|
--- |
|
language: |
|
- pt |
|
size_categories: |
|
- 10M<n<100M |
|
task_categories: |
|
- text-generation |
|
tags: |
|
- legal |
|
dataset_info: |
|
- config_name: all |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: source |
|
dtype: string |
|
- name: orig_id |
|
dtype: int64 |
|
- name: text |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 135151899572 |
|
num_examples: 24194918 |
|
download_size: 71423192838 |
|
dataset_size: 135151899572 |
|
- config_name: acordaos_tcu |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: text |
|
dtype: string |
|
- name: meta |
|
struct: |
|
- name: dedup |
|
struct: |
|
- name: exact_norm |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: exact_hash_idx |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash_idx |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 3494790013 |
|
num_examples: 634711 |
|
download_size: 1653039356 |
|
dataset_size: 3494790013 |
|
- config_name: datastf |
|
features: |
|
- name: text |
|
dtype: string |
|
- name: meta |
|
struct: |
|
- name: dedup |
|
struct: |
|
- name: exact_norm |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: exact_hash_idx |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash_idx |
|
dtype: int64 |
|
- name: id |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 3699382656 |
|
num_examples: 737769 |
|
download_size: 1724245648 |
|
dataset_size: 3699382656 |
|
- config_name: iudicium_textum |
|
features: |
|
- name: text |
|
dtype: string |
|
- name: meta |
|
struct: |
|
- name: dedup |
|
struct: |
|
- name: exact_norm |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: exact_hash_idx |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash_idx |
|
dtype: int64 |
|
- name: id |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 896139675 |
|
num_examples: 198387 |
|
download_size: 408025309 |
|
dataset_size: 896139675 |
|
- config_name: mlp_pt_BRCAD-5 |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: text |
|
dtype: string |
|
- name: meta |
|
struct: |
|
- name: dedup |
|
struct: |
|
- name: exact_norm |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: exact_hash_idx |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash_idx |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 20311710293 |
|
num_examples: 3128292 |
|
download_size: 9735599974 |
|
dataset_size: 20311710293 |
|
- config_name: mlp_pt_CJPG |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: text |
|
dtype: string |
|
- name: meta |
|
struct: |
|
- name: dedup |
|
struct: |
|
- name: exact_norm |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: exact_hash_idx |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash_idx |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 63201157801 |
|
num_examples: 14068634 |
|
download_size: 30473107046 |
|
dataset_size: 63201157801 |
|
- config_name: mlp_pt_eurlex-caselaw |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: text |
|
dtype: string |
|
- name: meta |
|
struct: |
|
- name: dedup |
|
struct: |
|
- name: exact_norm |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: exact_hash_idx |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash_idx |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 1499601545 |
|
num_examples: 104312 |
|
download_size: 627235870 |
|
dataset_size: 1499601545 |
|
- config_name: mlp_pt_eurlex-contracts |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: text |
|
dtype: string |
|
- name: meta |
|
struct: |
|
- name: dedup |
|
struct: |
|
- name: exact_norm |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: exact_hash_idx |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash_idx |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 467200973 |
|
num_examples: 11581 |
|
download_size: 112805426 |
|
dataset_size: 467200973 |
|
- config_name: mlp_pt_eurlex-legislation |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: text |
|
dtype: string |
|
- name: meta |
|
struct: |
|
- name: dedup |
|
struct: |
|
- name: exact_norm |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: exact_hash_idx |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash_idx |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 5669271303 |
|
num_examples: 232556 |
|
download_size: 1384571339 |
|
dataset_size: 5669271303 |
|
- config_name: mlp_pt_legal-mc4 |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: text |
|
dtype: string |
|
- name: meta |
|
struct: |
|
- name: dedup |
|
struct: |
|
- name: exact_norm |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: exact_hash_idx |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash_idx |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 4483889482 |
|
num_examples: 191174 |
|
download_size: 2250422592 |
|
dataset_size: 4483889482 |
|
- config_name: parlamento-pt |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: text |
|
dtype: string |
|
- name: meta |
|
struct: |
|
- name: dedup |
|
struct: |
|
- name: exact_norm |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: exact_hash_idx |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash_idx |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 2867291543 |
|
num_examples: 2670846 |
|
download_size: 1319479156 |
|
dataset_size: 2867291543 |
|
- config_name: tesemo_v2 |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: text |
|
dtype: string |
|
- name: meta |
|
struct: |
|
- name: dedup |
|
struct: |
|
- name: exact_norm |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: exact_hash_idx |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash |
|
struct: |
|
- name: cluster_main_idx |
|
dtype: int64 |
|
- name: cluster_size |
|
dtype: int64 |
|
- name: is_duplicate |
|
dtype: bool |
|
- name: minhash_idx |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 29158221995 |
|
num_examples: 2216656 |
|
download_size: 13543440397 |
|
dataset_size: 29158221995 |
|
configs: |
|
- config_name: all |
|
data_files: |
|
- split: train |
|
path: all/train-* |
|
- config_name: acordaos_tcu |
|
data_files: |
|
- split: train |
|
path: acordaos_tcu/train-* |
|
- config_name: datastf |
|
data_files: |
|
- split: train |
|
path: datastf/train-* |
|
- config_name: iudicium_textum |
|
data_files: |
|
- split: train |
|
path: iudicium_textum/train-* |
|
- config_name: mlp_pt_BRCAD-5 |
|
data_files: |
|
- split: train |
|
path: mlp_pt_BRCAD-5/train-* |
|
- config_name: mlp_pt_CJPG |
|
data_files: |
|
- split: train |
|
path: mlp_pt_CJPG/train-* |
|
- config_name: mlp_pt_eurlex-caselaw |
|
data_files: |
|
- split: train |
|
path: mlp_pt_eurlex-caselaw/train-* |
|
- config_name: mlp_pt_eurlex-contracts |
|
data_files: |
|
- split: train |
|
path: mlp_pt_eurlex-contracts/train-* |
|
- config_name: mlp_pt_eurlex-legislation |
|
data_files: |
|
- split: train |
|
path: mlp_pt_eurlex-legislation/train-* |
|
- config_name: mlp_pt_legal-mc4 |
|
data_files: |
|
- split: train |
|
path: mlp_pt_legal-mc4/train-* |
|
- config_name: parlamento-pt |
|
data_files: |
|
- split: train |
|
path: parlamento-pt/train-* |
|
- config_name: tesemo_v2 |
|
data_files: |
|
- split: train |
|
path: tesemo_v2/train-* |
|
--- |
|
# LegalPT |
|
|
|
LegalPT aggregates the maximum amount of publicly available legal data in Portuguese, drawing from varied sources including legislation, jurisprudence, legal articles, and government documents. |
|
|
|
This is the raw version. Deduplicated version is available [here](https://huggingface.co/datasets/eduagarcia/LegalPT_dedup). |
|
|
|
## Dataset Details |
|
|
|
Dataset is composed by six corpora: |
|
[Ulysses-Tesemõ](https://github.com/ulysses-camara/ulysses-tesemo), [MultiLegalPile (PT)](https://arxiv.org/abs/2306.02069v2), [ParlamentoPT](http://arxiv.org/abs/2305.06721), |
|
[Iudicium Textum](https://www.inf.ufpr.br/didonet/articles/2019_dsw_Iudicium_Textum_Dataset.pdf), [Acordãos TCU](https://link.springer.com/chapter/10.1007/978-3-030-61377-8_46), and |
|
[DataSTF](https://legalhackersnatal.wordpress.com/2019/05/09/mais-dados-juridicos/). |
|
|
|
- [**MultiLegalPile**](https://huggingface.co/datasets/joelniklaus/Multi_Legal_Pile) ([Paper](https://arxiv.org/abs/2306.02069v2)): a multilingual corpus of legal texts |
|
comprising 689 GiB of data, covering 24 languages in 17 jurisdictions. The corpus is separated by language, and the subset in Portuguese contains 92GiB of data, |
|
containing 13.76 billion words. This subset includes the jurisprudence of the Court of Justice of São Paulo (CJPG), appeals from the |
|
[5th Regional Federal Court (BRCAD-5)](https://www.kaggle.com/datasets/eliasjacob/brcad5), the Portuguese subset of |
|
legal documents from the European Union, known as [EUR-Lex](https://huggingface.co/datasetsjoelniklaus/eurlex_resources), and a filter for legal documents from |
|
[MC4](http://arxiv.org/abs/2010.11934). |
|
- [**Ulysses-Tesemõ**](https://github.com/ulysses-camara/ulysses-tesemo): a legal corpus in Brazilian Portuguese, composed of 2.2 million documents, totaling about 26GiB of text obtained from 96 different data sources. These sources encompass legal, legislative, academic papers, news, and related comments. The data was collected through web scraping of government websites. |
|
- [**ParlamentoPT**](PORTULAN/parlamento-pt) ([Paper](http://arxiv.org/abs/2305.06721)): a corpus for training language models in European Portuguese. The data was collected from the Portuguese government portal and consists of 2.6 million documents of transcriptions of debates in the Portuguese Parliament. |
|
- [**Iudicium Textum**](https://dadosabertos.c3sl.ufpr.br/acordaos/) ([Paper](https://www.inf.ufpr.br/didonet/articles/2019_dsw_Iudicium_Textum_Dataset.pdf)): consists of rulings, votes, and reports from the Supreme Federal Court (STF) of Brazil, published between 2010 and 2018. The dataset contains 1GiB of data extracted from PDFs. |
|
- [**Acordãos TCU**](https://www.kaggle.com/datasets/ferraz/acordaos-tcu) ([Paper](https://link.springer.com/chapter/10.1007/978-3-030-61377-8_46)): an open dataset from the Tribunal de Contas da União (Brazilian Federal Court of Accounts), containing 600,000 documents obtained by web scraping government websites. The documents span from 1992 to 2019. |
|
- [**DataSTF**](https://legalhackersnatal.wordpress.com/2019/05/09/mais-dados-juridicos/)): a dataset of monocratic decisions from the Superior Court of Justice (STJ) in Brazil, containing 700,000 documents (5GiB of data). |
|
|
|
### Dataset Description |
|
|
|
- **Language(s) (NLP):** Portuguese (pt-BR and pt-PT) |
|
- **Repository:** https://github.com/eduagarcia/roberta-legal-portuguese |
|
- **Paper:** https://aclanthology.org/2024.propor-1.38/ |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@inproceedings{garcia-etal-2024-robertalexpt, |
|
title = "{R}o{BERT}a{L}ex{PT}: A Legal {R}o{BERT}a Model pretrained with deduplication for {P}ortuguese", |
|
author = "Garcia, Eduardo A. S. and |
|
Silva, Nadia F. F. and |
|
Siqueira, Felipe and |
|
Albuquerque, Hidelberg O. and |
|
Gomes, Juliana R. S. and |
|
Souza, Ellen and |
|
Lima, Eliomar A.", |
|
editor = "Gamallo, Pablo and |
|
Claro, Daniela and |
|
Teixeira, Ant{\'o}nio and |
|
Real, Livy and |
|
Garcia, Marcos and |
|
Oliveira, Hugo Gon{\c{c}}alo and |
|
Amaro, Raquel", |
|
booktitle = "Proceedings of the 16th International Conference on Computational Processing of Portuguese", |
|
month = mar, |
|
year = "2024", |
|
address = "Santiago de Compostela, Galicia/Spain", |
|
publisher = "Association for Computational Lingustics", |
|
url = "https://aclanthology.org/2024.propor-1.38", |
|
pages = "374--383", |
|
} |
|
``` |
|
|
|
## Acknowledgment |
|
|
|
This work has been supported by the AI Center of Excellence (Centro de Excelência em Inteligência Artificial – CEIA) of the Institute of Informatics at the Federal University of Goiás (INF-UFG). |