Datasets:
Commit
•
116f04f
1
Parent(s):
5ee2de3
Delete legacy dataset_infos.json
Browse files- dataset_infos.json +0 -112
dataset_infos.json
DELETED
@@ -1,112 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"abstractive": {
|
3 |
-
"description": "AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)",
|
4 |
-
"citation": "@misc{kulkarni2020aquamuse,\n title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization},\n author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie},\n year={2020},\n eprint={2010.12694},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n",
|
5 |
-
"homepage": "https://github.com/google-research-datasets/aquamuse",
|
6 |
-
"license": "",
|
7 |
-
"features": {
|
8 |
-
"query": {
|
9 |
-
"dtype": "string",
|
10 |
-
"_type": "Value"
|
11 |
-
},
|
12 |
-
"input_urls": {
|
13 |
-
"feature": {
|
14 |
-
"dtype": "string",
|
15 |
-
"_type": "Value"
|
16 |
-
},
|
17 |
-
"_type": "Sequence"
|
18 |
-
},
|
19 |
-
"target": {
|
20 |
-
"dtype": "string",
|
21 |
-
"_type": "Value"
|
22 |
-
}
|
23 |
-
},
|
24 |
-
"builder_name": "parquet",
|
25 |
-
"dataset_name": "aquamuse",
|
26 |
-
"config_name": "abstractive",
|
27 |
-
"version": {
|
28 |
-
"version_str": "2.3.0",
|
29 |
-
"major": 2,
|
30 |
-
"minor": 3,
|
31 |
-
"patch": 0
|
32 |
-
},
|
33 |
-
"splits": {
|
34 |
-
"train": {
|
35 |
-
"name": "train",
|
36 |
-
"num_bytes": 6434893,
|
37 |
-
"num_examples": 6253,
|
38 |
-
"dataset_name": null
|
39 |
-
},
|
40 |
-
"test": {
|
41 |
-
"name": "test",
|
42 |
-
"num_bytes": 843165,
|
43 |
-
"num_examples": 811,
|
44 |
-
"dataset_name": null
|
45 |
-
},
|
46 |
-
"validation": {
|
47 |
-
"name": "validation",
|
48 |
-
"num_bytes": 689093,
|
49 |
-
"num_examples": 661,
|
50 |
-
"dataset_name": null
|
51 |
-
}
|
52 |
-
},
|
53 |
-
"download_size": 5167854,
|
54 |
-
"dataset_size": 7967151,
|
55 |
-
"size_in_bytes": 13135005
|
56 |
-
},
|
57 |
-
"extractive": {
|
58 |
-
"description": "AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)",
|
59 |
-
"citation": "@misc{kulkarni2020aquamuse,\n title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization},\n author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie},\n year={2020},\n eprint={2010.12694},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n",
|
60 |
-
"homepage": "https://github.com/google-research-datasets/aquamuse",
|
61 |
-
"license": "",
|
62 |
-
"features": {
|
63 |
-
"query": {
|
64 |
-
"dtype": "string",
|
65 |
-
"_type": "Value"
|
66 |
-
},
|
67 |
-
"input_urls": {
|
68 |
-
"feature": {
|
69 |
-
"dtype": "string",
|
70 |
-
"_type": "Value"
|
71 |
-
},
|
72 |
-
"_type": "Sequence"
|
73 |
-
},
|
74 |
-
"target": {
|
75 |
-
"dtype": "string",
|
76 |
-
"_type": "Value"
|
77 |
-
}
|
78 |
-
},
|
79 |
-
"builder_name": "parquet",
|
80 |
-
"dataset_name": "aquamuse",
|
81 |
-
"config_name": "extractive",
|
82 |
-
"version": {
|
83 |
-
"version_str": "2.3.0",
|
84 |
-
"major": 2,
|
85 |
-
"minor": 3,
|
86 |
-
"patch": 0
|
87 |
-
},
|
88 |
-
"splits": {
|
89 |
-
"train": {
|
90 |
-
"name": "train",
|
91 |
-
"num_bytes": 6434893,
|
92 |
-
"num_examples": 6253,
|
93 |
-
"dataset_name": null
|
94 |
-
},
|
95 |
-
"test": {
|
96 |
-
"name": "test",
|
97 |
-
"num_bytes": 843165,
|
98 |
-
"num_examples": 811,
|
99 |
-
"dataset_name": null
|
100 |
-
},
|
101 |
-
"validation": {
|
102 |
-
"name": "validation",
|
103 |
-
"num_bytes": 689093,
|
104 |
-
"num_examples": 661,
|
105 |
-
"dataset_name": null
|
106 |
-
}
|
107 |
-
},
|
108 |
-
"download_size": 5162151,
|
109 |
-
"dataset_size": 7967151,
|
110 |
-
"size_in_bytes": 13129302
|
111 |
-
}
|
112 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|