|
import argparse |
|
from functools import partial |
|
import os |
|
from tqdm import tqdm |
|
import glob |
|
import numpy as np |
|
import cv2 |
|
from sklearn.neighbors import KDTree |
|
from collections import Counter |
|
from PIL import Image |
|
from mmengine import track_parallel_progress |
|
|
|
|
|
def load_voxels(path): |
|
"""Load voxel labels from file. |
|
|
|
Args: |
|
path (str): The path of the voxel labels file. |
|
|
|
Returns: |
|
ndarray: The voxel labels with shape (N, 4), 4 is for [x, y, z, label]. |
|
""" |
|
labels = np.load(path) |
|
if labels.shape[1] == 7: |
|
labels = labels[:, [0, 1, 2, 6]] |
|
|
|
return labels |
|
|
|
|
|
def _downsample_label(label, voxel_size=(240, 144, 240), downscale=4): |
|
r"""downsample the labeled data, |
|
code taken from https://github.com/waterljwant/SSC/blob/master/dataloaders/dataloader.py#L262 |
|
Shape: |
|
label, (240, 144, 240) |
|
label_downscale, if downsample==4, then (60, 36, 60) |
|
""" |
|
if downscale == 1: |
|
return label |
|
ds = downscale |
|
small_size = ( |
|
voxel_size[0] // ds, |
|
voxel_size[1] // ds, |
|
voxel_size[2] // ds, |
|
) |
|
label_downscale = np.zeros(small_size, dtype=np.uint8) |
|
empty_t = 0.95 * ds * ds * ds |
|
s01 = small_size[0] * small_size[1] |
|
label_i = np.zeros((ds, ds, ds), dtype=np.int32) |
|
|
|
for i in range(small_size[0] * small_size[1] * small_size[2]): |
|
z = int(i / s01) |
|
y = int((i - z * s01) / small_size[0]) |
|
x = int(i - z * s01 - y * small_size[0]) |
|
|
|
label_i[:, :, :] = label[ |
|
x * ds : (x + 1) * ds, y * ds : (y + 1) * ds, z * ds : (z + 1) * ds |
|
] |
|
label_bin = label_i.flatten() |
|
|
|
zero_count_0 = np.array(np.where(label_bin == 0)).size |
|
zero_count_255 = np.array(np.where(label_bin == 255)).size |
|
|
|
zero_count = zero_count_0 + zero_count_255 |
|
if zero_count > empty_t: |
|
label_downscale[x, y, z] = 0 if zero_count_0 > zero_count_255 else 255 |
|
else: |
|
label_i_s = label_bin[ |
|
np.where(np.logical_and(label_bin > 0, label_bin < 255)) |
|
] |
|
label_downscale[x, y, z] = np.argmax(np.bincount(label_i_s)) |
|
return label_downscale |
|
|
|
|
|
|
|
def clear_posed_images(scene_list): |
|
|
|
|
|
|
|
with open('wrong_scenes.txt', 'r') as f: |
|
wrongs = f.readlines() |
|
|
|
with open('not_aligns.txt', 'r') as f: |
|
not_aligns = f.readlines() |
|
|
|
|
|
wrongs = [w.split('/')[1] for w in wrongs] |
|
wrongs = sorted(list(set(wrongs))) |
|
|
|
not_aligns = sorted([s.strip() for s in not_aligns]) |
|
|
|
|
|
scene_list = sorted(list(set(scene_list) - set(wrongs))) |
|
scene_list = sorted(list(set(scene_list) - set(not_aligns))) |
|
|
|
return scene_list |
|
|
|
|
|
|
|
def generate_subvoxels(name): |
|
|
|
|
|
|
|
height_belowfloor = - 0.05 |
|
voxUnit = 0.08 |
|
voxSizeCam = np.array([60, 60, 60]) |
|
voxSize = np.array([60, 60, 36]) |
|
voxRangeExtremesCam = np.stack([-voxSizeCam * voxUnit / 2., |
|
-voxSizeCam * voxUnit / 2. + voxSizeCam * voxUnit]).T |
|
voxRangeExtremesCam[-1, 0] = 0 |
|
voxRangeExtremesCam[-1, 1] = 6.8 |
|
|
|
voxOriginCam = np.mean(voxRangeExtremesCam, axis=1, keepdims=True) |
|
|
|
|
|
poses = glob.glob(os.path.join('../scannet/posed_images', name, '*.txt')) |
|
poses = sorted(poses) |
|
if len(poses) == 0: |
|
return |
|
|
|
imgs = glob.glob(os.path.join('../scannet/posed_images', name, '*.jpg')) |
|
imgs = sorted(imgs) |
|
|
|
intrinsic = poses.pop(-1) |
|
intrinsic = np.loadtxt(intrinsic) |
|
|
|
for pose, img in zip(poses, imgs): |
|
framename = os.path.basename(pose)[:-4] |
|
extCam2World = np.loadtxt(pose) |
|
|
|
|
|
if np.isneginf(extCam2World).any(): |
|
continue |
|
img = cv2.imread(img) |
|
h, w, c = img.shape |
|
|
|
voxOriginWorld = extCam2World[:3, :3] @ voxOriginCam + extCam2World[:3, -1:] |
|
delta = np.array([[voxSize[0]/2*voxUnit], [voxSize[1]/2*voxUnit], [voxSize[2]/2*voxUnit]]) |
|
voxOriginWorld -= delta |
|
voxOriginWorld[2, 0] = height_belowfloor |
|
|
|
if os.path.exists(f"../completescannet/preprocessed/{name}.npy"): |
|
scene_voxels = load_voxels(f"../completescannet/preprocessed/{name}.npy") |
|
else: |
|
continue |
|
scene_voxels_delta = np.abs(scene_voxels[:, :3] - voxOriginWorld.reshape(-1)) |
|
mask = np.logical_and(scene_voxels_delta[:, 0] <=4.8, |
|
np.logical_and(scene_voxels_delta[:, 1] <= 4.8, |
|
scene_voxels_delta[:, 2] <= 4.8)) |
|
voxels = scene_voxels[mask] |
|
|
|
xs = np.arange(voxOriginWorld[0, 0], voxOriginWorld[0, 0] + 100*voxUnit, voxUnit)[:voxSize[0]] |
|
ys = np.arange(voxOriginWorld[1, 0], voxOriginWorld[1, 0] + 100*voxUnit, voxUnit)[:voxSize[1]] |
|
zs = np.arange(voxOriginWorld[2, 0], voxOriginWorld[2, 0] + 100*voxUnit, voxUnit)[:voxSize[2]] |
|
gridPtsWorldX, gridPtsWorldY, gridPtsWorldZ = np.meshgrid(xs, ys, zs) |
|
gridPtsWorld = np.stack([gridPtsWorldX.flatten(), |
|
gridPtsWorldY.flatten(), |
|
gridPtsWorldZ.flatten()], axis=1) |
|
|
|
gridPtsLabel = np.zeros((gridPtsWorld.shape[0])) |
|
|
|
if voxels.shape[0] <= 0: |
|
continue |
|
|
|
kdtree = KDTree(voxels[:, :3], leaf_size=10) |
|
dist, ind = kdtree.query(gridPtsWorld) |
|
dist, ind = dist.reshape(-1), ind.reshape(-1) |
|
mask = dist <= voxUnit |
|
gridPtsLabel[mask] = voxels[:, -1][ind[mask]] |
|
|
|
gridPtsWorld = np.hstack([gridPtsWorld, gridPtsLabel.reshape(-1, 1)]) |
|
|
|
g = gridPtsWorld[:, -1].reshape(voxSize[0], voxSize[1], voxSize[2]) |
|
g_not_0 = np.where(g > 0) |
|
if len(g_not_0) == 0: |
|
continue |
|
g_not_0_x = g_not_0[0] |
|
g_not_0_y = g_not_0[1] |
|
if len(g_not_0_x) == 0: |
|
continue |
|
if len(g_not_0_y) == 0: |
|
continue |
|
valid_x_min = g_not_0_x.min() |
|
valid_x_max = g_not_0_x.max() |
|
valid_y_min = g_not_0_y.min() |
|
valid_y_max = g_not_0_y.max() |
|
|
|
|
|
mask = np.zeros_like(g) |
|
if valid_x_min != valid_x_max and valid_y_min != valid_y_max: |
|
mask[valid_x_min:valid_x_max, valid_y_min:valid_y_max, :] = 1 |
|
mask = 1 - mask |
|
mask = mask.astype(np.bool_) |
|
g[mask] = 255 |
|
else: |
|
continue |
|
gridPtsWorld[:, -1] = g.reshape(-1) |
|
|
|
voxels_cam = (np.linalg.inv(extCam2World)[:3, :3] @ gridPtsWorld[:, :3].T \ |
|
+ np.linalg.inv(extCam2World)[:3, -1:]).T |
|
voxels_pix = (intrinsic[:3, :3] @ voxels_cam.T).T |
|
voxels_pix = voxels_pix / voxels_pix[:, -1:] |
|
mask = np.logical_and(voxels_pix[:, 0] >= 0, |
|
np.logical_and(voxels_pix[:, 0] < w, |
|
np.logical_and(voxels_pix[:, 1] >= 0, |
|
np.logical_and(voxels_pix[:, 1] < h, |
|
voxels_cam[:, 2] > 0)))) |
|
inroom = gridPtsWorld[:, -1] != 255 |
|
mask = np.logical_and(~mask, inroom) |
|
gridPtsWorld[mask, -1] = 0 |
|
|
|
|
|
os.makedirs(f'preprocessed_voxels/{name}', exist_ok=True) |
|
np.save(f'preprocessed_voxels/{name}/{framename}.npy', gridPtsWorld) |
|
|
|
|
|
|
|
|
|
def get_badposescene(): |
|
bad_scenes = [] |
|
scenenames = glob.glob(os.path.join('../completescannet/preprocessed', '*.npy')) |
|
scenenames = sorted(scenenames) |
|
for name in tqdm(scenenames): |
|
voxels = load_voxels(name) |
|
voxelrange = [voxels[:, 0].min(), |
|
voxels[:, 1].min(), |
|
voxels[:, 2].min(), |
|
voxels[:, 0].max(), |
|
voxels[:, 1].max(), |
|
voxels[:, 2].max(),] |
|
print('vox range: ', voxelrange) |
|
basename = os.path.basename(name)[:-4] |
|
|
|
npys = glob.glob(os.path.join('preprocessed_voxels', basename, '*.npy')) |
|
npys = sorted(npys) |
|
|
|
for npy in npys: |
|
jpg = os.path.basename(npy)[:-4]+'.txt' |
|
cam_pose_path = os.path.join('../scannet/posed_images', basename, jpg) |
|
cam_pose = np.loadtxt(cam_pose_path) |
|
cam_origin = (cam_pose[:3, :3] @ np.zeros((1, 3)).T + cam_pose[:3, -1:]).T |
|
print('cam_o: ', cam_origin) |
|
|
|
x, y, z = cam_origin[0] |
|
xmin, ymin, zmin, xmax, ymax, zmax = voxelrange |
|
zmax = 3.0 |
|
|
|
in_x = xmin < x < xmax |
|
in_y = ymin < y < ymax |
|
in_z = zmin < z < zmax |
|
|
|
valid = in_x & in_y & in_z |
|
|
|
if not valid: |
|
bad_scenes.append(npy) |
|
bad_scenes.append('\n') |
|
|
|
|
|
|
|
scene_path = os.path.join('preprocessed_voxels', name) |
|
npys = glob.glob(os.path.join(scene_path, '*.npy')) |
|
npys = sorted(npys) |
|
for vox in npys: |
|
voxels = np.load(vox) |
|
labels = voxels[:, -1].tolist() |
|
cnt = Counter(labels) |
|
total = 0 |
|
valid = 0 |
|
for i in cnt.keys(): |
|
total += cnt[i] |
|
if i != 0.0 and i != 255.0: |
|
valid += 1 |
|
outroom = cnt[255.0] |
|
empty = cnt[0.0] |
|
if valid < 2: |
|
bad_scenes.append(vox) |
|
continue |
|
|
|
if (outroom / total) > 0.95: |
|
bad_scenes.append(vox) |
|
continue |
|
|
|
if (empty / total) > 0.95: |
|
bad_scenes.append(vox) |
|
continue |
|
|
|
if ((empty + outroom) / total) > 0.95: |
|
bad_scenes.append(vox) |
|
continue |
|
with open('bad_scenes.txt', 'w') as f: |
|
f.writelines(bad_scenes) |
|
|
|
|
|
|
|
|
|
def gather_data(scene_list): |
|
|
|
|
|
|
|
scenes = os.listdir('preprocessed_voxels') |
|
scenes = set(sorted(scenes)) |
|
scenes = sorted(list(set(scene_list) & scenes)) |
|
|
|
for scene in scenes: |
|
scene_path = os.path.join('preprocessed_voxels', scene) |
|
scene_name = scene |
|
|
|
os.makedirs(os.path.join('gathered_data', scene_name), exist_ok=True) |
|
|
|
npys = glob.glob(os.path.join(scene_path, '*.npy')) |
|
npys = sorted(npys) |
|
|
|
for npy in npys: |
|
data = {} |
|
npy_name = os.path.basename(npy)[:-4] |
|
npy_path = npy |
|
|
|
img_path = os.path.join('../scannet/posed_images', scene_name, npy_name+'.jpg') |
|
img_path = os.path.abspath(img_path) |
|
depth_path = os.path.join('../scannet/posed_images', scene_name, npy_name+'.png') |
|
depth_path = os.path.abspath(depth_path) |
|
cam_pose_path = os.path.join('../scannet/posed_images', scene_name, npy_name+'.txt') |
|
cam_intrin_path = os.path.join('../scannet/posed_images', scene_name, 'intrinsic.txt') |
|
|
|
img = cv2.imread(img_path) |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
depth_img = Image.open(depth_path).convert('I;16') |
|
depth_img = np.array(depth_img) / 1000.0 |
|
data['img'] = img_path |
|
data['depth_gt'] = depth_path |
|
cam_pose = np.loadtxt(cam_pose_path) |
|
data['cam_pose'] = cam_pose |
|
intrinsic = np.loadtxt(cam_intrin_path) |
|
data['intrinsic'] = intrinsic |
|
|
|
target_1_4 = np.load(npy_path) |
|
data['target_1_4'] = target_1_4[:, -1].reshape(60, 60, 36) |
|
|
|
voxel_origin = target_1_4[:, 0].min(), target_1_4[:, 1].min(), target_1_4[:, 2].min() |
|
data['voxel_origin'] = voxel_origin |
|
|
|
target_1_16 = _downsample_label(target_1_4[:, -1].reshape(60, 60, 36), (60, 60, 36), 4) |
|
data['target_1_16'] = target_1_16 |
|
|
|
savepth = os.path.join('gathered_data', scene_name, npy_name+'.pkl') |
|
print(savepth) |
|
with open(savepth, "wb") as handle: |
|
import pickle |
|
pickle.dump(data, handle, protocol=pickle.HIGHEST_PROTOCOL) |
|
|
|
|
|
|
|
def generate_train_val_list(): |
|
with open('not_aligns.txt', 'r') as f: |
|
not_aligns = f.readlines() |
|
for i in range(len(not_aligns)): |
|
not_aligns[i] = not_aligns[i].strip() |
|
|
|
scan_names = os.listdir('gathered_data') |
|
start = len(scan_names) |
|
scan_names = list(set(scan_names) - set(not_aligns)) |
|
end = len(scan_names) |
|
|
|
used_scan_names = sorted(scan_names) |
|
used_scan_names.pop(-1) |
|
with open('used_scan_names.txt', 'w') as f: |
|
f.writelines('\n'.join(used_scan_names)) |
|
|
|
train_used_subscenes = [] |
|
val_used_subscenes = [] |
|
for s in used_scan_names: |
|
paths = glob.glob(os.path.join('gathered_data', s, '*.pkl')) |
|
paths = sorted(paths) |
|
np.random.seed(21) |
|
paths = np.random.permutation(paths) |
|
n_paths = len(paths) |
|
n_train = int(n_paths * 0.7) |
|
train_paths = paths[:n_train] |
|
val_paths = paths[n_train:] |
|
|
|
train_used_subscenes.extend(train_paths) |
|
val_used_subscenes.extend(val_paths) |
|
|
|
with open('train_subscenes.txt', 'w') as f: |
|
f.writelines('\n'.join(sorted(train_used_subscenes))) |
|
with open('val_subscenes.txt', 'w') as f: |
|
f.writelines('\n'.join(sorted(val_used_subscenes))) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Prepare for the ScanNetOcc Dataset.') |
|
parser.add_argument('--outpath', type=str, required=False, help='Output path of the generated GT labels.') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
scene_name_list = sorted(os.listdir('../scannet/posed_images')) |
|
|
|
|
|
|
|
failed_scene = [] |
|
|
|
|
|
scene_name_list = clear_posed_images(scene_name_list) |
|
print("===== Finish Step 1 =====") |
|
|
|
|
|
track_parallel_progress(generate_subvoxels, |
|
scene_name_list, |
|
nproc=12) |
|
print("===== Finish Step 2 =====") |
|
|
|
|
|
|
|
get_badposescene() |
|
with open('bad_scenes.txt', 'r') as f: |
|
bs = f.readlines() |
|
bs = [b.strip() for b in bs] |
|
bs = list(set(bs)) |
|
|
|
for s in bs: |
|
ss = s.replace('\n', '') |
|
print(ss, "to be removed") |
|
|
|
|
|
os.remove(ss) |
|
print("===== Finish Step 3 =====") |
|
|
|
|
|
gather_data(scene_name_list) |
|
print("===== Finish Step 4 =====") |
|
|
|
|
|
generate_train_val_list() |
|
print("===== Finish Step 5 =====") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|