DocLayNet / README.md
dolfim-ibm's picture
fix github url
d240107
metadata
annotations_creators:
  - crowdsourced
license: other
pretty_name: DocLayNet
size_categories:
  - 10K<n<100K
tags:
  - layout-segmentation
  - COCO
  - document-understanding
  - PDF
task_categories:
  - object-detection
  - image-segmentation
task_ids:
  - instance-segmentation

Dataset Card for DocLayNet

Table of Contents

Dataset Description

Dataset Summary

DocLayNet provides page-by-page layout segmentation ground-truth using bounding-boxes for 11 distinct class labels on 80863 unique pages from 6 document categories. It provides several unique features compared to related work such as PubLayNet or DocBank:

  1. Human Annotation: DocLayNet is hand-annotated by well-trained experts, providing a gold-standard in layout segmentation through human recognition and interpretation of each page layout
  2. Large layout variability: DocLayNet includes diverse and complex layouts from a large variety of public sources in Finance, Science, Patents, Tenders, Law texts and Manuals
  3. Detailed label set: DocLayNet defines 11 class labels to distinguish layout features in high detail.
  4. Redundant annotations: A fraction of the pages in DocLayNet are double- or triple-annotated, allowing to estimate annotation uncertainty and an upper-bound of achievable prediction accuracy with ML models
  5. Pre-defined train- test- and validation-sets: DocLayNet provides fixed sets for each to ensure proportional representation of the class-labels and avoid leakage of unique layout styles across the sets.

Supported Tasks and Leaderboards

We are hosting a competition in ICDAR 2023 based on the DocLayNet dataset. For more information see https://ds4sd.github.io/icdar23-doclaynet/.

Dataset Structure

Data Fields

DocLayNet provides four types of data assets:

  1. PNG images of all pages, resized to square 1025 x 1025px
  2. Bounding-box annotations in COCO format for each PNG image
  3. Extra: Single-page PDF files matching each PNG image
  4. Extra: JSON file matching each PDF page, which provides the digital text cells with coordinates and content

The COCO image record are defined like this example

    ...
    {
      "id": 1,
      "width": 1025,
      "height": 1025,
      "file_name": "132a855ee8b23533d8ae69af0049c038171a06ddfcac892c3c6d7e6b4091c642.png",

      // Custom fields:
      "doc_category": "financial_reports" // high-level document category
      "collection": "ann_reports_00_04_fancy", // sub-collection name
      "doc_name": "NASDAQ_FFIN_2002.pdf", // original document filename
      "page_no": 9, // page number in original document
      "precedence": 0, // Annotation order, non-zero in case of redundant double- or triple-annotation
    },
    ...

The doc_category field uses one of the following constants:

financial_reports,
scientific_articles,
laws_and_regulations,
government_tenders,
manuals,
patents

Data Splits

The dataset provides three splits

  • train
  • val
  • test

Dataset Creation

Annotations

Annotation process

The labeling guideline used for training of the annotation experts are available at DocLayNet_Labeling_Guide_Public.pdf.

Who are the annotators?

Annotations are crowdsourced.

Additional Information

Dataset Curators

The dataset is curated by the Deep Search team at IBM Research. You can contact us at [email protected].

Curators:

Licensing Information

License: CDLA-Permissive-1.0

Citation Information

@article{doclaynet2022,
  title = {DocLayNet: A Large Human-Annotated Dataset for Document-Layout Segmentation},
  doi = {10.1145/3534678.353904},
  url = {https://doi.org/10.1145/3534678.3539043},
  author = {Pfitzmann, Birgit and Auer, Christoph and Dolfi, Michele and Nassar, Ahmed S and Staar, Peter W J},
  year = {2022},
  isbn = {9781450393850},
  publisher = {Association for Computing Machinery},
  address = {New York, NY, USA},
  booktitle = {Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
  pages = {3743–3751},
  numpages = {9},
  location = {Washington DC, USA},
  series = {KDD '22}
}

Contributions

Thanks to @dolfim-ibm, @cau-git for adding this dataset.