h1
stringclasses
12 values
h2
stringclasses
93 values
h3
stringclasses
960 values
h5
stringlengths
0
79
content
stringlengths
24
533k
tokens
int64
7
158k
Client APIs
Node.js
Typedefs
<dl> <dt><a href="#ColumnInfo">ColumnInfo</a> : <code>object</code></dt> <dd></dd> <dt><a href="#TypeInfo">TypeInfo</a> : <code>object</code></dt> <dd></dd> <dt><a href="#DuckDbError">DuckDbError</a> : <code>object</code></dt> <dd></dd> <dt><a href="#HTTPError">HTTPError</a> : <code>object</code></dt> <dd></dd> </dl> <a name="module_duckdb"></a>
129
Client APIs
Node.js
duckdb
**Summary**: DuckDB is an embeddable SQL OLAP Database Management System * [duckdb](#::module_duckdb) * [~Connection](#::module_duckdb..Connection) * [.run(sql, ...params, callback)](#::module_duckdb..Connection+run) β‡’ <code>void</code> * [.all(sql, ...params, callback)](#::module_duckdb..Connection+all) β‡’ <code>void</code> * [.arrowIPCAll(sql, ...params, callback)](#::module_duckdb..Connection+arrowIPCAll) β‡’ <code>void</code> * [.arrowIPCStream(sql, ...params, callback)](#::module_duckdb..Connection+arrowIPCStream) β‡’ * [.each(sql, ...params, callback)](#::module_duckdb..Connection+each) β‡’ <code>void</code> * [.stream(sql, ...params)](#::module_duckdb..Connection+stream) * [.register_udf(name, return_type, fun)](#::module_duckdb..Connection+register_udf) β‡’ <code>void</code> * [.prepare(sql, ...params, callback)](#::module_duckdb..Connection+prepare) β‡’ <code>Statement</code> * [.exec(sql, ...params, callback)](#::module_duckdb..Connection+exec) β‡’ <code>void</code> * [.register_udf_bulk(name, return_type, callback)](#::module_duckdb..Connection+register_udf_bulk) β‡’ <code>void</code> * [.unregister_udf(name, return_type, callback)](#::module_duckdb..Connection+unregister_udf) β‡’ <code>void</code> * [.register_buffer(name, array, force, callback)](#::module_duckdb..Connection+register_buffer) β‡’ <code>void</code> * [.unregister_buffer(name, callback)](#::module_duckdb..Connection+unregister_buffer) β‡’ <code>void</code> * [.close(callback)](#::module_duckdb..Connection+close) β‡’ <code>void</code> * [~Statement](#::module_duckdb..Statement) * [.sql](#::module_duckdb..Statement+sql) β‡’ * [.get()](#::module_duckdb..Statement+get) * [.run(sql, ...params, callback)](#::module_duckdb..Statement+run) β‡’ <code>void</code> * [.all(sql, ...params, callback)](#::module_duckdb..Statement+all) β‡’ <code>void</code> * [.arrowIPCAll(sql, ...params, callback)](#::module_duckdb..Statement+arrowIPCAll) β‡’ <code>void</code> * [.each(sql, ...params, callback)](#::module_duckdb..Statement+each) β‡’ <code>void</code> * [.finalize(sql, ...params, callback)](#::module_duckdb..Statement+finalize) β‡’ <code>void</code> * [.stream(sql, ...params)](#::module_duckdb..Statement+stream) * [.columns()](#::module_duckdb..Statement+columns) β‡’ [<code>Array.&lt;ColumnInfo&gt;</code>](#::ColumnInfo) * [~QueryResult](#::module_duckdb..QueryResult) * [.nextChunk()](#::module_duckdb..QueryResult+nextChunk) β‡’ * [.nextIpcBuffer()](#::module_duckdb..QueryResult+nextIpcBuffer) β‡’ * [.asyncIterator()](#::module_duckdb..QueryResult+asyncIterator) * [~Database](#::module_duckdb..Database) * [.close(callback)](#::module_duckdb..Database+close) β‡’ <code>void</code> * [.close_internal(callback)](#::module_duckdb..Database+close_internal) β‡’ <code>void</code> * [.wait(callback)](#::module_duckdb..Database+wait) β‡’ <code>void</code> * [.serialize(callback)](#::module_duckdb..Database+serialize) β‡’ <code>void</code> * [.parallelize(callback)](#::module_duckdb..Database+parallelize) β‡’ <code>void</code> * [.connect(path)](#::module_duckdb..Database+connect) β‡’ <code>Connection</code> * [.interrupt(callback)](#::module_duckdb..Database+interrupt) β‡’ <code>void</code> * [.prepare(sql)](#::module_duckdb..Database+prepare) β‡’ <code>Statement</code> * [.run(sql, ...params, callback)](#::module_duckdb..Database+run) β‡’ <code>void</code> * [.scanArrowIpc(sql, ...params, callback)](#::module_duckdb..Database+scanArrowIpc) β‡’ <code>void</code> * [.each(sql, ...params, callback)](#::module_duckdb..Database+each) β‡’ <code>void</code> * [.stream(sql, ...params)](#::module_duckdb..Database+stream) * [.all(sql, ...params, callback)](#::module_duckdb..Database+all) β‡’ <code>void</code> * [.arrowIPCAll(sql, ...params, callback)](#::module_duckdb..Database+arrowIPCAll) β‡’ <code>void</code> * [.arrowIPCStream(sql, ...params, callback)](#::module_duckdb..Database+arrowIPCStream) β‡’ <code>void</code> * [.exec(sql, ...params, callback)](#::module_duckdb..Database+exec) β‡’ <code>void</code> * [.register_udf(name, return_type, fun)](#::module_duckdb..Database+register_udf) β‡’ <code>this</code> * [.register_buffer(name)](#::module_duckdb..Database+register_buffer) β‡’ <code>this</code> * [.unregister_buffer(name)](#::module_duckdb..Database+unregister_buffer) β‡’ <code>this</code> * [.unregister_udf(name)](#::module_duckdb..Database+unregister_udf) β‡’ <code>this</code> * [.registerReplacementScan(fun)](#::module_duckdb..Database+registerReplacementScan) β‡’ <code>this</code> * [.tokenize(text)](#::module_duckdb..Database+tokenize) β‡’ <code>ScriptTokens</code> * [.get()](#::module_duckdb..Database+get) * [~TokenType](#::module_duckdb..TokenType) * [~ERROR](#::module_duckdb..ERROR) : <code>number</code> * [~OPEN_READONLY](#::module_duckdb..OPEN_READONLY) : <code>number</code> * [~OPEN_READWRITE](#::module_duckdb..OPEN_READWRITE) : <code>number</code> * [~OPEN_CREATE](#::module_duckdb..OPEN_CREATE) : <code>number</code> * [~OPEN_FULLMUTEX](#::module_duckdb..OPEN_FULLMUTEX) : <code>number</code> * [~OPEN_SHAREDCACHE](#::module_duckdb..OPEN_SHAREDCACHE) : <code>number</code> * [~OPEN_PRIVATECACHE](#::module_duckdb..OPEN_PRIVATECACHE) : <code>number</code> <a name="module_duckdb..Connection"></a> #### duckdb~Connection {#docs:api:nodejs:reference::duckdbconnection} **Kind**: inner class of [<code>duckdb</code>](#::module_duckdb) * [~Connection](#::module_duckdb..Connection) * [.run(sql, ...params, callback)](#::module_duckdb..Connection+run) β‡’ <code>void</code> * [.all(sql, ...params, callback)](#::module_duckdb..Connection+all) β‡’ <code>void</code> * [.arrowIPCAll(sql, ...params, callback)](#::module_duckdb..Connection+arrowIPCAll) β‡’ <code>void</code> * [.arrowIPCStream(sql, ...params, callback)](#::module_duckdb..Connection+arrowIPCStream) β‡’ * [.each(sql, ...params, callback)](#::module_duckdb..Connection+each) β‡’ <code>void</code> * [.stream(sql, ...params)](#::module_duckdb..Connection+stream) * [.register_udf(name, return_type, fun)](#::module_duckdb..Connection+register_udf) β‡’ <code>void</code> * [.prepare(sql, ...params, callback)](#::module_duckdb..Connection+prepare) β‡’ <code>Statement</code> * [.exec(sql, ...params, callback)](#::module_duckdb..Connection+exec) β‡’ <code>void</code> * [.register_udf_bulk(name, return_type, callback)](#::module_duckdb..Connection+register_udf_bulk) β‡’ <code>void</code> * [.unregister_udf(name, return_type, callback)](#::module_duckdb..Connection+unregister_udf) β‡’ <code>void</code> * [.register_buffer(name, array, force, callback)](#::module_duckdb..Connection+register_buffer) β‡’ <code>void</code> * [.unregister_buffer(name, callback)](#::module_duckdb..Connection+unregister_buffer) β‡’ <code>void</code> * [.close(callback)](#::module_duckdb..Connection+close) β‡’ <code>void</code> <a name="module_duckdb..Connection+run"></a>
2,109
Client APIs
Node.js
duckdb
connection.run(sql, ...params, callback) β‡’ <code>void</code>
Run a SQL statement and trigger a callback when done **Kind**: instance method of [<code>Connection</code>](#::module_duckdb..Connection) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Connection+all"></a>
81
Client APIs
Node.js
duckdb
connection.all(sql, ...params, callback) β‡’ <code>void</code>
Run a SQL query and triggers the callback once for all result rows **Kind**: instance method of [<code>Connection</code>](#::module_duckdb..Connection) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Connection+arrowIPCAll"></a>
86
Client APIs
Node.js
duckdb
connection.arrowIPCAll(sql, ...params, callback) β‡’ <code>void</code>
Run a SQL query and serialize the result into the Apache Arrow IPC format (requires arrow extension to be loaded) **Kind**: instance method of [<code>Connection</code>](#::module_duckdb..Connection) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Connection+arrowIPCStream"></a>
95
Client APIs
Node.js
duckdb
connection.arrowIPCStream(sql, ...params, callback) β‡’
Run a SQL query, returns a IpcResultStreamIterator that allows streaming the result into the Apache Arrow IPC format (requires arrow extension to be loaded) **Kind**: instance method of [<code>Connection</code>](#::module_duckdb..Connection) **Returns**: Promise<IpcResultStreamIterator> | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Connection+each"></a>
113
Client APIs
Node.js
duckdb
connection.each(sql, ...params, callback) β‡’ <code>void</code>
Runs a SQL query and triggers the callback for each result row **Kind**: instance method of [<code>Connection</code>](#::module_duckdb..Connection) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Connection+stream"></a>
83
Client APIs
Node.js
duckdb
connection.stream(sql, ...params)
**Kind**: instance method of [<code>Connection</code>](#::module_duckdb..Connection) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | <a name="module_duckdb..Connection+register_udf"></a>
67
Client APIs
Node.js
duckdb
connection.register\_udf(name, return_type, fun) β‡’ <code>void</code>
Register a User Defined Function **Kind**: instance method of [<code>Connection</code>](#::module_duckdb..Connection) **Note**: this follows the wasm udfs somewhat but is simpler because we can pass data much more cleanly | Param | | --- | | name | | return_type | | fun | <a name="module_duckdb..Connection+prepare"></a>
82
Client APIs
Node.js
duckdb
connection.prepare(sql, ...params, callback) β‡’ <code>Statement</code>
Prepare a SQL query for execution **Kind**: instance method of [<code>Connection</code>](#::module_duckdb..Connection) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Connection+exec"></a>
77
Client APIs
Node.js
duckdb
connection.exec(sql, ...params, callback) β‡’ <code>void</code>
Execute a SQL query **Kind**: instance method of [<code>Connection</code>](#::module_duckdb..Connection) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Connection+register_udf_bulk"></a>
78
Client APIs
Node.js
duckdb
connection.register\_udf\_bulk(name, return_type, callback) β‡’ <code>void</code>
Register a User Defined Function **Kind**: instance method of [<code>Connection</code>](#::module_duckdb..Connection) | Param | | --- | | name | | return_type | | callback | <a name="module_duckdb..Connection+unregister_udf"></a>
64
Client APIs
Node.js
duckdb
connection.unregister\_udf(name, return_type, callback) β‡’ <code>void</code>
Unregister a User Defined Function **Kind**: instance method of [<code>Connection</code>](#::module_duckdb..Connection) | Param | | --- | | name | | return_type | | callback | <a name="module_duckdb..Connection+register_buffer"></a>
63
Client APIs
Node.js
duckdb
connection.register\_buffer(name, array, force, callback) β‡’ <code>void</code>
Register a Buffer to be scanned using the Apache Arrow IPC scanner (requires arrow extension to be loaded) **Kind**: instance method of [<code>Connection</code>](#::module_duckdb..Connection) | Param | | --- | | name | | array | | force | | callback | <a name="module_duckdb..Connection+unregister_buffer"></a>
81
Client APIs
Node.js
duckdb
connection.unregister\_buffer(name, callback) β‡’ <code>void</code>
Unregister the Buffer **Kind**: instance method of [<code>Connection</code>](#::module_duckdb..Connection) | Param | | --- | | name | | callback | <a name="module_duckdb..Connection+close"></a>
56
Client APIs
Node.js
duckdb
connection.close(callback) β‡’ <code>void</code>
Closes connection **Kind**: instance method of [<code>Connection</code>](#::module_duckdb..Connection) | Param | | --- | | callback | <a name="module_duckdb..Statement"></a> #### duckdb~Statement {#docs:api:nodejs:reference::duckdbstatement} **Kind**: inner class of [<code>duckdb</code>](#::module_duckdb) * [~Statement](#::module_duckdb..Statement) * [.sql](#::module_duckdb..Statement+sql) β‡’ * [.get()](#::module_duckdb..Statement+get) * [.run(sql, ...params, callback)](#::module_duckdb..Statement+run) β‡’ <code>void</code> * [.all(sql, ...params, callback)](#::module_duckdb..Statement+all) β‡’ <code>void</code> * [.arrowIPCAll(sql, ...params, callback)](#::module_duckdb..Statement+arrowIPCAll) β‡’ <code>void</code> * [.each(sql, ...params, callback)](#::module_duckdb..Statement+each) β‡’ <code>void</code> * [.finalize(sql, ...params, callback)](#::module_duckdb..Statement+finalize) β‡’ <code>void</code> * [.stream(sql, ...params)](#::module_duckdb..Statement+stream) * [.columns()](#::module_duckdb..Statement+columns) β‡’ [<code>Array.&lt;ColumnInfo&gt;</code>](#::ColumnInfo) <a name="module_duckdb..Statement+sql"></a>
359
Client APIs
Node.js
duckdb
statement.sql β‡’
**Kind**: instance property of [<code>Statement</code>](#::module_duckdb..Statement) **Returns**: sql contained in statement **Field**: <a name="module_duckdb..Statement+get"></a>
49
Client APIs
Node.js
duckdb
statement.get()
Not implemented **Kind**: instance method of [<code>Statement</code>](#::module_duckdb..Statement) <a name="module_duckdb..Statement+run"></a>
40
Client APIs
Node.js
duckdb
statement.run(sql, ...params, callback) β‡’ <code>void</code>
**Kind**: instance method of [<code>Statement</code>](#::module_duckdb..Statement) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Statement+all"></a>
70
Client APIs
Node.js
duckdb
statement.all(sql, ...params, callback) β‡’ <code>void</code>
**Kind**: instance method of [<code>Statement</code>](#::module_duckdb..Statement) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Statement+arrowIPCAll"></a>
72
Client APIs
Node.js
duckdb
statement.arrowIPCAll(sql, ...params, callback) β‡’ <code>void</code>
**Kind**: instance method of [<code>Statement</code>](#::module_duckdb..Statement) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Statement+each"></a>
70
Client APIs
Node.js
duckdb
statement.each(sql, ...params, callback) β‡’ <code>void</code>
**Kind**: instance method of [<code>Statement</code>](#::module_duckdb..Statement) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Statement+finalize"></a>
70
Client APIs
Node.js
duckdb
statement.finalize(sql, ...params, callback) β‡’ <code>void</code>
**Kind**: instance method of [<code>Statement</code>](#::module_duckdb..Statement) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Statement+stream"></a>
70
Client APIs
Node.js
duckdb
statement.stream(sql, ...params)
**Kind**: instance method of [<code>Statement</code>](#::module_duckdb..Statement) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | <a name="module_duckdb..Statement+columns"></a>
65
Client APIs
Node.js
duckdb
statement.columns() β‡’ [<code>Array.&lt;ColumnInfo&gt;</code>](#::ColumnInfo)
**Kind**: instance method of [<code>Statement</code>](#::module_duckdb..Statement) **Returns**: [<code>Array.&lt;ColumnInfo&gt;</code>](#::ColumnInfo) - - Array of column names and types <a name="module_duckdb..QueryResult"></a> #### duckdb~QueryResult {#docs:api:nodejs:reference::duckdbqueryresult} **Kind**: inner class of [<code>duckdb</code>](#::module_duckdb) * [~QueryResult](#::module_duckdb..QueryResult) * [.nextChunk()](#::module_duckdb..QueryResult+nextChunk) β‡’ * [.nextIpcBuffer()](#::module_duckdb..QueryResult+nextIpcBuffer) β‡’ * [.asyncIterator()](#::module_duckdb..QueryResult+asyncIterator) <a name="module_duckdb..QueryResult+nextChunk"></a>
210
Client APIs
Node.js
duckdb
queryResult.nextChunk() β‡’
**Kind**: instance method of [<code>QueryResult</code>](#::module_duckdb..QueryResult) **Returns**: data chunk <a name="module_duckdb..QueryResult+nextIpcBuffer"></a>
49
Client APIs
Node.js
duckdb
queryResult.nextIpcBuffer() β‡’
Function to fetch the next result blob of an Arrow IPC Stream in a zero-copy way. (requires arrow extension to be loaded) **Kind**: instance method of [<code>QueryResult</code>](#::module_duckdb..QueryResult) **Returns**: data chunk <a name="module_duckdb..QueryResult+asyncIterator"></a>
74
Client APIs
Node.js
duckdb
queryResult.asyncIterator()
**Kind**: instance method of [<code>QueryResult</code>](#::module_duckdb..QueryResult) <a name="module_duckdb..Database"></a> #### duckdb~Database {#docs:api:nodejs:reference::duckdbdatabase} Main database interface **Kind**: inner property of [<code>duckdb</code>](#::module_duckdb) | Param | Description | | --- | --- | | path | path to database file or :memory: for in-memory database | | access_mode | access mode | | config | the configuration object | | callback | callback function | * [~Database](#::module_duckdb..Database) * [.close(callback)](#::module_duckdb..Database+close) β‡’ <code>void</code> * [.close_internal(callback)](#::module_duckdb..Database+close_internal) β‡’ <code>void</code> * [.wait(callback)](#::module_duckdb..Database+wait) β‡’ <code>void</code> * [.serialize(callback)](#::module_duckdb..Database+serialize) β‡’ <code>void</code> * [.parallelize(callback)](#::module_duckdb..Database+parallelize) β‡’ <code>void</code> * [.connect(path)](#::module_duckdb..Database+connect) β‡’ <code>Connection</code> * [.interrupt(callback)](#::module_duckdb..Database+interrupt) β‡’ <code>void</code> * [.prepare(sql)](#::module_duckdb..Database+prepare) β‡’ <code>Statement</code> * [.run(sql, ...params, callback)](#::module_duckdb..Database+run) β‡’ <code>void</code> * [.scanArrowIpc(sql, ...params, callback)](#::module_duckdb..Database+scanArrowIpc) β‡’ <code>void</code> * [.each(sql, ...params, callback)](#::module_duckdb..Database+each) β‡’ <code>void</code> * [.stream(sql, ...params)](#::module_duckdb..Database+stream) * [.all(sql, ...params, callback)](#::module_duckdb..Database+all) β‡’ <code>void</code> * [.arrowIPCAll(sql, ...params, callback)](#::module_duckdb..Database+arrowIPCAll) β‡’ <code>void</code> * [.arrowIPCStream(sql, ...params, callback)](#::module_duckdb..Database+arrowIPCStream) β‡’ <code>void</code> * [.exec(sql, ...params, callback)](#::module_duckdb..Database+exec) β‡’ <code>void</code> * [.register_udf(name, return_type, fun)](#::module_duckdb..Database+register_udf) β‡’ <code>this</code> * [.register_buffer(name)](#::module_duckdb..Database+register_buffer) β‡’ <code>this</code> * [.unregister_buffer(name)](#::module_duckdb..Database+unregister_buffer) β‡’ <code>this</code> * [.unregister_udf(name)](#::module_duckdb..Database+unregister_udf) β‡’ <code>this</code> * [.registerReplacementScan(fun)](#::module_duckdb..Database+registerReplacementScan) β‡’ <code>this</code> * [.tokenize(text)](#::module_duckdb..Database+tokenize) β‡’ <code>ScriptTokens</code> * [.get()](#::module_duckdb..Database+get) <a name="module_duckdb..Database+close"></a>
777
Client APIs
Node.js
duckdb
database.close(callback) β‡’ <code>void</code>
Closes database instance **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | | --- | | callback | <a name="module_duckdb..Database+close_internal"></a>
54
Client APIs
Node.js
duckdb
database.close\_internal(callback) β‡’ <code>void</code>
Internal method. Do not use, call Connection#close instead **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | | --- | | callback | <a name="module_duckdb..Database+wait"></a>
61
Client APIs
Node.js
duckdb
database.wait(callback) β‡’ <code>void</code>
Triggers callback when all scheduled database tasks have completed. **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | | --- | | callback | <a name="module_duckdb..Database+serialize"></a>
60
Client APIs
Node.js
duckdb
database.serialize(callback) β‡’ <code>void</code>
Currently a no-op. Provided for SQLite compatibility **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | | --- | | callback | <a name="module_duckdb..Database+parallelize"></a>
59
Client APIs
Node.js
duckdb
database.parallelize(callback) β‡’ <code>void</code>
Currently a no-op. Provided for SQLite compatibility **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | | --- | | callback | <a name="module_duckdb..Database+connect"></a>
58
Client APIs
Node.js
duckdb
database.connect(path) β‡’ <code>Connection</code>
Create a new database connection **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | Description | | --- | --- | | path | the database to connect to, either a file path, or `:memory:` | <a name="module_duckdb..Database+interrupt"></a>
75
Client APIs
Node.js
duckdb
database.interrupt(callback) β‡’ <code>void</code>
Supposedly interrupt queries, but currently does not do anything. **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | | --- | | callback | <a name="module_duckdb..Database+prepare"></a>
62
Client APIs
Node.js
duckdb
database.prepare(sql) β‡’ <code>Statement</code>
Prepare a SQL query for execution **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | | --- | | sql | <a name="module_duckdb..Database+run"></a>
55
Client APIs
Node.js
duckdb
database.run(sql, ...params, callback) β‡’ <code>void</code>
Convenience method for Connection#run using a built-in default connection **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Database+scanArrowIpc"></a>
87
Client APIs
Node.js
duckdb
database.scanArrowIpc(sql, ...params, callback) β‡’ <code>void</code>
Convenience method for Connection#scanArrowIpc using a built-in default connection **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Database+each"></a>
87
Client APIs
Node.js
duckdb
database.each(sql, ...params, callback) β‡’ <code>void</code>
**Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Database+stream"></a>
70
Client APIs
Node.js
duckdb
database.stream(sql, ...params)
**Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | <a name="module_duckdb..Database+all"></a>
65
Client APIs
Node.js
duckdb
database.all(sql, ...params, callback) β‡’ <code>void</code>
Convenience method for Connection#apply using a built-in default connection **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Database+arrowIPCAll"></a>
86
Client APIs
Node.js
duckdb
database.arrowIPCAll(sql, ...params, callback) β‡’ <code>void</code>
Convenience method for Connection#arrowIPCAll using a built-in default connection **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Database+arrowIPCStream"></a>
88
Client APIs
Node.js
duckdb
database.arrowIPCStream(sql, ...params, callback) β‡’ <code>void</code>
Convenience method for Connection#arrowIPCStream using a built-in default connection **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Database+exec"></a>
86
Client APIs
Node.js
duckdb
database.exec(sql, ...params, callback) β‡’ <code>void</code>
**Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | Type | | --- | --- | | sql | | | ...params | <code>\*</code> | | callback | | <a name="module_duckdb..Database+register_udf"></a>
72
Client APIs
Node.js
duckdb
database.register\_udf(name, return_type, fun) β‡’ <code>this</code>
Register a User Defined Function Convenience method for Connection#register_udf **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | | --- | | name | | return_type | | fun | <a name="module_duckdb..Database+register_buffer"></a>
72
Client APIs
Node.js
duckdb
database.register\_buffer(name) β‡’ <code>this</code>
Register a buffer containing serialized data to be scanned from DuckDB. Convenience method for Connection#unregister_buffer **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | | --- | | name | <a name="module_duckdb..Database+unregister_buffer"></a>
74
Client APIs
Node.js
duckdb
database.unregister\_buffer(name) β‡’ <code>this</code>
Unregister a Buffer Convenience method for Connection#unregister_buffer **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | | --- | | name | <a name="module_duckdb..Database+unregister_udf"></a>
66
Client APIs
Node.js
duckdb
database.unregister\_udf(name) β‡’ <code>this</code>
Unregister a UDF Convenience method for Connection#unregister_udf **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | | --- | | name | <a name="module_duckdb..Database+registerReplacementScan"></a>
67
Client APIs
Node.js
duckdb
database.registerReplacementScan(fun) β‡’ <code>this</code>
Register a table replace scan function **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | Description | | --- | --- | | fun | Replacement scan function | <a name="module_duckdb..Database+tokenize"></a>
64
Client APIs
Node.js
duckdb
database.tokenize(text) β‡’ <code>ScriptTokens</code>
Return positions and types of tokens in given text **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) | Param | | --- | | text | <a name="module_duckdb..Database+get"></a>
58
Client APIs
Node.js
duckdb
database.get()
Not implemented **Kind**: instance method of [<code>Database</code>](#::module_duckdb..Database) <a name="module_duckdb..TokenType"></a> #### duckdb~TokenType {#docs:api:nodejs:reference::duckdbtokentype} Types of tokens return by `tokenize`. **Kind**: inner property of [<code>duckdb</code>](#::module_duckdb) <a name="module_duckdb..ERROR"></a> #### duckdb~ERROR : <code>number</code> {#docs:api:nodejs:reference::duckdberror--codenumbercode} Check that errno attribute equals this to check for a duckdb error **Kind**: inner constant of [<code>duckdb</code>](#::module_duckdb) <a name="module_duckdb..OPEN_READONLY"></a> #### duckdb~OPEN\_READONLY : <code>number</code> {#docs:api:nodejs:reference::duckdbopen_readonly--codenumbercode} Open database in readonly mode **Kind**: inner constant of [<code>duckdb</code>](#::module_duckdb) <a name="module_duckdb..OPEN_READWRITE"></a> #### duckdb~OPEN\_READWRITE : <code>number</code> {#docs:api:nodejs:reference::duckdbopen_readwrite--codenumbercode} Currently ignored **Kind**: inner constant of [<code>duckdb</code>](#::module_duckdb) <a name="module_duckdb..OPEN_CREATE"></a> #### duckdb~OPEN\_CREATE : <code>number</code> {#docs:api:nodejs:reference::duckdbopen_create--codenumbercode} Currently ignored **Kind**: inner constant of [<code>duckdb</code>](#::module_duckdb) <a name="module_duckdb..OPEN_FULLMUTEX"></a> #### duckdb~OPEN\_FULLMUTEX : <code>number</code> {#docs:api:nodejs:reference::duckdbopen_fullmutex--codenumbercode} Currently ignored **Kind**: inner constant of [<code>duckdb</code>](#::module_duckdb) <a name="module_duckdb..OPEN_SHAREDCACHE"></a> #### duckdb~OPEN\_SHAREDCACHE : <code>number</code> {#docs:api:nodejs:reference::duckdbopen_sharedcache--codenumbercode} Currently ignored **Kind**: inner constant of [<code>duckdb</code>](#::module_duckdb) <a name="module_duckdb..OPEN_PRIVATECACHE"></a> #### duckdb~OPEN\_PRIVATECACHE : <code>number</code> {#docs:api:nodejs:reference::duckdbopen_privatecache--codenumbercode} Currently ignored **Kind**: inner constant of [<code>duckdb</code>](#::module_duckdb) <a name="ColumnInfo"></a>
663
Client APIs
Node.js
ColumnInfo : <code>object</code>
**Kind**: global typedef **Properties** | Name | Type | Description | | --- | --- | --- | | name | <code>string</code> | Column name | | type | [<code>TypeInfo</code>](#::TypeInfo) | Column type | <a name="TypeInfo"></a>
65
Client APIs
Node.js
TypeInfo : <code>object</code>
**Kind**: global typedef **Properties** | Name | Type | Description | | --- | --- | --- | | id | <code>string</code> | Type ID | | [alias] | <code>string</code> | SQL type alias | | sql_type | <code>string</code> | SQL type name | <a name="DuckDbError"></a>
82
Client APIs
Node.js
DuckDbError : <code>object</code>
**Kind**: global typedef **Properties** | Name | Type | Description | | --- | --- | --- | | errno | <code>number</code> | -1 for DuckDB errors | | message | <code>string</code> | Error message | | code | <code>string</code> | 'DUCKDB_NODEJS_ERROR' for DuckDB errors | | errorType | <code>string</code> | DuckDB error type code (eg, HTTP, IO, Catalog) | <a name="HTTPError"></a>
116
Client APIs
Node.js
HTTPError : <code>object</code>
**Kind**: global typedef **Extends**: [<code>DuckDbError</code>](#::DuckDbError) **Properties** | Name | Type | Description | | --- | --- | --- | | statusCode | <code>number</code> | HTTP response status code | | reason | <code>string</code> | HTTP response reason | | response | <code>string</code> | HTTP response body | | headers | <code>object</code> | HTTP headers |
105
Client APIs
Python
Installation
The DuckDB Python API can be installed using [pip](https://pip.pypa.io): `pip install duckdb`. Please see the [installation page](https://duckdb.org/docs/installation/): `conda install python-duckdb -c conda-forge`. **Python version:** DuckDB requires Python 3.7 or newer.
75
Client APIs
Python
Basic API Usage
The most straight-forward manner of running SQL queries using DuckDB is using the `duckdb.sql` command. ```python import duckdb duckdb.sql("SELECT 42").show() ``` This will run queries using an **in-memory database** that is stored globally inside the Python module. The result of the query is returned as a **Relation**. A relation is a symbolic representation of the query. The query is not executed until the result is fetched or requested to be printed to the screen. Relations can be referenced in subsequent queries by storing them inside variables, and using them as tables. This way queries can be constructed incrementally. ```python import duckdb r1 = duckdb.sql("SELECT 42 AS i") duckdb.sql("SELECT i * 2 AS k FROM r1").show() ```
172
Client APIs
Python
Data Input
DuckDB can ingest data from a wide variety of formats – both on-disk and in-memory. See the [data ingestion page](#docs:api:python:data_ingestion) for more information. ```python import duckdb duckdb.read_csv("example.csv") # read a CSV file into a Relation duckdb.read_parquet("example.parquet") # read a Parquet file into a Relation duckdb.read_json("example.json") # read a JSON file into a Relation duckdb.sql("SELECT * FROM 'example.csv'") # directly query a CSV file duckdb.sql("SELECT * FROM 'example.parquet'") # directly query a Parquet file duckdb.sql("SELECT * FROM 'example.json'") # directly query a JSON file ``` #### DataFrames {#docs:api:python:overview::dataframes} DuckDB can directly query Pandas DataFrames, Polars DataFrames and Arrow tables. Note that these are read-only, i.e., editing these tables via [`INSERT`](#docs:sql:statements:insert) or [`UPDATE` statements](#docs:sql:statements:update) is not possible.
250
Client APIs
Python
Data Input
Pandas
To directly query a Pandas DataFrame, run: ```python import duckdb import pandas as pd pandas_df = pd.DataFrame({"a": [42]}) duckdb.sql("SELECT * FROM pandas_df") ``` ```text β”Œβ”€β”€β”€β”€β”€β”€β”€β” β”‚ a β”‚ β”‚ int64 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 42 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”˜ ```
92
Client APIs
Python
Data Input
Polars
To directly query a Polars DataFrame, run: ```python import duckdb import polars as pl polars_df = pl.DataFrame({"a": [42]}) duckdb.sql("SELECT * FROM polars_df") ``` ```text β”Œβ”€β”€β”€β”€β”€β”€β”€β” β”‚ a β”‚ β”‚ int64 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 42 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”˜ ```
94
Client APIs
Python
Data Input
PyArrow
To directly query a PyArrow table, run: ```python import duckdb import pyarrow as pa arrow_table = pa.Table.from_pydict({"a": [42]}) duckdb.sql("SELECT * FROM arrow_table") ``` ```text β”Œβ”€β”€β”€β”€β”€β”€β”€β” β”‚ a β”‚ β”‚ int64 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 42 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”˜ ```
95
Client APIs
Python
Result Conversion
DuckDB supports converting query results efficiently to a variety of formats. See the [result conversion page](#docs:api:python:conversion) for more information. ```python import duckdb duckdb.sql("SELECT 42").fetchall() # Python objects duckdb.sql("SELECT 42").df() # Pandas DataFrame duckdb.sql("SELECT 42").pl() # Polars DataFrame duckdb.sql("SELECT 42").arrow() # Arrow Table duckdb.sql("SELECT 42").fetchnumpy() # NumPy Arrays ```
124
Client APIs
Python
Writing Data to Disk
DuckDB supports writing Relation objects directly to disk in a variety of formats. The [`COPY` statement](#docs:sql:statements:copy) can be used to write data to disk using SQL as an alternative. ```python import duckdb duckdb.sql("SELECT 42").write_parquet("out.parquet") # Write to a Parquet file duckdb.sql("SELECT 42").write_csv("out.csv") # Write to a CSV file duckdb.sql("COPY (SELECT 42) TO 'out.parquet'") # Copy to a Parquet file ```
126
Client APIs
Python
Connection Options
Applications can open a new DuckDB connection via the `duckdb.connect()` method. #### Using an In-Memory Database {#docs:api:python:overview::using-an-in-memory-database} When using DuckDB through `duckdb.sql()`, it operates on an **in-memory** database, i.e., no tables are persisted on disk. Invoking the `duckdb.connect()` method without arguments returns a connection, which also uses an in-memory database: ```python import duckdb con = duckdb.connect() con.sql("SELECT 42 AS x").show() ``` #### Persistent Storage {#docs:api:python:overview::persistent-storage} The `duckdb.connect(dbname)` creates a connection to a **persistent** database. Any data written to that connection will be persisted, and can be reloaded by reconnecting to the same file, both from Python and from other DuckDB clients. ```python import duckdb # create a connection to a file called 'file.db' con = duckdb.connect("file.db") # create a table and load data into it con.sql("CREATE TABLE test (i INTEGER)") con.sql("INSERT INTO test VALUES (42)") # query the table con.table("test").show() # explicitly close the connection con.close() # Note: connections also closed implicitly when they go out of scope ``` You can also use a context manager to ensure that the connection is closed: ```python import duckdb with duckdb.connect("file.db") as con: con.sql("CREATE TABLE test (i INTEGER)") con.sql("INSERT INTO test VALUES (42)") con.table("test").show() # the context manager closes the connection automatically ``` #### Configuration {#docs:api:python:overview::configuration} The `duckdb.connect()` accepts a `config` dictionary, where [configuration options](#docs:configuration:overview::configuration-reference) can be specified. For example: ```python import duckdb con = duckdb.connect(config = {'threads': 1}) ``` #### Connection Object and Module {#docs:api:python:overview::connection-object-and-module} The connection object and the `duckdb` module can be used interchangeably – they support the same methods. The only difference is that when using the `duckdb` module a global in-memory database is used. > If you are developing a package designed for others to use, and use DuckDB in the package, it is recommend that you create connection objects instead of using the methods on the `duckdb` module. That is because the `duckdb` module uses a shared global database – which can cause hard to debug issues if used from within multiple different packages. #### Using Connections in Parallel Python Programs {#docs:api:python:overview::using-connections-in-parallel-python-programs} The `DuckDBPyConnection` object is not thread-safe. If you would like to write to the same database from multiple threads, create a cursor for each thread with the [`DuckDBPyConnection.cursor()` method](#docs:api:python:reference:index::duckdb.DuckDBPyConnection.cursor).
664
Client APIs
Python
Loading and Installing Extensions
DuckDB's Python API provides functions for installing and loading [extensions](#docs:extensions:overview), which perform the equivalent operations to running the `INSTALL` and `LOAD` SQL commands, respectively. An example that installs and loads the [`spatial` extension](#docs:extensions:spatial:overview) looks like follows: ```python import duckdb con = duckdb.connect() con.install_extension("spatial") con.load_extension("spatial") ``` #### Community Extensions {#docs:api:python:overview::community-extensions} To load [community extensions](#docs:extensions:community_extensions), use `repository="community"` argument to the `install_extension` method. For example, install and load the `h3` community extension as follows: ```python import duckdb con = duckdb.connect() con.install_extension("h3", repository="community") con.load_extension("h3") ``` #### Unsigned Extensions {#docs:api:python:overview::unsigned-extensions} To load [unsigned extensions](#docs:extensions:overview::unsigned-extensions), use the `config = {"allow_unsigned_extensions": "true"}` argument to the `duckdb.connect()` method.
256
Client APIs
Python
Data Ingestion
This page contains examples for data ingestion to Python using DuckDB. First, import the DuckDB page: ```python import duckdb ``` Then, proceed with any of the following sections.
41
Client APIs
Python
CSV Files
CSV files can be read using the `read_csv` function, called either from within Python or directly from within SQL. By default, the `read_csv` function attempts to auto-detect the CSV settings by sampling from the provided file. Read from a file using fully auto-detected settings: ```python duckdb.read_csv("example.csv") ``` Read multiple CSV files from a folder: ```python duckdb.read_csv("folder/*.csv") ``` Specify options on how the CSV is formatted internally: ```python duckdb.read_csv("example.csv", header = False, sep = ",") ``` Override types of the first two columns: ```python duckdb.read_csv("example.csv", dtype = ["int", "varchar"]) ``` Directly read a CSV file from within SQL: ```python duckdb.sql("SELECT * FROM 'example.csv'") ``` Call `read_csv` from within SQL: ```python duckdb.sql("SELECT * FROM read_csv('example.csv')") ``` See the [CSV Import](#docs:data:csv:overview) page for more information.
233
Client APIs
Python
Parquet Files
Parquet files can be read using the `read_parquet` function, called either from within Python or directly from within SQL. Read from a single Parquet file: ```python duckdb.read_parquet("example.parquet") ``` Read multiple Parquet files from a folder: ```python duckdb.read_parquet("folder/*.parquet") ``` Read a Parquet file over [https](#docs:extensions:httpfs:overview): ```python duckdb.read_parquet("https://some.url/some_file.parquet") ``` Read a list of Parquet files: ```python duckdb.read_parquet(["file1.parquet", "file2.parquet", "file3.parquet"]) ``` Directly read a Parquet file from within SQL: ```python duckdb.sql("SELECT * FROM 'example.parquet'") ``` Call `read_parquet` from within SQL: ```python duckdb.sql("SELECT * FROM read_parquet('example.parquet')") ``` See the [Parquet Loading](#docs:data:parquet:overview) page for more information.
235
Client APIs
Python
JSON Files
JSON files can be read using the `read_json` function, called either from within Python or directly from within SQL. By default, the `read_json` function will automatically detect if a file contains newline-delimited JSON or regular JSON, and will detect the schema of the objects stored within the JSON file. Read from a single JSON file: ```python duckdb.read_json("example.json") ``` Read multiple JSON files from a folder: ```python duckdb.read_json("folder/*.json") ``` Directly read a JSON file from within SQL: ```python duckdb.sql("SELECT * FROM 'example.json'") ``` Call `read_json` from within SQL: ```python duckdb.sql("SELECT * FROM read_json_auto('example.json')") ```
162
Client APIs
Python
Directly Accessing DataFrames and Arrow Objects
DuckDB is automatically able to query certain Python variables by referring to their variable name (as if it was a table). These types include the following: Pandas DataFrame, Polars DataFrame, Polars LazyFrame, NumPy arrays, [relations](#docs:api:python:relational_api), and Arrow objects. Accessing these is made possible by [replacement scans](#docs:api:c:replacement_scans). DuckDB supports querying multiple types of Apache Arrow objects including [tables](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html), [datasets](https://arrow.apache.org/docs/python/generated/pyarrow.dataset.Dataset.html), [RecordBatchReaders](https://arrow.apache.org/docs/python/generated/pyarrow.ipc.RecordBatchStreamReader.html), and [scanners](https://arrow.apache.org/docs/python/generated/pyarrow.dataset.Scanner.html). See the Python [guides](#docs:python:overview::) for more examples. ```python import duckdb import pandas as pd test_df = pd.DataFrame.from_dict({"i": [1, 2, 3, 4], "j": ["one", "two", "three", "four"]}) print(duckdb.sql("SELECT * FROM test_df").fetchall()) ``` ```text [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')] ``` DuckDB also supports β€œregistering” a DataFrame or Arrow object as a virtual table, comparable to a SQL `VIEW`. This is useful when querying a DataFrame/Arrow object that is stored in another way (as a class variable, or a value in a dictionary). Below is a Pandas example: If your Pandas DataFrame is stored in another location, here is an example of manually registering it: ```python import duckdb import pandas as pd my_dictionary = {} my_dictionary["test_df"] = pd.DataFrame.from_dict({"i": [1, 2, 3, 4], "j": ["one", "two", "three", "four"]}) duckdb.register("test_df_view", my_dictionary["test_df"]) print(duckdb.sql("SELECT * FROM test_df_view").fetchall()) ``` ```text [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')] ``` You can also create a persistent table in DuckDB from the contents of the DataFrame (or the view): ```python # create a new table from the contents of a DataFrame con.execute("CREATE TABLE test_df_table AS SELECT * FROM test_df") # insert into an existing table from the contents of a DataFrame con.execute("INSERT INTO test_df_table SELECT * FROM test_df") ``` #### Pandas DataFrames – `object` Columns {#docs:api:python:data_ingestion::pandas-dataframes--object-columns} `pandas.DataFrame` columns of an `object` dtype require some special care, since this stores values of arbitrary type. To convert these columns to DuckDB, we first go through an analyze phase before converting the values. In this analyze phase a sample of all the rows of the column are analyzed to determine the target type. This sample size is by default set to 1000. If the type picked during the analyze step is incorrect, this will result in a "Failed to cast value:" error, in which case you will need to increase the sample size. The sample size can be changed by setting the `pandas_analyze_sample` config option. ```python # example setting the sample size to 100k duckdb.execute("SET GLOBAL pandas_analyze_sample = 100_000") ``` #### Registering Objects {#docs:api:python:data_ingestion::registering-objects} You can register Python objects as DuckDB tables using the [`DuckDBPyConnection.register()` function](#docs:api:python:reference:index::duckdb.DuckDBPyConnection.register). The precedence of objects with the same name is as follows: * Objects explicitly registered via `DuckDBPyConnection.register()` * Native DuckDB tables and views * [Replacement scans](#docs:api:c:replacement_scans)
883
Client APIs
Python
Conversion between DuckDB and Python
This page documents the rules for converting [Python objects to DuckDB](#::object-conversion-python-object-to-duckdb) and [DuckDB results to Python](#::result-conversion-duckdb-results-to-python).
47
Client APIs
Python
Object Conversion: Python Object to DuckDB
This is a mapping of Python object types to DuckDB [Logical Types](#docs:sql:data_types:overview): * `None` β†’ `NULL` * `bool` β†’ `BOOLEAN` * `datetime.timedelta` β†’ `INTERVAL` * `str` β†’ `VARCHAR` * `bytearray` β†’ `BLOB` * `memoryview` β†’ `BLOB` * `decimal.Decimal` β†’ `DECIMAL` / `DOUBLE` * `uuid.UUID` β†’ `UUID` The rest of the conversion rules are as follows. #### `int` {#docs:api:python:conversion::int} Since integers can be of arbitrary size in Python, there is not a one-to-one conversion possible for ints. Instead we perform these casts in order until one succeeds: * `BIGINT` * `INTEGER` * `UBIGINT` * `UINTEGER` * `DOUBLE` When using the DuckDB Value class, it's possible to set a target type, which will influence the conversion. #### `float` {#docs:api:python:conversion::float} These casts are tried in order until one succeeds: * `DOUBLE` * `FLOAT` #### `datetime.datetime` {#docs:api:python:conversion::datetimedatetime} For `datetime` we will check `pandas.isnull` if it's available and return `NULL` if it returns `true`. We check against `datetime.datetime.min` and `datetime.datetime.max` to convert to `-inf` and `+inf` respectively. If the `datetime` has tzinfo, we will use `TIMESTAMPTZ`, otherwise it becomes `TIMESTAMP`. #### `datetime.time` {#docs:api:python:conversion::datetimetime} If the `time` has tzinfo, we will use `TIMETZ`, otherwise it becomes `TIME`. #### `datetime.date` {#docs:api:python:conversion::datetimedate} `date` converts to the `DATE` type. We check against `datetime.date.min` and `datetime.date.max` to convert to `-inf` and `+inf` respectively. #### `bytes` {#docs:api:python:conversion::bytes} `bytes` converts to `BLOB` by default, when it's used to construct a Value object of type `BITSTRING`, it maps to `BITSTRING` instead. #### `list` {#docs:api:python:conversion::list} `list` becomes a `LIST` type of the β€œmost permissive” type of its children, for example: ```python my_list_value = [ 12345, "test" ] ``` Will become `VARCHAR[]` because 12345 can convert to `VARCHAR` but `test` can not convert to `INTEGER`. ```sql [12345, test] ``` #### `dict` {#docs:api:python:conversion::dict} The `dict` object can convert to either `STRUCT(...)` or `MAP(..., ...)` depending on its structure. If the dict has a structure similar to: ```python my_map_dict = { "key": [ 1, 2, 3 ], "value": [ "one", "two", "three" ] } ``` Then we'll convert it to a `MAP` of key-value pairs of the two lists zipped together. The example above becomes a `MAP(INTEGER, VARCHAR)`: ```sql {1=one, 2=two, 3=three} ``` > The names of the fields matter and the two lists need to have the same size. Otherwise we'll try to convert it to a `STRUCT`. ```python my_struct_dict = { 1: "one", "2": 2, "three": [1, 2, 3], False: True } ``` Becomes: ```sql {'1': one, '2': 2, 'three': [1, 2, 3], 'False': true} ``` > Every `key` of the dictionary is converted to string. #### `tuple` {#docs:api:python:conversion::tuple} `tuple` converts to `LIST` by default, when it's used to construct a Value object of type `STRUCT` it will convert to `STRUCT` instead. #### `numpy.ndarray` and `numpy.datetime64` {#docs:api:python:conversion::numpyndarray-and-numpydatetime64} `ndarray` and `datetime64` are converted by calling `tolist()` and converting the result of that.
985
Client APIs
Python
Result Conversion: DuckDB Results to Python
DuckDB's Python client provides multiple additional methods that can be used to efficiently retrieve data. #### NumPy {#docs:api:python:conversion::numpy} * `fetchnumpy()` fetches the data as a dictionary of NumPy arrays #### Pandas {#docs:api:python:conversion::pandas} * `df()` fetches the data as a Pandas DataFrame * `fetchdf()` is an alias of `df()` * `fetch_df()` is an alias of `df()` * `fetch_df_chunk(vector_multiple)` fetches a portion of the results into a DataFrame. The number of rows returned in each chunk is the vector size (2048 by default) * vector_multiple (1 by default). #### Apache Arrow {#docs:api:python:conversion::apache-arrow} * `arrow()` fetches the data as an [Arrow table](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html) * `fetch_arrow_table()` is an alias of `arrow()` * `fetch_record_batch(chunk_size)` returns an [Arrow record batch reader](https://arrow.apache.org/docs/python/generated/pyarrow.ipc.RecordBatchStreamReader.html) with `chunk_size` rows per batch #### Polars {#docs:api:python:conversion::polars} * `pl()` fetches the data as a Polars DataFrame #### Examples {#docs:api:python:conversion::examples} Below are some examples using this functionality. See the [Python guides](#docs:python:overview::) for more examples. Fetch as Pandas DataFrame: ```python df = con.execute("SELECT * FROM items").fetchdf() print(df) ``` ```text item value count 0 jeans 20.0 1 1 hammer 42.2 2 2 laptop 2000.0 1 3 chainsaw 500.0 10 4 iphone 300.0 2 ``` Fetch as dictionary of NumPy arrays: ```python arr = con.execute("SELECT * FROM items").fetchnumpy() print(arr) ``` ```text {'item': masked_array(data=['jeans', 'hammer', 'laptop', 'chainsaw', 'iphone'], mask=[False, False, False, False, False], fill_value='?', dtype=object), 'value': masked_array(data=[20.0, 42.2, 2000.0, 500.0, 300.0], mask=[False, False, False, False, False], fill_value=1e+20), 'count': masked_array(data=[1, 2, 1, 10, 2], mask=[False, False, False, False, False], fill_value=999999, dtype=int32)} ``` Fetch as an Arrow table. Converting to Pandas afterwards just for pretty printing: ```python tbl = con.execute("SELECT * FROM items").fetch_arrow_table() print(tbl.to_pandas()) ``` ```text item value count 0 jeans 20.00 1 1 hammer 42.20 2 2 laptop 2000.00 1 3 chainsaw 500.00 10 4 iphone 300.00 2 ```
723
Client APIs
Python
Python DB API
The standard DuckDB Python API provides a SQL interface compliant with the [DB-API 2.0 specification described by PEP 249](https://www.python.org/dev/peps/pep-0249/) similar to the [SQLite Python API](https://docs.python.org/3.7/library/sqlite3.html).
67
Client APIs
Python
Connection
To use the module, you must first create a `DuckDBPyConnection` object that represents a connection to a database. This is done through the [`duckdb.connect`](#docs:api:python:reference:index::duckdb.connect) method. The 'config' keyword argument can be used to provide a `dict` that contains key->value pairs referencing [settings](#docs:configuration:overview::configuration-reference) understood by DuckDB. #### In-Memory Connection {#docs:api:python:dbapi::in-memory-connection} The special value `:memory:` can be used to create an **in-memory database**. Note that for an in-memory database no data is persisted to disk (i.e., all data is lost when you exit the Python process).
163
Client APIs
Python
Connection
Named in-memory Connections
The special value `:memory:` can also be postfixed with a name, for example: `:memory:conn3`. When a name is provided, subsequent `duckdb.connect` calls will create a new connection to the same database, sharing the catalogs (views, tables, macros etc..). Using `:memory:` without a name will always create a new and separate database instance. #### Default Connection {#docs:api:python:dbapi::default-connection} By default we create an (unnamed) **in-memory-database** that lives inside the `duckdb` module. Every method of `DuckDBPyConnection` is also available on the `duckdb` module, this connection is what's used by these methods. The special value `:default:` can be used to get this default connection. #### File-Based Connection {#docs:api:python:dbapi::file-based-connection} If the `database` is a file path, a connection to a persistent database is established. If the file does not exist the file will be created (the extension of the file is irrelevant and can be `.db`, `.duckdb` or anything else).
247
Client APIs
Python
Connection
`read_only` Connections
If you would like to connect in read-only mode, you can set the `read_only` flag to `True`. If the file does not exist, it is **not** created when connecting in read-only mode. Read-only mode is required if multiple Python processes want to access the same database file at the same time. ```python import duckdb duckdb.execute("CREATE TABLE tbl AS SELECT 42 a") con = duckdb.connect(":default:") con.sql("SELECT * FROM tbl") # or duckdb.default_connection.sql("SELECT * FROM tbl") ``` ```text β”Œβ”€β”€β”€β”€β”€β”€β”€β” β”‚ a β”‚ β”‚ int32 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 42 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”˜ ``` ```python import duckdb # to start an in-memory database con = duckdb.connect(database = ":memory:") # to use a database file (not shared between processes) con = duckdb.connect(database = "my-db.duckdb", read_only = False) # to use a database file (shared between processes) con = duckdb.connect(database = "my-db.duckdb", read_only = True) # to explicitly get the default connection con = duckdb.connect(database = ":default:") ``` If you want to create a second connection to an existing database, you can use the `cursor()` method. This might be useful for example to allow parallel threads running queries independently. A single connection is thread-safe but is locked for the duration of the queries, effectively serializing database access in this case. Connections are closed implicitly when they go out of scope or if they are explicitly closed using `close()`. Once the last connection to a database instance is closed, the database instance is closed as well.
373
Client APIs
Python
Querying
SQL queries can be sent to DuckDB using the `execute()` method of connections. Once a query has been executed, results can be retrieved using the `fetchone` and `fetchall` methods on the connection. `fetchall` will retrieve all results and complete the transaction. `fetchone` will retrieve a single row of results each time that it is invoked until no more results are available. The transaction will only close once `fetchone` is called and there are no more results remaining (the return value will be `None`). As an example, in the case of a query only returning a single row, `fetchone` should be called once to retrieve the results and a second time to close the transaction. Below are some short examples: ```python # create a table con.execute("CREATE TABLE items (item VARCHAR, value DECIMAL(10, 2), count INTEGER)") # insert two items into the table con.execute("INSERT INTO items VALUES ('jeans', 20.0, 1), ('hammer', 42.2, 2)") # retrieve the items again con.execute("SELECT * FROM items") print(con.fetchall()) # [('jeans', Decimal('20.00'), 1), ('hammer', Decimal('42.20'), 2)] # retrieve the items one at a time con.execute("SELECT * FROM items") print(con.fetchone()) # ('jeans', Decimal('20.00'), 1) print(con.fetchone()) # ('hammer', Decimal('42.20'), 2) print(con.fetchone()) # This closes the transaction. Any subsequent calls to .fetchone will return None # None ``` The `description` property of the connection object contains the column names as per the standard. #### Prepared Statements {#docs:api:python:dbapi::prepared-statements} DuckDB also supports [prepared statements](#docs:sql:query_syntax:prepared_statements) in the API with the `execute` and `executemany` methods. The values may be passed as an additional parameter after a query that contains `?` or `$1` (dollar symbol and a number) placeholders. Using the `?` notation adds the values in the same sequence as passed within the Python parameter. Using the `$` notation allows for values to be reused within the SQL statement based on the number and index of the value found within the Python parameter. Values are converted according to the [conversion rules](#docs:api:python:conversion::object-conversion-python-object-to-duckdb). Here are some examples. First, insert a row using a [prepared statement](#docs:sql:query_syntax:prepared_statements): ```python con.execute("INSERT INTO items VALUES (?, ?, ?)", ["laptop", 2000, 1]) ``` Second, insert several rows using a [prepared statement](#docs:sql:query_syntax:prepared_statements): ```python con.executemany("INSERT INTO items VALUES (?, ?, ?)", [["chainsaw", 500, 10], ["iphone", 300, 2]] ) ``` Query the database using a [prepared statement](#docs:sql:query_syntax:prepared_statements): ```python con.execute("SELECT item FROM items WHERE value > ?", [400]) print(con.fetchall()) ``` ```text [('laptop',), ('chainsaw',)] ``` Query using the `$` notation for a [prepared statement](#docs:sql:query_syntax:prepared_statements) and reused values: ```python con.execute("SELECT $1, $1, $2", ["duck", "goose"]) print(con.fetchall()) ``` ```text [('duck', 'duck', 'goose')] ``` > **Warning. ** Do *not* use `executemany` to insert large amounts of data into DuckDB. See the [data ingestion page](#docs:api:python:data_ingestion) for better options.
832
Client APIs
Python
Named Parameters
Besides the standard unnamed parameters, like `$1`, `$2` etc., it's also possible to supply named parameters, like `$my_parameter`. When using named parameters, you have to provide a dictionary mapping of `str` to value in the `parameters` argument. An example use is the following: ```python import duckdb res = duckdb.execute(""" SELECT $my_param, $other_param, $also_param """, { "my_param": 5, "other_param": "DuckDB", "also_param": [42] } ).fetchall() print(res) ``` ```text [(5, 'DuckDB', [42])] ```
139
Client APIs
Python
Relational API
The Relational API is an alternative API that can be used to incrementally construct queries. The API is centered around `DuckDBPyRelation` nodes. The relations can be seen as symbolic representations of SQL queries. They do not hold any data – and nothing is executed – until a method that triggers execution is called.
65
Client APIs
Python
Constructing Relations
Relations can be created from SQL queries using the `duckdb.sql` method. Alternatively, they can be created from the various data ingestion methods (` read_parquet`, `read_csv`, `read_json`). For example, here we create a relation from a SQL query: ```python import duckdb rel = duckdb.sql("SELECT * FROM range(10_000_000_000) tbl(id)") rel.show() ``` ```text β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ id β”‚ β”‚ int64 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 0 β”‚ β”‚ 1 β”‚ β”‚ 2 β”‚ β”‚ 3 β”‚ β”‚ 4 β”‚ β”‚ 5 β”‚ β”‚ 6 β”‚ β”‚ 7 β”‚ β”‚ 8 β”‚ β”‚ 9 β”‚ β”‚ Β· β”‚ β”‚ Β· β”‚ β”‚ Β· β”‚ β”‚ 9990 β”‚ β”‚ 9991 β”‚ β”‚ 9992 β”‚ β”‚ 9993 β”‚ β”‚ 9994 β”‚ β”‚ 9995 β”‚ β”‚ 9996 β”‚ β”‚ 9997 β”‚ β”‚ 9998 β”‚ β”‚ 9999 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ ? rows β”‚ β”‚ (>9999 rows, 20 shown) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` Note how we are constructing a relation that computes an immense amount of data (10B rows or 74 GB of data). The relation is constructed instantly – and we can even print the relation instantly. When printing a relation using `show` or displaying it in the terminal, the first `10K` rows are fetched. If there are more than `10K` rows, the output window will show `>9999 rows` (as the amount of rows in the relation is unknown).
404
Client APIs
Python
Data Ingestion
Outside of SQL queries, the following methods are provided to construct relation objects from external data. * `from_arrow` * `from_df` * `read_csv` * `read_json` * `read_parquet`
45
Client APIs
Python
SQL Queries
Relation objects can be queried through SQL through [replacement scans](#docs:api:c:replacement_scans). If you have a relation object stored in a variable, you can refer to that variable as if it was a SQL table (in the `FROM` clause). This allows you to incrementally build queries using relation objects. ```python import duckdb rel = duckdb.sql("SELECT * FROM range(1_000_000) tbl(id)") duckdb.sql("SELECT sum(id) FROM rel").show() ``` ```text β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ sum(id) β”‚ β”‚ int128 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 499999500000 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ```
160
Client APIs
Python
Operations
There are a number of operations that can be performed on relations. These are all short-hand for running the SQL queries – and will return relations again themselves. #### `aggregate(expr, groups = {})` {#docs:api:python:relational_api::aggregateexpr-groups--} Apply an (optionally grouped) aggregate over the relation. The system will automatically group by any columns that are not aggregates. ```python import duckdb rel = duckdb.sql("SELECT * FROM range(1_000_000) tbl(id)") rel.aggregate("id % 2 AS g, sum(id), min(id), max(id)") ``` ```text β”Œβ”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ g β”‚ sum(id) β”‚ min(id) β”‚ max(id) β”‚ β”‚ int64 β”‚ int128 β”‚ int64 β”‚ int64 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 0 β”‚ 249999500000 β”‚ 0 β”‚ 999998 β”‚ β”‚ 1 β”‚ 250000000000 β”‚ 1 β”‚ 999999 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` #### `except_(rel)` {#docs:api:python:relational_api::except_rel} Select all rows in the first relation, that do not occur in the second relation. The relations must have the same number of columns. ```python import duckdb r1 = duckdb.sql("SELECT * FROM range(10) tbl(id)") r2 = duckdb.sql("SELECT * FROM range(5) tbl(id)") r1.except_(r2).show() ``` ```text β”Œβ”€β”€β”€β”€β”€β”€β”€β” β”‚ id β”‚ β”‚ int64 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 5 β”‚ β”‚ 6 β”‚ β”‚ 7 β”‚ β”‚ 8 β”‚ β”‚ 9 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”˜ ``` #### `filter(condition)` {#docs:api:python:relational_api::filtercondition} Apply the given condition to the relation, filtering any rows that do not satisfy the condition. ```python import duckdb rel = duckdb.sql("SELECT * FROM range(1_000_000) tbl(id)") rel.filter("id > 5").limit(3).show() ``` ```text β”Œβ”€β”€β”€β”€β”€β”€β”€β” β”‚ id β”‚ β”‚ int64 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 6 β”‚ β”‚ 7 β”‚ β”‚ 8 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”˜ ``` #### `intersect(rel)` {#docs:api:python:relational_api::intersectrel} Select the intersection of two relations – returning all rows that occur in both relations. The relations must have the same number of columns. ```python import duckdb r1 = duckdb.sql("SELECT * FROM range(10) tbl(id)") r2 = duckdb.sql("SELECT * FROM range(5) tbl(id)") r1.intersect(r2).show() ``` ```text β”Œβ”€β”€β”€β”€β”€β”€β”€β” β”‚ id β”‚ β”‚ int64 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 0 β”‚ β”‚ 1 β”‚ β”‚ 2 β”‚ β”‚ 3 β”‚ β”‚ 4 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”˜ ``` #### `join(rel, condition, type = "inner")` {#docs:api:python:relational_api::joinrel-condition-type--inner} Combine two relations, joining them based on the provided condition. ```python import duckdb r1 = duckdb.sql("SELECT * FROM range(5) tbl(id)").set_alias("r1") r2 = duckdb.sql("SELECT * FROM range(10, 15) tbl(id)").set_alias("r2") r1.join(r2, "r1.id + 10 = r2.id").show() ``` ```text β”Œβ”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β” β”‚ id β”‚ id β”‚ β”‚ int64 β”‚ int64 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 0 β”‚ 10 β”‚ β”‚ 1 β”‚ 11 β”‚ β”‚ 2 β”‚ 12 β”‚ β”‚ 3 β”‚ 13 β”‚ β”‚ 4 β”‚ 14 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”˜ ``` #### `limit(n, offset = 0)` {#docs:api:python:relational_api::limitn-offset--0} Select the first *n* rows, optionally offset by *offset*. ```python import duckdb rel = duckdb.sql("SELECT * FROM range(1_000_000) tbl(id)") rel.limit(3).show() ``` ```text β”Œβ”€β”€β”€β”€β”€β”€β”€β” β”‚ id β”‚ β”‚ int64 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 0 β”‚ β”‚ 1 β”‚ β”‚ 2 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”˜ ``` #### `order(expr)` {#docs:api:python:relational_api::orderexpr} Sort the relation by the given set of expressions. ```python import duckdb rel = duckdb.sql("SELECT * FROM range(1_000_000) tbl(id)") rel.order("id DESC").limit(3).show() ``` ```text β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ id β”‚ β”‚ int64 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 999999 β”‚ β”‚ 999998 β”‚ β”‚ 999997 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` #### `project(expr)` {#docs:api:python:relational_api::projectexpr} Apply the given expression to each row in the relation. ```python import duckdb rel = duckdb.sql("SELECT * FROM range(1_000_000) tbl(id)") rel.project("id + 10 AS id_plus_ten").limit(3).show() ``` ```text β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ id_plus_ten β”‚ β”‚ int64 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 10 β”‚ β”‚ 11 β”‚ β”‚ 12 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` #### `union(rel)` {#docs:api:python:relational_api::unionrel} Combine two relations, returning all rows in `r1` followed by all rows in `r2`. The relations must have the same number of columns. ```python import duckdb r1 = duckdb.sql("SELECT * FROM range(5) tbl(id)") r2 = duckdb.sql("SELECT * FROM range(10, 15) tbl(id)") r1.union(r2).show() ``` ```text β”Œβ”€β”€β”€β”€β”€β”€β”€β” β”‚ id β”‚ β”‚ int64 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 0 β”‚ β”‚ 1 β”‚ β”‚ 2 β”‚ β”‚ 3 β”‚ β”‚ 4 β”‚ β”‚ 10 β”‚ β”‚ 11 β”‚ β”‚ 12 β”‚ β”‚ 13 β”‚ β”‚ 14 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”˜ ```
1,613
Client APIs
Python
Result Output
The result of relations can be converted to various types of Python structures, see the [result conversion page](#docs:api:python:conversion) for more information. The result of relations can also be directly written to files using the below methods. * [`write_csv`](#docs:api:python:reference:index::duckdb.DuckDBPyRelation.write_csv) * [`write_parquet`](#docs:api:python:reference:index::duckdb.DuckDBPyRelation.write_parquet)
104
Client APIs
Python
Python Function API
You can create a DuckDB user-defined function (UDF) from a Python function so it can be used in SQL queries. Similarly to regular [functions](#docs:sql:functions:overview), they need to have a name, a return type and parameter types. Here is an example using a Python function that calls a third-party library. ```python import duckdb from duckdb.typing import * from faker import Faker def generate_random_name(): fake = Faker() return fake.name() duckdb.create_function("random_name", generate_random_name, [], VARCHAR) res = duckdb.sql("SELECT random_name()").fetchall() print(res) ``` ```text [('Gerald Ashley',)] ```
149
Client APIs
Python
Creating Functions
To register a Python UDF, use the `create_function` method from a DuckDB connection. Here is the syntax: ```python import duckdb con = duckdb.connect() con.create_function(name, function, parameters, return_type) ``` The `create_function` method takes the following parameters: 1. **name**: A string representing the unique name of the UDF within the connection catalog. 2. **function**: The Python function you wish to register as a UDF. 3. **parameters**: Scalar functions can operate on one or more columns. This parameter takes a list of column types used as input. 4. **return_type**: Scalar functions return one element per row. This parameter specifies the return type of the function. 5. **type** (Optional): DuckDB supports both built-in Python types and PyArrow Tables. By default, built-in types are assumed, but you can specify `type = 'arrow'` to use PyArrow Tables. 6. **null_handling** (Optional): By default, null values are automatically handled as Null-In Null-Out. Users can specify a desired behavior for null values by setting `null_handling = 'special'`. 7. **exception_handling** (Optional): By default, when an exception is thrown from the Python function, it will be re-thrown in Python. Users can disable this behavior, and instead return `null`, by setting this parameter to `'return_null'` 8. **side_effects** (Optional): By default, functions are expected to produce the same result for the same input. If the result of a function is impacted by any type of randomness, `side_effects` must be set to `True`. To unregister a UDF, you can call the `remove_function` method with the UDF name: ```python con.remove_function(name) ```
377
Client APIs
Python
Type Annotation
When the function has type annotation it's often possible to leave out all of the optional parameters. Using `DuckDBPyType` we can implicitly convert many known types to DuckDBs type system. For example: ```python import duckdb def my_function(x: int) -> str: return x duckdb.create_function("my_func", my_function) print(duckdb.sql("SELECT my_func(42)")) ``` ```text β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ my_func(42) β”‚ β”‚ varchar β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ 42 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` If only the parameter list types can be inferred, you'll need to pass in `None` as `parameters`.
163
Client APIs
Python
Null Handling
By default when functions receive a `NULL` value, this instantly returns `NULL`, as part of the default `NULL`-handling. When this is not desired, you need to explicitly set this parameter to `"special"`. ```python import duckdb from duckdb.typing import * def dont_intercept_null(x): return 5 duckdb.create_function("dont_intercept", dont_intercept_null, [BIGINT], BIGINT) res = duckdb.sql("SELECT dont_intercept(NULL)").fetchall() print(res) ``` ```text [(None,)] ``` With `null_handling="special"`: ```python import duckdb from duckdb.typing import * def dont_intercept_null(x): return 5 duckdb.create_function("dont_intercept", dont_intercept_null, [BIGINT], BIGINT, null_handling="special") res = duckdb.sql("SELECT dont_intercept(NULL)").fetchall() print(res) ``` ```text [(5,)] ```
210
Client APIs
Python
Exception Handling
By default, when an exception is thrown from the Python function, we'll forward (re-throw) the exception. If you want to disable this behavior, and instead return null, you'll need to set this parameter to `"return_null"` ```python import duckdb from duckdb.typing import * def will_throw(): raise ValueError("ERROR") duckdb.create_function("throws", will_throw, [], BIGINT) try: res = duckdb.sql("SELECT throws()").fetchall() except duckdb.InvalidInputException as e: print(e) duckdb.create_function("doesnt_throw", will_throw, [], BIGINT, exception_handling="return_null") res = duckdb.sql("SELECT doesnt_throw()").fetchall() print(res) ``` ```console Invalid Input Error: Python exception occurred while executing the UDF: ValueError: ERROR At: ...(5): will_throw ...(9): <module> ``` ```text [(None,)] ```
199
Client APIs
Python
Side Effects
By default DuckDB will assume the created function is a *pure* function, meaning it will produce the same output when given the same input. If your function does not follow that rule, for example when your function makes use of randomness, then you will need to mark this function as having `side_effects`. For example, this function will produce a new count for every invocation ```python def count() -> int: old = count.counter; count.counter += 1 return old count.counter = 0 ``` If we create this function without marking it as having side effects, the result will be the following: ```python con = duckdb.connect() con.create_function("my_counter", count, side_effects = False) res = con.sql("SELECT my_counter() FROM range(10)").fetchall() print(res) ``` ```text [(0,), (0,), (0,), (0,), (0,), (0,), (0,), (0,), (0,), (0,)] ``` Which is obviously not the desired result, when we add `side_effects = True`, the result is as we would expect: ```python con.remove_function("my_counter") count.counter = 0 con.create_function("my_counter", count, side_effects = True) res = con.sql("SELECT my_counter() FROM range(10)").fetchall() print(res) ``` ```text [(0,), (1,), (2,), (3,), (4,), (5,), (6,), (7,), (8,), (9,)] ```
323
Client APIs
Python
Python Function Types
Currently, two function types are supported, `native` (default) and `arrow`. #### Arrow {#docs:api:python:function::arrow} If the function is expected to receive arrow arrays, set the `type` parameter to `'arrow'`. This will let the system know to provide arrow arrays of up to `STANDARD_VECTOR_SIZE` tuples to the function, and also expect an array of the same amount of tuples to be returned from the function. #### Native {#docs:api:python:function::native} When the function type is set to `native` the function will be provided with a single tuple at a time, and expect only a single value to be returned. This can be useful to interact with Python libraries that don't operate on Arrow, such as `faker`: ```python import duckdb from duckdb.typing import * from faker import Faker def random_date(): fake = Faker() return fake.date_between() duckdb.create_function("random_date", random_date, [], DATE, type="native") res = duckdb.sql("SELECT random_date()").fetchall() print(res) ``` ```text [(datetime.date(2019, 5, 15),)] ```
254
Client APIs
Python
Types API
The `DuckDBPyType` class represents a type instance of our [data types](#docs:sql:data_types:overview).
28
Client APIs
Python
Converting from Other Types
To make the API as easy to use as possible, we have added implicit conversions from existing type objects to a DuckDBPyType instance. This means that wherever a DuckDBPyType object is expected, it is also possible to provide any of the options listed below. #### Python Built-ins {#docs:api:python:types::python-built-ins} The table below shows the mapping of Python Built-in types to DuckDB type. <div class="narrow_table monospace_table"></div> | Built-in types | DuckDB type | |:---------------|:------------| | bool | BOOLEAN | | bytearray | BLOB | | bytes | BLOB | | float | DOUBLE | | int | BIGINT | | str | VARCHAR | #### Numpy DTypes {#docs:api:python:types::numpy-dtypes} The table below shows the mapping of Numpy DType to DuckDB type. <div class="narrow_table monospace_table"></div> | Type | DuckDB type | |:------------|:------------| | bool | BOOLEAN | | float32 | FLOAT | | float64 | DOUBLE | | int16 | SMALLINT | | int32 | INTEGER | | int64 | BIGINT | | int8 | TINYINT | | uint16 | USMALLINT | | uint32 | UINTEGER | | uint64 | UBIGINT | | uint8 | UTINYINT | #### Nested Types {#docs:api:python:types::nested-types}
347
Client APIs
Python
Converting from Other Types
`list[child_type]`
`list` type objects map to a `LIST` type of the child type. Which can also be arbitrarily nested. ```python import duckdb from typing import Union duckdb.typing.DuckDBPyType(list[dict[Union[str, int], str]]) ``` ```text MAP(UNION(u1 VARCHAR, u2 BIGINT), VARCHAR)[] ```
79
Client APIs
Python
Converting from Other Types
`dict[key_type, value_type]`
`dict` type objects map to a `MAP` type of the key type and the value type. ```python import duckdb print(duckdb.typing.DuckDBPyType(dict[str, int])) ``` ```text MAP(VARCHAR, BIGINT) ```
58
Client APIs
Python
Converting from Other Types
`{'a': field_one, 'b': field_two, .., 'n': field_n}`
`dict` objects map to a `STRUCT` composed of the keys and values of the dict. ```python import duckdb print(duckdb.typing.DuckDBPyType({'a': str, 'b': int})) ``` ```text STRUCT(a VARCHAR, b BIGINT) ```
63
Client APIs
Python
Converting from Other Types
`Union[⟨type_1⟩, ... ⟨type_n⟩]`
`typing.Union` objects map to a `UNION` type of the provided types. ```python import duckdb from typing import Union print(duckdb.typing.DuckDBPyType(Union[int, str, bool, bytearray])) ``` ```text UNION(u1 BIGINT, u2 VARCHAR, u3 BOOLEAN, u4 BLOB) ``` #### Creation Functions {#docs:api:python:types::creation-functions} For the built-in types, you can use the constants defined in `duckdb.typing`: <div class="narrow_table monospace_table"></div> | DuckDB type | |:---------------| | BIGINT | | BIT | | BLOB | | BOOLEAN | | DATE | | DOUBLE | | FLOAT | | HUGEINT | | INTEGER | | INTERVAL | | SMALLINT | | SQLNULL | | TIME_TZ | | TIME | | TIMESTAMP_MS | | TIMESTAMP_NS | | TIMESTAMP_S | | TIMESTAMP_TZ | | TIMESTAMP | | TINYINT | | UBIGINT | | UHUGEINT | | UINTEGER | | USMALLINT | | UTINYINT | | UUID | | VARCHAR | For the complex types there are methods available on the `DuckDBPyConnection` object or the `duckdb` module. Anywhere a `DuckDBPyType` is accepted, we will also accept one of the type objects that can implicitly convert to a `DuckDBPyType`.
334
Client APIs
Python
Converting from Other Types
`list_type` | `array_type`
Parameters: * `child_type: DuckDBPyType`
13
Client APIs
Python
Converting from Other Types
`struct_type` | `row_type`
Parameters: * `fields: Union[list[DuckDBPyType], dict[str, DuckDBPyType]]`
24