|
import os |
|
import numpy as np |
|
from plyfile import PlyData |
|
from tqdm import tqdm |
|
|
|
|
|
def preprocess(gt_path, save_path): |
|
"""Preprocess the CompleteScanNet dataset gt labels. |
|
|
|
Args: |
|
gt_path (str): Path to `CompleteScanNet_GT` directory. |
|
save_path (str): Path where the preprocessed gt labels to be saved. The preprocessed labels |
|
is a ndarray each with shape (N, 7), N is for voxels number, 7 is for [x, y, z, r, g, b, label]. |
|
""" |
|
os.makedirs(save_path, exist_ok=True) |
|
ply_paths = os.listdir(gt_path) |
|
for p in tqdm(ply_paths, desc="Preprocessing gt labels: ", colour='green'): |
|
pth = os.path.join(gt_path, p) |
|
|
|
ply_data = PlyData.read(pth) |
|
vertex = ply_data['vertex'] |
|
new_xs = np.array(vertex['z']) |
|
new_ys = np.array(vertex['x']) |
|
new_zs = np.array(vertex['y']) |
|
new_rs = np.array(vertex['red']) |
|
new_gs = np.array(vertex['green']) |
|
new_bs = np.array(vertex['blue']) |
|
new_labels = np.array(vertex['label']) |
|
voxels = np.stack([new_xs, new_ys, new_zs, new_rs, new_gs, new_bs, new_labels], axis=1) |
|
|
|
filename = os.path.join(save_path, p) |
|
filename = filename.replace('ply', 'npy') |
|
with open(filename, 'wb') as fp: |
|
np.save(fp, voxels) |
|
|
|
|
|
if __name__ == "__main__": |
|
gt = os.getenv["COMPLETE_SCANNET_GT_PATH"] |
|
preprocessed = os.getenv["COMPLETE_SCANNET_PREPROCESS_PATH"] |
|
preprocess(gt, preprocessed) |