license: cc-by-sa-4.0
dataset_info:
- config_name: E2H-AMC
features:
- name: contest
dtype: string
- name: rating
dtype: float64
- name: rating_std
dtype: float64
- name: rating_quantile
dtype: float64
- name: tag
dtype: string
- name: subtest
dtype: string
- name: year
dtype: int64
- name: month
dtype: string
- name: index
dtype: int64
- name: problem
dtype: string
- name: answer
dtype: string
- name: solution
dtype: string
- name: rating_tag
dtype: string
- name: test_tag
dtype: string
- name: item_difficulty
dtype: float64
- name: unnorm_rating
dtype: float64
- name: unnorm_rating_std
dtype: float64
- name: unnorm_rating_lower
dtype: float64
- name: unnorm_rating_upper
dtype: float64
- name: ever_exist
dtype: bool
splits:
- name: train
num_bytes: 1306215
num_examples: 1000
- name: eval
num_bytes: 3935954
num_examples: 2975
download_size: 2811269
dataset_size: 5242169
- config_name: E2H-ARC
features:
- name: rating
dtype: float64
- name: rating_std
dtype: float64
- name: rating_quantile
dtype: float64
- name: id
dtype: string
- name: question
dtype: string
- name: choices
struct:
- name: label
sequence: string
- name: text
sequence: string
- name: answerKey
dtype: string
- name: model_avg_acc
dtype: float64
- name: unnorm_rating
dtype: float64
- name: unnorm_rating_std
dtype: float64
splits:
- name: eval
num_bytes: 431767
num_examples: 1172
download_size: 253021
dataset_size: 431767
- config_name: E2H-Codeforces
features:
- name: contest_id
dtype: int64
- name: problem_index
dtype: string
- name: rating
dtype: float64
- name: rating_std
dtype: float64
- name: rating_volatility
dtype: float64
- name: rating_quantile
dtype: float64
- name: tag
dtype: string
- name: detailed_tag
dtype: string
- name: problem_name
dtype: string
- name: problem_main
dtype: string
- name: problem_note
dtype: string
- name: input_spec
dtype: string
- name: output_spec
dtype: string
- name: sample_inputs
sequence: string
- name: sample_outputs
sequence: string
- name: inputs
sequence: string
- name: answers
sequence: string
- name: input_output
struct:
- name: inputs
sequence: string
- name: outputs
sequence: string
- name: solution_id_0
dtype: int64
- name: solution_0
dtype: string
- name: outputs_0
sequence: string
- name: solution_id_1
dtype: int64
- name: solution_1
dtype: string
- name: outputs_1
sequence: string
- name: solution_id_2
dtype: int64
- name: solution_2
dtype: string
- name: outputs_2
sequence: string
- name: unnorm_rating
dtype: float64
- name: unnorm_rating_std
dtype: float64
- name: unnorm_rating_volatility
dtype: float64
- name: reference_rating
dtype: float64
- name: original_tags
sequence: string
- name: ever_exist
dtype: bool
splits:
- name: train
num_bytes: 25286548
num_examples: 3663
- name: eval
num_bytes: 52688262
num_examples: 4000
download_size: 33577472
dataset_size: 77974810
- config_name: E2H-GSM8K
features:
- name: rating
dtype: float64
- name: rating_std
dtype: float64
- name: rating_quantile
dtype: float64
- name: question
dtype: string
- name: answer
dtype: string
- name: model_avg_acc
dtype: float64
- name: unnorm_rating
dtype: float64
- name: unnorm_rating_std
dtype: float64
splits:
- name: eval
num_bytes: 777044
num_examples: 1319
download_size: 475944
dataset_size: 777044
- config_name: E2H-Lichess
features:
- name: puzzle_id
dtype: string
- name: rating
dtype: float64
- name: rating_std
dtype: float64
- name: rating_quantile
dtype: float64
- name: tag
dtype: string
- name: fen
dtype: string
- name: pgn
dtype: string
- name: annotated_pgn
dtype: string
- name: uci_seq
dtype: string
- name: san_seq
dtype: string
- name: answer_san
dtype: string
- name: answer_uci
dtype: string
- name: init_num_moves
dtype: int64
- name: player
dtype: string
- name: popularity_score
dtype: int64
- name: puzzle_num_plays
dtype: int64
- name: motif_tags
sequence: string
- name: phase_tags
sequence: string
- name: mate_tags
sequence: string
- name: special_move_tags
sequence: string
- name: game_origin_tags
sequence: string
- name: opening_tags
sequence: string
- name: game_hash
dtype: string
- name: game_url
dtype: string
- name: game_pgn
dtype: string
- name: game_annotated_pgn
dtype: string
- name: unnorm_rating
dtype: int64
- name: unnorm_rating_std
dtype: int64
- name: previous_fen
dtype: string
- name: last_move_uci
dtype: string
splits:
- name: train
num_bytes: 633749139
num_examples: 71763
- name: eval
num_bytes: 44154200
num_examples: 5000
download_size: 297840777
dataset_size: 677903339
- config_name: E2H-Winogrande
features:
- name: rating
dtype: float64
- name: rating_std
dtype: float64
- name: rating_quantile
dtype: float64
- name: sentence
dtype: string
- name: option1
dtype: string
- name: option2
dtype: string
- name: answer
dtype: string
- name: model_avg_acc
dtype: float64
- name: unnorm_rating
dtype: float64
- name: unnorm_rating_std
dtype: float64
splits:
- name: eval
num_bytes: 224999
num_examples: 1267
download_size: 141808
dataset_size: 224999
configs:
- config_name: E2H-AMC
data_files:
- split: train
path: E2H-AMC/train-*
- split: eval
path: E2H-AMC/eval-*
- config_name: E2H-ARC
data_files:
- split: eval
path: E2H-ARC/eval-*
- config_name: E2H-Codeforces
data_files:
- split: train
path: E2H-Codeforces/train-*
- split: eval
path: E2H-Codeforces/eval-*
- config_name: E2H-GSM8K
data_files:
- split: eval
path: E2H-GSM8K/eval-*
- config_name: E2H-Lichess
data_files:
- split: train
path: E2H-Lichess/train-*
- split: eval
path: E2H-Lichess/eval-*
- config_name: E2H-Winogrande
data_files:
- split: eval
path: E2H-Winogrande/eval-*
Easy2Hard-Bench
Dataset Description
Easy2Hard-Bench is a benchmark consisting with 6 datasets in different domain (mathematics, programming, chess, and various reasoning tasks). The problems from each dataset are labeled with continuous-valued difficulty levels.
Topic | Source | Statistics Used to Infer Difficulty | Source Type | Estimation Method | |
---|---|---|---|---|---|
E2H-AMC | Math Competitions | AMC, AIME, HMMT | Item difficulties | Human | IRT |
E2H-Codeforces | Competitive Programming | Codeforces | Submission status, contestant ratings | Human | Glicko-2 |
E2H-Lichess | Chess Puzzles | Lichess | Player ratings, puzzle ratings | Human | Glicko-2 |
E2H-GSM8K | Math Word Problems | GSM8K | Sample-wise evaluation results of thousands of LLMs on Open LLM Leaderboard | LLMs | IRT |
E2H-ARC | Natural Science QA | ARC | Sample-wise evaluation results of thousands of LLMs on Open LLM Leaderboard | LLMs | IRT |
E2H-Winograde | Commonsense Reasoning | Winogrande | Sample-wise evaluation results of thousands of LLMs on Open LLM Leaderboard | LLMs | IRT |
This can be used to profile the ability of language models over varying difficulties and explore the generalization of LLMs from easy to hard.
Languages
The datasets are mainly in English. Some texts are LaTeX-rendered. The code solutions in E2H-Codeforces are in Python. The games in E2H-Lichess are given in serveral prevalent notations (PGN, UCI, FEN).
Dataset Structure
from datasets import load_dataset
load_dataset("furonghuang-lab/Easy2Hard-Bench", "E2H-AMC")
DatasetDict({
train: Dataset({
features: ['contest', 'rating', 'rating_std', 'rating_quantile', 'tag', 'subtest', 'year', 'month', 'index', 'problem', 'answer', 'solution', 'rating_tag', 'test_tag', 'item_difficulty', 'unnorm_rating', 'unnorm_rating_std', 'unnorm_rating_lower', 'unnorm_rating_upper', 'ever_exist'],
num_rows: 1000
})
eval: Dataset({
features: ['contest', 'rating', 'rating_std', 'rating_quantile', 'tag', 'subtest', 'year', 'month', 'index', 'problem', 'answer', 'solution', 'rating_tag', 'test_tag', 'item_difficulty', 'unnorm_rating', 'unnorm_rating_std', 'unnorm_rating_lower', 'unnorm_rating_upper', 'ever_exist'],
num_rows: 2975
})
})
load_dataset("furonghuang-lab/Easy2Hard-Bench", "E2H-Codeforces")
DatasetDict({
train: Dataset({
features: ['contest_id', 'problem_index', 'rating', 'rating_std', 'rating_volatility', 'rating_quantile', 'tag', 'detailed_tag', 'problem_name', 'problem_main', 'problem_note', 'input_spec', 'output_spec', 'sample_inputs', 'sample_outputs', 'inputs', 'answers', 'input_output', 'solution_id_0', 'solution_0', 'outputs_0', 'solution_id_1', 'solution_1', 'outputs_1', 'solution_id_2', 'solution_2', 'outputs_2', 'unnorm_rating', 'unnorm_rating_std', 'unnorm_rating_volatility', 'reference_rating', 'original_tags', 'ever_exist'],
num_rows: 3663
})
eval: Dataset({
features: ['contest_id', 'problem_index', 'rating', 'rating_std', 'rating_volatility', 'rating_quantile', 'tag', 'detailed_tag', 'problem_name', 'problem_main', 'problem_note', 'input_spec', 'output_spec', 'sample_inputs', 'sample_outputs', 'inputs', 'answers', 'input_output', 'solution_id_0', 'solution_0', 'outputs_0', 'solution_id_1', 'solution_1', 'outputs_1', 'solution_id_2', 'solution_2', 'outputs_2', 'unnorm_rating', 'unnorm_rating_std', 'unnorm_rating_volatility', 'reference_rating', 'original_tags', 'ever_exist'],
num_rows: 4000
})
})
load_dataset("furonghuang-lab/Easy2Hard-Bench", "E2H-Lichess")
DatasetDict({
train: Dataset({
features: ['puzzle_id', 'rating', 'rating_std', 'rating_quantile', 'tag', 'fen', 'pgn', 'annotated_pgn', 'uci_seq', 'san_seq', 'answer_san', 'answer_uci', 'init_num_moves', 'player', 'popularity_score', 'puzzle_num_plays', 'motif_tags', 'phase_tags', 'mate_tags', 'special_move_tags', 'game_origin_tags', 'opening_tags', 'game_hash', 'game_url', 'game_pgn', 'game_annotated_pgn', 'unnorm_rating', 'unnorm_rating_std', 'previous_fen', 'last_move_uci'],
num_rows: 71763
})
eval: Dataset({
features: ['puzzle_id', 'rating', 'rating_std', 'rating_quantile', 'tag', 'fen', 'pgn', 'annotated_pgn', 'uci_seq', 'san_seq', 'answer_san', 'answer_uci', 'init_num_moves', 'player', 'popularity_score', 'puzzle_num_plays', 'motif_tags', 'phase_tags', 'mate_tags', 'special_move_tags', 'game_origin_tags', 'opening_tags', 'game_hash', 'game_url', 'game_pgn', 'game_annotated_pgn', 'unnorm_rating', 'unnorm_rating_std', 'previous_fen', 'last_move_uci'],
num_rows: 5000
})
})
load_dataset("furonghuang-lab/Easy2Hard-Bench", "E2H-GSM8K")
DatasetDict({
eval: Dataset({
features: ['rating', 'rating_std', 'rating_quantile', 'question', 'answer', 'model_avg_acc', 'unnorm_rating', 'unnorm_rating_std'],
num_rows: 1319
})
})
load_dataset("furonghuang-lab/Easy2Hard-Bench", "E2H-ARC")
DatasetDict({
eval: Dataset({
features: ['rating', 'rating_std', 'rating_quantile', 'id', 'question', 'choices', 'answerKey', 'model_avg_acc', 'unnorm_rating', 'unnorm_rating_std'],
num_rows: 1172
})
})
Data Fields
E2H-AMC
Field | Type | Description |
---|---|---|
contest | string | name of the contest |
rating | float | estimated difficulty |
rating_std | float | standard deviation of estimated difficulty |
rating_quantile | float | quantile of estimated difficulty |
tag | string | type of the contest |
subtest | string | name of the subtest |
year | int | year of the contest |
month | string | month of the contest |
index | string | problem index in the subtest |
problem | string | textual description of problem |
answer | string | answer of problem |
solution | string | textual solution of the problem |
rating_tag | string | tag about problem rating |
test_tag | string | tag about test type |
item difficulty | float | item difficulty of the problem |
unnorm_rating | float | unnormalized estimated difficulty |
unnorm_rating_std | float | standard deviation of unnormalized estimated difficulty |
unnorm_rating_lower | float | lower threshold of difficulty suggested by AoPS |
unnorm_rating_upper | float | upper threshold of difficulty suggested by AoPS |
ever_exist | bool | whether the problem exists in the MATH dataset |
E2H-Codeforces
Field | Type | Description |
---|---|---|
contest_id | int | Codeforce contest id |
problem_index | string | problem index in the contest |
rating | float | estimated difficulty |
rating_std | float | standard deviation of estimated difficulty |
rating_volatility | float | volatility of estimated difficulty |
rating_quantile | float | quantile of estimated difficulty |
tag | string | type of the problem |
detailed_tag | string | detailed type of the problem |
problem_name | string | name of the problem |
problem_main | string | main text of the problem |
problem_note | string | note of the problem |
input_spec | string | input specifications of the problem |
output_spec | string | output specifications of the problem |
sample_inputs | string | example inputs of the problem |
sample_outputs | string | example outputs of the problem |
inputs | string | inputs in the test cases |
answers | string | standard outputs in the test cases |
input_output | string | standard inputs and outputs in the test cases |
outputs | string | standard outputs in the test cases |
solution_id_0 | int | Codeforces submission id of selected solution 0 |
solution_0 | string | source code of selected solution 0 |
outputs_0 | string | outputs of selected solution 0 |
solution_id_1 | int | Codeforces submission id of seleted solution 1 |
solution_1 | string | source code of selected solution 1 |
outputs_1 | string | outputs of selected solution 1 |
solution_id_2 | int | Codeforces submission id of selected solution 2 |
solution_2 | string | source code of selected solution 2 |
outputs_2 | string | outputs of selected solution 2 |
unnorm_rating | float | unnormalized estimated difficulty |
unnorm_rating_std | float | standard deviation of unnormalized estimated difficulty |
unnorm_rating_volatility | float | volatility of unnormalized estimated difficulty |
reference_rating | float | coarse reference difficulty rating on Codeforces |
original_tags | string | original tags on Codeforces |
ever_exist | bool | whether the problem exists in the APPS dataset |
E2H-Lichess
Field | Type | Description |
---|---|---|
puzzle_id | string | id of the puzzle on Lichess |
rating | float | estimated difficulty |
rating_std | float | standard deviation of estimated difficulty |
rating_quantile | float | quantile of estimated difficulty |
tag | string | type of the puzzle |
fen | string | Forsyth–Edwards notation (FEN) of the puzzle |
pgn | string | portable game notation (PGN) of the puzzle |
annotated_pgn | string | annotated portable game notation (PGN) of the puzzle |
uci_seq | string | universal chess interface (UCI) notation of the puzzle |
san_seq | string | standard algebraic notation (SAN) of the puzzle |
answer_san | string | standard algebraic notation (SAN) of the answer |
answer_uci | string | universal chess interface (UCI) notation of answer |
init_num_moves | int | number of moves from initial chess board to form the puzzle |
player | string | side to solve the puzzle, either black or white |
populartity_score | int | popularity score of the puzzle on Lichess |
puzzle_num_plays | int | number of times the puzzle is played on Lichess |
motif_tags | string | tags about the puzzle motifs |
phase_tags | string | tags about the phase of the puzzle |
mate_tags | string | tags about the type of checkmate |
special_move_tags | string | tags about special moves involved in the puzzle |
game_origin_tags | string | tags about the origin of the puzzle |
opening_tags | string | tags about the type of opening |
game_hash | string | hash code of the corresponding game on Lichess |
game_url | string | URL link of the corresponding game on Lichess |
game_pgn | string | portable game notation (PGN) of the entire game |
game_annotated_pgn | string | annotated portable game notation (PGN) of the entire game |
unnorm_rating | float | unnormalized estimated difficulty |
unnorm_rating_std | float | standard deviation of unnormalized estimated difficulty |
previous_fen | string | Forsyth–Edwards notation (FEN) of the puzzle before last move by the opponent |
last_move_uci | string | universal chess interface (UCI) notation of last move by the opponent |
E2H-GSM8K, E2H-ARC, E2H-Winogrande
Besides the data fields from the original datasets, all of these three datasets have the following difficulty-realted data fields:
Field | Type | Description |
---|---|---|
rating | float | estimated difficulty |
rating_std | float | standard deviation of estimated difficulty |
rating_quantile | float | quantile of estimated difficulty |
model_avg_acc | float | average accuracy of selected models on the Open LLM Leaderboard |
unnorm_rating | float | unnormalized estimated difficulty |
unnorm_rating_std | float | standard deviation of unnormalized estimated difficulty |
Data Splits
For the newly crafted datasets, E2H-AMC, E2H-Codeforces and E2H-Lichess, all of them contain a train and evaluation splits.
For the datasets, E2H-GSM8K, E2H-ARC and E2H-Winogrande, all of them only have evaluation splits with size of that in the original dataset.
Train Size | Eval Size | |
---|---|---|
E2H-AMC | 1,000 | 2,975 |
E2H-Codeforces | 3,663 | 4,000 |
E2H-Lichess | 71,763 | 5,000 |
E2H-GSM8K | N.A. | 1,319 |
E2H-ARC | N.A. | 1,172 |
E2H-Winogrande | N.A. | 1,267 |
Data Difficulty Distribution
Dataset Creation
- E2H-AMC: We collect the problems from AMC 8/10/12, AIME I/II and HMMT Feb/Nov, and estimate the difficulties by IRT based on AoPS rating of competitions and item difficulties from the official reports.
- E2H-Codeforces: We collect the problems from contests on Codeforces, and estimate the difficulties by Glicko-2 based on contestants' ratings and submission status from Codeforces.
- E2H-Lichess: We collect the one-step puzzle from Lichess, and estimate the difficulties by Glicko-2 based on puzzle ratings and player ratings from Lichess.
- E2H-GSM8K, E2H-ARC, E2H-Winogrande: We inherit the original datasets, and estimate the dififculties by IRT based on sample-wise evluation results of LLMs on Open LLM leaderboard.
Citation Information
TBD