right) = \frac122 \frac{5\left(-1\right) - 7z}{2(-1) + 2z}
26,714
|c| \cdot c/|c| = c
29,605
(2^d)^3 = 8^d
17,826
\sin(x + g + d) = \sin(d + g + x)
-15,507
\frac{1}{k^{20} \times (\dfrac{q}{k^4})^2} = \frac{1}{k^{20} \times \dfrac{1}{k^8} \times q^2}
9,579
5/27 = 6/27\cdot 5/6
-5,785
\frac{2}{20 + z \cdot 4} = \frac{1}{(5 + z) \cdot 4} \cdot 2
6,255
\sqrt{7}\cdot 2 = \sqrt{7} + \sqrt{2} + \sqrt{7} - \sqrt{2}
26,707
128 = (1 + 1) \cdot (1 + 1) \cdot (1 + 1) \cdot (3 + 1) \cdot (1 + 3)
-9,354
2*3*11 + x*11 = 11 x + 66
23,744
g\cdot p = g\cdot p\cdot g = p\cdot g
14,441
y^{b + c} = y^b*y^c
-1,560
\frac{9}{4} = \frac14 \cdot 9
-18,264
\tfrac{1}{(k + 6)\times k}\times (k + 6)\times (9\times \left(-1\right) + k) = \frac{54\times \left(-1\right) + k^2 - 3\times k}{k\times 6 + k^2}
15,028
((x - b)^2 + (-d + b)^2 + (-x + d)^2)/2 = -d*x + x^2 + b^2 + d^2 - b*x - b*d
8,916
14.5 = \cos{z} + 5 \implies 9.5 = \cos{z}
-13,377
2 + \frac{1}{8}72 = 2 + 9 = 2 + 9 = 11
274
\binom{1/2}{m} = \frac{1}{2 \cdot (\frac12 + \left(-1\right)) \cdot (\frac{1}{2} + 2 \cdot (-1)) \cdot \dots \cdot (1/2 - m + 1) \cdot m!}

Dataset Card for "math_formulas"

Mathematical dataset containing formulas based on the AMPS Khan dataset and the ARQMath dataset V1.3. Based on the retrieved LaTeX formulas, more equivalent versions have been generated by applying randomized LaTeX printing with this SymPy fork. The formulas are intended to be well applicable for MLM. For instance, a masking for a formula like (a+b)^2 = a^2 + 2ab + b^2 makes sense (e.g., (a+[MASK])^2 = a^2 + [MASK]ab + b[MASK]2 -> masked tokens are deducable by the context), in contrast, formulas such as f(x) = 3x+1 are not (e.g., [MASK](x) = 3x[MASK]1 -> [MASK] tokens are ambigious).

Downloads last month
70
Edit dataset card

Models trained or fine-tuned on ddrg/math_formulas