title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
On the Correlation between Hot Jupiters and Stellar Clustering: High-eccentricity Migration Induced by Stellar Flybys
A recent observational study suggests that the occurrence of hot Jupiters (HJs) around solar-type stars is correlated with stellar clustering. We study a new scenario for HJ formation, called "Flyby Induced High-e Migration", that may help explain this correlation. In this scenario, stellar flybys excite the eccentricity and inclination of an outer companion (giant planet, brown dwarf, or low-mass star) at large distance (10-300 au), which then triggers high-e migration of an inner cold Jupiter (at a few astronomical units) through the combined effects of von Zeipel-Lidov-Kozai (ZLK) eccentricity oscillation and tidal dissipation. Using semianalytical calculations of the effective ZLK inclination window, together with numerical simulations of stellar flybys, we obtain the analytic estimate for the HJ occurrence rate in this formation scenario. We find that this "flyby induced high-e migration" could account for a significant fraction of the observed HJ population, although the result depends on several uncertain parameters, including the density and lifetime of birth stellar clusters, and the occurrence rate of the "cold Jupiter + outer companion" systems.
astro-ph
Using ALMA to resolve the nature of the early star-forming large-scale structure PLCK G073.4-57.5
Galaxy clusters at high redshift are key targets for understanding matter assembly in the early Universe, yet they are challenging to locate. A sample of >2000 high-z candidate structures has been found using Planck's all-sky submm maps, and a sub-set of 234 have been followed up with Herschel-SPIRE, which showed that the emission can be attributed to large overdensities of dusty star-forming galaxies. In order to resolve and characterise the individual galaxies we targeted the eight brightest SPIRE sources in the centre of the Planck peak PLCK G073.4-57.5 using ALMA at 1.3 mm, and complemented these observations with data from IRAC, WIRCam J,K, and SCUBA-2. We detected a total of 18 millimetre galaxies brighter than 0.3 mJy in 2.4 arcmin^2. The ALMA source density is 8-30 times higher than average background estimates and larger than seen in typical 'proto-cluster' fields. We were able to match all but one of the ALMA sources to a NIR counterpart. The most significant (four) SCUBA-2 sources are not included in the ALMA pointings, but we find an 8sigma stacking detection of the ALMA sources in the SCUBA-2 map at 850 um. We derive photo-z, L_IR, SFR, stellar mass, T_dust, M_dust for all of the ALMA galaxies; the photo-zs identify two groups each of five sources, at z~1.5 and 2.4. The two groups show two 'red sequences' (i.e. similar NIR [3.6]-[4.5] colours and different J-K colours). The majority of the ALMA-detected galaxies are on the SFR versus stellar mass main sequence, and half of the sample is more massive than the characteristic stellar mass at the corresponding redshift. Serendipitous CO line detections in two of the galaxies appear to match their photometric redshifts at z~1.54. We performed an analysis of star-formation efficiencies and CO- and mm-continuum-derived gas fractions of our ALMA sources, combined with a sample of 1<z<3 cluster and proto-cluster members.
astro-ph
Model-independent Estimations for the Cosmic Curvature from the Latest Strong Gravitational Lensing Systems
Model-independent measurements for the cosmic spatial curvature, which is related to the nature of cosmic space-time geometry, plays an important role in cosmology. On the basis of the Distance Sum Rule in the Friedmann-Lema{\^i}tre-Robertson-Walker metric, (distance ratio) measurements of strong gravitational lensing (SGL) systems together with distances from type Ia supernovae observations have been proposed to directly estimate the spatial curvature without any assumptions for the theories of gravity and contents of the universe. However, previous studies indicated that a spatially closed universe was strongly preferred. In this paper, we re-estimate the cosmic curvature with the latest SGL data which includes 163 well-measured systems. In addition, possible factors, e.g. combination of SGL data from different surveys and stellar mass of the lens galaxy, which might affect estimations for the spatial curvature, are considered in our analysis. We find that, except the case where only SGL systems from the Sloan Lens ACS Survey are considered, a spatially flat universe is consistently favored at very high confidence level by the latest observations. It is suggested that the increasing number of well-measured strong lensing events might significantly reduce the bias of estimation for the cosmic curvature.
astro-ph
Galaxy number counts at second order in perturbation theory: a leading-order term comparison
The galaxy number density is a key quantity to compare theoretical predictions to the observational data from current and future Large Scale Structure surveys. The precision demanded by these Stage IV surveys requires the use of second order cosmological perturbation theory. Based on the independent calculation published previously, we present the result of the comparison with the results of three other groups at leading order. Overall we find that the differences between the different approaches lie mostly on the definition of certain quantities, where the ambiguity of signs results in the addition of extra terms at second order in perturbation theory.
astro-ph
Measurement of the high-energy all-flavor neutrino-nucleon cross section with IceCube
The flux of high-energy neutrinos passing through the Earth is attenuated due to their interactions with matter. Their transmission probability is modulated by the neutrino interaction cross section and affects the arrival flux at the IceCube Neutrino Observatory, a cubic-kilometer neutrino detector embedded in the South Pole ice sheet. We present a measurement of the neutrino-nucleon cross section between 60 TeV--10 PeV using the high-energy starting events (HESE) sample from IceCube with 7.5 years of data.
astro-ph
Primordial Weibel instability
We study the onset of vector instabilities in a post-inflationary epoch of the Universe as a mechanism for primordial magnetic fields amplification between the end of inflation and the electroweak (EW) transition. We assume the presence of a charged spectator scalar field arbitrarily coupled to gravity. This field is in its vacuum state during inflation, but becomes highly excited after the transition to the radiation dominance due to the gravitational particle creation. At the beginning of radiation era the ensuing state admits a hydrodynamic description. In particular since its high temperature, the fluid may be regarded as a conformal one. The large quantum fluctuations induced during reheating now become statistical fluctuations whereby an excess charge and anisotropic pressure will be observed in any finite domain. Under these conditions a Weibel instability could be triggered thus opposing the dilution of a primordial magnetic field because of the expansion of the Universe. The magnitude of the effect is determined by the size of the domain, the coupling to curvature of the field and the relaxation time of the fluid. We find that for scales of the order or smaller than the particle horizon at the EW phase transition, the Weibel instability can overcome the cosmic expansion provided that the reheating temperature of the Universe and the coupling of the scalar field to gravity are small enough.
astro-ph
Weak signal extraction using matrix decomposition, with application to ultra high energy neutrino detection
In radio-based physics experiments, sensitive analysis techniques are often required to extract signals at or below the level of noise. For a recent experiment at the SLAC National Accelerator Laboratory to test a radar-based detection scheme for high energy neutrino cascades, such a sensitive analysis was employed to dig down into a spurious background and extract a putative signal. In this technique, the backgrounds are decomposed into an orthonormal basis, into which individual data vectors (signal + background) can be expanded. This expansion is a filter that can extract signals with amplitudes $\sim$1 % of the background. This analysis technique is particularly useful for applications when the exact signal characteristics (spectral content, duration) are not known. In this proceeding we briefly present the results of this analysis in the context of test-beam experiment 576 (T576) at SLAC.
astro-ph
Linking Compact Dwarf Starburst Galaxies in the RESOLVE Survey to Downsized Blue Nuggets
We identify and characterize compact dwarf starburst (CDS) galaxies in the RESOLVE survey, a volume-limited census of galaxies in the local universe, to probe whether this population contains any residual ``blue nuggets,'' a class of intensely star-forming compact galaxies first identified at high redshift $z$. Our 50 low-$z$ CDS galaxies are defined by dwarf masses (stellar mass $M_* < 10^{9.5}$ M$_{\odot}$), compact bulged-disk or spheroid-dominated morphologies (using a quantitative criterion, $\mu_\Delta > 8.6$), and specific star formation rates above the defining threshold for high-$z$ blue nuggets ($\log$ SSFR [Gyr$^{-1}] > -0.5$). Across redshifts, blue nuggets exhibit three defining properties: compactness relative to contemporaneous galaxies, abundant cold gas, and formation via compaction in mergers or colliding streams. Those with halo mass below $M_{\rm halo} \sim 10^{11.5}$ M$_{\odot}$ may in theory evade permanent quenching and cyclically refuel until the present day. Selected only for compactness and starburst activity, our CDS galaxies generally have $M_{\rm halo} \lesssim 10^{11.5}$ M$_{\odot}$ and gas-to-stellar mass ratio $\gtrsim$1. Moreover, analysis of archival DECaLS photometry and new 3D spectroscopic observations for CDS galaxies reveals a high rate of photometric and kinematic disturbances suggestive of dwarf mergers. The SSFRs, surface mass densities, and number counts of CDS galaxies are compatible with theoretical and observational expectations for redshift evolution in blue nuggets. We argue that CDS galaxies represent a maximally-starbursting subset of traditional compact dwarf classes such as blue compact dwarfs and blue E/S0s. We conclude that CDS galaxies represent a low-$z$ tail of the blue nugget phenomenon formed via a moderated compaction channel that leaves open the possibility of disk regrowth and evolution into normal disk galaxies.
astro-ph
Absorption Lines in the 0.91-1.33 $\mu$m Spectra of Red Giants for Measuring Abundances of Mg, Si, Ca, Ti, Cr, and Ni
Red giants show a large number of absorption lines in both optical and near-infrared wavelengths. Still, the characteristics of the lines in different wave passbands are not necessarily the same. We searched for lines of Mg I, Si I, Ca I, Ti I, Cr I, and Ni I in the z', Y, and J bands (0.91-1.33 $\mu$m), that are useful for precise abundance analyses, from two different compilations of lines, namely, the third release of Vienna Atomic Line Database (VALD3) and the catalog published by Melendez & Barbuy in 1999 (MB99). We selected sufficiently strong lines that are not severely blended and ended up with 191 lines (165 and 141 lines from VALD3 and MB99, respectively), in total, for the six elements. Combining our line lists with high-resolution (R = 28,000) and high signal-to-noise (higher than 500) spectra taken with the WINERED spectrograph, we measured the abundances of the six elements in addition to Fe I of two prototype red giants, i.e., Arcturus and mu Leo. The resultant abundances show reasonable agreements with literature values within $\sim$0.2 dex, indicating that the available oscillator strengths are acceptable, although the abundances based on the two line lists show systematic differences by 0.1-0.2 dex. Furthermore, to improve the precision, solid estimation of the microturbulence (or the microturbulences if they are different for different elements) is necessary as far as the classical hydrostatic atmosphere models are used for the analysis.
astro-ph
Cosmic-ray current-driven instabilities -- revisiting environmental conditions
The growth of magneto-hydrodynamic fluctuations relevant to cosmic ray confinement in and near their sources, and the effects of local plasma conditions is revisited. We consider cases where cosmic rays penetrate a medium which may contain a fraction of neutral particles, and explore the possible effects of high-order cosmic-ray anisotropies. An algorithm for calculating the dispersion relation for arbitrary distributions, and anisotropies is presented, and a general solution for power-law cosmic-ray distributions is provided. Implications for the resulting instabilities near to strong Galactic cosmic-ray sources are discussed. We argue that cosmic-ray streaming in weakly ionised plasmas eliminates the need for the existence of an evanescent band in the dispersion relation, a conclusion which may be confirmed by gamma-ray observations. The necessity for additional multi-scale numerical simulations is highlighted, as understanding the non-linear behaviour is crucial.
astro-ph
Sulphur-Bearing and Complex Organic Molecules in an Infrared Cold Core
Since the start of ALMA observatory operation, new and important chemistry of infrared cold core was revealed. Molecular transitions at millimeter range are being used to identify and to characterize these sources. We have investigated the 231 GHz ALMA archive observations of the infrared dark cloud region C9, focusing on the brighter source that we called as IRDC-C9 Main. We report the existence of two sub-structures on the continuum map of this source: a compact bright spot with high chemistry diversity that we labelled as core, and a weaker and extended one, that we labelled as tail. In the core, we have identified lines of the molecules OCS(19-18), $^{13}$CS(5-4) and CH$_{3}$CH$_{2}$CN, several lines of CH$_{3}$CHO and the k-ladder emission of $^{13}$CH$_{3}$CN.We report two different temperature regions: while the rotation diagram of CH$_{3}$CHO indicates a temperature of 25 K, the rotation diagram of $^{13}$CH$_{3}$CN indicates a warmer phase at temperature of $\sim450$K. In the tail, only the OCS(19-18) and $^{13}$CS(5-4) lines were detected. We used the $Nautilus$ and the \textsc{Radex} codes to estimate the column densities and the abundances. The existence of hot gas in the core of IRDC-C9 Main suggests the presence of a protostar, which is not present in the tail.
astro-ph
Ultraviolet-Based Science in the Solar System: Advances and Next Steps
We review the importance of recent UV observations of solar system targets and discuss the need for further measurements, instrumentation and laboratory work in the coming decade. In the past decade, numerous important advances have been made in solar system science using ultraviolet (UV) spectroscopic techniques. Formerly used nearly exclusively for studies of giant planet atmospheres, planetary exospheres and cometary emissions, UV imaging spectroscopy has recently been more widely applied. The geyser-like plume at Saturn's moon Enceladus was discovered in part as a result of UV stellar occultation observations, and this technique was used to characterize the plume and jets during the entire Cassini mission. Evidence for a similar style of activity has been found at Jupiter's moon Europa using Hubble Space Telescope (HST) UV emission and absorption imaging. At other moons and small bodies throughout the solar system, UV spectroscopy has been utilized to search for activity, probe surface composition, and delineate space weathering effects; UV photometric studies have been used to uncover regolith structure. Insights from UV imaging spectroscopy of solar system surfaces have been gained largely in the last 1-2 decades, including studies of surface composition, space weathering effects (e.g. radiolytic products) and volatiles on asteroids (e.g. [2][39][48][76][84]), the Moon (e.g. [30][46][49]), comet nuclei (e.g. [85]) and icy satellites (e.g. [38][41-44][45][47][65]). The UV is sensitive to some species, minor contaminants and grain sizes often not detected in other spectral regimes. In the coming decade, HST observations will likely come to an end. New infrastructure to bolster future UV studies is critically needed. These needs include both developmental work to help improve future UV observations and laboratory work to help interpret spacecraft data. UV instrumentation will be a critical tool on missions to a variety of targets in the coming decade, especially for the rapidly expanding application of UV reflectance investigations of atmosphereless bodies.
astro-ph
The Properties of Planetesimal Collisions under Jupiter's Perturbation and the Application to Chondrule Formation via Impact Jetting
Understanding chondrule formation provides invaluable clues about the origin of the solar system. Recent studies suggest that planetesimal collisions and the resulting impact melts are promising for forming chondrules. Given that the dynamics of planetesimals is a key in impact-based chondrule formation scenarios, we here perform direct $N$-body simulations to examine how the presence of Jupiter affects the properties of chondrule-forming collisions. Our results show that the absence/presence of Jupiter considerably changes the properties of high velocity collisions whose impact velocities are higher than 2.5 km s$^{-1}$; high velocity collisions occur due to impacts between protoplanets and planetesimals for the case without Jupiter; for the case with Jupiter, eccentricities of planetesimals are pumped up by the secular and resonant perturbations from Jupiter. We also categorize the resulting planetesimal collisions and find that most of high velocity collisions are classified as grazing ones for both cases. To examine the effect of Jupiter on chondrule formation directly, we adopt the impact jetting scenario and compute the resulting abundance of chondrules. Our results show that for the case without Jupiter, chondrule formation proceeds in the inside-out manner, following the growth of protoplanets. If Jupiter is present, the location and timing of chondrule formation are determined by Jupiter's eccentricity, which is treated as a free parameter in our simulations. Thus, the existence of Jupiter is the key parameter for specifying when and where chondrule formation occurs for impact-based scenarios.
astro-ph
A Universal Relation of Dust Obscuration Across Cosmic Time
We investigate dust obscuration as parameterised by the infrared excess IRX$\equiv$$L_{\rm IR}/L_{\rm UV}$ in relation to global galaxy properties, using a sample of $\sim$32$\,$000 local star-forming galaxies (SFGs) selected from SDSS, GALEX and WISE. We show that IRX generally correlates with stellar mass ($M_\ast$), star formation rate (SFR), gas-phase metallicity ($Z$), infrared luminosity ($L_{\rm IR}$) and the half-light radius ($R_{\rm e}$). A weak correlation of IRX with axial ratio (b/a) is driven by the inclination and thus seen as a projection effect. By examining the tightness and the scatter of these correlations, we find that SFGs obey an empirical relation of the form $IRX$=$10^\alpha\,(L_{\rm IR})^{\beta}\,R_{\rm e}^{-\gamma}\,(b/a)^{-\delta}$ where the power-law indices all increase with metallicity. The best-fitting relation yields a scatter of $\sim$0.17$\,$dex and no dependence on stellar mass. Moreover, this empirical relation also holds for distant SFGs out to $z=3$ in a population-averaged sense, suggesting it to be universal over cosmic time. Our findings reveal that IRX approximately increases with $L_{\rm IR}/R_{\rm e}^{[1.3 - 1.5]}$ instead of $L_{\rm IR}/R_{\rm e}^{2}$ (i.e., surface density). We speculate this may be due to differences in the spatial extent of stars versus star formation and/or complex star-dust geometries. We conclude that not stellar mass but IR luminosity, metallicity and galaxy size are the key parameters jointly determining dust obscuration in SFGs.
astro-ph
The environmental effects of very large bolide impacts on early Mars explored with a hierarchy of numerical models
We use a hierarchy of numerical models (a 3-D Global Climate Model, a 1-D radiative-convective model and a 2-D Mantle Dynamics model) to explore the environmental effects of very large impacts on the atmosphere, surface and interior of early Mars. Using a combination of 1-D and 3-D climate simulations, we show that the environmental effects of the largest impact events recorded on Mars are characterized by: (i) a short impact-induced warm period; (ii) a low amount of hydrological cycling of water; (iii) deluge-style precipitation; and (iv) precipitation patterns that are uncorrelated with the observed regions of valley networks. We show that the impact-induced stable runaway greenhouse state predicted by Segura et al. 2012 is physically inconsistent. We confirm the results of Segura et al. 2008 and Urata & Toon 2013 that water ice clouds can significantly extend the duration of the post-impact warm period, and even for cloud coverage lower than predicted in Ramirez & Kasting 2017. However, the range of cloud microphysical properties for which this scenario works is very narrow. Using 2-D Mantle Dynamics simulations we find that large impacts can raise the near-surface internal heat flux up to several hundreds of mW/m$^2$ (i.e. up to $\sim$ 10 times the ambient flux) for several millions years at the edges of the impact crater. However, such internal heat flux is insufficient to keep the martian surface above the melting point of water. Our numerical results support the prediction of Palumbo & Head 2018 that very large impact-induced rainfall could have caused degradation of craters and formed smooth plains, potentially erasing much of the previously visible morphological surface history. Such hot rainfalls may have also led to the formation of aqueous alteration products on Noachian-aged terrains.
astro-ph
Quantifying the impact of variable BLR diffuse continuum contributions on measured continuum inter-band delays
We investigate the contribution of reprocessed continuum emission (1000A - 10,000A) originating in broad line region (BLR) gas, the diffuse continuum (DC), to the wavelength-dependent continuum delays measured in AGN disk reverberation mapping experiments. Assuming a spherical BLR geometry, we adopt a Local Optimally-emitting Cloud (LOC) model for the BLR that approximately reproduces the broad emission-line strengths of the strongest UV lines (Ly-alpha and C IV) in NGC 5548. Within this LOC framework, we explore how assumptions about the gas hydrogen density and column density distributions influence flux and delay spectra of the DC. We find that: (i) models which match well measured emission line luminosities and time delays also produce a significant DC component, (ii) increased nH and/or NH, particularly at smaller BLR radii, result in larger DC luminosities and reduced DC delays, (iii) in a given continuum band the relative importance of the DC component to the measured inter-band delays is proportional (though not 1:1) to its fractional contribution to the total light in that band, (iv) the measured DC delays and DC variability amplitude depends also on the variability amplitude and characteristic variability timescale of the driving continuum, (v) the DC radial surface emissivity distributions F(r) approximate power-laws in radius with indices close to -2 (approximately 1:1 response to variations in the driving continuum flux), thus their physics is relatively simple and less sensitive to the unknown geometry and uncertainties in radiative transfer. Finally, we provide a simple recipe for estimating the DC contribution in disk reverberation mapping experiments.
astro-ph
Star Formation in Nuclear Rings with the TIGRESS Framework
Nuclear rings are sites of intense star formation at the centers of barred galaxies. To understand what determines the structure and star formation rate (SFR; $\dot{M}_{\rm SF}$) of nuclear rings, we run semi-global, hydrodynamic simulations of nuclear rings subject to constant mass inflow rates $\dot{M}_{\rm in}$. We adopt the TIGRESS framework of Kim \& Ostriker to handle radiative heating and cooling, star formation, and related supernova (SN) feedback. We find that the SN feedback is never strong enough to destroy the ring or quench star formation everywhere in the ring. Under the constant $\dot{M}_{\rm in}$, the ring star formation is very steady and persistent, with the SFR exhibiting only mild temporal fluctuations. The ring SFR is tightly correlated with the inflow rate as $\dot{M}_{\rm SF}\approx 0.8\dot{M}_{\rm in}$, for a range of $\dot{M}_{\rm in}=0.125-8\,M_\odot\,{\rm yr}^{-1}$. Within the ring, vertical dynamical equilibrium is maintained, with the midplane pressure (powered by SN feedback) balancing the weight of the overlying gas. The SFR surface density is correlated nearly linearly with the midplane pressure, as predicted by the pressure-regulated, feedback-modulated star formation theory. Based on our results, we argue that the ring SFR is causally controlled by $\dot{M}_\text{in}$, while the ring gas mass adapts to the SFR to maintain the vertical dynamical equilibrium under the gravitational field arising from both gas and stars.
astro-ph
Molecular cloud distances based on the MWISP CO survey and Gaia DR2
We present a new method of calculating distances of molecular clouds in the Galactic plane, using CO observations and the Gaia DR2 parallax and G-band extinction ($A_G$) measurements. Due to the complexity of dust environments in the Galactic plane, $A_G$ contains irregular variations, which is difficult to model. To overcome this difficulty, we propose that the $A_G$ of off-cloud stars (Gaia stars around molecular clouds) can be used as a baseline to calibrate the $A_G$ of on-cloud stars (Gaia stars toward molecular clouds), which removes the $A_G$ components that are unrelated to molecular clouds. The distance is subsequently inferred from the jump point in on-cloud $A_G$ with Bayesian analysis and Markov chain Monte Carlo (MCMC) sampling. We applied this baseline subtraction method to a 100 square degree region (209.75{\deg} $\leq$ l $\leq$ 219.75{\deg} and |b| $\leq$ 5{\deg}) in the third Galactic quadrant, which was mapped as part of the Milky Way Imaging Scroll Painting (MWISP) project, covering three CO isotopologue lines, and derived distances and masses for 11 molecular clouds, including the Maddalena molecular cloud and Sh 2-287. The results indicate that the distance of the Perseus Arm in this region is about 2.4 kpc and molecular clouds are present in the interarm regions.
astro-ph
Critical decay index for eruptions of 'short' filaments
Model of a partial current-carrying torus loop anchored to the photosphere is analyzed. Conditions of the catastrophic loss of equilibrium are considered and corresponding value of the critical decay index of external magnetic field is found. Taking into account line-tying conditions leads to non-monotonous dependence of the critical decay index on the height of the apex and length of the flux rope (its endpoints separation). For relatively short flux ropes, the critical decay index is significantly lower than unity, which is in contrast to widespread models with the typical critical decay index above unity. The steep decrease of the critical index with height at low heights is due to the sharp increase of the curvature of the flux-rope axis that transforms from a nearly straight line to a crescent.
astro-ph
Oxygen abundance and the N/C vs N/O relation for AFG supergiants and bright giants
Non-LTE analysis (LTE is local thermodynamic equilibrium) of the oxygen abundances for 51 Galactic A-, F- and G-type supergiants and bright giants is performed. In contrast with carbon and nitrogen, oxygen does not show any significant systematic anomalies in their abundances log E(O). There is no marked difference from the initial oxygen abundance within errors of the log E(O) determination across the Teff interval from 4500 to 8500 K and the log g interval from 1.2 to 2.9 dex. This result agrees well with theoretical predictions for stellar models with rotation. With our new data for oxygen and our earlier non-LTE determinations of the N and C abundances for stars from the same sample, we constructed the [N/C] vs [N/O] relation for 17 stars. This relation is known to be a sensitive indicator of stellar evolution. A pronounced correlation between [N/C] vs [N/O] is found; the observed [N/C] increase from 0 to 1.6 dex is accompanied by the [N/O] increase from 0 to 0.9 dex. When comparing the observed [N/C] vs [N/O] relation with the theoretical one, we show that this relation reflects a strong dependence of the evolutionary changes in CNO abundances on the initial rotation velocities of stars. Given that the initial rotational velocities of these stars are expected to satisfy V0<150 km/s, it is found that they are mostly the post first dredge-up (post-FDU) objects. It is important that just such initial velocities V0 are typical for about 80% of stars in question (i.e. for stars with masses 4-19 M_sun). A constancy of the total C+N+O abundance during stellar evolution is confirmed. The mean value log E(C+N+O)=8.97+/-0.08 found for AFG supergiants and bright giants seems to be very close to the initial value 8.92 (the Sun) or 8.94 (the unevolved B-type MS stars).
astro-ph
Are primordial black holes produced by entropy perturbations in single field inflationary models?
We show that in single field inflationary models the super-horizon evolution of curvature perturbations on comoving slices $\mathcal{R}$, which can cause the production of primordial black holes (PBH), is not due to entropy perturbations, but to the background evolution effect on the conversion between entropy and curvature perturbations. We derive a general relation between the time derivative of comoving curvature perturbations and entropy perturbations, in terms of a conversion factor depending on the background evolution. Contrary to previous results derived in the uniform density gauge assuming the gradient term can be neglected on super-horizon scales, the relation is valid on any scale for any minimally coupled single scalar field model, also on sub-horizon scales where gradient terms are large. We apply it to the case of quasi-inflection inflation, showing that while entropy perturbations are decreasing, $\mathcal{R}$ can grow on super-horizon scales, due to a large increase of the conversion factor. This happens in the time interval during which a sufficiently fast decrease of the equation of state $w$ transforms into a growing mode that in slow-roll models would be a decaying mode. The same mechanism also explains the super-horizon evolution of $\mathcal{R}$ in globally adiabatic systems, for which entropy perturbations vanish on any scale, such as ultra slow-roll inflation and its generalizations.
astro-ph
Angular distribution of gamma-ray emission from velocity-dependent dark matter annihilation in subhalos
We consider the effect of velocity-dependent dark matter annihilation on the angular distribution of gamma rays produced in dark matter subhalos. We assume that the dark matter potential is spherically symmetric, characterized by a scale radius and scale density, and the velocity distribution is isotropic. We find that the effect of velocity-dependent dark matter annihilation is largely determined by dimensional analysis; the angular size of gamma-ray emission from an individual subhalo is rescaled by a factor which depends on the form of the dark matter distribution, but not on the halo parameters, while the relative normalization of the gamma-ray flux from different mass subhalos is rescaled by a factor which depends on the halo parameters, but not on the form of the dark matter distribution. We apply our results to a Navarro-Frenk-White profile for the case of an individual subhalo and comment on the application of these results to a distribution of subhalos.
astro-ph
LOFAR imaging of the solar corona during the 2015 March 20 solar eclipse
The solar corona is a highly-structured plasma which can reach temperatures of more than ~2 MK. At low frequencies (decimetric and metric wavelengths), scattering and refraction of electromagnetic waves are thought to considerably increase the imaged radio source sizes (up to a few arcminutes). However, exactly how source size relates to scattering due to turbulence is still subject to investigation. The theoretical predictions relating source broadening to propagation effects have not been fully confirmed by observations due to the rarity of high spatial resolution observations of the solar corona at low frequencies. Here, the LOw Frequency ARray (LOFAR) was used to observe the solar corona at 120-180 MHz using baselines of up to ~3.5 km (corresponding to a resolution of ~1-2') during the partial solar eclipse of 2015 March 20. A lunar de-occultation technique was used to achieve higher spatial resolution (~0.6') than that attainable via standard interferometric imaging (~2.4'). This provides a means of studying the contribution of scattering to apparent source size broadening. It was found that the de-occultation technique reveals a more structured quiet corona that is not resolved from standard imaging, implying scattering may be overestimated in this region when using standard imaging techniques. However, an active region source was measured to be ~4' using both de-occultation and standard imaging. This may be explained by the increased scattering of radio waves by turbulent density fluctuations in active regions, which is more severe than in the quiet Sun.
astro-ph
Atmospheric Escape and the Evolution of Close-in Exoplanets
Exoplanets with substantial Hydrogen/Helium atmospheres have been discovered in abundance, many residing extremely close to their parent stars. The extreme irradiation levels these atmospheres experience causes them to undergo hydrodynamic atmospheric escape. Ongoing atmospheric escape has been observed to be occurring in a few nearby exoplanet systems through transit spectroscopy both for hot Jupiters and lower-mass super-Earths/mini-Neptunes. Detailed hydrodynamic calculations that incorporate radiative transfer and ionization chemistry are now common in one-dimensional models, and multi-dimensional calculations that incorporate magnetic-fields and interactions with the interstellar environment are cutting edge. However, there remains very limited comparison between simulations and observations. While hot Jupiters experience atmospheric escape, the mass-loss rates are not high enough to affect their evolution. However, for lower mass planets atmospheric escape drives and controls their evolution, sculpting the exoplanet population we observe today.
astro-ph
X-ray constraints on the spectral energy distribution of the $z=5.18$ blazar SDSS J013127.34-032100.1
We report on X-ray measurements constraining the spectral energy distribution (SED) of the high-redshift $z=5.18$ blazar SDSS J013127.34$-$032100.1 with new XMM-Newton and NuSTAR exposures. The blazar's X-ray spectrum is well fit by a power law with $\Gamma=1.9$ and $N_{\rm H}=1.1\times10^{21}\rm \ cm^{-2}$, or a broken power law with $\Gamma_l=0.5$, $\Gamma_h=1.8$, and a break energy $E_b=0.7$ keV for an expected absorbing column density of $N_{\rm H}=3.6\times 10^{20}\rm \ cm^{-2}$, supported by spectral fitting of a nearby bright source. No additional spectral break is found at higher X-ray energies (1-30 keV). We supplement the X-ray data with lower-energy radio-to-optical measurements and Fermi-LAT gamma-ray upper limits, construct broadband SEDs of the source, and model the SEDs using a synchro-Compton scenario. This modeling constrains the bulk Doppler factor of the jets to $\ge$7 and $\ge$6 (90%) for the low- and high-$N_{\rm H}$ SEDs, respectively. The corresponding beaming implies $\ge$130 (low $N_{\rm H}$) or $\ge$100 (high $N_{\rm H}$) high-spin supermassive black holes similar to J0131 exist at similar redshifts.
astro-ph
Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper Belt Object
The Kuiper Belt is a distant region of the Solar System. On 1 January 2019, the New Horizons spacecraft flew close to (486958) 2014 MU69, a Cold Classical Kuiper Belt Object, a class of objects that have never been heated by the Sun and are therefore well preserved since their formation. Here we describe initial results from these encounter observations. MU69 is a bi-lobed contact binary with a flattened shape, discrete geological units, and noticeable albedo heterogeneity. However, there is little surface color and compositional heterogeneity. No evidence for satellites, ring or dust structures, gas coma, or solar wind interactions was detected. By origin MU69 appears consistent with pebble cloud collapse followed by a low velocity merger of its two lobes.
astro-ph
UVIT/ASTROSAT studies of Blue Straggler stars and post-mass transfer systems in star clusters: Detection of one more blue lurker in M67
The blue straggler stars (BSSs) are main-sequence (MS) stars, which have evaded stellar evolution by acquiring mass while on the MS. The detection of extremely low mass (ELM) white dwarf (WD) companions to two BSSs and one yellow straggler star (YSS) from our earlier study using UVIT/ASTROSAT, as well as WD companions to main-sequence stars (known as blue lurkers) suggest a good fraction of post-mass transfer binaries in M67. Using deeper UVIT observations, here we report the detection of another blue lurker in M67, with an ELM WD companion. The post-mass transfer systems with the presence of ELM WDs, including BSSs, are formed from Case A/B mass transfer and are unlikely to show any difference in surface abundances. We find a correlation between the temperature of the WD and the $v\ sin i$ of the BSSs. We also find that the progenitors of the massive WDs are likely to belong to the hot and luminous group of BSSs in M67. The only detected BSS+WD system by UVIT in the globular cluster NGC 5466, has a normal WD and suggests that open cluster like environment might be present in the outskirts of low density globular clusters.
astro-ph
The effective temperature -- radius relationship of M-dwarfs
M-dwarf stars provide very favourable conditions to find habitable worlds beyond our solar system. The estimation of the fundamental parameters of the transiting exoplanets rely on the accuracy of the theoretical predictions for radius and effective temperature of the host M-dwarf, hence the importance of multiple empirical tests of very low-mass star (VLM) models, the theoretical counterpart of M-dwarfs. Recent determinations of mass, radius and effective temperature of a sample of M-dwarfs of known metallicity have disclosed a supposed discontinuity in the effective temperature-radius diagram corresponding to a stellar mass of about 0.2Mo, that has been ascribed to the transition from partially convective to fully convective stars. In this paper we compare existing VLM models to these observations, and find that theory does not predict any discontinuity at around 0.2Mo, rather a smooth change of slope of the effective temperature-radius relationship around this mass value. The appearance of a discontinuity 5is due to naively fitting the empirical data with linear segments. Also, its origin is unrelated to the transition to fully convective structures. We find that this feature is instead an empirical signature for the transition to a regime where electron degeneracy provides an important contribution to the stellar EOS, and constitutes an additional test of the consistency of the theoretical framework for VLM models.
astro-ph
High mass but low spin: an exclusion region to rule out hierarchical black-hole mergers as a mechanism to populate the pair-instability mass gap
The occurrence of pair-instability supernovae is predicted to prevent the formation of black holes with masses $\gtrsim 50 M_\odot$. Recent gravitational-wave detections in this mass range require an explanation beyond that of standard stellar collapse. Current modeling strategies include the hierarchical assembly of previous generations of black-hole mergers as well as other mechanisms of astrophysical nature (lowered nuclear-reaction rates, envelope retention, stellar mergers, accretion, dredge-up episodes). In this paper, we point out the occurrence of an exclusion region that cannot be easily populated by hierarchical black-hole mergers. A future gravitational-wave detection of a black hole with mass $\gtrsim 50M_\odot$ and spin $\lesssim 0.2$ will indicate that the pair-instability mass gap is polluted in some other way. Such a putative outlier can be explained using hierarchical mergers only with considerable fine-tuning of both mass ratio and spins of the preceding black-hole merger --an assumption that can then be cross-checked against the bulk of the gravitational-wave catalog.
astro-ph
Cosmological Evolution of the Formation Rate of Short Gamma-ray Bursts With and Without Extended Emission
Originating from neutron star-neutron star (NS-NS) or neutron star-black hole (NS-BH) mergers, short gamma-ray bursts (SGRBs) are the first electromagnetic emitters associated with gravitational waves. This association makes the determination of SGRB formation rate (FR) a critical issue. We determine the true SGRB FR and its relation to the cosmic star formation rate (SFR). This can help in determining the expected Gravitation Wave (GW) rate involving small mass mergers. We present non-parametric methods for the determination of the evolutions of the luminosity function (LF) and the FR using SGRBs observed by {\it Swift}, without any assumptions. These are powerful tools for small samples, such as our sample of 68 SGRBs. We combine SGRBs with and without extended emission (SEE), assuming that both descend from the same progenitor. To overcome the incompleteness introduced by redshift measurements we use the Kolmogorov-Smirnov (KS) test to find flux thresholds yielding a sample of sources with a redshift drawn from the parent sample including all sources. Using two subsamples of SGRBs with flux limits of $4.57 \times 10^{-7}$ and $2.15 \times 10^{-7}$ erg cm$^{-2}$ s$^{-1}$ with respective KS {\it p=(1, 0.9)}, we find a 3 $\sigma$ evidence for luminosity evolution (LE), a broken power-law LF with significant steepening at $L\sim 10^{50}$ erg s$^{-1}$, and a FR evolution that decreases monotonically with redshift (independent of LE and the thresholds). Thus, SGRBs may have been more luminous in the past with a FR delayed relative to the SFR as expected in the merger scenario.
astro-ph
Unlocking the Capabilities of Future High-Resolution X-ray Spectroscopy Missions Through Laboratory Astrophysics
Thanks to high-resolution and non-dispersive spectrometers onboard future X-ray missions such as XRISM and Athena, we are finally poised to answer important questions about the formation and evolution of galaxies and large-scale structure. However, we currently lack an adequate understanding of many atomic processes behind the spectral features we will soon observe. Large error bars on parameters as critical as transition energies and atomic cross sections can lead to unacceptable uncertainties in the calculations of e.g., elemental abundance, velocity, and temperature. Unless we address these issues, we risk limiting the full scientific potential of these missions. Laboratory astrophysics, which comprises theoretical and experimental studies of the underlying physics behind observable astrophysical processes, is therefore central to the success of these missions.
astro-ph
180$^\circ$ Rotations in the Polarization Angle for Blazars
Rotations of the electric vector position angle (EVPA) in blazars are often close to an integral multiple of 180$^\circ$. There are multiple examples of this in the literature, and our analysis here, of the optical polarization data from the RoboPol monitoring program, strengthens the evidence by showing that $n\pi$ rotations occur more frequently than expected by chance. We explain this with a model consisting of two polarized emission components: a "jet" that is constant in time, and a "burst" that is variable. The EVPA of the combination is $\rm EVPA_{jet}$ at both the beginning and the end of the burst, so the net rotation across the burst must be $n\pi$. Examples are analyzed on the Stokes plane, where the winding number for the Stokes vector of the combination gives the value of $n$. The main conclusion is that the EVPA rotation can be much larger than the physical rotation of the emission region around the axis of the jet, but this requires the EVPAs of the jet and the burst to be nearly orthogonal. A shock-in-jet calculation by Zhang et al. can provide a physical model for our toy model, and in addition automatically gives the needed orthogonality. The model is illustrated with data on OJ287 published by Myserlis et al., and we suggest that the large rapid EVPA rotation seen there might be a phase effect and not representative of a physical rotation.
astro-ph
Receiver control for the Submillimeter Array
Efficient operation of a submillimeter interferometer requires remote (preferably automated) control of mechanically tuned local oscillators, phase-lock loops, mixers, optics, calibration vanes and cryostats. The present control system for these aspects of the Submillimeter Array (SMA) will be described. Distributed processing forms the underlying architecture and the software is split between hardware platforms in a leader/follower arrangement. In each antenna cabin, a serial network of up to ten independent 80C196 microcontroller boards attaches to the real-time PowerPC computer (running LynxOS). A multi-threaded, gcc-compiled leader program on the PowerPC accepts top-level requests via remote procedure calls (RPC), subsequently dispatches tuning commands to the relevant follower microcontrollers, and regularly reports the system status to optical-fiber-based reflective memory for common access by the telescope monitor and error reporting system. All serial communication occurs asynchronously via encoded, variable-length packets. The microcontrollers respond to the requested commands and queries by accessing non-volatile, rewriteable lookup-tables (when appropriate) and executing embedded software that operates additional electronic devices (DACs, ADCs, etc.). Since various receiver hardware components require linear or rotary motion, each microcontroller also implements a position servo via a one-millisecond interrupt service routine which drives a DC-motor/encoder combination that remains standard across each subsystem.
astro-ph
A search for He I airglow emission from the hot Jupiter tau Boo b
The helium absorption line at 10830 {\AA}, originating from the metastable triplet state 2$^3$S, has been suggested as an excellent probe for the extended atmospheres of hot Jupiters and their hydrodynamic escape processes, and has recently been detected in the transmission spectra of a handful of planets. The isotropic re-emission will lead to helium airglow that may be observable at other orbital phases. The goal of this paper is to investigate the detectability of He I emission at 10830 {\AA} in the atmospheres of exoplanets using high-resolution spectroscopy, providing insights into the properties of the upper atmospheres of close-in gas giants. We estimated the expected strength of He I emission in hot Jupiters based on their transmission signal. We searched for the He I 10830 {\AA} emission feature in tau Boo b in three nights of high-resolution spectra taken by CARMENES at the 3.5m Calar Alto telescope. The spectra from each night were corrected for telluric absorption, sky emission lines, and stellar features, and were shifted to the planetary rest frame to search for the emission. The He I emission is not detected in tau Boo b, reaching a 5 sigma contrast limit of 4$\times$10$^{-4}$ for emission line widths above 20 km/s. This is roughly a factor of 8 above the expected level of emission (assuming a typical He I transit absorption of 1% for hot Jupiters). This suggests that targeting the He I emission with well-designed observations using upcoming instruments such as VLT/CRIRES+ and E-ELT/HIRES is possible.
astro-ph
On the relative importance of hadronic emission processes along the jet axis of Active Galactic Nuclei
With the coincident detection of a gamma-ray flare and a neutrino from the blazar TXS 0506+056, Active Galactic Nuclei (AGN) have been put into focus as possible sources of the diffuse neutrino flux. We present a space and time-resolved model of the high-energy particle emission of a plasmoid assumed to travel along the axis of an AGN jet at relativistic speed. This was achieved by modifying the publicly available CRPropa (version 3.1+) propagation framework which in our work is capable of being applied to source physics on sub-kpc scales. The propagation of a population of primary protons is modelled in a purely turbulent magnetic field and we take into account interactions of these protons with photons scattered from the accretion disc, synchrotron radiation emitted by ambient relativistic electrons, as well with themselves and with other ambient matter. Our model produces a PeV-neutrino flare caused mainly by photo-hadronic interactions of primaries with the accretion disc field. Secondary high-energy gamma-rays partly attenuate with the ambient photon fields whose combined optical depths achieve their minimal opacity for photons of around 10 TeV. Thus, our model is well capable of producing neutrino flares with a significantly reduced emission of gamma-rays in jets with a hadronic jet component which in the future can be fit to specific AGN flare scenarios.
astro-ph
Spikey: Self-Lensing Flares from Eccentric SMBH Binaries
We examine the light curves of two quasars, motivated by recent suggestions that a supermassive black hole binary (SMBHB) can exhibit sharp lensing spikes. We model the variability of each light curve as due to a combination of two relativistic effects: the orbital relativistic Doppler boost and gravitational binary self-lensing. In order to model each system we extend previous Doppler plus self-lensing models to include eccentricity. The first quasar is identified in optical data as a binary candidate with a 20-yr period (Ark 120), and shows a prominent spike. For this source, we rule out the lensing hypothesis and disfavor the Doppler-boost hypothesis due to discrepancies in the measured vs. recovered values of the binary mass and optical spectral slope. The second source, which we nickname Spikey, is the rare case of an active galactic nucleus (AGN) identified in Kepler's high-quality, high-cadence photometric data. For this source, we find a model, consisting of a combination of a Doppler modulation and a narrow symmetric lensing spike, consistent with an eccentric SMBHB with a total mass of approximately 30 million solar masses, rest-frame orbital period T=418 days, eccentricity e=0.5, and seen at an inclination of 8 degrees from edge-on. This interpretation can be tested by monitoring Spikey for periodic behavior and recurring flares in the next few years. In preparation for such monitoring we present the first X-ray observations of this object taken by the Neil Gehrels Swift observatory.
astro-ph
X-ray and Optical Monitoring of State Transitions in MAXI J1820+070
We report results from the X-ray and optical monitoring of the black hole candidate MAXI J1820+070 (=ASSASN-18ey) over the entire period of its outburst from March to October 2018.In this outburst, the source exhibited two sets of `fast rise and slow decay'-type long-term flux variations. We found that the 1--100 keV luminosities at two peaks were almost the same, although a significant spectral softening was only seen in the second flux rise. This confirms that the state transition from the low/hard state to the high/soft state is not determined by the mass accretion rate alone. The X-ray spectrum was reproduced with the disk blackbody emission and its Comptonization, and the long-term spectral variations seen in this outburst were consistent with a disk truncation model. The Comptonization component, with a photon index of 1.5-1.9 and electron temperature of ~>40 keV, was dominant during the low/hard state periods, and its contribution rapidly decreased (increased) during the spectral softening (hardening). During the high/soft state period, in which the X-ray spectrum became dominated by the disk blackbody component, the inner disk radius was almost constant, suggesting that the standard disk was present down to the inner most stable circular orbit. The long-term evolution of optical and X-ray luminosities and their correlation suggest that the jets substantially contributed to the optical emission in the low/hard state, while they are quenched and the outer disk emission dominated the optical flux in the intermediate state and the high/soft state.
astro-ph
The spatial distributions of blue main-sequence stars in Magellanic Cloud star clusters
The color-magnitude diagrams (CMDs) of young star clusters show that, particularly at ultraviolet wavelengths, their upper main sequences (MSs) bifurcate into a sequence comprising the bulk population and a blue periphery. The spatial distribution of stars is crucial to understand the reasons for these distinct stellar populations. This study uses high-resolution photometric data obtained with the Hubble Space Telescope to study the spatial distributions of the stellar populations in seven Magellanic Cloud star clusters. The cumulative radial number fractions of blue stars within four clusters are strongly anti-correlated with those of the high-mass-ratio binaries in the bifurcated region, with negative Pearson coefficients < -0.7. Those clusters generally are young or in an early dynamical evolutionary stage. In addition, a supporting N-body simulation suggests the increasing percentage of blue-MS stars from the cluster centers to their outskirts may be associated with the dissolution of soft binaries. This study provides a different perspective to explore the MS bimodalities in young clusters and adds extra puzzles. A more comprehensive study combined with detailed simulations is needed in the future.
astro-ph
Models of irradiated molecular shocks
Aims. The goal of the paper is to present a detailed study of the propagation of low velocity (5 to 25 km s-1) stationary molecular shocks in environments illuminated by an external ultraviolet (UV) radiation field. In particular, we intend to show how the structure, dynamics, energetics, and chemical properties of shocks are modified by UV photons and to estimate how efficiently shocks can produce line emission. Methods. We implemented several key physico-chemical processes in the Paris-Durham shock code to improve the treatment of the radiative transfer and its impact on dust and gas particles. We propose a new integration algorithm to find the steady-state solutions of magnetohydrodynamics equations in a range of parameters in which the fluid evolves from a supersonic to a subsonic regime. We explored the resulting code over a wide range of physical conditions, which encompass diffuse interstellar clouds and hot and dense photon-dominated regions (PDR). Results. We find that C-type shock conditions cease to exist as soon as G0 > 0.2 (nH/cm-3)^1/2. Such conditions trigger the emergence of another category of stationary solutions, called C*-type and CJ-type shocks, in which the shocked gas is momentarily subsonic along its trajectory. These solutions are shown to be unique for a given set of physical conditions and correspond to dissipative structures in which the gas is heated up to temperatures comprised between those found in C-type and adiabatic J-type shocks. High temperatures combined with the ambient UV field favour the production or excitation of a few molecular species to the detriment of others, hence leading to specific spectroscopic tracers such as rovibrational lines of H2 and rotational lines of CH+. Unexpectedly, the rotational lines of CH+ may carry as much as several percent of the shock kinetic energy.
astro-ph
MOS spectroscopy of protocluster candidate galaxies at z=6.5
The epoch corresponding to a redshift of z $\sim 6.5$ is close to full re-ionisation of the Universe, and early enough to provide an intriguing environment to observe the early stage of large-scale structure formation. It is also en epoch that can be used to verify the abundance of a large population of low luminosity star-forming galaxies, that are deemed responsible for cosmic re-ionisation. Here, we present the results of follow-up multi-object spectroscopy using OSIRIS at Gran Telescopio Canarias (GTC) of 16 Ly$\alpha$ emitter (LAE) candidates discovered in the Subaru/XMM Newton Deep Survey. We have securely confirmed 10 LAEs with sufficient signal-to-noise ratio of the Ly$\alpha$ emission line. The inferred star formation rates of the confirmed LAEs are on the low side, within the range 0.9-4.7 M$_{\odot}$ yr$^{-1}$. However, they show relatively high Ly$\alpha$ rest frame equivalent widths. Finally we have shown that the mechanical energy released by the star formation episodes in these galaxies is enough to create holes in the neutral hydrogen medium such that Lyman continuum photons can escape to the intergalactic medium, thus contributing to the re-ionisation of the Universe.
astro-ph
Lessons from the first multiply imaged supernova: A revised Light-Traces-Mass strong lensing model for the galaxy cluster MACS J1149.5+2223
Our light-traces-mass (LTM) strong-lensing model for MACS J1149.5+2223 has played several key roles over the last decade: it aided the identification of multiple images in this cluster and the study of MACS1149-JD1 at redshift $z\simeq9$, it was used to estimate the properties of the first multiply imaged supernova, Refsdal, in its discovery paper, and of the first caustic crossing event by a cluster, Lensed Star 1. Supernova Refsdal supplied an invaluable opportunity to conduct a blind test of the ability of common lens-modeling techniques to accurately describe the properties of SN Refsdal's images and predict the reappearance of one of its counter images that was due about a year post-discovery of the original Einstein cross. Thanks to this practice, in which our submitted model yielded some outlying results, we located a numerical artifact in the time delay (TD) calculation part of the code, which was now fixed. This artifact did not influence the reproduction of multiple images (i.e., the deflection fields -- which are those constrained directly from the observations) or the derived mass model, and so it remained unnoticed prior to supernova Refsdal, emphasizing the importance of blind tests in astronomy. Here we update our model and present revised LTM measurements for Refsdal. These are important not only for completing the LTM view of the Refsdal event, but also because they affect the range of values predicted from different lens-modeling techniques and thus the range of systematic uncertainties for the TD calculation and the resulting Hubble constant.
astro-ph
The Araucaria Project: Deep near-infrared photometric maps of Local and Sculptor Group galaxies. I. Carina, Fornax, Sculptor
Deep near-infrared $J$- and $K$-band photometry of three Local Group dwarf spheroidal galaxies: Fornax, Carina, and Sculptor, is made available for the community. Until now, these data have only been used by the Araucaria Project to determine distances using the tip of the red giant and RR Lyrae stars. Now, we present the entire data collection in a form of a database, consisting of accurate $J$- and $K$-band magnitudes, sky coordinates, ellipticity measurements, and timestamps of observations, complemented by stars' loci in their reference images. Depth of our photometry reaches about 22 mag at 5$\sigma$ level, and is comparable to NIR surveys, like the UKIRT Infrared Deep Sky Survey (UKIDSS) or the VISTA Hemisphere Survey (VHS). Small overlap with VHS and no overlap with UKIDSS makes our database a unique source of quality photometry.
astro-ph
High Energy Emission and its Variability in Young Stellar Objects
Young stars show a variety of highly energetic phenomena, from accretion and outflow processes to hot coronal plasmas confined in their outer atmosphere, all regulated by the intense stellar magnetic fields. Many aspects on each of these phenomena are debated, but, most notably, their complex mutual interaction remains obscure. In this work I report how these phenomena are simultaneously responsible for the high-energy emission from young stars, with a special focus on the expected and observed variability in the X-ray band. Investigating variations in the X-ray emission from young stars allows us to pose constraints on flare and coronal plasma properties, coronal heating, accretion stream properties, and accretion geometries. All these results are important building blocks for constructing a comprehensive picture of the complex magnetosphere of young stars.
astro-ph
The Spin-Barrier Ratio for S and C-Type Main Asteroids Belt
Asteroids of size larger than 0.15 km generally do not have periods P smaller than about 2.2 hours, a limit known as cohesionless spin-barrier. This barrier can be explained by means of the cohesionless rubble-pile structure model. In this paper we will explore the possibility for the observed spin-barrier value to be different for C and S-type Main Asteroids Belt (MBAs). On the basis of the actual bulk density values, the expected ratio between the maximum rotation periods is $P_C/P_S \approx 1.4 \pm 0.3$. Using the data available in the asteroid LightCurve Data Base (LCDB) we have found that, as regards the mean spin-barrier values and for asteroids in the 4-20 km range, there is a little difference between the two asteroids population with a ratio $P_C/P_S \approx 1.20 \pm 0.04$. Uncertainties are still high, mainly because of the small number of MBAs with known taxonomic class in the considered range. In the 4-10 km range, instead, the ratio between the spin-barriers seems closer to 1 because $P_C/P_S \approx 1.11 \pm 0.05$. This behavior could be a direct consequence of a different cohesion strength for C and S-type asteroids of which the ratio can be estimated.
astro-ph
RadioLuna: A Penetrometer Deployed Network For Lunar Radio Science Below 2 MHz
The radio environment of the Moon at low frequencies, particularly in lunar polar regions and the permanently shadowed regions (PSR) found there, is relatively poorly explored and may contain some novel features. In addition, these areas of the Moon, shielded from the natural and artificial emissions of the Earth, and the natural radio emissions of the Sun and the other planets, are near-ideal locations for radio astronomy observations in the last unexplored region of the electromagnetic frequency spectrum. We are developing a low-mass RadioLuna radio science precursor mission to deploy an interferometric array on the lunar surface using Space Initiatives "Mote" penetrometers. The current RadioLuna default mission would be an array of 10 - 12 penetrators deployed on the floor of Shackleton crater in the PSR 4 km below the crater rim, where it would be shielded from all terrestial, solar and planetary interference. At the present level of understanding of the low frequency lunar radio environment there will be a tight coupling between advances in technology and advances in science, and RadioLuna can be expected to lead to improvements in both lunar radio science and lunar communication techniques.
astro-ph
Machine learning application to Fermi-LAT data: sharpening all-sky map and emphasizing variable sources
A novel application of machine-learning (ML) based image processing algorithms is proposed to analyze an all-sky map (ASM) obtained using the Fermi Gamma-ray Space Telescope. An attempt was made to simulate a one-year ASM from a short-exposure ASM generated from one-week observation by applying three ML based image processing algorithms: dictionary learning, U-net, and Noise2Noise. Although the inference based on ML is less clear compared to standard likelihood analysis, the quality of the ASM was generally improved. In particular, the complicated diffuse emission associated with the galactic plane was successfully reproduced only from one-week observation data to mimic a ground truth (GT) generated from a one-year observation. Such ML algorithms can be implemented relatively easily to provide sharper images without various assumptions of emission models. In contrast, large deviations between simulated ML maps and GT map were found, which are attributed to the significant temporal variability of blazar-type active galactic nuclei (AGNs) over a year. Thus, the proposed ML methods are viable not only to improve the image quality of an ASM, but also to detect variable sources, such as AGNs, algorithmically, i.e., without human bias. Moreover, we argue that this approach is widely applicable to ASMs obtained by various other missions; thus, it has the potential to examine giant structures and transient events, both of which are rarely found in pointing observations.
astro-ph
Developing a self-consistent AGB wind model: II. Non-classical, non-equilibrium polymer nucleation in a chemical mixture
Unravelling the composition and characteristics of gas and dust lost by asymptotic giant branch (AGB) stars is important as these stars play a vital role in the chemical life cycle of galaxies. The general hypothesis of their mass loss mechanism is a combination of stellar pulsations and radiative pressure on dust grains. However, current models simplify dust formation, which starts as a microscopic phase transition called nucleation. Various nucleation theories exist, yet all assume chemical equilibrium, growth restricted by monomers, and commonly use macroscopic properties for a microscopic process. Such simplifications for initial dust formation can have large repercussions on the type, amount, and formation time of dust. By abandoning equilibrium assumptions, discarding growth restrictions, and using quantum mechanical properties, we have constructed and investigated an improved nucleation theory in AGB wind conditions for four dust candidates, TiO$_2$, MgO, SiO and Al$_2$O$_3$. This paper reports the viability of these candidates as first dust precursors and reveals implications of simplified nucleation theories. Monomer restricted growth underpredicts large clusters at low temperatures and overpredicts formation times. Assuming the candidates are present, Al$_2$O$_3$ is the favoured precursor due to its rapid growth at the highest considered temperatures. However, when considering an initially atomic chemical mixture, only TiO$_2$-clusters form. Still, we believe Al$_2$O$_3$ to be the prime candidate due to substantial physical evidence in presolar grains, observations of dust around AGB stars at high temperatures, and its ability to form at high temperatures and expect the missing link to be insufficient quantitative data of Al-reactions.
astro-ph
Unveiling the wave nature of gravitational-waves with simulations
We present the first numerical simulations of gravitational waves (GWs) passing through a potential well generated by a compact object in 3-D space, with a realistic source waveform derived from numerical relativity for the merger of two black holes. Unlike the previous work, our analyses focus on the time-domain, in which the propagation of GWs is a well-posed "initial-value" problem for the hyperbolic equations with rigorous rooting in mathematics and physics. Based on these simulations, we investigate for the first time in realistic 3-D space how the wave nature of GWs affects the speed and waveform of GWs in a potential well. We find that GWs travel faster than the prediction of the Shapiro time-delay in the geometric limit due to the effects of diffraction and wavefront geometry. As the wave speed of GWs is closely related to the locality and wavefront geometry of GWs, which are inherently difficult to be addressed in the frequency-domain, our analyses in the time-domain, therefore, provide the first robust analyses to date on this issue based on solid physics. Moreover, we also investigate, for the first time, the interference between the incident and the scattered waves (the "echoes" of the incident waves). We find that such interference makes the total lensed waveforms dramatically different from those of the original incident ones not only in the amplitude but also in the phase and pattern, especially for signals near the merger of the two back holes.
astro-ph
Surface properties of large TNOs: Expanding the study to longer wavelengths with the James Webb Space Telescope
The largest trans-Neptunian objects (TNOs) represent an extremely diverse collection of primitive bodies in the outer solar system. The community typically refers to these objects as dwarf planets, though the IAU acknowledges only four TNOs officially as such: Pluto, Eris, Makemake, and Haumea. We present a list of 36 potential candidates for reclassification as dwarf planets, namely candidate dwarf planets (CDPs), which cover a wide range of sizes, geometric albedos, surface colors and probably, composition. Understanding the properties across this population, and how those properties change with size, will yield useful constraints on the environment in which these TNOs formed, as well as their dynamical evolution, and bulk interior composition. TNO surface characteristics are ideal for study with the James Webb Space Telescope (JWST), which provides imaging and spectroscopic capabilities from 0.6 to 28 $\mu$m. The four available science instruments, MIRI, NIRCam, NIRISS, and NIRSpec, and their capabilities for the study of TNOs, are presented. JWST will expand on the wavelength range observable from the ground in the near-infrared (0.6-5 $\mu$m) for compositional studies and will open a new window on TNOs in the mid-infrared (5-28 $\mu$m) for thermal characterization.
astro-ph
Disk-jet coupling changes as a possible indicator for outbursts from GX 339-4 remaining within the X-ray hard state
We present quasi-simultaneous radio, (sub-)millimetre, and X-ray observations of the Galactic black hole X-ray binary GX 339-4, taken during its 2017--2018 outburst, where the source remained in the hard X-ray spectral state. During this outburst, GX 339-4 showed no atypical X-ray behaviour that may act as a indicator for an outburst remaining within the hard state. However, quasi-simultaneous radio and X-ray observations showed a flatter than expected coupling between the radio and X-ray luminosities (with a best fit relation of $L_{\rm radio} \propto L_{\rm X}^{0.39 \pm 0.06}$), when compared to successful outbursts from this system ($L_{\rm radio} \propto L_{\rm X}^{0.62 \pm 0.02}$). While our 2017--2018 outburst data only span a limited radio and X-ray luminosity range ($\sim$1 order of magnitude in both, where more than 2-orders of magnitude in $L_{\rm X}$ is desired), including data from other hard-only outbursts from GX 339-4 extends the luminosity range to $\sim$1.2 and $\sim$2.8 orders of magnitude, respectively, and also results in a flatter correlation (where $L_{\rm radio} \propto L_{\rm X}^{0.46 \pm 0.04}$). This result is suggestive that for GX 339-4 a flatter radio -- X-ray correlation, implying a more inefficient coupling between the jet and accretion flow, could act as an indicator for a hard-only outburst. However, further monitoring of both successful and hard-only outbursts over larger luminosity ranges with strictly simultaneous radio and X-ray observations is required from different, single sources, to explore if this applies generally to the population of black hole X-ray binaries, or even GX 339-4 at higher hard-state luminosities.
astro-ph
CWISEP J193518.59$-$154620.3: An Extremely Cold Brown Dwarf in the Solar Neighborhood Discovered with CatWISE
We present the discovery of an extremely cold, nearby brown dwarf in the solar neighborhood, found in the CatWISE catalog (Eisenhardt et al., in prep.). Photometric follow-up with Spitzer reveals that the object, CWISEP J193518.59-154620.3, has ch1$-$ch2 = 3.24$\,\pm\,$0.31 mag, making it one of the reddest brown dwarfs known. Using the Spitzer photometry and the polynomial relations from Kirkpatrick et al. (2019) we estimate an effective temperature in the $\sim$270--360 K range, and a distance estimate in the 5.6$-$10.9 pc range. We combined the WISE, NEOWISE, and Spitzer data to measure a proper motion of $\mu_\alpha \cos \delta = 337\pm69$ mas yr$^{-1}$, $\mu_\delta = -50\pm97$ mas yr$^{-1}$, which implies a relatively low tangential velocity in the range 7$-$22 km s$^{-1}$.
astro-ph
The effect of non-linear mutual friction on pulsar glitch sizes and rise times
Observations of pulsar glitches have the potential to provide constraints on the dynamics of the high density interior of neutron stars. However, to do so, realistic glitch models must be constructed and compared to the data. We take a step towards this goal by testing non-linear models for the mutual friction force, which is responsible for the exchange of angular momentum between the neutron superfluid and the observable normal component in a glitch. In particular, we consider a non-linear dependence of the drag force on the relative velocity between superfluid vortices and the normal component, in which the contributions of both kelvon and phonon excitations are included. This non-linear model produces qualitatively new features, and is able to reproduce the observed bimodal distribution of glitch sizes in the pulsar population. The model also suggests that the differences in size distributions in individual pulsars may be due to the glitches being triggered in regions with different pinning strengths, as stronger pinning leads to higher vortex velocities and a qualitatively different mutual friction coupling with respect to the weak pinning case. Glitches in pulsars that appear to glitch quasi-periodically with similar sizes may thus be due to the same mechanisms as smaller events in pulsars that have no preferred glitch size, but simply originate in stronger pinning regions, possibly in the core of the star.
astro-ph
Gravitational-wave constraints on the cosmic opacity at $z\sim 5$: forecast from space gravitational-wave antenna DECIGO
Since gravitational waves (GWs) propagate freely through a perfect fluid, coalescing compact binary systems as standard sirens allow to measure the luminosity distance directly and provide distance measurements unaffected by the cosmic opacity. DECi-hertz Interferometer Gravitational-wave Observatory (DECIGO) is a future Japanese space gravitational-wave antenna sensitive to frequency range between target frequencies of LISA and ground-based detectors. Combining the predicted future GW observations from DECIGO and three current popular astrophysical probes (HII regions, SNe Ia Pantheon sample, quasar sample) in electromagnetic (EM) domains, one would be able to probe the opacity of the Universe at different redshifts. In this paper, we show that the cosmic opacity parameter can be constrained to a high precision ($\Delta \epsilon\sim 10^{-2}$) out to high redshifts ($z\sim$5). In order to reconstruct the evolution of cosmic opacity without assuming any particular functional form of it, the cosmic opacity tests should be applied to individual redshift bins independently. Therefore, we also calculate the optical depth at individual redshifts and averaged $\tau(z)$ within redshift bins. Our findings indicate that, compared with the results obtained from the HII galaxies and Pantheon SNe Ia, there is an improvement in precision when the quasar sample is considered. While non-zero optical depth is statistically significant only for redshift ranges $0<z<0.5$, $1<z<2$, and $2.5<z<3.5$, such tendency is different from that obtained in the framework of its parametrized form. Therefore the importance of cosmic-opacity test without a prescribed phenomenological function should be emphasized.
astro-ph
A Native Hawaiian-led summary of the current impact of constructing the Thirty Meter Telescope on Maunakea
Maunakea, the proposed site of the Thirty Meter Telescope (TMT), is a lightning-rod topic for Native Hawaiians, Hawaii residents, and the international astronomy community. In this paper we, Native Hawaiian natural scientists and allies, identify historical decisions that impact current circumstances on Maunakea and provide approaches to acknowledging their presence. Our aim is to provide an Indigenous viewpoint centered in Native Hawaiian perspectives on the impacts of the TMT project on the Hawaiian community. We summarize the current Maunakea context from the perspective of the authors who are trained in the natural sciences (inclusive of and beyond astronomy and physics), the majority of whom are Native Hawaiian or Indigenous. We highlight three major themes in the conflict surrounding TMT: 1) physical demonstrations and the use of law enforcement against the protectors of Maunakea; 2) an assessment of the benefit of Maunakea astronomy to Native Hawaiians; and 3) the disconnect between astronomers and Native Hawaiians. We close with general short- and long- term recommendations for the astronomy community, which represent steps that can be taken to re-establish trust and engage in meaningful reciprocity and collaboration with Native Hawaiians and other Indigenous communities. Our recommendations are based on established best principles of free, prior, and informed consent and researcher-community interactions that extend beyond transactional exchanges. We emphasize that development of large-scale astronomical instrumentation must be predicated on consensus from the local Indigenous community about whether development is allowed on their homelands. Proactive steps must be taken to center Indigenous voices in the earliest stages of project design.
astro-ph
Ultraviolet Mg II emission from fast neutral ejecta around Eta Carinae
We present the first images of the nebula around eta Carinae obtained with HST/WFC3, including a UV image in the F280N filter that traces MgII emission, plus contemporaneous imaging in the F336W, F658N, and F126N filters that trace near-UV continuum, [NII], and [FeII], respectively. The F336W and F658N images are consistent with previous images in these filters, and F126N shows that for the most part, [FeII] 12567 traces clumpy shocked gas seen in [NII]. The F280N image, however, reveals MgII emission from structures that have not been seen in any previous line or continuum images of eta Carinae. This image shows diffuse MgII emission immediately outside the bipolar Homunculus nebula in all directions, but with the strongest emission concentrated over the poles. The diffuse structure with prominent radial streaks, plus an anticorrelation with ionized tracers of clumpy shocked gas, leads us to suggest that this is primarily MgII resonant scattering from unshocked, neutral atomic gas. We discuss the implied structure and geometry of the MgII emission, and its relation to the Homunculus lobes and various other complex nebular structures. An order of magnitude estimate of the neutral gas mass traced by MgII is 0.02Msun, with a corresponding kinetic energy around 1e47erg. This may provide important constraints on polar mass loss in the early phases of the Great Eruption. We argue that the MgII line may be an excellent tracer of significant reservoirs of freely expanding, unshocked, and otherwise invisible neutral atomic gas in a variety of stellar outflows.
astro-ph
CO and HCN isotopologue ratios in the outflows of AGB stars
Isotopologue line intensity ratios of circumstellar molecules have been widely used to trace the photospheric elemental isotopic ratios of evolved stars. However, depending on the molecular species and the physical conditions of the environment, the circumstellar isotopologue ratio may deviate considerably from the stellar atmospheric value. In this paper, we aim to examine how the CO and HCN abundance ratios vary radially due to chemical reactions in the outflows of AGB stars and the effect of excitation and optical depth on the resulting line intensity ratios. We find that the circumstellar 12CO/13CO can deviate from its atmospheric value by up to 25-94% and 6-60% for C- and O-type CSEs, respectively. We show that variations of the intensity of the ISRF and the gas kinetic temperature can significantly influence the CO isotopologue ratio in the outer CSEs. On the contrary, the H12CN/H13CN ratio is stable for all tested mass-loss rates. The RT modeling shows that the integrated line intensity ratio of CO of different rotational transitions varies significantly for stars with intermediate mass-loss rates due to combined chemical and excitation effects. In contrast, the excitation conditions for the both HCN isotopologues are the same. We demonstrate the importance of using the isotopologue abundance profiles from chemical models as inputs to RT models in the interpretation of isotopologue observations. Previous studies of CO isotopologue ratios are based on multi-transition data for individual sources and it is difficult to estimate the errors in the reported values due to assumptions that are not entirely correct according to this study. If anything, previous studies may have overestimated the circumstellar 12CO/13CO abundance ratio. The use of the HCN as a tracer of C isotope ratios is affected by fewer complicating problems, provided one accounts corrections for high optical depths.
astro-ph
Probing the absorption of gamma-rays by IR radiation from the dusty torus in FSRQs with the Cherenkov Telescope Array
Within the classical emission model, where the emission region is placed within the broad line region (BLR), flat spectrum radio quasars (FSRQs) were believed not to emit photons with energies above few tens of GeV because of the absorption with the optical-UV photons from the BLR. However, photons with observed energies up to about $300 \, \rm GeV$ have been detected for few FSRQs, whose most iconic example is PKS 1441+25 at redshift $z = 0.94$. The most conservative explanation for these observations is that the emission occurs at distances comparable to the size of the dusty torus. In this case, absorption of high-energy gamma-ray photons for energies above $200-300 \, {\rm GeV}$ is dominated by the interaction with infrared radiation emitted by the torus. We investigate if current observational data about FSRQs in flaring state can give us information about: (i) the importance of the torus absorption and (ii) the properties of the torus i.e. its temperature and its geometry. We find that present data do not arrive at energies where the torus influence is prominent and as a result it is currently hardly possible to infer torus properties from observations. However, with dedicated simulations, we demonstrate that observations with the forthcoming Cherenkov Telescope Array (CTA) will be able to constrain the torus parameters (temperature and geometry).
astro-ph
Voluminous silica precipitated from martian waters during late-stage aqueous alteration
Mars' transition from an early "warm and wet" to the "cold and dry" environment left fingerprints on the geological record of fluvial activity on Mars. The morphological and mineralogical observations of aqueous activity provided varying constraints on the condition and duration of liquid water on martian surface. In this study, we surveyed the mineralogy of martian alluvial fans and deltas and investigated the hydrated silica-bearing deposits associated with these landforms. Using CRISM data, we identified 35 locations across Mars with hydrated silica in proximity to fan/deltas, where the spectral characteristics are consistent with immature or dehydrated opal-A. In a few stepped fan/deltas, we find hydrated silica occurs within the bulk fan deposits and form sedimentary layers correlated with elevation, corroborating the formation of hydrated silica through precipitation. Meanwhile in the older fan/deltas silica mostly occur at distal locations and the relation to primary sedimentary deposits is more complex. We propose that the hydrated silica-bearing deposits in stepped fan/deltas likely formed authigenically from martian surface waters, mainly during the Late Hesperian and Early Amazonian [Hauber et al., 2013]. These silica-bearing deposits could be a tracer for the temperature of water involved in the formation of these deposits, given more precise and detailed observations of the sedimentary context, accessory minerals, the concentration of hydrated silica and sediment-to-water ratio. Therefore, we consider that silica-bearing deposits should be among the most critical samples to investigate for future Mars missions, which are accessible in the landing sites of Mars 2020 and ExoMars missions.
astro-ph
Primordial magnetic helicity evolution with a homogeneous magnetic field from inflation
Motivated by a scenario of magnetogenesis in which a homogeneous magnetic field is generated during inflation, we study the magnetohydrodynamic evolution of the primordial plasma motions for two kinds of initial conditions -- (i) a spatially homogeneous field with an unlimited correlation length, and (ii) a zero flux scale-invariant statistically homogeneous magnetic field. In both cases, we apply, for a short initial time interval, monochromatic forcing at a certain wave number so that the correlation length is finite, but much smaller than the typical length scale of turbulence. In particular, we investigate the decay of nonhelical and helical hydromagnetic turbulence. We show that, in the presence of a homogeneous magnetic field, the decay of helical and nonhelical small-scale fields can occur rapidly. This is a special property of a system with a perfectly homogeneous magnetic field, which is sometimes considered as a local approximation to a slowly varying background field. It can never change and acts as an imposed magnetic field. This is in a sharp contrast to the case of a statistically homogeneous magnetic field, where we recover familiar decay properties: a much slower decay of magnetic energy and a faster growth of the correlation length, especially in the case with magnetic felicity. The result suggests that a homogeneous magnetic field, if generated during inflation, should persist under the influence of small-scale fields and could be the origin of the large-scale magnetic field in the Universe.
astro-ph
HST Imaging of the Ionizing Radiation from a Star-forming Galaxy at z = 3.794
We report on the HST detection of the Lyman-continuum (LyC) radiation emitted by a galaxy at redshift z=3.794, dubbed Ion1 (Vanzella et al. 2012). The LyC from Ion1 is detected at rest-frame wavelength 820$\sim$890 \AA with HST WFC3/UVIS in the F410M band ($m_{410}=27.60\pm0.36$ magnitude (AB), peak SNR = 4.17 in a circular aperture with radius r = 0.12'') and at 700$\sim$830 \AA with the VLT/VIMOS in the U-band ($m_U = 27.84\pm0.19$ magnitude (AB), peak SNR = 6.7 with a r = 0.6'' aperture). A 20-hr VLT/VIMOS spectrum shows low- and high-ionization interstellar metal absorption lines, the P-Cygni profile of CIV and Ly$\alpha$ in absorption. The latter spectral feature differs from what observed in known LyC emitters, which show strong Ly$\alpha$ emission. An HST far-UV color map reveals that the LyC emission escapes from a region of the galaxy that is bluer than the rest, presumably because of lower dust obscuration. The F410M image shows that the centroid of the LyC emission is offset from the centroid of the non-ionizing UV emission by 0.12''$\pm$0.03'', corresponding to 0.85$\pm$0.21 kpc (physical), and that its morphology is likely moderately resolved. These morphological characteristics favor a scenario where the LyC photons produced by massive stars escape from low HI column-density "cavities" in the ISM, possibly carved by stellar winds and/or supernova. We also collect the VIMOS U-band images of a sample of 107 Lyman-break galaxies with spectroscopic redshifts at $3.40<z<3.95$, i.e. sampling the LyC, and stack them with inverse-variance weights. No LyC emission is detected in the stacked image, resulting in a 32.5 magnitude (AB) flux limit (1$\sigma$) and an upper limit of absolute LyC escape fraction $f_{esc}^{abs} < 0.63\%$. LyC emitters like Ion1 are very likely at the bright-end of the LyC luminosity function.
astro-ph
The Twins Embedding of Type Ia Supernovae II: Improving Cosmological Distance Estimates
We show how spectra of Type Ia supernovae (SNe Ia) at maximum light can be used to improve cosmological distance estimates. In a companion article, we used manifold learning to build a three-dimensional parameterization of the intrinsic diversity of SNe Ia at maximum light that we call the "Twins Embedding". In this article, we discuss how the Twins Embedding can be used to improve the standardization of SNe Ia. With a single spectrophotometrically-calibrated spectrum near maximum light, we can standardize our sample of SNe Ia with an RMS of $0.101 \pm 0.007$ mag, which corresponds to $0.084 \pm 0.009$ mag if peculiar velocity contributions are removed and $0.073 \pm 0.008$ mag if a larger reference sample were obtained. Our techniques can standardize the full range of SNe Ia, including those typically labeled as peculiar and often rejected from other analyses. We find that traditional light curve width + color standardization such as SALT2 is not sufficient. The Twins Embedding identifies a subset of SNe Ia including but not limited to 91T-like SNe Ia whose SALT2 distance estimates are biased by $0.229 \pm 0.045$ mag. Standardization using the Twins Embedding also significantly decreases host-galaxy correlations. We recover a host mass step of $0.040 \pm 0.020$ mag compared to $0.092 \pm 0.024$ mag for SALT2 standardization on the same sample of SNe Ia. These biases in traditional standardization methods could significantly impact future cosmology analyses if not properly taken into account.
astro-ph
A search for ultrahigh-energy neutrinos associated with astrophysical sources using the third flight of ANITA
The ANtarctic Impulsive Transient Antenna (ANITA) long-duration balloon experiment is sensitive to interactions of ultra high-energy (E > 10^{18} eV) neutrinos in the Antarctic ice sheet. The third flight of ANITA, lasting 22 days, began in December 2014. We develop a methodology to search for energetic neutrinos spatially and temporally coincident with potential source classes in ANITA data. This methodology is applied to several source classes: the TXS 0506+056 blazar and NGC 1068, the first potential TeV neutrino sources identified by IceCube, flaring high-energy blazars reported by the Fermi All-Sky Variability Analysis, gamma-ray bursts, and supernovae. Among searches within the five source classes, one candidate was identified as associated with SN 2015D, although not at a statistically significant level. We proceed to place upper limits on the source classes. We further comment on potential applications of this methodology to more sensitive future instruments.
astro-ph
Small-Scale Dynamical Coherence Accompanied with Galaxy Conformity
The discovery of the coherence between galaxy rotation and neighbor motion in 1-Mpc scales has been reported recently. Following up the discovery, we investigate whether the neighbors in such dynamical coherence also present galaxy conformity, using the Calar Alto Legacy Integral Field Area Survey (CALIFA) data and the NASA-Sloan Atlas (NSA) catalog. We measure the correlation coefficient of g - r colors between the CALIFA galaxies and their neighbors, as a quantitative indicator of galaxy conformity. The neighbors are divided into coherently moving and anti-coherently moving ones, the correlation coefficients from which are compared with each other, in various bins of relative luminosity and projected distance. In most cases, the CALIFA galaxies and their neighbors show positive correlation coefficients in g - r color, even for the anti-coherent neighbors. However, we find statistically significant (2.6-sigma) difference between coherent and anti-coherent neighbors, when the neighbor galaxies are bright (Delta Mr <= -1.0) and close (D <= 400 kpc). That is, when they are bright and close to the CALIFA galaxies, the coherently moving neighbors show stronger conformity with the CALIFA galaxies than the anti-coherently moving neighbors. This result supports that the small-scale dynamical coherence may originate from galaxy interactions as galaxy conformity is supposed to do, which agrees with the conclusion of the previous study.
astro-ph
Fermi LAT detection of the supernova remnant SN 1006 revisited: the south-west limb
The data from the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope have recently been updated. We thus re-analyze the LAT data for the supernova remnant (SNR) SN 1006. Two parts of gamma-ray emission from the region is clearly resolved, which correspond to the north-east (NE) and south-west (SW) limbs of the SNR. The former was detected in the previous LAT data (Xing et al. 2016), but the latter is newly detected in this work. The detection of the two limbs are at a 4 sigma significance level, and the spectral results for the NE limb is consistent with those obtained in previous detection analyses. We construct the broadband spectral energy distribution (SED) for the SW limb. Different scenarios are considered for the SED in gamma-ray energies. We conclude very similar to that of the NE limb, the high-energy and very high-energy emission from the SW limb is likely dominated by the leptonic process, in which high-energy electrons accelerated from the shell region of the SNR inverse-Compton scatter background photons to gamma-rays.
astro-ph
The Breakdown Scale of HI Bias Linearity
The 21 cm intensity mapping experiments promise to obtain the large-scale distribution of HI gas at the post-reionization epoch. In order to reveal the underlying matter density fluctuations from the HI mapping, it is important to understand how HI gas traces the matter density distribution. Both nonlinear halo clustering and nonlinear effects modulating HI gas in halos may determine the scale below which the HI bias deviates from linearity. We employ three approaches to generate the mock HI density from a large-scale N-body simulation at low redshifts, and demonstrate that the assumption of HI linearity is valid at the scale corresponding to the first peak of baryon acoustic oscillations, but breaks down at $k \gtrsim 0.1\,h\, {\rm Mpc}^{-1}$. The nonlinear effects of halo clustering and HI content modulation counteract each other at small scales, and their competition results in a model-dependent "sweet-spot" redshift near $z$=1 where the HI bias is scale-independent down to small scales. We also find that the linear HI bias scales approximately linearly with redshift for $z\le 3$.
astro-ph
A model independent comparison of supernova and strong lensing cosmography: implications for the Hubble constant tension
We use supernovae measurements, calibrated by the local determination of the Hubble constant $H_0$ by SH0ES, to interpolate the distance-redshift relation using Gaussian process regression. We then predict, independent of the cosmological model, the distances that are measured with strong lensing time delays. We find excellent agreement between these predictions and the measurements. The agreement holds when we consider only the redshift dependence of the distance-redshift relation, independent of the value of $H_0$. Our results disfavor the possibility that lens mass modeling contributes a 10\% bias or uncertainty in the strong lensing analysis, as suggested recently in the literature. In general our analysis strengthens the case that residual systematic errors in both measurements are below the level of the current discrepancy with the CMB determination of $H_0$, and supports the possibility of new physical phenomena on cosmological scales. With additional data our methodology can provide more stringent tests of unaccounted for systematics in the determinations of the distance-redshift relation in the late universe.
astro-ph
Implications of the lowest frequency detection of the persistent counterpart of FRB121102
Context. The repeating FRB121102 is so far the only extra-galactic Fast Radio Burst found to be associated with a counterpart, a steady radio source with a nearly flat spectral energy distribution (SED) in centimeter wavelengths. Aims. Previous observations of the persistent source down to $1.6$~GHz has shown no sign of a spectral turn-over. Absorption is expected to eventually cause a turn-over at lower frequencies. Better constraints on the physical parameters of the emitting medium can be derived by detecting the self-absorption frequency. Methods. We used the Giant Metre-Wave Radio Telescope (GMRT) during the period of July to December 2017 to observe the source at low radio frequencies down to $400$~MHz. Results. The spectral energy distribution of the source remains optically thin even at $400$~MHz, with a spectral index of $\nu^{-(0.07 \pm 0.03)}$ similar to what is seen in Galactic plerions. Using a generic synchrotron radiation model, we obtain constraints on properties of the non-thermal plasma and the central engine powering it. Conclusions. We present low-frequency detections of the persistent source associated with FRB121102. Its characteristic flat SED extends down to $400$~MHz. Like Galactic plerions, the energy in the persistent source is carried predominantly by leptons. The emitting plasma has a $B< 0.01$~G, and its age is $> 524 \left(\frac{B}{0.01 {\rm G}} \right)^{-3/2}$. We show that the energetics of the persistent source requires an initial spin period shorter than 36~ms, and the magnetic field of the neutron star must exceed $4.5\times 10^{12}$~G. This implies that the persistent source does not necessarily require energetic input from a magnetar.
astro-ph
Electromagnetic transients and gravitational waves from white dwarf disruptions by stellar black holes in triple systems
Mergers of binaries comprised of compact objects can give rise to explosive transient events, heralding the birth of exotic objects which cannot be formed through single star evolution. Using a large number of direct N-body simulations, we explore the possibility that a white dwarf (WD) is dynamically driven to tidal disruption by a stellar-mass black hole (BH) as a consequence of the joint effects of gravitational wave (GW) emission and Lidov-Kozai oscillations imposed by the tidal field of a outer tertiary companion orbiting the inner BH-WD binary. We explore the sensitivity of our results to the distributions of natal kick velocities imparted to the BH and WD upon formation, adiabatic mass loss, semi-major axes and eccentricities of the triples, and stellar mass ratios. We find rates of WD-TDEs in the range $1.2\times 10^{-3}-1.4$ Gpc$^{-3}$ yr$^{-1}$ for $z\leq 0.1$, rarer than stellar TDEs in triples by a factor of $\sim 3$--$30$. The uncertainty in the TDE rates may be greatly reduced in the future using gravitational wave (GW) observations of Galactic binaries and triples with LISA. WD-TDEs may give rise to high energy X-ray or gamma-ray transients of duration similar to long gamma-ray bursts but lacking the signatures of a core-collapse supernova, while being accompanied by a supernova-like optical transient which lasts for only days. WD--BH and WD--NS binaries will also emit GWs in the LISA band before the TDE. The discovery and identification of triple-induced WD-TDE events by future time domain surveys and/or GWs could enable the study of the demographics of BHs in nearby galaxies.
astro-ph
Clouds will likely prevent the detection of water vapor in JWST transmission spectra of terrestrial exoplanets
We are on the verge of characterizing the atmospheres of terrestrial exoplanets in the habitable zones of M dwarf stars. Due to their large planet-to-star radius ratios and higher frequency of transits, terrestrial exoplanets orbiting M dwarf stars are favorable for transmission spectroscopy. In this work, we quantify the effect that water clouds have on the amplitude of water vapor transmission spectral features of terrestrial exoplanets orbiting M dwarf stars. To do so, we make synthetic transmission spectra from general circulation model (GCM) experiments of tidally locked planets. We improve upon previous work by considering how varying a broad range of planetary parameters affects transmission spectra. We find that clouds lead to a 10-100 times increase in the number of transits required to detect water features with the James Webb Space Telescope (JWST) with varying rotation period, incident stellar flux, surface pressure, planetary radius, and surface gravity. We also find that there is a strong increase in the dayside cloud coverage in our GCM simulations with rotation periods $\gtrsim 12 \ \mathrm{days}$ for planets with Earth's radius. This increase in cloud coverage leads to even stronger muting of spectral features for slowly rotating exoplanets orbiting M dwarf stars. We predict that it will be extremely challenging to detect water transmission features in the atmospheres of terrestrial exoplanets in the habitable zone of M dwarf stars with JWST. However, species that are well-mixed above the cloud deck (e.g., CO$_2$ and CH$_4$) may still be detectable on these planets with JWST.
astro-ph
High redshift JWST predictions from IllustrisTNG: II. Galaxy line and continuum spectral indices and dust attenuation curves
We present predictions for high redshift ($z=2-10$) galaxy populations based on the IllustrisTNG simulation suite and a full Monte Carlo dust radiative transfer post-processing. Specifically, we discuss the ${\rm H}_{\alpha}$ and ${\rm H}_{\beta}$ + $[\rm O \,III]$ luminosity functions up to $z=8$. The predicted ${\rm H}_{\beta}$ + $[\rm O \,III]$ luminosity functions are consistent with present observations at $z\lesssim 3$ with $\lesssim 0.1\,{\rm dex}$ differences in luminosities. However, the predicted ${\rm H}_{\alpha}$ luminosity function is $\sim 0.3\,{\rm dex}$ dimmer than the observed one at $z\simeq 2$. Furthermore, we explore continuum spectral indices, the Balmer break at $4000$\AA (D4000) and the UV continuum slope $\beta$. The median D4000 versus sSFR relation predicted at $z=2$ is in agreement with the local calibration despite a different distribution pattern of galaxies in this plane. In addition, we reproduce the observed $A_{\rm UV}$ versus $\beta$ relation and explore its dependence on galaxy stellar mass, providing an explanation for the observed complexity of this relation. We also find a deficiency in heavily attenuated, UV red galaxies in the simulations. Finally, we provide predictions for the dust attenuation curves of galaxies at $z=2-6$ and investigate their dependence on galaxy colors and stellar masses. The attenuation curves are steeper in galaxies at higher redshifts, with bluer colors, or with lower stellar masses. We attribute these predicted trends to dust geometry. Overall, our results are consistent with present observations of high redshift galaxies. Future JWST observations will further test these predictions.
astro-ph
Yellow symbiotic star AG Draconis in the scope of the New Online Database of Symbiotic Variables
Symbiotic stars are strongly interacting binaries, consisting of a white dwarf and a cool giant, mainly of spectral type M. AG Draconis belongs to a less numerous group of the yellow symbiotic systems, as the cool component in this binary is of a spectral type earlier than K4. Recently, after seven years of quiescence, this symbiotic star exhibited a very unusual active stage with the four minor outbursts observed. Thanks to the excellent involvement of amateur astronomers and professional observatories, we can study the activity of AG Draconis in unprecedented details. In the present work, we discuss the activity and peculiarities of this interacting system within the entire group of symbiotic stars whose properties have recently been presented in our New Online Database of Symbiotic Variables.
astro-ph
Magnetic white dwarfs in post-common-envelope binaries
Magnitude-limited samples have shown that 20-25 per cent of cataclysmic variables contain white dwarfs with magnetic fields of Mega Gauss strength, in stark contrast to the approximately 5 per cent of single white dwarfs with similar magnetic field strengths. Moreover, the lack of identifiable progenitor systems for magnetic cataclysmic variables leads to considerable challenges when trying to understand how these systems form and evolve. Here we present a sample of six magnetic white dwarfs in detached binaries with low-mass stellar companions where we have constrained the stellar and binary parameters including, for the first time, reliable mass estimates for these magnetic white dwarfs. We find that they are systematically more massive than non-magnetic white dwarfs in detached binaries. These magnetic white dwarfs generally have cooling ages of more than 1 Gyr and reside in systems that are very close to Roche-lobe filling. Our findings are more consistent with these systems being temporarily detached cataclysmic variables, rather than pre-cataclysmic binaries, but we cannot rule out the latter possibility. We find that these systems can display unusual asymmetric light curves that may offer a way to identify them in larger numbers in future. Seven new candidate magnetic white dwarf systems are also presented, three of which have asymmetric light curves. Finally, we note that several newly identified magnetic systems have archival spectra where there is no clear evidence of magnetism, meaning that these binaries have been previously missed. Nevertheless, there remains a clear lack of younger detached magnetic white dwarf systems.
astro-ph
On the role of resonances in polluting white dwarfs by asteroids
Pollution of white dwarf atmospheres may be caused by asteroids that originate from the locations of secular and mean-motion resonances in planetary systems. Asteroids in these locations experience increased eccentricity, leading to tidal disruption by the white dwarf. We examine how the $\nu_6$ secular resonance shifts outwards into a previously stable region of the asteroid belt, as the star evolves to a white dwarf. Analytic secular models require a planet to be engulfed in order to shift the resonance. We show with numerical simulations that as a planet gets engulfed by the evolving star, the secular resonance shifts and the rate of tidal disruption events increases with the engulfed planet's mass and its orbital separation. We also investigate the behaviour of mean-motion resonances. The width of a mean-motion resonance increases as the star loses mass and becomes a white dwarf. The $\nu_6$ secular resonance is more efficient at driving tidal disruptions than mean-motion resonances with Jupiter. By examining 230 observed exoplanetary systems whose central star will evolve into a white dwarf, we find that along with an Earth mass planet at $1\,\rm au$, hot Jupiters at a semi--major axis $a\gtrsim 0.05\,\rm au$ and super--Earths of mass $10\,\rm M_\oplus$ at $a\gtrsim 0.3\,\rm au$ represent planet types whose engulfment shifts resonances enough to cause pollution of the white dwarfs to a degree in agreement with observations.
astro-ph
Superstrong photospheric magnetic fields in sunspot penumbrae
Recently, there have been some reports of unusually strong photospheric magnetic fields (which can reach values of over 7 kG) inferred from Hinode SOT/SP sunspot observations within penumbral regions. These superstrong penumbral fields are even larger than the strongest umbral fields on record and appear to be associated with supersonic downflows. The finding of such fields has been controversial since they seem to show up only when spatially coupled inversions are performed. Here, we investigate and discuss the reliability of those findings by studying in detail observed spectra associated with particularly strong magnetic fields at the inner edge of the penumbra of active region 10930. We apply classical diagnostic methods and various inversions with different model atmospheres to the observed Stokes profiles in two selected pixels with superstrong magnetic fields, and compare the results with a magnetohydrodynamic simulation of a sunspot whose penumbra contains localized regions with strong fields (nearly 5 kG at $\tau=1$) associated with supersonic downflows...
astro-ph
A significant mutual inclination between the planets within the $\pi$ Mensae system
Measuring the geometry of multi-planet extrasolar systems can provide insight into their dynamical history and the processes of planetary formation. Such measurements are challenging for systems detected through indirect techniques such as radial velocity and transit, having only been measured for a handful of systems to-date. We aimed to place constraints on the orbital geometry of the outer planet in the $\pi$ Mensae system, a G0V star at 18.3 pc host to a wide-orbit super-jovian ($M\sin i = 10.02\pm0.15$ $M_{\rm Jup}$) with a 5.7-year period and an inner transiting super-earth ($M=4.82\pm0.85$ $M_\oplus$) with a 6.3-d period. We combined astrometric measurements from the Hipparcos and Gaia satellites with a precisely determined spectroscopic orbit in an attempt to constrain the inclination of the orbital plane of the outer planet. We measured an inclination of $i_b=49.9_{-4.5}^{+5.3}$ deg for the orbital plane of $\pi$ Mensae b, leading to a direct measurement of its mass of $13.01_{-0.95}^{+1.03}$ $M_{\rm Jup}$. We found a significant mutual inclination between the orbital planes of the two planets; a 95% credible interval for $i_{\rm mut}$ of between $34.5^\circ$ and $140.6^\circ$ after accounting for the unknown position angle of the orbit of $\pi$ Mensae c, strongly excluding a co-planar scenario for the two planets within this system. All orbits are stable in the present-day configuration, and secular oscillations of planet c's eccentricity are quenched by general relativistic precession. Planet c may have undergone high eccentricity tidal migration triggered by Kozai-Lidov cycles, but dynamical histories involving disk migration or in situ formation are not ruled out. Nonetheless, this system provides the first direct evidence that giant planets with large mutual inclinations have a role to play in the origins and evolution of some super-Earth systems.
astro-ph
A global view on star formation: The GLOSTAR Galactic plane survey. II. Supernova Remnants in the first quadrant of the Milky Way
Context. The properties of the population of Galactic supernova remnants (SNRs) are essential to our understanding of the dynamics of the interstellar medium (ISM) in the Milky Way. However, the completeness of the catalog of Galactic SNRs is expected to be only ${\sim}30\%$, with on order 700 SNRs yet to be detected. Deep interferometric radio continuum surveys of the Galactic plane help in rectifying this apparent deficiency by identifying low surface brightness SNRs and compact SNRs that have not been detected in previous surveys. However, SNRs are routinely confused with H II regions, which can have similar radio morphologies. Radio spectral index, polarization, and emission at mid-infrared (MIR) wavelengths can help distinguish between SNRs and H II regions. Aims. We aim to identify SNR candidates using continuum images from the Karl G. Jansky Very Large Array GLObal view of the STAR formation in the Milky Way (GLOSTAR) survey. Methods. GLOSTAR is a C-band (4--8 GHz) radio wavelength survey of the Galactic plane covering $358^{\circ} \leq l \leq 60^{\circ}, |b| \leq 1^{\circ}$. The continuum images from this survey, which resulted from observations with the most compact configuration of the array, have an angular resolution of $18''$. We searched for SNRs in these images to identify known SNRs, previously identified SNR candidates, and new SNR candidates. We study these objects in MIR surveys and the GLOSTAR polarization data to classify their emission as thermal or nonthermal. Results. We identify 157 SNR candidates, of which 80 are new. Polarization measurements provide evidence of nonthermal emission from 9 of these candidates. We find that two previously identified candidates are filaments. We also detect emission from 91 of the 94 known SNRs in the survey region. Four of these are reclassified as H II regions following detection in MIR surveys. (Abridged)
astro-ph
The Milky Way Project: Probing Star Formation with First Results on Yellowballs from DR2
Yellowballs (YBs) were first discovered during the Milky Way Project citizen-science initiative (MWP; Simpson et al. 2012). MWP users noticed compact, yellow regions in Spitzer Space Telescope mid-infrared (MIR) images of the Milky Way plane and asked professional astronomers to explain these "yellow balls." Follow-up work by Kerton et al. (2015) determined that YBs likely trace compact photo-dissociation regions associated with massive and intermediate-mass star formation. YBs were included as target objects in a version of the Milky Way Project launched in 2016 (Jayasinghe et al. 2016), which produced a listing of over 6000 YB locations. We have measured distances, cross-match associations, physical properties, and MIR colors of ~500 YBs within a pilot region covering the l= 30 - 40 degrees, b= +/- 1 degree region of the Galactic plane. We find 20-30% of YBs in our pilot region contain high-mass star formation capable of becoming expanding H II regions that produce MIR bubbles. A majority of YBs represent intermediate-mass star-forming regions whose placement in evolutionary diagrams suggest they are still actively accreting, and may be precursors to optically-revealed Herbig Ae/Be nebulae. Many of these intermediate-mass YBs were missed by surveys of massive star-formation tracers and thus this catalog provides information for many new sites of star formation. Future work will expand this pilot region analysis to the entire YB catalog.
astro-ph
Can Neutron-Star Mergers Explain the r-process Enrichment in Globular Clusters?
Star-to-star dispersion of r-process elements has been observed in a significant number of old, metal-poor globular clusters. We investigate early-time neutron-star mergers as the mechanism for this enrichment. Through both numerical modeling and analytical arguments, we show that neutron-star mergers cannot be induced through dynamical interactions early in the history of the cluster, even when the most liberal assumptions about neutron-star segregation are assumed. Therefore, if neutron-star mergers are the primary mechanism for r-process dispersion in globular clusters, they likely result from the evolution of isolated, primordial binaries in the clusters. Through population modeling, we find that moderate fractions of GCs with enrichment are only possible when a significant number of double neutron-star progenitors proceed through Case BB mass transfer --- under various assumptions for the initial properties of globular clusters, a neutron-star merger with the potential for enrichment will occur in ~15-60% (~30-90%) of globular clusters if this mass transfer proceeds stably (unstably). The strong anti-correlation between the pre-supernova orbital separation and post-supernova systemic velocity due to mass loss in the supernova leads to efficient ejection of most enrichment candidates from their host clusters. Thus, most enrichment events occur shortly after the double neutron stars are born. This requires star-forming gas that can absorb the r-process ejecta to be present in the globular cluster 30-50 Myr after the initial burst of star formation. If scenarios for redistributing gas in globular clusters cannot act on these timescales, the number of neutron-star merger enrichment candidates drops severely, and it is likely that another mechanism, such as r-process enrichment from collapsars, is at play.
astro-ph
A more probable explanation for a continuum flash in the direction of a redshift $\approx$ 11 galaxy
Recent work reported the discovery of a gamma-ray burst (GRB) associated with the galaxy GN-z11 at $z\sim 11$. The extreme improbability of the transient source being a GRB in the very early Universe requires robust elimination of all plausible alternative hypotheses. We identify numerous examples of similar transient signals in separate archival MOSFIRE observations and argue that Solar system objects -- natural or artificial -- are a far more probable explanation for these phenomena. An appendix has been added in response to additional points raised in Jiang et al. (2021), which do not change the conclusion.
astro-ph
The Spatial Power Spectrum and Derived Turbulent Properties of Isolated Galaxies
The turbulent dynamics of nearby and extragalactic gas structures can be studied with the column density power spectrum, which is often described by a broken power-law.In an extragalactic context, the breaks in the power spectra have been interpreted to constrain the disc scale height, which marks a transition from 2D disc-like to 3D motion. However, this interpretation has recently been questioned when accounting for instrumental effects. We use numerical simulations to study the spatial power spectra of isolated galaxies and investigate the origins of the break scale. We split the gas into various phases and analyze the time evolution of the power spectrum characteristics, such as the slope(s) and the break scale. We find that the break scale is phase dependent. The physics traced by the break scale also differ: in the warm gas it marks the transition from 2D (disk-like) to 3D (isotropic) turbulence. In the cold gas, the break scale traces the typical size of molecular clouds. We further show that the break scale almost never traces the disc scale height. We study turbulent properties of the ISM to show that, in the case where the break scale traces a transition to isotropic turbulence, the fraction of required accretion energy to sustain turbulent motions in the ISM increases significantly. Lastly, we demonstrate through simulated observations that it is crucial to account for observational effects, such as the beam and instrumental noise, in order to accurately recover the break scale in real observations.
astro-ph
The XGIS instrument on-board THESEUS: Monte Carlo simulations for response, background, and sensitivity
The response of the X and Gamma Imaging Spectrometer (XGIS) instrument onboard the Transient High Energy Sky and Early Universe Surveyor (THESEUS) mission, selected by ESA for an assessment phase in the framework of the Cosmic Vision M5 launch opportunity, has been extensively modeled with a Monte Carlo Geant-4 based software. In this paper, the expected sources of background in the Low Earth Orbit foreseen for THESEUS are described (e.g. diffuse photon backgrounds, cosmic-ray populations, Earth albedo emission) and the simulated on-board background environment and its effects on the instrumental performance is shown.
astro-ph
Identification of a New Ultraluminous X-ray Source in NGC 1316
In this study, we report identification of a new ultraluminous X-ray source (ULX) named as X-7 in NGC 1316, with an unabsorbed luminosity of 2.1$\times$10$^{39}$ erg s$^{-1}$ using the two recent Chandra archival observations. The X-7 was detected in the Chandra 2001 observation and was included in the source list of the NGC 1316 as CXOUJ032240.8-371224 with a luminosity of 5.7$\times$10$^{38}$ erg s$^{-1}$. Present luminosity implies a luminosity increase of a factor of $\sim$ 4. The best fit spectral model parameters indicate that X-7 has a relatively hot disk and hard spectra. If explained by a diskblackbody model, the mass of compact object is estimated as $\sim$ 8 M$\odot$ which is in the range of a stellar-mass black hole. The X-7 shows a relatively long-term count rate variability while no short-term variability is observed. We also identified a unique optical candidate within 0.22" error circle at 95\% confidence level for X-7 using the archival HST/ACS and HST/WFC3 data. Absolute magnitude (M$_{V}$) of this candidate is -7.8 mag. Its spectral energy distribution is adequately fitted a blackbody model with a temperature of 3100 K indicating an M type supergiant, assuming the donor star dominates the optical emission. In addition, we identified a transient ULX candidate (XT-1) located 6" away from X-7 has a (high) luminosity of $\sim$ 10$^{39}$ erg s$^{-1}$ with no visible optical candidate.
astro-ph
An Open-source Bayesian Atmospheric Radiative Transfer (BART) Code: II. The {\transit} Radiative-Transfer Module and Retrieval of HAT-P-11b
This and companion papers by Harrington et al. and Blecic et al. present the Bayesian Atmospheric Radiative Transfer ({\BART}) code, an open-source, open-development package to characterize extrasolar-planet atmospheres. {\BART} combines a thermochemical equilibrium abundances ({\TEA}), a radiative-transfer ({\transit}), and a Bayesian statistical (MC3) module to constrain atmospheric temperatures and molecular abundances for given spectroscopic observations. Here, we describe the {\transit} radiative-transfer package, an efficient line-by-line radiative-transfer C code for one-dimensional atmospheres, developed by P. Rojo and further modified by the UCF exoplanet group. This code produces transmission and hemisphere-integrated emission spectra. {\transit} handles line-by-line opacities from HITRAN, Partridge \& Schwenke ({\water}), Schwenke (TiO), and Plez (VO); and collision-induced absorption from Borysow, HITRAN, and ExoMol. {\transit} emission-spectra models agree with models from C. Morley (priv. comm.) within a few percent. We applied {\BART} to the {\Spitzer} and {\Hubble} transit observations of the Neptune-sized planet HAT-P-11b. Our results generally agree with those from previous studies, constraining the {\water} abundance and finding an atmosphere enhanced in heavy elements. Different conclusions start to emerge when we make different assumptions from other studies. The {\BART} source code and documentation are available at https://github.com/exosports/BART.
astro-ph
All-sky radiometer for narrowband gravitational waves using folded data
We demonstrate an all-sky search for persistent, narrowband gravitational waves using mock data. The search employs radiometry to sidereal-folded data in order to uncover persistent sources of gravitational waves with minimal assumptions about the signal model. The method complements continuous-wave searches, which are finely tuned to search for gravitational waves from rotating neutron stars while providing a means of detecting more exotic sources that might be missed by dedicated continuous-wave techniques. We apply the algorithm to simulated Gaussian noise at the level of LIGO design sensitivity. We project the strain amplitude sensitivity for the algorithm for a LIGO network in the first observing run to be $h_0 \approx 1.2 \times 10^{-24}$ ($1\%$ false alarm probability, $10\%$ false dismissal probability). We include treatment of instrumental lines and detector artifacts using time-shifted LIGO data from the first observing run.
astro-ph
Accretion of Small Satellites and Gas Inflows in a Disc Galaxy
Galaxy interactions can have an important effect in a galaxy's evolution. Cosmological models predict a large number of small satellites around galaxies. It is important to study the effect that these small satellites can have on the host. The present work explores the effect of small N-body spherical satellites with total mass ratios in the range approx 1:1000-1:100 in inducing gas flows to the central regions of a disc galaxy with late-type morphology resembling the Milky Way. Two model galaxies are considered: barred and non-barred models; the latter one is motivated in order to isolate and understand better the effects of the satellite. Several circular and non-circular orbits are explored, considering both prograde and retrogade orientations. We show that satellites with such small mass ratios can still produce observable distortions in the gas and stellar components of the galaxy. In terms of gas flows, the prograde circular orbits are more favourable for producing gas flows, where in some cases up to $60% of the gas of the galaxy is driven to the central region. We find, hence, that small satellites can induce significant gas flows to the central regions of a disc galaxy, which is relevant in the context of fuelling active galactic nuclei.
astro-ph
Near-infrared observations of active asteroid (3200) Phaethon reveal no evidence for hydration
Asteroid (3200) Phaethon is an active near-Earth asteroid and the parent body of the Geminid Meteor Shower. Because of its small perihelion distance, Phaethon's surface reaches temperatures sufficient to destabilize hydrated materials. We conducted rotationally resolved spectroscopic observations of this asteroid, mostly covering the northern hemisphere and the equatorial region, beyond 2.5-micron to search for evidence of hydration on its surface. Here we show that the observed part of Phaethon does not exhibit the 3-micron hydrated mineral absorption (within 2-sigma). These observations suggest that Phaethon's modern activity is not due to volatile sublimation or devolatilization of phyllosilicates on its surface. It is possible that the observed part of Phaethon was originally hydrated and has since lost volatiles from its surface via dehydration, supporting its connection to the Pallas family, or it was formed from anhydrous material.
astro-ph
Assessing Cosmic Acceleration with the Alcock-Paczynski Effect in the SDSS-IV Quasar Catalog
The geometry of the Universe may be probed using the Alcock-Paczynski (AP) effect, in which the observed redshift size of a spherical distribution of sources relative to its angular size varies according to the assumed cosmological model. Past applications of this effect have been limited, however, by a paucity of suitable sources and mitigating astrophysical factors, such as internal redshift-space distortions and poorly known source evolution. In this Letter, we introduce a new test based on the AP effect that avoids the use of spatially bound systems, relying instead on sub-samples of quasars at redshifts z < 1.5 in the Sloan Digital Sky Survey IV, with a possible extension to higher redshifts and improved precision when this catalog is expanded by upcoming surveys. We here use this method to probe the redshift-dependent expansion rate in three pertinent Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmologies: LCDM, which predicts a transition from deceleration to acceleration at z ~ 0.7; Einstein-de Sitter, in which the Universe is always decelerating; and the R_h=ct universe, which expands at a constant rate. LCDM is consistent with these data, but R_h=ct is favoured overall.
astro-ph
Quenching and morphological evolution due to circumgalactic gas expulsion in a simulated galaxy with a controlled assembly history
We examine the influence of dark matter halo assembly on the evolution of a simulated $\sim L^\star$ galaxy. Starting from a zoom-in simulation of a star-forming galaxy evolved with the EAGLE galaxy formation model, we use the genetic modification technique to create a pair of complementary assembly histories: one in which the halo assembles later than in the unmodified case, and one in which it assembles earlier. Delayed assembly leads to the galaxy exhibiting a greater present-day star formation rate than its unmodified counterpart, whilst in the accelerated case the galaxy quenches at $z\simeq 1$, and becomes spheroidal. We simulate each assembly history nine times, adopting different seeds for the random number generator used by EAGLE's stochastic subgrid implementations of star formation and feedback. The systematic changes driven by differences in assembly history are significantly stronger than the random scatter induced by this stochasticity. The sensitivity of $\sim L^\star$ galaxy evolution to dark matter halo assembly follows from the close coupling of the growth histories of the central black hole (BH) and the halo, such that earlier assembly fosters the formation of a more massive BH, and more efficient expulsion of circumgalactic gas. In response to this expulsion, the circumgalactic medium reconfigures at a lower density, extending its cooling time and thus inhibiting the replenishment of the interstellar medium. Our results indicate that halo assembly history significantly influences the evolution of $\sim L^\star$ central galaxies, and that the expulsion of circumgalactic gas is a crucial step in quenching them.
astro-ph
Gas accretion regulates the scatter of the mass-metallicity relation
In this paper, we take advantage of the GAlaxy Evolution and Assembly (GAEA) semi-analytic model to analyse the origin of secondary dependencies in the local galaxy mass - gas metallicity relation. Our model reproduces quite well the trends observed in the local Universe as a function of galaxy star formation rate and different gas-mass phases. We show that the cold gas content (whose largest fraction is represented by the atomic gas phase) can be considered as the third parameter governing the scatter of the predicted mass-metallicity relation, in agreement with the most recent observational measurements. The trends can be explained with fluctuations of the gas accretion rates: a decrease of the gas supply leads to an increase of the gas metallicity due to star formation, while an increase of the available cold gas leads to a metallicity depletion. We demonstrate that the former process is responsible for offsets above the mass-metallicity relation, while the latter is responsible for deviations below the mass-metallicity relation. In low and intermediate mass galaxies, these negative offsets are primarily determined by late gas cooling dominated by material that has been previously ejected due to stellar feedback.
astro-ph
A search for radio jets from massive young stellar objects. Association of radio jets with H2O and CH3OH masers
Recent theoretical and observational studies debate the similarities between the formation process of high-mass (>8 Msun) and low-mass stars. The formation of low-mass star formation is directly associated with the presence of disks and jets. According to this scenario, radio jets are expected to be common in high-mass star-forming regions. We aim to increase the number of known radio jets in high-mass star forming regions by searching for radio jet candidates at radio continuum wavelengths. We have used the Karl G. Jansky Very Large Array (VLA) to observe 18 high-mass star-forming regions in the C band (6 cm, ~1.0 arcsec resolution) and K band (1.3 cm, ~0.3 arcsec resolution). We have searched for radio jet candidates by studying the association of radio continuum sources with shock activity signposts. We have identified 7 as the most probable radio jets. The radio luminosity of the radio jet candidates is correlated with the bolometric luminosity and the outflow momentum rate. About 7-36% of the radio jet candidates are associated with non-thermal emission. The radio jet candidates associated with 6.7 GHz CH3OH maser emission are preferentially thermal winds and jets, while a considerable fraction of radio jet candidates associated with H2O masers show non-thermal emission, likely due to strong shocks. Our sample of 18 regions is divided in 8 less evolved, infrared-dark regions and 10 more evolved, infrared-bright regions. We have found that ~71% of the identified radio jet candidates are located in the more evolved regions. Similarly, 25% of the less evolved regions harbor one of the most probable radio jets, while up to 50% of the more evolved regions contain one of these radio jet candidates. This suggests that the detection of radio jets in high-mass star forming regions is larger in slightly more evolved regions.
astro-ph
Bridging the Planet Radius Valley: Stellar Clustering as a Key Driver for Turning Sub-Neptunes into Super-Earths
Extrasolar planets with sizes between that of the Earth and Neptune ($R_{\rm p}=1{-}4~{\rm R}_\oplus$) have a bimodal radius distribution. This 'planet radius valley' separates compact, rocky super-Earths ($R_{\rm p}=1.0{-}1.8~{\rm R}_\oplus$) from larger sub-Neptunes ($R_{\rm p}=1.8{-}3.5~{\rm R}_\oplus$) hosting a gaseous hydrogen-helium envelope around their rocky core. Various hypotheses for this radius valley have been put forward, which all rely on physics internal to the planetary system: photoevaporation by the host star, long-term mass loss driven by the cooling planetary core, or the transition between two fundamentally different planet formation modes as gas is lost from the protoplanetary disc. Here we report the discovery that the planet radius distribution exhibits a strong dependence on ambient stellar clustering, characterised by measuring the position-velocity phase space density with \textit{Gaia}. When dividing the planet sample into 'field' and 'overdensity' sub-samples, we find that planetary systems in the field exhibit a statistically significant ($p=5.5\times10^{-3}$) dearth of planets below the radius valley compared to systems in phase space overdensities. This implies that the large-scale stellar environment of a planetary system is a key factor setting the planet radius distribution. We discuss how models for the radius valley might be revised following our findings and conclude that a multi-scale, multi-physics scenario is needed, connecting planet formation and evolution, star and stellar cluster formation, and galaxy evolution.
astro-ph
Recent insights on the penumbra formation process
Using high-resolution spectropolarimetric data acquired by \textit{IBIS}, as well as \textit{SDO}/HMI observations, we studied the penumbra formation in AR NOAA 11490 and in a sample of twelve ARs appeared on the solar disk on 2011 and 2012, which were characterized by $\beta$-type magnetic field configuration. The results show that the onset of the classical Evershed flow occurs in a very short time scale, 1-3 hours. Studying the formation of the first penumbral sector around the following proto-spot, we found that a stable penumbra forms in the area facing the opposite polarity, which appears to be co-spatial with an AFS, i.e. in a flux emergence region, in contrast with the results of \cite{Schlichenmaier2010} concerning the leading polarity of AR NOAA 11490. Conversely, analyzing the sample of twelve ARs, we noticed that there is not a preferred location for the formation of the first penumbral sector. We also observed before the penumbra formation an inverse Evershed flow, which changes its sign when the penumbra appears. This confirms the observational evidence that the appearance of the penumbral filaments is correlated with the transition from the inverse Evershed to the classical Evershed flow. Furthermore, the analysis suggests that the time needed to form the penumbra may be related to the location where the penumbra first appears. New high-resolution observations, like those that will be provided by the European Solar Telescope, are expected to increase our understanding of the penumbra formation process.
astro-ph
Origin of the Golden Mass of Galaxies and Black Holes
We address the origin of the golden mass and time for galaxy formation and the onset of rapid black-hole growth. The preferred dark-halo mass of ~$10^{12}M_\odot$ is translated to a characteristic epoch, z~2, at which the typical forming halos have a comparable mass. We put together a coherent picture based on existing and new simple analytic modeling and cosmological simulations. We describe how the golden mass arises from two physical mechanisms that suppress gas supply and star formation below and above the golden mass, supernova feedback and virial shock heating of the circum-galactic medium (CGM), respectively. Cosmological simulations reveal that these mechanisms are responsible for a similar favored mass for the dramatic events of gaseous compaction into compact star-forming "blue nuggets", caused by mergers, counter-rotating streams or other mechanisms. This triggers inside-out quenching of star formation, to be maintained by the hot CGM, leading to today's passive early-type galaxies. The blue-nugget phase is responsible for transitions in the galaxy structural, kinematic and compositional properties, e.g., from dark-matter to baryon central dominance and from prolate to oblate shape. The growth of the central black hole is suppressed by supernova feedback below the critical mass, and is free to grow once the halo is massive enough to lock the supernova ejecta by its deep potential well and the hot CGM. A compaction near the golden mass makes the black hole sink to the galactic center and triggers a rapid black-hole growth. This ignites feedback by the Active Galactic Nucleus that helps keeping the CGM hot and maintaining long-term quenching.
astro-ph
Dynamic Processes of the Moreton Wave on 2014 March 29
On 2014 March 29, an intense solar flare classified as X1.0 occurred in the active region 12017. Several associated phenomena accompanied this event, among them a fast-filament eruption, large-scale propagating disturbances in the corona and the chromosphere including a Moreton wave, and a coronal mass ejection. This flare was successfully detected in multiwavelength imaging in H-alpha line by the Flare Monitoring Telescope (FMT) at Ica University, Peru. We present a detailed study of the Moreton wave associated with the flare in question. Special attention is paid to the Doppler characteristics inferred from the FMT wing (H-alpha$\pm0.8$~{\AA}) observations, which are used to examine the downward/upward motion of the plasma in the chromosphere. Our findings reveal that the downward motion of the chromospheric material at the front of the Moreton wave attains a maximum velocity of 4 km/s, whereas the propagation speed ranges between 640 and 859 km/s. Furthermore, utilizing the weak shock approximation in conjunction with the velocity amplitude of the chromospheric motion induced by the Moreton wave, we derive the Mach number of the incident shock in the corona. We also performed the temperature-emission measure analysis of the coronal wave based on the Atmospheric Imaging Assembly (AIA) observations, which allowed us to derive the compression ratio, and to estimate the Alfv\'en and fast-mode Mach numbers of the order of 1.06-1.28 and 1.05-1.27. Considering these results and the MHD linear theory we discuss the characteristics of the shock front and the interaction with the chromospheric plasma.
astro-ph
The role of disc torques in forming resonant planetary systems
The most accurate method for modelling planetary migration and hence the formation of resonant systems is using hydrodynamical simulations. Usually, the force (torque) acting on a planet is calculated using the forces from the gas disc and the star, while the gas accelerations are computed using the pressure gradient, the star, and the planet's gravity, ignoring its own gravity. For the non-migrating the neglect of the disc gravity results in a consistent torque calculation while for the migrating case it is inconsistent. We aim to study how much this inconsistent torque calculation can affect the final configuration of a two-planet system. Our focus will be on low-mass planets because most of the multi-planetary systems, discovered by the Kepler survey, have masses around 10 Earth masses. Performing hydrodynamical simulations of planet-disc interaction, we measure the torques on non-migrating and migrating planets for various disc masses as well as density and temperature slopes with and without considering the disc self-gravity. Using this data, we find a relation that quantifies the inconsistency, use it in an N-body code, and perform an extended parameter study modelling the migration of a planetary system with different planet mass ratios and disc surface densities, in order to investigate the impact of the torque inconsistency on the architecture of the planetary system. Not considering disc self-gravity produces an artificially larger torque on the migrating planet that can result in tighter planetary systems. The deviation of this torque from the correct value is larger in discs with steeper surface density profiles. In hydrodynamical modelling of multi-planetary systems, it is crucial to account for the torque correction, otherwise the results favour more packed systems.
astro-ph
The rocky road to quiescence: compaction and quenching of quasar host galaxies at z~2
We resolve the host galaxies of seven gravitationally lensed quasars at redshift 1.5 to 2.8 using observations with the Atacama Large (sub-)Millimetre Array. Using a visibility-plane lens modelling technique, we create pixellated reconstructions of the dust morphology, and CO line morphology and kinematics. We find that the quasar hosts in our sample can be distinguished into two types: 1) galaxies characterised by clumpy, extended dust distributions ($R_{\rm eff}\sim2$ kpc) and mean star formation rate surface densities comparable to sub-mm-selected dusty star-forming galaxies ($\Sigma_{\rm SFR}\sim3$ M$_{\odot}$ yr$^{-1}$ kpc$^{-2}$); 2) galaxies that have sizes in dust emission similar to coeval passive galaxies and compact starbursts ($R_{\rm eff}\sim0.5$ kpc), with high mean star formation rate surface densities ($\Sigma_{\rm SFR}=$ 400$-$4500 M$_{\odot}$ yr$^{-1}$ kpc$^{-2}$) that may be Eddington-limited or super-Eddington. The small size of some quasar hosts suggests that we observe them at a stage in their transformation into compact spheroids, where a high density of dynamically unstable gas leads to efficient star formation and black hole accretion. For the one system where we probe the mass of the gas reservoir, we find a gas fraction of just $0.06 \pm 0.04$ and a depletion timescale of $50 \pm 40$ Myr, suggesting it is transitioning into quiescence. In general, we expect that the extreme level of star formation in the compact quasar host galaxies will rapidly exhaust their gas reservoirs and could quench with or without help from active galactic nuclei feedback.
astro-ph
Efficiency of tidal dissipation in slowly rotating fully convective stars or planets
Turbulent convection is thought to act as an effective viscosity in damping equilibrium tidal flows, driving spin and orbital evolution in close convective binary systems. Compared to mixing-length predictions, this viscosity ought to be reduced when the tidal frequency $|\omega_t|$ exceeds the turnover frequency $\omega_{c\nu}$ of the dominant convective eddies, but the efficiency of this reduction has been disputed. We reexamine this long-standing controversy using direct numerical simulations of an idealized global model. We simulate thermal convection in a full sphere, and externally forced by the equilibrium tidal flow, to measure the effective viscosity $\nu_E$ acting on the tidal flow when $|\omega_t|/\omega_{c\nu} \gtrsim 1$. We demonstrate that the frequency reduction of $\nu_E$ is correlated with the frequency spectrum of the (unperturbed) convection. For intermediate frequencies below those in the turbulent cascade ($|\omega_t|/\omega_{c\nu} \sim 1-5$), the frequency spectrum displays an anomalous $1/\omega^\alpha$ power law that is responsible for the frequency-reduction $\nu_E \propto 1/|\omega_t|^{\alpha}$, where $\alpha < 1$ depends on the model parameters. We then get $|\nu_E| \propto 1/|\omega_t|^{\delta}$ with $\delta > 1$ for higher frequencies, and $\delta=2$ is obtained for a Kolmogorov turbulent cascade. A generic $|\nu_E| \propto 1/|\omega_t|^{2}$ suppression is next found for higher frequencies within the dissipation range of the convection (but with negative values). Our results indicate that a better knowledge of the frequency spectrum of convection is necessary to accurately predict the efficiency of tidal dissipation in stars and planets resulting from this mechanism.
astro-ph
BH Mass, Jet and Accretion Disk Connection: An Analysis of Radio-loud and Radio-quiet Quasars
Surveys have shown radio-loud (RL) quasars constitute $10 \%$-$15 \%$ of the total quasar population. However, it is unknown if the radio-loud fraction (RL quasars/Total quasars) remains consistent among different parameter spaces. This study shows that radio-loud fraction increases for increasing full width half maximum (FWHM) velocity of the H$\beta$ and MgII broad emission line. Our data has been obtained from Shen et al. (2011) catalogue. To investigate the reason, in this preliminary study we analyse various properties like bolometric luminosity, optical continuum luminosity, black hole (BH) mass and accretion rate of RL quasars and RQ quasars sample which have FWHM greater than 15000km/s (High broad line). From the distributions we can conclude for all the properties in high broad line, RL quasars are having higher values than RQ quasars. We have predicted RL quasars are intrinsically brighter than RQ quasars and also predicted BH mass-jet connection and accretion disk-jet connection from our results but to conclude anything more analysis is needed.
astro-ph
A prototype industrial laser system for cold atom inertial sensing in space
We present the design, realization, characterization and testing of an industrial prototype of a laser system, which is based on frequency doubling of telecom lasers and features all key functionalities to drive a cold atom space gradiometer based on the architecture proposed in [Trimeche et al, 2019]. Testing was performed by implementing the laser system onto a ground based atomic sensor currently under development. The system reaches a Technology Readiness Level (TRL) of 4, corresponding to an operational validation in a controlled environment. The optical architecture of the system can be adapted to other space mission scenarios.
astro-ph
On the alignment of haloes, filaments and magnetic fields in the simulated cosmic web
The continuous flow of gas and dark matter across scales in the cosmic web can generate correlated dynamical properties of haloes and filaments (and the magnetic fields they contain). With this work, we study the halo spin properties and orientation with respect to filaments, and the morphology of the magnetic field around these objects, for haloes with masses in the range 1e8-1e14 Msun and filaments up to 8 Mpc long. Furthermore, we study how these properties vary in presence, or lack thereof, of different (astro)physical processes and with different magnetic initial conditions. We perform cosmological magnetohydrodynamical simulations with the Eulerian code Enzo and we develop a simple and robust algorithm to study the filamentary connectivity of haloes in three dimensions. We investigate the morphological and magnetic properties and focus on the alignment of the magnetic field along filaments: our analysis suggests that the degree of this alignment is partially dependent on the physical processes involved, as well as on magnetic initial conditions. We discuss the contribution of this effect on a potential attempt to detect the magnetic field surrounding these objects: we find that it introduces a bias in the estimation of the magnetic field from Faraday rotation measure techniques. Specifically, given the strong tendency we find for extragalactic magnetic fields to align with the filaments axis, the value of the magnetic field can be underestimated by a factor 3, because this effect contributes to making the line-of-sight magnetic field (for filaments in the plane of the sky) much smaller than the total one.
astro-ph