The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider
removing the
loading script
and relying on
automated data support
(you can use
convert_to_parquet
from the datasets
library). If this is not possible, please
open a discussion
for direct help.
Dataset Card for Corpus for Knowledge-Enhanced Language Model Pre-training (KELM)
Dataset Summary
Data-To-Text Generation involves converting knowledge graph (KG) triples of the form (subject, relation, object) into a natural language sentence(s). This dataset consists of English KG data converted into paired natural language text. The generated corpus consists of ∼18M sentences spanning ∼45M triples with ∼1500 distinct relations.
Supported Tasks and Leaderboards
The intended task is data-to-text generation, taking in a knowledge graph tuple and generating a natural language representation from it. Specifically, the data is in the format the authors used to train a seq2seq language model with the tuples concatenated into a single sequence.
Languages
The dataset is in English.
Dataset Structure
Data Instances
Each instance consists of one KG triple paired with corresponding natural language.
Data Fields
triple
: Wikipedia triples of the form<subject> <relation> <object>
where some subjects have multiple relations, e.g.<subject> <relation1> <object1> <relation2> <object2> <relation3> <object3>
. For more details on how these relations are grouped, please refer to the paper.sentence
: The corresponding Wikipedia sentence.
Data Splits
The dataset includes a pre-determined train, validation, and test split.
Dataset Creation
Curation Rationale
The goal of the dataset's curation and the associated modeling work discussed in the paper is to be able to generate natural text from a knowledge graph.
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
The data is sourced from English Wikipedia and it's associated knowledge graph.
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
From the paper:
Wikipedia has documented ideological, gender6, and racial biases in its text. While the KELM corpus may still contain some of these biases, certain types of biases may be reduced.
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
This dataset has been released under the CC BY-SA 2.0 license.
Citation Information
@misc{agarwal2020large,
title={Large Scale Knowledge Graph Based Synthetic Corpus Generation for Knowledge-Enhanced Language Model Pre-training},
author={Oshin Agarwal and Heming Ge and Siamak Shakeri and Rami Al-Rfou},
year={2020},
eprint={2010.12688},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Contributions
Thanks to @joeddav for adding this dataset.
- Downloads last month
- 125