elsaEU--ELSA1M_track1:
description: ''
citation: ''
homepage: ''
license: ''
features:
image:
decode: true
id: null
dtype: Image
id:
dtype: string
id: null
_type: Value
original_prompt:
dtype: string
id: null
_type: Value
positive_prompt:
dtype: string
id: null
_type: Value
negative_prompt:
dtype: string
id: null
_type: Value
model:
dtype: string
id: null
_type: Value
nsfw:
dtype: string
id: null
_type: Value
url_real_image:
dtype: string
id: null
_type: Value
filepath:
dtype: string
id: null
_type: Value
aspect_ratio:
feature:
dtype: int64
id: null
_type: Value
length: -1
id: null
_type: Sequence
post_processed: null
supervised_keys: null
task_templates: null
builder_name: imagefolder
config_name: default
version:
version_str: 0.0.0
description: null
major: 0
minor: 0
patch: 0
splits:
train:
name: train
num_bytes: 445926712527.43
num_examples: 992655
dataset_name: ELSA1M_track1
download_checksums: null
download_size: 223034360161
post_processing_size: null
dataset_size: 445926712527.43
size_in_bytes: 668961072688.4299
license: cc-by-4.0
ELSA - Multimedia use case
ELSA Multimedia is a large collection of Deep Fake images, generated using diffusion models
Dataset Summary
This dataset was developed as part of the EU project ELSA. Specifically for the Multimedia use-case. Official webpage: https://benchmarks.elsa-ai.eu/ This dataset aims to develop effective solutions for detecting and mitigating the spread of deep fake images in multimedia content. Deep fake images, which are highly realistic and deceptive manipulations, pose significant risks to privacy, security, and trust in digital media. This dataset can be used to train robust and accurate models that can identify and flag instances of deep fake images.
ELSA versions
Name | Description | Link |
---|---|---|
ELSA1M_track1 | Dataset of 1M images generated using diffusion model | https://huggingface.co/datasets/elsaEU/ELSA1M_track1 |
ELSA500k_track2 | Dataset of 500k images generated using diffusion model with diffusion attentive attribution maps [1] | https://huggingface.co/datasets/elsaEU/ELSA500k_track2 |
from datasets import load_dataset
elsa_data = load_dataset("elsaEU/ELSA1M_track1", split="train", streaming=True)
for sample in elsa_data:
image = sample.pop("image")
metadata = sample
Using streaming=True lets you work with the dataset without downloading it.
Dataset Structure
Each parquet file contains nearly 1k images and a JSON file with metadata.
The Metadata for generated images are:
- ID: Laion image ID
- original_prompt: Laion Prompt
- positive_prompt: positive prompt used for image generation
- negative_prompt: negative prompt used for image generation
- model: model used for the image generation
- nsfw: nsfw tag from Laion
- url_real_image: Url of the real image associated to the same prompt
- filepath: filepath of the fake image
- aspect_ratio: aspect ratio of the generated image
Dataset Curators
- Leonardo Labs ([email protected])
- UNIMORE (https://aimagelab.ing.unimore.it/imagelab/)