OccScanNet / generate_gt.py
hongxiaoy's picture
Create generate_gt.py
d46080c verified
raw
history blame
16.1 kB
import argparse
from functools import partial
import os
from tqdm import tqdm
import glob
import numpy as np
import cv2
from sklearn.neighbors import KDTree
from collections import Counter
from PIL import Image
from mmengine import track_parallel_progress
def load_voxels(path):
"""Load voxel labels from file.
Args:
path (str): The path of the voxel labels file.
Returns:
ndarray: The voxel labels with shape (N, 4), 4 is for [x, y, z, label].
"""
labels = np.load(path)
if labels.shape[1] == 7:
labels = labels[:, [0, 1, 2, 6]]
return labels
def _downsample_label(label, voxel_size=(240, 144, 240), downscale=4):
r"""downsample the labeled data,
code taken from https://github.com/waterljwant/SSC/blob/master/dataloaders/dataloader.py#L262
Shape:
label, (240, 144, 240)
label_downscale, if downsample==4, then (60, 36, 60)
"""
if downscale == 1:
return label
ds = downscale
small_size = (
voxel_size[0] // ds,
voxel_size[1] // ds,
voxel_size[2] // ds,
) # small size
label_downscale = np.zeros(small_size, dtype=np.uint8)
empty_t = 0.95 * ds * ds * ds # threshold
s01 = small_size[0] * small_size[1]
label_i = np.zeros((ds, ds, ds), dtype=np.int32)
for i in range(small_size[0] * small_size[1] * small_size[2]):
z = int(i / s01)
y = int((i - z * s01) / small_size[0])
x = int(i - z * s01 - y * small_size[0])
label_i[:, :, :] = label[
x * ds : (x + 1) * ds, y * ds : (y + 1) * ds, z * ds : (z + 1) * ds
]
label_bin = label_i.flatten()
zero_count_0 = np.array(np.where(label_bin == 0)).size
zero_count_255 = np.array(np.where(label_bin == 255)).size
zero_count = zero_count_0 + zero_count_255
if zero_count > empty_t:
label_downscale[x, y, z] = 0 if zero_count_0 > zero_count_255 else 255
else:
label_i_s = label_bin[
np.where(np.logical_and(label_bin > 0, label_bin < 255))
]
label_downscale[x, y, z] = np.argmax(np.bincount(label_i_s))
return label_downscale
# 1. 从列表中删掉 pose 为 nan 的场景
def clear_posed_images(scene_list):
# 从 mmdet3d 处理得到的有问题场景sens列表
# TODO: how to generate wrong_scenes.txt?
with open('wrong_scenes.txt', 'r') as f:
wrongs = f.readlines()
# TODO: how to generate not_aligns.txt?
with open('not_aligns.txt', 'r') as f:
not_aligns = f.readlines()
# 清理为只有场景名称
wrongs = [w.split('/')[1] for w in wrongs]
wrongs = sorted(list(set(wrongs))) # 212 scenes
not_aligns = sorted([s.strip() for s in not_aligns])
# 除去这些场景的图片
scene_list = sorted(list(set(scene_list) - set(wrongs)))
scene_list = sorted(list(set(scene_list) - set(not_aligns)))
return scene_list
# 2. 生成子场景的体素标签
def generate_subvoxels(name):
# print(name)
# basic scene parameters
height_belowfloor = - 0.05
voxUnit = 0.08 # 0.05 m
voxSizeCam = np.array([60, 60, 60]) # 96 x 96 x 96 voxs x y z in cam coordinate
voxSize = np.array([60, 60, 36]) # 96 x 96 x 64 voxs x y z in world coordinate
voxRangeExtremesCam = np.stack([-voxSizeCam * voxUnit / 2.,
-voxSizeCam * voxUnit / 2. + voxSizeCam * voxUnit]).T
voxRangeExtremesCam[-1, 0] = 0
voxRangeExtremesCam[-1, 1] = 6.8
# voxel origin in cam coordinate x y z in cam coordinate
voxOriginCam = np.mean(voxRangeExtremesCam, axis=1, keepdims=True)
# for name in tqdm(scenes_name):
poses = glob.glob(os.path.join('../scannet/posed_images', name, '*.txt'))
poses = sorted(poses)
if len(poses) == 0:
return
imgs = glob.glob(os.path.join('../scannet/posed_images', name, '*.jpg'))
imgs = sorted(imgs)
intrinsic = poses.pop(-1)
intrinsic = np.loadtxt(intrinsic)
for pose, img in zip(poses, imgs):
framename = os.path.basename(pose)[:-4]
extCam2World = np.loadtxt(pose)
# if os.path.exists(f'preprocessed_voxels/{name}/{framename}.npy'):
# continue
if np.isneginf(extCam2World).any():
continue
img = cv2.imread(img)
h, w, c = img.shape
voxOriginWorld = extCam2World[:3, :3] @ voxOriginCam + extCam2World[:3, -1:]
delta = np.array([[voxSize[0]/2*voxUnit], [voxSize[1]/2*voxUnit], [voxSize[2]/2*voxUnit]])
voxOriginWorld -= delta
voxOriginWorld[2, 0] = height_belowfloor
if os.path.exists(f"../completescannet/preprocessed/{name}.npy"):
scene_voxels = load_voxels(f"../completescannet/preprocessed/{name}.npy")
else:
continue
scene_voxels_delta = np.abs(scene_voxels[:, :3] - voxOriginWorld.reshape(-1)) # TODO: abs? or 0<=x<=4.8
mask = np.logical_and(scene_voxels_delta[:, 0] <=4.8,
np.logical_and(scene_voxels_delta[:, 1] <= 4.8,
scene_voxels_delta[:, 2] <= 4.8))
voxels = scene_voxels[mask]
xs = np.arange(voxOriginWorld[0, 0], voxOriginWorld[0, 0] + 100*voxUnit, voxUnit)[:voxSize[0]]
ys = np.arange(voxOriginWorld[1, 0], voxOriginWorld[1, 0] + 100*voxUnit, voxUnit)[:voxSize[1]]
zs = np.arange(voxOriginWorld[2, 0], voxOriginWorld[2, 0] + 100*voxUnit, voxUnit)[:voxSize[2]]
gridPtsWorldX, gridPtsWorldY, gridPtsWorldZ = np.meshgrid(xs, ys, zs)
gridPtsWorld = np.stack([gridPtsWorldX.flatten(),
gridPtsWorldY.flatten(),
gridPtsWorldZ.flatten()], axis=1)
gridPtsLabel = np.zeros((gridPtsWorld.shape[0]))
if voxels.shape[0] <= 0:
continue
kdtree = KDTree(voxels[:, :3], leaf_size=10)
dist, ind = kdtree.query(gridPtsWorld)
dist, ind = dist.reshape(-1), ind.reshape(-1)
mask = dist <= voxUnit
gridPtsLabel[mask] = voxels[:, -1][ind[mask]]
gridPtsWorld = np.hstack([gridPtsWorld, gridPtsLabel.reshape(-1, 1)])
g = gridPtsWorld[:, -1].reshape(voxSize[0], voxSize[1], voxSize[2])
g_not_0 = np.where(g > 0)
if len(g_not_0) == 0:
continue
g_not_0_x = g_not_0[0]
g_not_0_y = g_not_0[1]
if len(g_not_0_x) == 0:
continue
if len(g_not_0_y) == 0:
continue
valid_x_min = g_not_0_x.min()
valid_x_max = g_not_0_x.max()
valid_y_min = g_not_0_y.min()
valid_y_max = g_not_0_y.max()
# print(valid_x_min, valid_x_max, valid_y_min, valid_y_max)
# print(valid_x_min, valid_x_max, valid_y_min, valid_y_max)
mask = np.zeros_like(g)
if valid_x_min != valid_x_max and valid_y_min != valid_y_max:
mask[valid_x_min:valid_x_max, valid_y_min:valid_y_max, :] = 1
mask = 1 - mask #
mask = mask.astype(np.bool_)
g[mask] = 255
else:
continue
gridPtsWorld[:, -1] = g.reshape(-1)
voxels_cam = (np.linalg.inv(extCam2World)[:3, :3] @ gridPtsWorld[:, :3].T \
+ np.linalg.inv(extCam2World)[:3, -1:]).T
voxels_pix = (intrinsic[:3, :3] @ voxels_cam.T).T
voxels_pix = voxels_pix / voxels_pix[:, -1:]
mask = np.logical_and(voxels_pix[:, 0] >= 0,
np.logical_and(voxels_pix[:, 0] < w,
np.logical_and(voxels_pix[:, 1] >= 0,
np.logical_and(voxels_pix[:, 1] < h,
voxels_cam[:, 2] > 0))))
inroom = gridPtsWorld[:, -1] != 255
mask = np.logical_and(~mask, inroom)
gridPtsWorld[mask, -1] = 0
os.makedirs(f'preprocessed_voxels/{name}', exist_ok=True)
np.save(f'preprocessed_voxels/{name}/{framename}.npy', gridPtsWorld)
# print("Save gt to", f'preprocessed_voxels/{name}/{framename}.npy')
# 3. 生成那些类别少于2, 有效语义体素数量少于5%的场景 和相机位姿还是有错误的那些场景
def get_badposescene():
bad_scenes = []
scenenames = glob.glob(os.path.join('../completescannet/preprocessed', '*.npy'))
scenenames = sorted(scenenames)
for name in tqdm(scenenames):
voxels = load_voxels(name)
voxelrange = [voxels[:, 0].min(),
voxels[:, 1].min(),
voxels[:, 2].min(),
voxels[:, 0].max(),
voxels[:, 1].max(),
voxels[:, 2].max(),]
print('vox range: ', voxelrange)
basename = os.path.basename(name)[:-4]
npys = glob.glob(os.path.join('preprocessed_voxels', basename, '*.npy'))
npys = sorted(npys)
for npy in npys:
jpg = os.path.basename(npy)[:-4]+'.txt'
cam_pose_path = os.path.join('../scannet/posed_images', basename, jpg)
cam_pose = np.loadtxt(cam_pose_path)
cam_origin = (cam_pose[:3, :3] @ np.zeros((1, 3)).T + cam_pose[:3, -1:]).T
print('cam_o: ', cam_origin)
x, y, z = cam_origin[0]
xmin, ymin, zmin, xmax, ymax, zmax = voxelrange
zmax = 3.0
in_x = xmin < x < xmax
in_y = ymin < y < ymax
in_z = zmin < z < zmax
valid = in_x & in_y & in_z
if not valid:
bad_scenes.append(npy)
bad_scenes.append('\n')
# with open('bad_scenes.txt', 'w') as f:
# f.writelines(bad_scenes)
# pprint(bad_scenes)
scene_path = os.path.join('preprocessed_voxels', name)
npys = glob.glob(os.path.join(scene_path, '*.npy'))
npys = sorted(npys)
for vox in npys:
voxels = np.load(vox)
labels = voxels[:, -1].tolist()
cnt = Counter(labels)
total = 0
valid = 0
for i in cnt.keys():
total += cnt[i]
if i != 0.0 and i != 255.0:
valid += 1
outroom = cnt[255.0]
empty = cnt[0.0]
if valid < 2:
bad_scenes.append(vox)
continue
if (outroom / total) > 0.95:
bad_scenes.append(vox)
continue
if (empty / total) > 0.95:
bad_scenes.append(vox)
continue
if ((empty + outroom) / total) > 0.95:
bad_scenes.append(vox)
continue
with open('bad_scenes.txt', 'w') as f:
f.writelines(bad_scenes)
# print(bad_scenes)
# 4. 整合数据
def gather_data(scene_list):
scenes = os.listdir('preprocessed_voxels')
scenes = set(sorted(scenes))
scenes = sorted(list(set(scene_list) & scenes))
for scene in scenes:
scene_path = os.path.join('preprocessed_voxels', scene)
scene_name = scene
os.makedirs(os.path.join('gathered_data', scene_name), exist_ok=True)
npys = glob.glob(os.path.join(scene_path, '*.npy'))
npys = sorted(npys)
for npy in npys:
data = {}
npy_name = os.path.basename(npy)[:-4]
npy_path = npy
img_path = os.path.join('../scannet/posed_images', scene_name, npy_name+'.jpg')
img_path = os.path.abspath(img_path)
depth_path = os.path.join('../scannet/posed_images', scene_name, npy_name+'.png')
depth_path = os.path.abspath(depth_path)
cam_pose_path = os.path.join('../scannet/posed_images', scene_name, npy_name+'.txt')
cam_intrin_path = os.path.join('../scannet/posed_images', scene_name, 'intrinsic.txt')
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
depth_img = Image.open(depth_path).convert('I;16')
depth_img = np.array(depth_img) / 1000.0
data['img'] = img_path
data['depth_gt'] = depth_path
cam_pose = np.loadtxt(cam_pose_path)
data['cam_pose'] = cam_pose
intrinsic = np.loadtxt(cam_intrin_path)
data['intrinsic'] = intrinsic
target_1_4 = np.load(npy_path)
data['target_1_4'] = target_1_4[:, -1].reshape(60, 60, 36)
voxel_origin = target_1_4[:, 0].min(), target_1_4[:, 1].min(), target_1_4[:, 2].min()
data['voxel_origin'] = voxel_origin
target_1_16 = _downsample_label(target_1_4[:, -1].reshape(60, 60, 36), (60, 60, 36), 4)
data['target_1_16'] = target_1_16
savepth = os.path.join('gathered_data', scene_name, npy_name+'.pkl')
print(savepth)
with open(savepth, "wb") as handle:
import pickle
pickle.dump(data, handle, protocol=pickle.HIGHEST_PROTOCOL)
# np.save(savepth, data)
def generate_train_val_list():
with open('not_aligns.txt', 'r') as f:
not_aligns = f.readlines()
for i in range(len(not_aligns)):
not_aligns[i] = not_aligns[i].strip()
scan_names = os.listdir('gathered_data')
start = len(scan_names)
scan_names = list(set(scan_names) - set(not_aligns))
end = len(scan_names)
used_scan_names = sorted(scan_names)
used_scan_names.pop(-1)
with open('used_scan_names.txt', 'w') as f:
f.writelines('\n'.join(used_scan_names))
train_used_subscenes = []
val_used_subscenes = []
for s in used_scan_names:
paths = glob.glob(os.path.join('gathered_data', s, '*.pkl'))
paths = sorted(paths)
np.random.seed(21)
paths = np.random.permutation(paths)
n_paths = len(paths)
n_train = int(n_paths * 0.7)
train_paths = paths[:n_train]
val_paths = paths[n_train:]
train_used_subscenes.extend(train_paths)
val_used_subscenes.extend(val_paths)
with open('train_subscenes.txt', 'w') as f:
f.writelines('\n'.join(sorted(train_used_subscenes)))
with open('val_subscenes.txt', 'w') as f:
f.writelines('\n'.join(sorted(val_used_subscenes)))
def parse_args():
parser = argparse.ArgumentParser(description='Prepare for the ScanNetOcc Dataset.')
parser.add_argument('--outpath', type=str, required=False, help='Output path of the generated GT labels.')
args = parser.parse_args()
return args
def main():
# args = parse_args()
# if not os.path.exists(args.outpath):
# os.makedirs(args.outpath, exist_ok=True)
scene_name_list = sorted(os.listdir('../scannet/posed_images'))
# scene_name_list = sorted(list(set(scene_name_list) - set(not_aligns)))
failed_scene = []
# Step 1:
scene_name_list = clear_posed_images(scene_name_list)
print("===== Finish Step 1 =====")
# Step 2:
track_parallel_progress(generate_subvoxels,
scene_name_list,
nproc=12)
print("===== Finish Step 2 =====")
# # Step 3:
# TODO: what is bad pose scene?
get_badposescene()
with open('bad_scenes.txt', 'r') as f:
bs = f.readlines()
bs = [b.strip() for b in bs]
bs = list(set(bs))
# TODO: Remove or not?
for s in bs:
ss = s.replace('\n', '')
print(ss, "to be removed")
# path = os.path.join(*ss)
# print(path)
os.remove(ss)
print("===== Finish Step 3 =====")
# Step 4:
gather_data(scene_name_list)
print("===== Finish Step 4 =====")
# Step 5:
generate_train_val_list()
print("===== Finish Step 5 =====")
if __name__ == "__main__":
main()