albertvillanova HF staff commited on
Commit
116f04f
1 Parent(s): 5ee2de3

Delete legacy dataset_infos.json

Browse files
Files changed (1) hide show
  1. dataset_infos.json +0 -112
dataset_infos.json DELETED
@@ -1,112 +0,0 @@
1
- {
2
- "abstractive": {
3
- "description": "AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)",
4
- "citation": "@misc{kulkarni2020aquamuse,\n title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization},\n author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie},\n year={2020},\n eprint={2010.12694},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n",
5
- "homepage": "https://github.com/google-research-datasets/aquamuse",
6
- "license": "",
7
- "features": {
8
- "query": {
9
- "dtype": "string",
10
- "_type": "Value"
11
- },
12
- "input_urls": {
13
- "feature": {
14
- "dtype": "string",
15
- "_type": "Value"
16
- },
17
- "_type": "Sequence"
18
- },
19
- "target": {
20
- "dtype": "string",
21
- "_type": "Value"
22
- }
23
- },
24
- "builder_name": "parquet",
25
- "dataset_name": "aquamuse",
26
- "config_name": "abstractive",
27
- "version": {
28
- "version_str": "2.3.0",
29
- "major": 2,
30
- "minor": 3,
31
- "patch": 0
32
- },
33
- "splits": {
34
- "train": {
35
- "name": "train",
36
- "num_bytes": 6434893,
37
- "num_examples": 6253,
38
- "dataset_name": null
39
- },
40
- "test": {
41
- "name": "test",
42
- "num_bytes": 843165,
43
- "num_examples": 811,
44
- "dataset_name": null
45
- },
46
- "validation": {
47
- "name": "validation",
48
- "num_bytes": 689093,
49
- "num_examples": 661,
50
- "dataset_name": null
51
- }
52
- },
53
- "download_size": 5167854,
54
- "dataset_size": 7967151,
55
- "size_in_bytes": 13135005
56
- },
57
- "extractive": {
58
- "description": "AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)",
59
- "citation": "@misc{kulkarni2020aquamuse,\n title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization},\n author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie},\n year={2020},\n eprint={2010.12694},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n",
60
- "homepage": "https://github.com/google-research-datasets/aquamuse",
61
- "license": "",
62
- "features": {
63
- "query": {
64
- "dtype": "string",
65
- "_type": "Value"
66
- },
67
- "input_urls": {
68
- "feature": {
69
- "dtype": "string",
70
- "_type": "Value"
71
- },
72
- "_type": "Sequence"
73
- },
74
- "target": {
75
- "dtype": "string",
76
- "_type": "Value"
77
- }
78
- },
79
- "builder_name": "parquet",
80
- "dataset_name": "aquamuse",
81
- "config_name": "extractive",
82
- "version": {
83
- "version_str": "2.3.0",
84
- "major": 2,
85
- "minor": 3,
86
- "patch": 0
87
- },
88
- "splits": {
89
- "train": {
90
- "name": "train",
91
- "num_bytes": 6434893,
92
- "num_examples": 6253,
93
- "dataset_name": null
94
- },
95
- "test": {
96
- "name": "test",
97
- "num_bytes": 843165,
98
- "num_examples": 811,
99
- "dataset_name": null
100
- },
101
- "validation": {
102
- "name": "validation",
103
- "num_bytes": 689093,
104
- "num_examples": 661,
105
- "dataset_name": null
106
- }
107
- },
108
- "download_size": 5162151,
109
- "dataset_size": 7967151,
110
- "size_in_bytes": 13129302
111
- }
112
- }