Datasets:

Modalities:
Text
Formats:
text
Libraries:
Datasets
License:
khulnasoft's picture
Create carb.py
b39ef90 verified
'''
Usage:
benchmark --gold=GOLD_OIE (--openiefive=OPENIE5 | --stanford=STANFORD_OIE | --ollie=OLLIE_OIE |--reverb=REVERB_OIE | --clausie=CLAUSIE_OIE | --openiefour=OPENIEFOUR_OIE | --props=PROPS_OIE | --tabbed=TABBED_OIE | --benchmarkGold=BENCHMARK_GOLD | --allennlp=ALLENNLP_OIE ) [--exactMatch | --predMatch | --lexicalMatch | --binaryMatch | --simpleMatch | --strictMatch] [--error-file=ERROR_FILE] [--binary]
Options:
--gold=GOLD_OIE The gold reference Open IE file (by default, it should be under ./oie_corpus/all.oie).
--benchmarkgold=GOLD_OIE The benchmark's gold reference.
# --out-OUTPUT_FILE The output file, into which the precision recall curve will be written.
--clausie=CLAUSIE_OIE Read ClausIE format from file CLAUSIE_OIE.
--ollie=OLLIE_OIE Read OLLIE format from file OLLIE_OIE.
--openiefour=OPENIEFOUR_OIE Read Open IE 4 format from file OPENIEFOUR_OIE.
--openiefive=OPENIE5 Read Open IE 5 format from file OPENIE5.
--props=PROPS_OIE Read PropS format from file PROPS_OIE
--reverb=REVERB_OIE Read ReVerb format from file REVERB_OIE
--stanford=STANFORD_OIE Read Stanford format from file STANFORD_OIE
--tabbed=TABBED_OIE Read simple tab format file, where each line consists of:
sent, prob, pred,arg1, arg2, ...
--exactmatch Use exact match when judging whether an extraction is correct.
'''
from __future__ import division
import docopt
import string
import numpy as np
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import auc
import re
import logging
import pdb
import ipdb
from _collections import defaultdict
logging.basicConfig(level = logging.INFO)
from oie_readers.allennlpReader import AllennlpReader
from oie_readers.stanfordReader import StanfordReader
from oie_readers.ollieReader import OllieReader
from oie_readers.reVerbReader import ReVerbReader
from oie_readers.clausieReader import ClausieReader
from oie_readers.openieFourReader import OpenieFourReader
from oie_readers.openieFiveReader import OpenieFiveReader
from oie_readers.propsReader import PropSReader
from oie_readers.tabReader import TabReader
from oie_readers.benchmarkGoldReader import BenchmarkGoldReader
from oie_readers.goldReader import GoldReader
from matcher import Matcher
from operator import itemgetter
import pprint
from copy import copy
pp = pprint.PrettyPrinter(indent=4)
class Benchmark:
''' Compare the gold OIE dataset against a predicted equivalent '''
def __init__(self, gold_fn):
''' Load gold Open IE, this will serve to compare against using the compare function '''
gr = GoldReader()
gr.read(gold_fn)
self.gold = gr.oie
def compare(self, predicted, matchingFunc, output_fn=None, error_file=None, binary=False):
''' Compare gold against predicted using a specified matching function.
Outputs PR curve to output_fn '''
y_true = []
y_scores = []
errors = []
correct = 0
incorrect = 0
correctTotal = 0
unmatchedCount = 0
predicted = Benchmark.normalizeDict(predicted)
gold = Benchmark.normalizeDict(self.gold)
if binary:
predicted = Benchmark.binarize(predicted)
gold = Benchmark.binarize(gold)
#gold = self.gold
# taking all distinct values of confidences as thresholds
confidence_thresholds = set()
for sent in predicted:
for predicted_ex in predicted[sent]:
confidence_thresholds.add(predicted_ex.confidence)
confidence_thresholds = sorted(list(confidence_thresholds))
num_conf = len(confidence_thresholds)
results = {}
p = np.zeros(num_conf)
pl = np.zeros(num_conf)
r = np.zeros(num_conf)
rl = np.zeros(num_conf)
for sent, goldExtractions in gold.items():
if sent in predicted:
predictedExtractions = predicted[sent]
else:
predictedExtractions = []
scores = [[None for _ in predictedExtractions] for __ in goldExtractions]
# print("***Gold Extractions***")
# print("\n".join([goldExtractions[i].pred + ' ' + " ".join(goldExtractions[i].args) for i in range(len(goldExtractions))]))
# print("***Predicted Extractions***")
# print("\n".join([predictedExtractions[i].pred+ " ".join(predictedExtractions[i].args) for i in range(len(predictedExtractions))]))
for i, goldEx in enumerate(goldExtractions):
for j, predictedEx in enumerate(predictedExtractions):
score = matchingFunc(goldEx, predictedEx,ignoreStopwords = True,ignoreCase = True)
scores[i][j] = score
# OPTIMISED GLOBAL MATCH
sent_confidences = [extraction.confidence for extraction in predictedExtractions]
sent_confidences.sort()
prev_c = 0
for conf in sent_confidences:
c = confidence_thresholds.index(conf)
ext_indices = []
for ext_indx, extraction in enumerate(predictedExtractions):
if extraction.confidence >= conf:
ext_indices.append(ext_indx)
recall_numerator = 0
for i, row in enumerate(scores):
max_recall_row = max([row[ext_indx][1] for ext_indx in ext_indices ], default=0)
recall_numerator += max_recall_row
precision_numerator = 0
selected_rows = []
selected_cols = []
num_precision_matches = min(len(scores), len(ext_indices))
for t in range(num_precision_matches):
matched_row = -1
matched_col = -1
matched_precision = -1 # initialised to <0 so that it updates whenever precision is 0 as well
for i in range(len(scores)):
if i in selected_rows:
continue
for ext_indx in ext_indices:
if ext_indx in selected_cols:
continue
if scores[i][ext_indx][0] > matched_precision:
matched_precision = scores[i][ext_indx][0]
matched_row = i
matched_col = ext_indx
selected_rows.append(matched_row)
selected_cols.append(matched_col)
precision_numerator += scores[matched_row][matched_col][0]
p[prev_c:c+1] += precision_numerator
pl[prev_c:c+1] += len(ext_indices)
r[prev_c:c+1] += recall_numerator
rl[prev_c:c+1] += len(scores)
prev_c = c+1
# for indices beyond the maximum sentence confidence, len(scores) has to be added to the denominator of recall
rl[prev_c:] += len(scores)
prec_scores = [a/b if b>0 else 1 for a,b in zip(p,pl) ]
rec_scores = [a/b if b>0 else 0 for a,b in zip(r,rl)]
f1s = [Benchmark.f1(p,r) for p,r in zip(prec_scores, rec_scores)]
try:
optimal_idx = np.nanargmax(f1s)
optimal = (prec_scores[optimal_idx], rec_scores[optimal_idx], f1s[optimal_idx])
return np.round(optimal,3)
except ValueError:
# When there is no prediction
optimal = (0,0)
# In order to calculate auc, we need to add the point corresponding to precision=1 , recall=0 to the PR-curve
# temp_rec_scores = rec_scores.copy()
# temp_prec_scores = prec_scores.copy()
# temp_rec_scores.append(0)
# temp_prec_scores.append(1)
# # print("AUC: {}\t Optimal (precision, recall, F1): {}".format( np.round(auc(temp_rec_scores, temp_prec_scores),3), np.round(optimal,3) ))
#
# with open(output_fn, 'w') as fout:
# fout.write('{0}\t{1}\t{2}\n'.format("Precision", "Recall", "Confidence"))
# for cur_p, cur_r, cur_conf in sorted(zip(prec_scores, rec_scores, confidence_thresholds), key = lambda cur: cur[1]):
# fout.write('{0}\t{1}\t{2}\n'.format(cur_p, cur_r, cur_conf))
#
# if len(f1s)>0:
# return np.round(auc(temp_rec_scores, temp_prec_scores),3), np.round(optimal,3)
# else:
# # When there is no prediction
# return 0, (0,0,0)
@staticmethod
def binarize(extrs):
res = defaultdict(lambda: [])
for sent,extr in extrs.items():
for ex in extr:
#Add (a1, r, a2)
temp = copy(ex)
temp.args = ex.args[:2]
res[sent].append(temp)
if len(ex.args) <= 2:
continue
#Add (a1, r a2 , a3 ...)
for arg in ex.args[2:]:
temp.args = [ex.args[0]]
temp.pred = ex.pred + ' ' + ex.args[1]
words = arg.split()
#Add preposition of arg to rel
if words[0].lower() in Benchmark.PREPS:
temp.pred += ' ' + words[0]
words = words[1:]
temp.args.append(' '.join(words))
res[sent].append(temp)
return res
@staticmethod
def f1(prec, rec):
try:
return 2*prec*rec / (prec+rec)
except ZeroDivisionError:
return 0
@staticmethod
def aggregate_scores_greedily(scores):
# Greedy match: pick the prediction/gold match with the best f1 and exclude
# them both, until nothing left matches. Each input square is a [prec, rec]
# pair. Returns precision and recall as score-and-denominator pairs.
matches = []
while True:
max_s = 0
gold, pred = None, None
for i, gold_ss in enumerate(scores):
if i in [m[0] for m in matches]:
# Those are already taken rows
continue
for j, pred_s in enumerate(scores[i]):
if j in [m[1] for m in matches]:
# Those are used columns
continue
if pred_s and Benchmark.f1(*pred_s) > max_s:
max_s = Benchmark.f1(*pred_s)
gold = i
pred = j
if max_s == 0:
break
matches.append([gold, pred])
# Now that matches are determined, compute final scores.
prec_scores = [scores[i][j][0] for i,j in matches]
rec_scores = [scores[i][j][1] for i,j in matches]
total_prec = sum(prec_scores)
total_rec = sum(rec_scores)
scoring_metrics = {"precision" : [total_prec, len(scores[0])],
"recall" : [total_rec, len(scores)],
"precision_of_matches" : prec_scores,
"recall_of_matches" : rec_scores
}
return scoring_metrics
# Helper functions:
@staticmethod
def normalizeDict(d):
return dict([(Benchmark.normalizeKey(k), v) for k, v in d.items()])
@staticmethod
def normalizeKey(k):
# return Benchmark.removePunct(unicode(Benchmark.PTB_unescape(k.replace(' ','')), errors = 'ignore'))
return Benchmark.removePunct(str(Benchmark.PTB_unescape(k.replace(' ',''))))
@staticmethod
def PTB_escape(s):
for u, e in Benchmark.PTB_ESCAPES:
s = s.replace(u, e)
return s
@staticmethod
def PTB_unescape(s):
for u, e in Benchmark.PTB_ESCAPES:
s = s.replace(e, u)
return s
@staticmethod
def removePunct(s):
return Benchmark.regex.sub('', s)
# CONSTANTS
regex = re.compile('[%s]' % re.escape(string.punctuation))
# Penn treebank bracket escapes
# Taken from: https://github.com/nlplab/brat/blob/master/server/src/gtbtokenize.py
PTB_ESCAPES = [('(', '-LRB-'),
(')', '-RRB-'),
('[', '-LSB-'),
(']', '-RSB-'),
('{', '-LCB-'),
('}', '-RCB-'),]
PREPS = ['above','across','against','along','among','around','at','before','behind','below','beneath','beside','between','by','for','from','in','into','near','of','off','on','to','toward','under','upon','with','within']
def f_beta(precision, recall, beta = 1):
"""
Get F_beta score from precision and recall.
"""
beta = float(beta) # Make sure that results are in float
return (1 + pow(beta, 2)) * (precision * recall) / ((pow(beta, 2) * precision) + recall)
if __name__ == '__main__':
args = docopt.docopt(__doc__)
logging.debug(args)
if args['--allennlp']:
predicted = AllennlpReader()
predicted.read(args['--allennlp'])
if args['--stanford']:
predicted = StanfordReader()
predicted.read(args['--stanford'])
if args['--props']:
predicted = PropSReader()
predicted.read(args['--props'])
if args['--ollie']:
predicted = OllieReader()
predicted.read(args['--ollie'])
if args['--reverb']:
predicted = ReVerbReader()
predicted.read(args['--reverb'])
if args['--clausie']:
predicted = ClausieReader()
predicted.read(args['--clausie'])
if args['--openiefour']:
predicted = OpenieFourReader()
predicted.read(args['--openiefour'])
if args['--openiefive']:
predicted = OpenieFiveReader()
predicted.read(args['--openiefive'])
if args['--benchmarkGold']:
predicted = BenchmarkGoldReader()
predicted.read(args['--benchmarkGold'])
if args['--tabbed']:
predicted = TabReader()
predicted.read(args['--tabbed'])
if args['--binaryMatch']:
matchingFunc = Matcher.binary_tuple_match
elif args['--simpleMatch']:
matchingFunc = Matcher.simple_tuple_match
elif args['--exactMatch']:
matchingFunc = Matcher.argMatch
elif args['--predMatch']:
matchingFunc = Matcher.predMatch
elif args['--lexicalMatch']:
matchingFunc = Matcher.lexicalMatch
elif args['--strictMatch']:
matchingFunc = Matcher.tuple_match
else:
matchingFunc = Matcher.binary_linient_tuple_match
b = Benchmark(args['--gold'])
# out_filename = args['--out']
optimal_f1_point = b.compare(predicted = predicted.oie,
matchingFunc = matchingFunc,
error_file = args["--error-file"],
binary = args["--binary"])
print("Precision: {}, Recall: {}, F1-score: {}".format(optimal_f1_point[0], optimal_f1_point[1], optimal_f1_point[2]))