|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Multi-Dimensional Gender Bias classification""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{md_gender_bias, |
|
author = {Emily Dinan and |
|
Angela Fan and |
|
Ledell Wu and |
|
Jason Weston and |
|
Douwe Kiela and |
|
Adina Williams}, |
|
editor = {Bonnie Webber and |
|
Trevor Cohn and |
|
Yulan He and |
|
Yang Liu}, |
|
title = {Multi-Dimensional Gender Bias Classification}, |
|
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural |
|
Language Processing, {EMNLP} 2020, Online, November 16-20, 2020}, |
|
pages = {314--331}, |
|
publisher = {Association for Computational Linguistics}, |
|
year = {2020}, |
|
url = {https://www.aclweb.org/anthology/2020.emnlp-main.23/} |
|
} |
|
""" |
|
|
|
|
|
|
|
_DESCRIPTION = """\ |
|
Machine learning models are trained to find patterns in data. |
|
NLP models can inadvertently learn socially undesirable patterns when training on gender biased text. |
|
In this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions: |
|
bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker. |
|
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information. |
|
In addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites. |
|
Distinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers. |
|
We show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models, |
|
detecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness. |
|
""" |
|
|
|
_HOMEPAGE = "https://parl.ai/projects/md_gender/" |
|
|
|
_LICENSE = "MIT License" |
|
|
|
_URL = "http://parl.ai/downloads/md_gender/gend_multiclass_10072020.tgz" |
|
|
|
_CONF_FILES = { |
|
"funpedia": { |
|
"train": "funpedia/train.jsonl", |
|
"validation": "funpedia/valid.jsonl", |
|
"test": "funpedia/test.jsonl", |
|
}, |
|
"image_chat": { |
|
"train": "image_chat/engaging_imagechat_gender_captions_hashed.test.jsonl", |
|
"validation": "image_chat/engaging_imagechat_gender_captions_hashed.train.jsonl", |
|
"test": "image_chat/engaging_imagechat_gender_captions_hashed.valid.jsonl", |
|
}, |
|
"wizard": { |
|
"train": "wizard/train.jsonl", |
|
"validation": "wizard/valid.jsonl", |
|
"test": "wizard/test.jsonl", |
|
}, |
|
"convai2_inferred": { |
|
"train": ( |
|
"inferred_about/convai2_train_binary.txt", |
|
"inferred_about/convai2_train.txt", |
|
), |
|
"validation": ( |
|
"inferred_about/convai2_valid_binary.txt", |
|
"inferred_about/convai2_valid.txt", |
|
), |
|
"test": ( |
|
"inferred_about/convai2_test_binary.txt", |
|
"inferred_about/convai2_test.txt", |
|
), |
|
}, |
|
"light_inferred": { |
|
"train": ( |
|
"inferred_about/light_train_binary.txt", |
|
"inferred_about/light_train.txt", |
|
), |
|
"validation": ( |
|
"inferred_about/light_valid_binary.txt", |
|
"inferred_about/light_valid.txt", |
|
), |
|
"test": ( |
|
"inferred_about/light_test_binary.txt", |
|
"inferred_about/light_test.txt", |
|
), |
|
}, |
|
"opensubtitles_inferred": { |
|
"train": ( |
|
"inferred_about/opensubtitles_train_binary.txt", |
|
"inferred_about/opensubtitles_train.txt", |
|
), |
|
"validation": ( |
|
"inferred_about/opensubtitles_valid_binary.txt", |
|
"inferred_about/opensubtitles_valid.txt", |
|
), |
|
"test": ( |
|
"inferred_about/opensubtitles_test_binary.txt", |
|
"inferred_about/opensubtitles_test.txt", |
|
), |
|
}, |
|
"yelp_inferred": { |
|
"train": ( |
|
"inferred_about/yelp_train_binary.txt", |
|
"", |
|
), |
|
"validation": ( |
|
"inferred_about/yelp_valid_binary.txt", |
|
"", |
|
), |
|
"test": ( |
|
"inferred_about/yelp_test_binary.txt", |
|
"", |
|
), |
|
}, |
|
} |
|
|
|
|
|
class MdGenderBias(datasets.GeneratorBasedBuilder): |
|
"""Multi-Dimensional Gender Bias classification""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="gendered_words", |
|
version=VERSION, |
|
description="A list of common nouns with a masculine and feminine variant.", |
|
), |
|
datasets.BuilderConfig( |
|
name="name_genders", |
|
version=VERSION, |
|
description="A list of first names with their gender attribution by year in the US.", |
|
), |
|
datasets.BuilderConfig( |
|
name="new_data", version=VERSION, description="Some data reformulated and annotated along all three axes." |
|
), |
|
datasets.BuilderConfig( |
|
name="funpedia", |
|
version=VERSION, |
|
description="Data from Funpedia with ABOUT annotations based on Funpedia information on an entity's gender.", |
|
), |
|
datasets.BuilderConfig( |
|
name="image_chat", |
|
version=VERSION, |
|
description="Data from ImageChat with ABOUT annotations based on image recognition.", |
|
), |
|
datasets.BuilderConfig( |
|
name="wizard", |
|
version=VERSION, |
|
description="Data from WizardsOfWikipedia with ABOUT annotations based on Wikipedia information on an entity's gender.", |
|
), |
|
datasets.BuilderConfig( |
|
name="convai2_inferred", |
|
version=VERSION, |
|
description="Data from the ConvAI2 challenge with ABOUT annotations inferred by a trined classifier.", |
|
), |
|
datasets.BuilderConfig( |
|
name="light_inferred", |
|
version=VERSION, |
|
description="Data from LIGHT with ABOUT annotations inferred by a trined classifier.", |
|
), |
|
datasets.BuilderConfig( |
|
name="opensubtitles_inferred", |
|
version=VERSION, |
|
description="Data from OpenSubtitles with ABOUT annotations inferred by a trined classifier.", |
|
), |
|
datasets.BuilderConfig( |
|
name="yelp_inferred", |
|
version=VERSION, |
|
description="Data from Yelp reviews with ABOUT annotations inferred by a trined classifier.", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = ( |
|
"new_data" |
|
) |
|
|
|
def _info(self): |
|
|
|
if ( |
|
self.config.name == "gendered_words" |
|
): |
|
features = datasets.Features( |
|
{ |
|
"word_masculine": datasets.Value("string"), |
|
"word_feminine": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.name == "name_genders": |
|
features = datasets.Features( |
|
{ |
|
"name": datasets.Value("string"), |
|
"assigned_gender": datasets.ClassLabel(names=["M", "F"]), |
|
"count": datasets.Value("int32"), |
|
} |
|
) |
|
elif self.config.name == "new_data": |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"original": datasets.Value("string"), |
|
"labels": [ |
|
datasets.ClassLabel( |
|
names=[ |
|
"ABOUT:female", |
|
"ABOUT:male", |
|
"PARTNER:female", |
|
"PARTNER:male", |
|
"SELF:female", |
|
"SELF:male", |
|
] |
|
) |
|
], |
|
"class_type": datasets.ClassLabel(names=["about", "partner", "self"]), |
|
"turker_gender": datasets.ClassLabel( |
|
names=["man", "woman", "nonbinary", "prefer not to say", "no answer"] |
|
), |
|
"episode_done": datasets.Value("bool_"), |
|
"confidence": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.name == "funpedia": |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"persona": datasets.Value("string"), |
|
"gender": datasets.ClassLabel(names=["gender-neutral", "female", "male"]), |
|
} |
|
) |
|
elif self.config.name == "image_chat": |
|
features = datasets.Features( |
|
{ |
|
"caption": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
"male": datasets.Value("bool_"), |
|
"female": datasets.Value("bool_"), |
|
} |
|
) |
|
elif self.config.name == "wizard": |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"chosen_topic": datasets.Value("string"), |
|
"gender": datasets.ClassLabel(names=["gender-neutral", "female", "male"]), |
|
} |
|
) |
|
elif self.config.name == "yelp_inferred": |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"binary_label": datasets.ClassLabel(names=["ABOUT:female", "ABOUT:male"]), |
|
"binary_score": datasets.Value("float"), |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"binary_label": datasets.ClassLabel(names=["ABOUT:female", "ABOUT:male"]), |
|
"binary_score": datasets.Value("float"), |
|
"ternary_label": datasets.ClassLabel(names=["ABOUT:female", "ABOUT:male", "ABOUT:gender-neutral"]), |
|
"ternary_score": datasets.Value("float"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
archive = dl_manager.download(_URL) |
|
data_dir = "data_to_release" |
|
if self.config.name == "gendered_words": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": None, |
|
"filepath_pair": ( |
|
data_dir + "/" + "word_list/male_word_file.txt", |
|
data_dir + "/" + "word_list/female_word_file.txt", |
|
), |
|
"files": dl_manager.iter_archive(archive), |
|
}, |
|
) |
|
] |
|
elif self.config.name == "name_genders": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=f"yob{yob}", |
|
gen_kwargs={ |
|
"filepath": data_dir + "/" + f"names/yob{yob}.txt", |
|
"filepath_pair": None, |
|
"files": dl_manager.iter_archive(archive), |
|
}, |
|
) |
|
for yob in range(1880, 2019) |
|
] |
|
elif self.config.name == "new_data": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir + "/" + "new_data/data.jsonl", |
|
"filepath_pair": None, |
|
"files": dl_manager.iter_archive(archive), |
|
}, |
|
) |
|
] |
|
elif self.config.name in ["funpedia", "image_chat", "wizard"]: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=spl, |
|
gen_kwargs={ |
|
"filepath": data_dir + "/" + fname, |
|
"filepath_pair": None, |
|
"files": dl_manager.iter_archive(archive), |
|
}, |
|
) |
|
for spl, fname in _CONF_FILES[self.config.name].items() |
|
] |
|
else: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=spl, |
|
gen_kwargs={ |
|
"filepath": None, |
|
"filepath_pair": ( |
|
data_dir + "/" + fname_1, |
|
data_dir + "/" + fname_2, |
|
), |
|
"files": dl_manager.iter_archive(archive), |
|
}, |
|
) |
|
for spl, (fname_1, fname_2) in _CONF_FILES[self.config.name].items() |
|
] |
|
|
|
def _generate_examples(self, filepath, filepath_pair, files): |
|
if self.config.name == "gendered_words": |
|
male_data, female_data = None, None |
|
for path, f in files: |
|
if path == filepath_pair[0]: |
|
male_data = f.read().decode("utf-8").splitlines() |
|
elif path == filepath_pair[1]: |
|
female_data = f.read().decode("utf-8").splitlines() |
|
if male_data is not None and female_data is not None: |
|
for id_, (l_m, l_f) in enumerate(zip(male_data, female_data)): |
|
yield id_, { |
|
"word_masculine": l_m.strip(), |
|
"word_feminine": l_f.strip(), |
|
} |
|
break |
|
elif self.config.name == "name_genders": |
|
for path, f in files: |
|
if path == filepath: |
|
for id_, line in enumerate(f): |
|
name, g, ct = line.decode("utf-8").strip().split(",") |
|
yield id_, { |
|
"name": name, |
|
"assigned_gender": g, |
|
"count": int(ct), |
|
} |
|
break |
|
elif "_inferred" in self.config.name: |
|
if "yelp" in self.config.name: |
|
for path, f in files: |
|
if path == filepath_pair[0]: |
|
for id_, line_b in enumerate(f): |
|
text_b, label_b, score_b = line_b.decode("utf-8").split("\t") |
|
yield id_, { |
|
"text": text_b, |
|
"binary_label": label_b, |
|
"binary_score": float(score_b.strip()), |
|
} |
|
break |
|
else: |
|
binary_data, ternary_data = None, None |
|
for path, f in files: |
|
if path == filepath_pair[0]: |
|
binary_data = f.read().decode("utf-8").splitlines() |
|
elif path == filepath_pair[1]: |
|
ternary_data = f.read().decode("utf-8").splitlines() |
|
if binary_data is not None and ternary_data is not None: |
|
for id_, (line_b, line_t) in enumerate(zip(binary_data, ternary_data)): |
|
text_b, label_b, score_b = line_b.split("\t") |
|
text_t, label_t, score_t = line_t.split("\t") |
|
yield id_, { |
|
"text": text_b, |
|
"binary_label": label_b, |
|
"binary_score": float(score_b.strip()), |
|
"ternary_label": label_t, |
|
"ternary_score": float(score_t.strip()), |
|
} |
|
break |
|
else: |
|
for path, f in files: |
|
if path == filepath: |
|
for id_, line in enumerate(f): |
|
example = json.loads(line.decode("utf-8").strip()) |
|
if "turker_gender" in example and example["turker_gender"] is None: |
|
example["turker_gender"] = "no answer" |
|
yield id_, example |
|
break |
|
|