|
""" Usage: |
|
pr_plot --in=DIR_NAME --out=OUTPUT_FILENAME |
|
|
|
Options: |
|
--in=DIR_NAME Folder in which to search for *.dat files, all of which should be in a P/R column format (outputs from benchmark.py) |
|
--out=OUTPUT_FILENAME Output filename, filetype will determine the format. Possible formats: pdf, pgf, png |
|
|
|
|
|
""" |
|
|
|
import os |
|
import ntpath |
|
import numpy as np |
|
from glob import glob |
|
from docopt import docopt |
|
import matplotlib.pyplot as plt |
|
import logging |
|
import ipdb |
|
logging.basicConfig(level = logging.INFO) |
|
|
|
plt.rcParams.update({'font.size': 14}) |
|
|
|
def trend_name(path): |
|
''' return a system trend name from dat file path ''' |
|
head, tail = ntpath.split(path) |
|
ret = tail or ntpath.basename(head) |
|
return ret.split('.')[0] |
|
|
|
def get_pr(path): |
|
''' get PR curve from file ''' |
|
with open(path) as fin: |
|
|
|
fin.readline() |
|
prc = list(zip(*[[float(x) for x in line.strip().split('\t')] for line in fin])) |
|
p = prc[0] |
|
r = prc[1] |
|
return p, r |
|
|
|
if __name__ == '__main__': |
|
args = docopt(__doc__) |
|
input_folder = args['--in'] |
|
output_file = args['--out'] |
|
|
|
|
|
files = glob(os.path.join(input_folder, '*.dat')) |
|
for _file in files: |
|
p, r = get_pr(_file) |
|
name = trend_name(_file) |
|
plt.plot(r, p, label = name) |
|
|
|
|
|
logging.info("Plotting P/R graph to {}".format(output_file)) |
|
plt.ylim([0.0, 1.05]) |
|
plt.xlim([0.0, 0.8]) |
|
plt.xlabel('Recall') |
|
plt.ylabel('Precision') |
|
plt.legend(loc="lower right") |
|
plt.savefig(output_file) |