|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Fake.br dataset""" |
|
|
|
|
|
import os |
|
from pprint import pprint |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{silva:20, |
|
title = "Towards automatically filtering fake news in Portuguese", |
|
journal = "Expert Systems with Applications", |
|
volume = "146", |
|
pages = "113199", |
|
year = "2020", |
|
issn = "0957-4174", |
|
doi = "https://doi.org/10.1016/j.eswa.2020.113199", |
|
url = "http://www.sciencedirect.com/science/article/pii/S0957417420300257", |
|
author = "Renato M. Silva and Roney L.S. Santos and Tiago A. Almeida and Thiago A.S. Pardo", |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Fake.Br Corpus is composed of aligned true and fake news written in Brazilian Portuguese. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/roneysco/Fake.br-Corpus" |
|
|
|
|
|
_LICENSE = "" |
|
|
|
|
|
_URL = "https://github.com/roneysco/Fake.br-Corpus/archive/refs/heads/master.zip" |
|
|
|
|
|
_METADATA_COLS = [ |
|
"author", |
|
"link", |
|
"category", |
|
"date of publication", |
|
"number of tokens", |
|
"number of words without punctuation", |
|
"number of types", |
|
"number of links inside the news", |
|
"number of words in upper case", |
|
"number of verbs", |
|
"number of subjuntive and imperative verbs", |
|
"number of nouns", |
|
"number of adjectives", |
|
"number of adverbs", |
|
"number of modal verbs (mainly auxiliary verbs)", |
|
"number of singular first and second personal pronouns", |
|
"number of plural first personal pronouns", |
|
"number of pronouns", |
|
"pausality", |
|
"number of characters", |
|
"average sentence length", |
|
"average word length", |
|
"percentage of news with speeling errors", |
|
"emotiveness", |
|
"diversity", |
|
] |
|
|
|
|
|
class Fakebr(datasets.GeneratorBasedBuilder): |
|
"""Fake.Br Corpus is composed of aligned true and fake news written in Brazilian Portuguese.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="full_texts", |
|
version=VERSION, |
|
description="full texts, as collected from their websites", |
|
), |
|
datasets.BuilderConfig( |
|
name="size_normalized_texts", |
|
version=VERSION, |
|
description="in each fake-true pair, the longer text is truncated (in number of words) to the size of the shorter text", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "full_texts" |
|
|
|
def _info(self): |
|
if self.config.name == "full_texts": |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"label": datasets.ClassLabel(num_classes=2, names=["fake", "true"]), |
|
"author": datasets.Value("string"), |
|
"link": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
"date of publication": datasets.Value("string"), |
|
"number of tokens": datasets.Value("int32"), |
|
"number of words without punctuation": datasets.Value("int32"), |
|
"number of types": datasets.Value("int32"), |
|
"number of links inside the news": datasets.Value("int32"), |
|
"number of words in upper case": datasets.Value("int32"), |
|
"number of verbs": datasets.Value("int32"), |
|
"number of subjuntive and imperative verbs": datasets.Value( |
|
"int32" |
|
), |
|
"number of nouns": datasets.Value("int32"), |
|
"number of adjectives": datasets.Value("int32"), |
|
"number of adverbs": datasets.Value("int32"), |
|
"number of modal verbs (mainly auxiliary verbs)": datasets.Value( |
|
"int32" |
|
), |
|
"number of singular first and second personal pronouns": datasets.Value( |
|
"int32" |
|
), |
|
"number of plural first personal pronouns": datasets.Value("int32"), |
|
"number of pronouns": datasets.Value("int32"), |
|
"pausality": datasets.Value("float"), |
|
"number of characters": datasets.Value("int32"), |
|
"average sentence length": datasets.Value("float"), |
|
"average word length": datasets.Value("float"), |
|
"percentage of news with speeling errors": datasets.Value("float"), |
|
"emotiveness": datasets.Value("float"), |
|
"diversity": datasets.Value("float"), |
|
} |
|
) |
|
elif self.config.name == "size_normalized_texts": |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"label": datasets.ClassLabel(num_classes=2, names=["fake", "true"]), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=("text", "label"), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URL |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_dir": os.path.join(data_dir, "Fake.br-Corpus-master"), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_dir): |
|
config_dir = os.path.join(data_dir, self.config.name) |
|
|
|
for label in ["fake", "true"]: |
|
label_dir = os.path.join(config_dir, label) |
|
|
|
for example in os.listdir(label_dir): |
|
key = label + "_" + example.replace(".txt", "") |
|
example_path = os.path.join(label_dir, example) |
|
|
|
with open(example_path, "r") as f: |
|
text = f.read() |
|
|
|
row = {"text": text, "label": label} |
|
|
|
if self.config.name == "full_texts": |
|
metadata_path = os.path.join( |
|
config_dir, |
|
f"{label}-meta-information", |
|
example.replace(".txt", "-meta.txt"), |
|
) |
|
|
|
with open(metadata_path, "r") as f: |
|
metadata = f.read().split("\n") |
|
|
|
metadata = dict(zip(_METADATA_COLS, metadata)) |
|
|
|
if metadata["author"] == "None": |
|
metadata["author"] = "" |
|
|
|
if metadata["number of links inside the news"] == "None": |
|
metadata["number of links inside the news"] = "0" |
|
|
|
row.update(metadata) |
|
|
|
yield key, row |
|
|