|
''' |
|
Usage: |
|
benchmark --gold=GOLD_OIE (--openiefive=OPENIE5 | --stanford=STANFORD_OIE | --ollie=OLLIE_OIE |--reverb=REVERB_OIE | --clausie=CLAUSIE_OIE | --openiefour=OPENIEFOUR_OIE | --props=PROPS_OIE | --tabbed=TABBED_OIE | --benchmarkGold=BENCHMARK_GOLD | --allennlp=ALLENNLP_OIE ) [--exactMatch | --predMatch | --lexicalMatch | --binaryMatch | --simpleMatch | --strictMatch] [--error-file=ERROR_FILE] [--binary] |
|
|
|
Options: |
|
--gold=GOLD_OIE The gold reference Open IE file (by default, it should be under ./oie_corpus/all.oie). |
|
--benchmarkgold=GOLD_OIE The benchmark's gold reference. |
|
# --out-OUTPUT_FILE The output file, into which the precision recall curve will be written. |
|
--clausie=CLAUSIE_OIE Read ClausIE format from file CLAUSIE_OIE. |
|
--ollie=OLLIE_OIE Read OLLIE format from file OLLIE_OIE. |
|
--openiefour=OPENIEFOUR_OIE Read Open IE 4 format from file OPENIEFOUR_OIE. |
|
--openiefive=OPENIE5 Read Open IE 5 format from file OPENIE5. |
|
--props=PROPS_OIE Read PropS format from file PROPS_OIE |
|
--reverb=REVERB_OIE Read ReVerb format from file REVERB_OIE |
|
--stanford=STANFORD_OIE Read Stanford format from file STANFORD_OIE |
|
--tabbed=TABBED_OIE Read simple tab format file, where each line consists of: |
|
sent, prob, pred,arg1, arg2, ... |
|
--exactmatch Use exact match when judging whether an extraction is correct. |
|
''' |
|
from __future__ import division |
|
import docopt |
|
import string |
|
import numpy as np |
|
from sklearn.metrics import precision_recall_curve |
|
from sklearn.metrics import auc |
|
import re |
|
import logging |
|
import pdb |
|
import ipdb |
|
from _collections import defaultdict |
|
logging.basicConfig(level = logging.INFO) |
|
|
|
from oie_readers.allennlpReader import AllennlpReader |
|
from oie_readers.stanfordReader import StanfordReader |
|
from oie_readers.ollieReader import OllieReader |
|
from oie_readers.reVerbReader import ReVerbReader |
|
from oie_readers.clausieReader import ClausieReader |
|
from oie_readers.openieFourReader import OpenieFourReader |
|
from oie_readers.openieFiveReader import OpenieFiveReader |
|
from oie_readers.propsReader import PropSReader |
|
from oie_readers.tabReader import TabReader |
|
from oie_readers.benchmarkGoldReader import BenchmarkGoldReader |
|
|
|
from oie_readers.goldReader import GoldReader |
|
from matcher import Matcher |
|
from operator import itemgetter |
|
import pprint |
|
from copy import copy |
|
pp = pprint.PrettyPrinter(indent=4) |
|
|
|
class Benchmark: |
|
''' Compare the gold OIE dataset against a predicted equivalent ''' |
|
def __init__(self, gold_fn): |
|
''' Load gold Open IE, this will serve to compare against using the compare function ''' |
|
gr = GoldReader() |
|
gr.read(gold_fn) |
|
self.gold = gr.oie |
|
|
|
def compare(self, predicted, matchingFunc, output_fn=None, error_file=None, binary=False): |
|
''' Compare gold against predicted using a specified matching function. |
|
Outputs PR curve to output_fn ''' |
|
|
|
y_true = [] |
|
y_scores = [] |
|
errors = [] |
|
correct = 0 |
|
incorrect = 0 |
|
|
|
correctTotal = 0 |
|
unmatchedCount = 0 |
|
predicted = Benchmark.normalizeDict(predicted) |
|
gold = Benchmark.normalizeDict(self.gold) |
|
if binary: |
|
predicted = Benchmark.binarize(predicted) |
|
gold = Benchmark.binarize(gold) |
|
|
|
|
|
|
|
confidence_thresholds = set() |
|
for sent in predicted: |
|
for predicted_ex in predicted[sent]: |
|
confidence_thresholds.add(predicted_ex.confidence) |
|
|
|
confidence_thresholds = sorted(list(confidence_thresholds)) |
|
num_conf = len(confidence_thresholds) |
|
|
|
results = {} |
|
p = np.zeros(num_conf) |
|
pl = np.zeros(num_conf) |
|
r = np.zeros(num_conf) |
|
rl = np.zeros(num_conf) |
|
|
|
for sent, goldExtractions in gold.items(): |
|
|
|
if sent in predicted: |
|
predictedExtractions = predicted[sent] |
|
else: |
|
predictedExtractions = [] |
|
|
|
scores = [[None for _ in predictedExtractions] for __ in goldExtractions] |
|
|
|
|
|
|
|
|
|
|
|
|
|
for i, goldEx in enumerate(goldExtractions): |
|
for j, predictedEx in enumerate(predictedExtractions): |
|
score = matchingFunc(goldEx, predictedEx,ignoreStopwords = True,ignoreCase = True) |
|
scores[i][j] = score |
|
|
|
|
|
|
|
sent_confidences = [extraction.confidence for extraction in predictedExtractions] |
|
sent_confidences.sort() |
|
prev_c = 0 |
|
for conf in sent_confidences: |
|
c = confidence_thresholds.index(conf) |
|
ext_indices = [] |
|
for ext_indx, extraction in enumerate(predictedExtractions): |
|
if extraction.confidence >= conf: |
|
ext_indices.append(ext_indx) |
|
|
|
recall_numerator = 0 |
|
for i, row in enumerate(scores): |
|
max_recall_row = max([row[ext_indx][1] for ext_indx in ext_indices ], default=0) |
|
recall_numerator += max_recall_row |
|
|
|
precision_numerator = 0 |
|
|
|
selected_rows = [] |
|
selected_cols = [] |
|
num_precision_matches = min(len(scores), len(ext_indices)) |
|
for t in range(num_precision_matches): |
|
matched_row = -1 |
|
matched_col = -1 |
|
matched_precision = -1 |
|
for i in range(len(scores)): |
|
if i in selected_rows: |
|
continue |
|
for ext_indx in ext_indices: |
|
if ext_indx in selected_cols: |
|
continue |
|
if scores[i][ext_indx][0] > matched_precision: |
|
matched_precision = scores[i][ext_indx][0] |
|
matched_row = i |
|
matched_col = ext_indx |
|
|
|
selected_rows.append(matched_row) |
|
selected_cols.append(matched_col) |
|
precision_numerator += scores[matched_row][matched_col][0] |
|
|
|
p[prev_c:c+1] += precision_numerator |
|
pl[prev_c:c+1] += len(ext_indices) |
|
r[prev_c:c+1] += recall_numerator |
|
rl[prev_c:c+1] += len(scores) |
|
|
|
prev_c = c+1 |
|
|
|
|
|
rl[prev_c:] += len(scores) |
|
|
|
prec_scores = [a/b if b>0 else 1 for a,b in zip(p,pl) ] |
|
rec_scores = [a/b if b>0 else 0 for a,b in zip(r,rl)] |
|
|
|
f1s = [Benchmark.f1(p,r) for p,r in zip(prec_scores, rec_scores)] |
|
try: |
|
optimal_idx = np.nanargmax(f1s) |
|
optimal = (prec_scores[optimal_idx], rec_scores[optimal_idx], f1s[optimal_idx]) |
|
return np.round(optimal,3) |
|
except ValueError: |
|
|
|
optimal = (0,0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@staticmethod |
|
def binarize(extrs): |
|
res = defaultdict(lambda: []) |
|
for sent,extr in extrs.items(): |
|
for ex in extr: |
|
|
|
temp = copy(ex) |
|
temp.args = ex.args[:2] |
|
res[sent].append(temp) |
|
|
|
if len(ex.args) <= 2: |
|
continue |
|
|
|
|
|
for arg in ex.args[2:]: |
|
temp.args = [ex.args[0]] |
|
temp.pred = ex.pred + ' ' + ex.args[1] |
|
words = arg.split() |
|
|
|
|
|
if words[0].lower() in Benchmark.PREPS: |
|
temp.pred += ' ' + words[0] |
|
words = words[1:] |
|
temp.args.append(' '.join(words)) |
|
res[sent].append(temp) |
|
|
|
return res |
|
|
|
@staticmethod |
|
def f1(prec, rec): |
|
try: |
|
return 2*prec*rec / (prec+rec) |
|
except ZeroDivisionError: |
|
return 0 |
|
|
|
@staticmethod |
|
def aggregate_scores_greedily(scores): |
|
|
|
|
|
|
|
matches = [] |
|
while True: |
|
max_s = 0 |
|
gold, pred = None, None |
|
for i, gold_ss in enumerate(scores): |
|
if i in [m[0] for m in matches]: |
|
|
|
continue |
|
for j, pred_s in enumerate(scores[i]): |
|
if j in [m[1] for m in matches]: |
|
|
|
continue |
|
if pred_s and Benchmark.f1(*pred_s) > max_s: |
|
max_s = Benchmark.f1(*pred_s) |
|
gold = i |
|
pred = j |
|
if max_s == 0: |
|
break |
|
matches.append([gold, pred]) |
|
|
|
prec_scores = [scores[i][j][0] for i,j in matches] |
|
rec_scores = [scores[i][j][1] for i,j in matches] |
|
total_prec = sum(prec_scores) |
|
total_rec = sum(rec_scores) |
|
scoring_metrics = {"precision" : [total_prec, len(scores[0])], |
|
"recall" : [total_rec, len(scores)], |
|
"precision_of_matches" : prec_scores, |
|
"recall_of_matches" : rec_scores |
|
} |
|
return scoring_metrics |
|
|
|
|
|
@staticmethod |
|
def normalizeDict(d): |
|
return dict([(Benchmark.normalizeKey(k), v) for k, v in d.items()]) |
|
|
|
@staticmethod |
|
def normalizeKey(k): |
|
|
|
return Benchmark.removePunct(str(Benchmark.PTB_unescape(k.replace(' ','')))) |
|
|
|
@staticmethod |
|
def PTB_escape(s): |
|
for u, e in Benchmark.PTB_ESCAPES: |
|
s = s.replace(u, e) |
|
return s |
|
|
|
@staticmethod |
|
def PTB_unescape(s): |
|
for u, e in Benchmark.PTB_ESCAPES: |
|
s = s.replace(e, u) |
|
return s |
|
|
|
@staticmethod |
|
def removePunct(s): |
|
return Benchmark.regex.sub('', s) |
|
|
|
|
|
regex = re.compile('[%s]' % re.escape(string.punctuation)) |
|
|
|
|
|
|
|
PTB_ESCAPES = [('(', '-LRB-'), |
|
(')', '-RRB-'), |
|
('[', '-LSB-'), |
|
(']', '-RSB-'), |
|
('{', '-LCB-'), |
|
('}', '-RCB-'),] |
|
|
|
PREPS = ['above','across','against','along','among','around','at','before','behind','below','beneath','beside','between','by','for','from','in','into','near','of','off','on','to','toward','under','upon','with','within'] |
|
|
|
def f_beta(precision, recall, beta = 1): |
|
""" |
|
Get F_beta score from precision and recall. |
|
""" |
|
beta = float(beta) |
|
return (1 + pow(beta, 2)) * (precision * recall) / ((pow(beta, 2) * precision) + recall) |
|
|
|
|
|
if __name__ == '__main__': |
|
args = docopt.docopt(__doc__) |
|
logging.debug(args) |
|
|
|
if args['--allennlp']: |
|
predicted = AllennlpReader() |
|
predicted.read(args['--allennlp']) |
|
|
|
if args['--stanford']: |
|
predicted = StanfordReader() |
|
predicted.read(args['--stanford']) |
|
|
|
if args['--props']: |
|
predicted = PropSReader() |
|
predicted.read(args['--props']) |
|
|
|
if args['--ollie']: |
|
predicted = OllieReader() |
|
predicted.read(args['--ollie']) |
|
|
|
if args['--reverb']: |
|
predicted = ReVerbReader() |
|
predicted.read(args['--reverb']) |
|
|
|
if args['--clausie']: |
|
predicted = ClausieReader() |
|
predicted.read(args['--clausie']) |
|
|
|
if args['--openiefour']: |
|
predicted = OpenieFourReader() |
|
predicted.read(args['--openiefour']) |
|
|
|
if args['--openiefive']: |
|
predicted = OpenieFiveReader() |
|
predicted.read(args['--openiefive']) |
|
|
|
if args['--benchmarkGold']: |
|
predicted = BenchmarkGoldReader() |
|
predicted.read(args['--benchmarkGold']) |
|
|
|
if args['--tabbed']: |
|
predicted = TabReader() |
|
predicted.read(args['--tabbed']) |
|
|
|
if args['--binaryMatch']: |
|
matchingFunc = Matcher.binary_tuple_match |
|
|
|
elif args['--simpleMatch']: |
|
matchingFunc = Matcher.simple_tuple_match |
|
|
|
elif args['--exactMatch']: |
|
matchingFunc = Matcher.argMatch |
|
|
|
elif args['--predMatch']: |
|
matchingFunc = Matcher.predMatch |
|
|
|
elif args['--lexicalMatch']: |
|
matchingFunc = Matcher.lexicalMatch |
|
|
|
elif args['--strictMatch']: |
|
matchingFunc = Matcher.tuple_match |
|
|
|
else: |
|
matchingFunc = Matcher.binary_linient_tuple_match |
|
|
|
b = Benchmark(args['--gold']) |
|
|
|
|
|
|
|
optimal_f1_point = b.compare(predicted = predicted.oie, |
|
matchingFunc = matchingFunc, |
|
error_file = args["--error-file"], |
|
binary = args["--binary"]) |
|
|
|
print("Precision: {}, Recall: {}, F1-score: {}".format(optimal_f1_point[0], optimal_f1_point[1], optimal_f1_point[2])) |