metadata
license: apache-2.0
task_categories:
- text-generation
- text2text-generation
language:
- en
tags:
- code
pretty_name: BabelCode MBPP
size_categories:
- 1K<n<10K
Dataset Card for BabelCode HumanEval
Dataset Description
- Repository: GitHub Repository
- Paper: Measuring The Impact Of Programming Language Distribution
How To Use This Dataset
To quickly evaluate BC-HumanEval predictions, save the qid
and language
keys along with the postprocessed prediction code in a JSON lines file. Then follow the install instructions for BabelCode, and you can evaluate your predictions.
Dataset Summary
The BabelCode-MBPP (BC-MBPP) dataset converts the MBPP dataset released by Google to 16 programming languages.
Supported Tasks and Leaderboards
Languages
BC-MBPP supports:
- C++
- C#
- Dart
- Go
- Haskell
- Java
- Javascript
- Julia
- Kotlin
- Lua
- PHP
- Python
- R
- Rust
- Scala
- TypeScript
Dataset Structure
>>> from datasets import load_dataset
>>> load_dataset("gabeorlanski/bc-humaneval")
DatasetDict({
test: Dataset({
features: ['qid', 'title', 'language', 'text', 'signature_with_docstring', 'signature', 'arguments', 'entry_fn_name', 'entry_cls_name', 'test_code'],
num_rows: 2576
})
})
Data Fields
qid
: The question ID used for running tests.title
: The title of the question.language
: The programming language of the example.text
: The description of the problem.signature
: The signature for the problem.signature_with_docstring
: The signature with the adequately formatted docstring for the given problem.arguments
: The arguments of the problem.entry_fn_name
: The function's name to use an entry point.entry_cls_name
: The class name to use an entry point.test_code
: The raw testing script used in the language. If you want to use this, replacePLACEHOLDER_FN_NAME
(andPLACEHOLDER_CLS_NAME
if needed) with the corresponding entry points. Next, replacePLACEHOLDER_CODE_BODY
with the postprocessed prediction.
Dataset Creation
See section 2 of the BabelCode Paper to learn more about how the datasets are translated.
Curation Rationale
Source Data
Initial Data Collection and Normalization
Who are the source language producers?
Annotations
Annotation process
Who are the annotators?
Personal and Sensitive Information
None.
Considerations for Using the Data
Social Impact of Dataset
Discussion of Biases
Other Known Limitations
Additional Information
Dataset Curators
Google Research
Licensing Information
CC-BY-4.0
Citation Information
@article{orlanski2023measuring,
title={Measuring The Impact Of Programming Language Distribution},
author={Orlanski, Gabriel and Xiao, Kefan and Garcia, Xavier and Hui, Jeffrey and Howland, Joshua and Malmaud, Jonathan and Austin, Jacob and Singh, Rishah and Catasta, Michele},
journal={arXiv preprint arXiv:2302.01973},
year={2023}
}
@article{Austin2021ProgramSW,
title={Program Synthesis with Large Language Models},
author={Jacob Austin and Augustus Odena and Maxwell Nye and Maarten Bosma and Henryk Michalewski and David Dohan and Ellen Jiang and Carrie J. Cai and Michael Terry and Quoc V. Le and Charles Sutton},
journal={ArXiv},
year={2021},
volume={abs/2108.07732}
}