code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union lowerCAmelCase_ = re.compile(r'''^(?P<major>\d+)''' r'''\.(?P<minor>\d+)''' r'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class __lowerCAmelCase : lowerCamelCase_ : str lowerCamelCase_ : Optional[str] = None lowerCamelCase_ : Optional[Union[str, int]] = None lowerCamelCase_ : Optional[Union[str, int]] = None lowerCamelCase_ : Optional[Union[str, int]] = None def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ , snake_case_ , snake_case_ : Dict = _str_to_version_tuple(self.version_str ) def __repr__(self ) -> Optional[Any]: '''simple docstring''' return F'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' return self.major, self.minor, self.patch def lowerCamelCase (self , __magic_name__ ) -> List[Any]: '''simple docstring''' if isinstance(__magic_name__ , __magic_name__ ): return Version(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): return other raise TypeError(F'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' ) def __eq__(self , __magic_name__ ) -> Any: '''simple docstring''' try: snake_case_ : Any = self._validate_operand(__magic_name__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__(self , __magic_name__ ) -> List[Any]: '''simple docstring''' snake_case_ : int = self._validate_operand(__magic_name__ ) return self.tuple < other.tuple def __hash__(self ) -> Dict: '''simple docstring''' return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowerCamelCase (cls , __magic_name__ ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowerCamelCase (self ) -> str: '''simple docstring''' return self.version_str def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : Tuple = _VERSION_REG.match(_UpperCamelCase ) if not res: raise ValueError(f'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_UpperCamelCase ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" return ".".join(str(_UpperCamelCase ) for v in version_tuple )
60
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase__ : Optional[int] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def __A ( a_ : Dict )-> str: '''simple docstring''' config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __A ( a_ : Dict )-> Tuple: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_ ) def __A ( a_ : Union[str, Any] )-> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE : List[str] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(a_ , id=a_ ) def __A ( a_ : Dict , a_ : List[str] )-> Dict: '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE : List[str] = 0 # Doctest custom flag to ignore output. lowerCamelCase__ : Tuple = doctest.register_optionflag("IGNORE_RESULT") lowerCamelCase__ : Optional[int] = doctest.OutputChecker class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] ) -> Dict: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : str = CustomOutputChecker lowerCamelCase__ : Any = HfDoctestModule lowerCamelCase__ : int = HfDocTestParser
698
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def _A ( lowerCAmelCase_ : Any ): """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowerCAmelCase__ = k.replace(lowerCAmelCase_ , lowerCAmelCase_ ) if k.startswith("encoder" ): lowerCAmelCase__ = k.replace(".attn" , ".self_attn" ) lowerCAmelCase__ = k.replace("norm1" , "self_attn_layer_norm" ) lowerCAmelCase__ = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): lowerCAmelCase__ = k.replace("norm1" , "self_attn_layer_norm" ) lowerCAmelCase__ = k.replace("norm2" , "encoder_attn_layer_norm" ) lowerCAmelCase__ = k.replace("norm3" , "final_layer_norm" ) return k def _A ( lowerCAmelCase_ : str ): """simple docstring""" lowerCAmelCase__ = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: lowerCAmelCase__ = sd.pop(lowerCAmelCase_ ) lowerCAmelCase__ = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd lowerCAmelCase__ = v UpperCamelCase = ['START'] @torch.no_grad() def _A ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = torch.load(lowerCAmelCase_ , map_location="cpu" ) lowerCAmelCase__ = model["model"] lowerCAmelCase__ = BlenderbotConfig.from_json_file(lowerCAmelCase_ ) lowerCAmelCase__ = BlenderbotForConditionalGeneration(lowerCAmelCase_ ) lowerCAmelCase__ = m.model.state_dict().keys() lowerCAmelCase__ = [] lowerCAmelCase__ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowerCAmelCase__ = rename_state_dict_key(lowerCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowerCAmelCase__ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(lowerCAmelCase_ ) m.model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) m.half() m.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
61
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase__: '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple=13 , lowerCamelCase_ :List[str]=7 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :str=99 , lowerCamelCase_ :Optional[Any]=32 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :int=4 , lowerCamelCase_ :Optional[Any]=37 , lowerCamelCase_ :Any="gelu" , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Optional[int]=5_12 , lowerCamelCase_ :str=16 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :List[str]=0.0_2 , lowerCamelCase_ :int=3 , lowerCamelCase_ :List[Any]=4 , lowerCamelCase_ :Optional[Any]=None , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : str = 13 SCREAMING_SNAKE_CASE : str = 7 SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Any = 99 SCREAMING_SNAKE_CASE : Dict = 3_84 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Any = 37 SCREAMING_SNAKE_CASE : List[str] = '''gelu''' SCREAMING_SNAKE_CASE : List[str] = 0.1 SCREAMING_SNAKE_CASE : int = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = 5_12 SCREAMING_SNAKE_CASE : int = 16 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Tuple = 0.0_2 SCREAMING_SNAKE_CASE : List[str] = 3 SCREAMING_SNAKE_CASE : Union[str, Any] = 4 SCREAMING_SNAKE_CASE : str = 1_28 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = 9 SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : List[str] = None def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[str] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : Dict = [input_ids, input_mask] SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertForMaskedLM(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : Dict = TFConvBertForSequenceClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.num_choices SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertForMultipleChoice(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForTokenClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = TFConvBertForQuestionAnswering(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self :Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Tuple = True if hasattr(lowerCamelCase_ , '''use_cache''' ): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : str = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = len(model(lowerCamelCase_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = os.path.join(lowerCamelCase_ , '''saved_model''' , '''1''' ) SCREAMING_SNAKE_CASE : Tuple = tf.keras.models.load_model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Optional[int] = outputs['''encoder_hidden_states'''] SCREAMING_SNAKE_CASE : str = outputs['''encoder_attentions'''] else: SCREAMING_SNAKE_CASE : List[str] = outputs['''hidden_states'''] SCREAMING_SNAKE_CASE : List[Any] = outputs['''attentions'''] self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self :Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) def check_decoder_attentions_output(lowerCamelCase_ :Optional[Any] ): SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(out_len % 2 , 0 ) SCREAMING_SNAKE_CASE : int = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowerCamelCase_ :Optional[int] ): SCREAMING_SNAKE_CASE : List[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_decoder_attentions_output(lowerCamelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase_ ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) @require_tf class lowercase__( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self :int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) SCREAMING_SNAKE_CASE : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Optional[Any] = [1, 6, 7_68] self.assertEqual(output.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 )
698
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Union[str, Any]=37 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[Any]=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Tuple=0.6 , UpperCAmelCase_ : Optional[Any]=None , ): SCREAMING_SNAKE_CASE : Optional[int] = parent SCREAMING_SNAKE_CASE : str = batch_size SCREAMING_SNAKE_CASE : List[str] = image_size SCREAMING_SNAKE_CASE : List[Any] = patch_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Dict = is_training SCREAMING_SNAKE_CASE : Dict = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = mask_ratio SCREAMING_SNAKE_CASE : Optional[int] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE : str = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE : Optional[int] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _A ( self : Any ): SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_config() return config, pixel_values, labels def _A ( self : List[str] ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : str = ViTMAEModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE : Any = ViTMAEForPreTraining(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = (self.image_size // self.patch_size) ** 2 SCREAMING_SNAKE_CASE : Tuple = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : Optional[int] = ViTMAEForPreTraining(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = model(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () UpperCamelCase_ : Union[str, Any] = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} UpperCamelCase_ : Dict = False UpperCamelCase_ : Tuple = False UpperCamelCase_ : Tuple = False UpperCamelCase_ : int = False def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : int = ViTMAEModelTester(self ) SCREAMING_SNAKE_CASE : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def _A ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _A ( self : Optional[Any] ): pass def _A ( self : str ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Tuple = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def _A ( self : Any ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_ ) def _A ( self : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] ): # make masks reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) SCREAMING_SNAKE_CASE : Optional[int] = torch.from_numpy(UpperCAmelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument SCREAMING_SNAKE_CASE : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : List[Any] = outputs[0].cpu().numpy() SCREAMING_SNAKE_CASE : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model_class.from_pretrained(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Make sure we don't have nans SCREAMING_SNAKE_CASE : List[Any] = after_outputs[0].cpu().numpy() SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : Dict = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCAmelCase_ , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _A ( self : Tuple ): pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _A ( self : Tuple ): pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _A ( self : Optional[Any] ): pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _A ( self : List[str] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _A ( self : str ): pass @slow def _A ( self : Optional[Any] ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[int] = ViTMAEModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _A ( self : Dict ): return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _A ( self : int ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) SCREAMING_SNAKE_CASE : Union[str, Any] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE : int = image_processor(images=UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) SCREAMING_SNAKE_CASE : Tuple = ViTMAEConfig() SCREAMING_SNAKE_CASE : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE : Optional[int] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) ) # verify the logits SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_ ) , atol=1E-4 ) )
62
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """bert""" def __init__( self :Any , lowerCamelCase_ :List[Any]=3_05_22 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :int=5_12 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :int="absolute" , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :List[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
698
0
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 a : Optional[Any] = 0B1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 a : int = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class a : """simple docstring""" def __init__( self : int ) -> Optional[Any]: __UpperCAmelCase : Tuple = WATERMARK_BITS __UpperCAmelCase : Tuple = WatermarkEncoder() self.encoder.set_watermark("""bits""" , self.watermark ) def UpperCAmelCase ( self : Dict , __lowercase : torch.FloatTensor ) -> Optional[Any]: # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images __UpperCAmelCase : Tuple = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __UpperCAmelCase : Tuple = [self.encoder.encode(__lowercase , """dwtDct""" ) for image in images] __UpperCAmelCase : int = torch.from_numpy(np.array(__lowercase ) ).permute(0 , 3 , 1 , 2 ) __UpperCAmelCase : Optional[Any] = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
63
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : str = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """luke""" def __init__( self :List[Any] , lowerCamelCase_ :Optional[int]=5_02_67 , lowerCamelCase_ :List[Any]=50_00_00 , lowerCamelCase_ :str=7_68 , lowerCamelCase_ :Optional[Any]=2_56 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :Any=30_72 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int=None , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :str=0 , lowerCamelCase_ :int=2 , **lowerCamelCase_ :List[str] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = entity_vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Dict = entity_emb_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = use_entity_aware_attention SCREAMING_SNAKE_CASE : str = classifier_dropout
698
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowercase_ : Tuple = 'pt' elif is_tf_available(): lowercase_ : int = 'tf' else: lowercase_ : Optional[int] = 'jax' class _lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ): __a = PerceiverTokenizer __a = False def UpperCamelCase_ ( self ) -> Optional[Any]: super().setUp() SCREAMING_SNAKE_CASE__: str= PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self ) -> int: return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def UpperCamelCase_ ( self , **lowerCAmelCase ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=20 , lowerCAmelCase=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE__: Dict= [] for i in range(len(lowerCAmelCase ) ): try: SCREAMING_SNAKE_CASE__: str= tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE__: Optional[Any]= list(filter(lambda lowerCAmelCase : re.match(r'''^[ a-zA-Z]+$''' , t[1] ) , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__: Optional[int]= list(filter(lambda lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCAmelCase ) , lowerCAmelCase ) ) if max_length is not None and len(lowerCAmelCase ) > max_length: SCREAMING_SNAKE_CASE__: List[Any]= toks[:max_length] if min_length is not None and len(lowerCAmelCase ) < min_length and len(lowerCAmelCase ) > 0: while len(lowerCAmelCase ) < min_length: SCREAMING_SNAKE_CASE__: str= toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE__: Any= [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE__: List[Any]= tokenizer.decode(lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase ) if " " not in output_txt and len(lowerCAmelCase ) > 1: SCREAMING_SNAKE_CASE__: Union[str, Any]= ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase ) ) if with_prefix_space: SCREAMING_SNAKE_CASE__: Optional[Any]= ''' ''' + output_txt SCREAMING_SNAKE_CASE__: str= tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) return output_txt, output_ids def UpperCamelCase_ ( self ) -> List[str]: SCREAMING_SNAKE_CASE__: Union[str, Any]= self.perceiver_tokenizer SCREAMING_SNAKE_CASE__: int= '''Unicode €.''' SCREAMING_SNAKE_CASE__: Dict= tokenizer(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , lowerCAmelCase ) # decoding SCREAMING_SNAKE_CASE__: int= tokenizer.decode(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , '''[CLS]Unicode €.[SEP]''' ) SCREAMING_SNAKE_CASE__: Union[str, Any]= tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE__: str= [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , lowerCAmelCase ) # decoding SCREAMING_SNAKE_CASE__: str= tokenizer.decode(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def UpperCamelCase_ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Dict= self.perceiver_tokenizer SCREAMING_SNAKE_CASE__: Optional[int]= ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE__: str= [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on SCREAMING_SNAKE_CASE__: Any= tokenizer(lowerCAmelCase , padding=lowerCAmelCase , return_tensors=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE__: List[str]= list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE__: Union[str, Any]= list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def UpperCamelCase_ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Dict= self.perceiver_tokenizer SCREAMING_SNAKE_CASE__: str= ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE__: Any= tokenizer(lowerCAmelCase , padding=lowerCAmelCase , return_tensors=lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowerCAmelCase ) self.assertIn('''attention_mask''' , lowerCAmelCase ) self.assertNotIn('''decoder_input_ids''' , lowerCAmelCase ) self.assertNotIn('''decoder_attention_mask''' , lowerCAmelCase ) def UpperCamelCase_ ( self ) -> List[str]: SCREAMING_SNAKE_CASE__: Any= self.perceiver_tokenizer SCREAMING_SNAKE_CASE__: Dict= [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE__: List[str]= tokenizer( text_target=lowerCAmelCase , max_length=32 , padding='''max_length''' , truncation=lowerCAmelCase , return_tensors=lowerCAmelCase ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def UpperCamelCase_ ( self ) -> Tuple: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE__: Tuple= self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE__: Any= self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE__: Dict= tempfile.mkdtemp() SCREAMING_SNAKE_CASE__: int= ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__: str= tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) tokenizer.save_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Union[str, Any]= tokenizer.__class__.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Any= after_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) shutil.rmtree(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[int]= self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE__: List[str]= tempfile.mkdtemp() SCREAMING_SNAKE_CASE__: List[Any]= ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE__: str= tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE__: List[Any]= tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) tokenizer.save_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= tokenizer.__class__.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[int]= after_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE__: Dict= tokenizer.__class__.from_pretrained(lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Optional[int]= [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE__: Optional[int]= json.load(lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE__: List[Any]= json.load(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= [f'<extra_id_{i}>' for i in range(125 )] SCREAMING_SNAKE_CASE__: Dict= added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE__: List[str]= added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowerCAmelCase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase , lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase , lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE__: Optional[Any]= tokenizer_class.from_pretrained( lowerCAmelCase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE__: Optional[int]= added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowerCAmelCase )] SCREAMING_SNAKE_CASE__: int= tokenizer_class.from_pretrained( lowerCAmelCase , additional_special_tokens=lowerCAmelCase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def UpperCamelCase_ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Union[str, Any]= self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def UpperCamelCase_ ( self ) -> Optional[int]: pass def UpperCamelCase_ ( self ) -> Union[str, Any]: pass def UpperCamelCase_ ( self ) -> Any: pass def UpperCamelCase_ ( self ) -> Optional[Any]: pass def UpperCamelCase_ ( self ) -> str: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens SCREAMING_SNAKE_CASE__: List[str]= self.get_tokenizers(fast=lowerCAmelCase , do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): SCREAMING_SNAKE_CASE__: List[Any]= ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] SCREAMING_SNAKE_CASE__: Dict= tokenizer.convert_tokens_to_string(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase )
64
"""simple docstring""" # using dfs for finding eulerian path traversal def __A ( a_ : Dict , a_ : int , a_ : str , a_ : Optional[Any]=None )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = True, True SCREAMING_SNAKE_CASE : List[str] = dfs(a_ , a_ , a_ , a_ ) return path def __A ( a_ : List[str] , a_ : Any )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = -1 for i in range(a_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 SCREAMING_SNAKE_CASE : Tuple = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __A ( a_ : Any , a_ : int )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = check_circuit_or_path(a_ , a_ ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return SCREAMING_SNAKE_CASE : Tuple = 1 if check == 2: SCREAMING_SNAKE_CASE : Optional[int] = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) SCREAMING_SNAKE_CASE : Optional[int] = dfs(a_ , a_ , a_ ) print(a_ ) def __A ( )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} SCREAMING_SNAKE_CASE : int = {1: [2, 3], 2: [1, 3], 3: [1, 2]} SCREAMING_SNAKE_CASE : int = { 1: [], 2: [] # all degree is zero } SCREAMING_SNAKE_CASE : List[str] = 10 check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) if __name__ == "__main__": main()
698
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __lowercase ( __lowerCamelCase ): def __init__( self : List[str] ,*A : Union[str, Any] ,**A : Tuple ): '''simple docstring''' warnings.warn( """The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DPTImageProcessor instead.""" ,A ,) super().__init__(*A ,**A )
65
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase__ : List[str] = 250004 lowerCamelCase__ : str = 250020 @require_sentencepiece @require_tokenizers class lowercase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MBartaaTokenizer UpperCamelCase = MBartaaTokenizerFast UpperCamelCase = True UpperCamelCase = True def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[int] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = '''<s>''' SCREAMING_SNAKE_CASE : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_54 ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __lowerCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE : str = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = tokenizer_r.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE : Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : int = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): '''simple docstring''' UpperCamelCase = """facebook/mbart-large-50-one-to-many-mmt""" UpperCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCamelCase = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def __lowerCAmelCase ( cls :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) SCREAMING_SNAKE_CASE : Dict = 1 return cls def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def __lowerCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE : int = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[0] , lowerCamelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> List[str]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ ) @require_torch def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Dict = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __lowerCAmelCase ( self :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : List[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : List[Any] = targets['''input_ids'''] SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(lowerCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
698
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
66
"""simple docstring""" from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __lowerCAmelCase ( self :Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._create_example_records() SCREAMING_SNAKE_CASE : List[Any] = Dataset.from_list(lowerCamelCase_ ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(lowerCamelCase_ ): self.assertDictEqual(lowerCamelCase_ , example_records[i] ) def __lowerCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self._create_example_records() SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def __lowerCAmelCase ( self :List[str] ) -> Dict: # checks what happens with missing columns '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: # checks if the type can be inferred from the second record '''simple docstring''' SCREAMING_SNAKE_CASE : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE : List[str] = Dataset.from_list(lowerCamelCase_ ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = Dataset.from_list([] ) self.assertEqual(len(lowerCamelCase_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
698
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = RobertaTokenizer SCREAMING_SNAKE_CASE_ : Union[str, Any] = RobertaTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Any = {'''cls_token''': '''<s>'''} def __UpperCAmelCase ( self : List[Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _lowercase = dict(zip(__A ,range(len(__A ) ) ) ) _lowercase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowercase = {'unk_token': '<unk>'} _lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(__A ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(__A ) ) def __UpperCAmelCase ( self : List[str] ,**__A : List[Any] ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**__A ) def __UpperCAmelCase ( self : Union[str, Any] ,**__A : Any ) -> str: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname ,**__A ) def __UpperCAmelCase ( self : str ,__A : List[str] ) -> List[Any]: _lowercase = 'lower newer' _lowercase = 'lower newer' return input_text, output_text def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: _lowercase = self.tokenizer_class(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _lowercase = 'lower newer' _lowercase = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowercase = tokenizer.tokenize(__A ) # , add_prefix_space=True) self.assertListEqual(__A ,__A ) _lowercase = tokens + [tokenizer.unk_token] _lowercase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) ,__A ) def __UpperCAmelCase ( self : Dict ) -> Optional[int]: _lowercase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' ,add_special_tokens=__A ) ,[0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' ,add_special_tokens=__A ) ,[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] ,) @slow def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: _lowercase = self.tokenizer_class.from_pretrained('roberta-base' ) _lowercase = tokenizer.encode('sequence builders' ,add_special_tokens=__A ) _lowercase = tokenizer.encode('multi-sequence build' ,add_special_tokens=__A ) _lowercase = tokenizer.encode( 'sequence builders' ,add_special_tokens=__A ,add_prefix_space=__A ) _lowercase = tokenizer.encode( 'sequence builders' ,'multi-sequence build' ,add_special_tokens=__A ,add_prefix_space=__A ) _lowercase = tokenizer.build_inputs_with_special_tokens(__A ) _lowercase = tokenizer.build_inputs_with_special_tokens(__A ,__A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: _lowercase = self.get_tokenizer() _lowercase = 'Encode this sequence.' _lowercase = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments _lowercase = tokenizer.encode(__A ,add_special_tokens=__A ,add_prefix_space=__A ) _lowercase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__A ,__A ) _lowercase = tokenizer.encode(__A ,add_special_tokens=__A ,add_prefix_space=__A ) _lowercase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__A ,__A ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _lowercase = tokenizer.encode(__A ,add_special_tokens=__A ) _lowercase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__A ,__A ) # Testing spaces after special tokens _lowercase = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(__A ,lstrip=__A ,rstrip=__A )} ) # mask token has a left space _lowercase = tokenizer.convert_tokens_to_ids(__A ) _lowercase = 'Encode <mask> sequence' _lowercase = 'Encode <mask>sequence' _lowercase = tokenizer.encode(__A ) _lowercase = encoded.index(__A ) _lowercase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__A ,__A ) _lowercase = tokenizer.encode(__A ) _lowercase = encoded.index(__A ) _lowercase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__A ,__A ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: pass def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase = self.rust_tokenizer_class.from_pretrained(__A ,**__A ) _lowercase = self.tokenizer_class.from_pretrained(__A ,**__A ) _lowercase = 'A, <mask> AllenNLP sentence.' _lowercase = tokenizer_r.encode_plus(__A ,add_special_tokens=__A ,return_token_type_ids=__A ) _lowercase = tokenizer_p.encode_plus(__A ,add_special_tokens=__A ,return_token_type_ids=__A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) ,sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) ,sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) ,) _lowercase = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _lowercase = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] ,[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] ,[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __A ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( __A ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def __UpperCAmelCase ( self : int ) -> Any: for trim_offsets, add_prefix_space in itertools.product([True, False] ,repeat=2 ): _lowercase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A ) _lowercase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _lowercase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] ,__A ) self.assertEqual(post_processor_state['add_prefix_space'] ,__A ) self.assertEqual(post_processor_state['trim_offsets'] ,__A ) def __UpperCAmelCase ( self : List[str] ) -> List[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _lowercase = F"""{text_of_1_token} {text_of_1_token}""" _lowercase = self.rust_tokenizer_class.from_pretrained( __A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A ) _lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__A ) + 1, len(__A ) + 1 + len(__A )) ,) _lowercase = self.rust_tokenizer_class.from_pretrained( __A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A ) _lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__A ) + 1, len(__A ) + 1 + len(__A )) ,) _lowercase = self.rust_tokenizer_class.from_pretrained( __A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A ) _lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__A ), len(__A ) + 1 + len(__A )) ,) _lowercase = self.rust_tokenizer_class.from_pretrained( __A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A ) _lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__A ), len(__A ) + 1 + len(__A )) ,) _lowercase = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowercase = self.rust_tokenizer_class.from_pretrained( __A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A ) _lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(__A ) + 1, 1 + len(__A ) + 1 + len(__A )) ,) _lowercase = self.rust_tokenizer_class.from_pretrained( __A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A ) _lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(__A ), 1 + len(__A ) + 1 + len(__A )) ,) _lowercase = self.rust_tokenizer_class.from_pretrained( __A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A ) _lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(__A ), 1 + len(__A ) + 1 + len(__A )) ,)
67
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def __A ( a_ : Callable[[int | float], int | float] , a_ : int | float , a_ : int | float , a_ : int = 1_00 , )-> float: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = x_start SCREAMING_SNAKE_CASE : Union[str, Any] = fnc(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = 0.0 for _ in range(a_ ): # Approximates curve as a sequence of linear lines and sums their length SCREAMING_SNAKE_CASE : int = (x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE : Optional[int] = fnc(a_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step SCREAMING_SNAKE_CASE : str = xa SCREAMING_SNAKE_CASE : Any = fxa return length if __name__ == "__main__": def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") lowerCamelCase__ : str = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
698
0
def lowercase__ ( A_: int ) -> int: """simple docstring""" if not isinstance(A_ , A_ ): raise TypeError("""only integers accepted as input""" ) else: __UpperCAmelCase =str(abs(A_ ) ) __UpperCAmelCase =[list(A_ ) for char in range(len(A_ ) )] for index in range(len(A_ ) ): num_transpositions[index].pop(A_ ) return max( int("""""".join(list(A_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
68
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __A ( a_ : int=None )-> Tuple: '''simple docstring''' if subparsers is not None: SCREAMING_SNAKE_CASE : List[str] = subparsers.add_parser('''test''' ) else: SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=a_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=a_ ) return parser def __A ( a_ : Any )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: SCREAMING_SNAKE_CASE : Tuple = script_name else: SCREAMING_SNAKE_CASE : Optional[Any] = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE : str = ['''accelerate-launch'''] + test_args.split() SCREAMING_SNAKE_CASE : List[str] = execute_subprocess_async(a_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __A ( )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : str = test_command_parser() SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() test_command(a_ ) if __name__ == "__main__": main()
698
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[Any] = logging.get_logger(__name__) a : List[str] = {} class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """llama""" __SCREAMING_SNAKE_CASE = ["""past_key_values"""] def __init__( self : Optional[int] , a_ : str=32_000 , a_ : Any=4_096 , a_ : List[Any]=11_008 , a_ : List[str]=32 , a_ : Any=32 , a_ : str=None , a_ : str="silu" , a_ : Optional[int]=2_048 , a_ : Optional[Any]=0.02 , a_ : int=1e-6 , a_ : Any=True , a_ : List[Any]=0 , a_ : int=1 , a_ : List[Any]=2 , a_ : List[Any]=1 , a_ : Union[str, Any]=False , a_ : Optional[int]=None , **a_ : Optional[int] , ): """simple docstring""" __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = hidden_size __snake_case = intermediate_size __snake_case = num_hidden_layers __snake_case = num_attention_heads # for backward compatibility if num_key_value_heads is None: __snake_case = num_attention_heads __snake_case = num_key_value_heads __snake_case = hidden_act __snake_case = initializer_range __snake_case = rms_norm_eps __snake_case = pretraining_tp __snake_case = use_cache __snake_case = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , tie_word_embeddings=a_ , **a_ , ) def A ( self : List[str] ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , a_ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f'''got {self.rope_scaling}''' ) __snake_case = self.rope_scaling.get("type" , a_ ) __snake_case = self.rope_scaling.get("factor" , a_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(a_ , a_ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
69
"""simple docstring""" def __A ( a_ : int = 10 , a_ : int = 10_00 , a_ : bool = True )-> int: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def __A ( a_ : int , a_ : int )-> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def __A ( a_ : int , a_ : int , a_ : int )-> None: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(a_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = lower SCREAMING_SNAKE_CASE : int = higher SCREAMING_SNAKE_CASE : List[str] = [] while True: SCREAMING_SNAKE_CASE : Any = get_avg(a_ , a_ ) last_numbers.append(a_ ) if answer(a_ ) == "low": SCREAMING_SNAKE_CASE : Dict = number elif answer(a_ ) == "high": SCREAMING_SNAKE_CASE : Tuple = number else: break print(F"guess the number : {last_numbers[-1]}" ) print(F"details : {last_numbers!s}" ) def __A ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = int(input('''Enter lower value : ''' ).strip() ) SCREAMING_SNAKE_CASE : Tuple = int(input('''Enter high value : ''' ).strip() ) SCREAMING_SNAKE_CASE : List[str] = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(a_ , a_ , a_ ) if __name__ == "__main__": main()
698
0
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class A: '''simple docstring''' UpperCamelCase = BlenderbotConfig UpperCamelCase = {} UpperCamelCase = '''gelu''' def __init__( self : Optional[Any] , A_ : int , A_ : Optional[int]=13 , A_ : List[str]=7 , A_ : List[str]=True , A_ : List[Any]=False , A_ : str=99 , A_ : str=32 , A_ : Optional[int]=2 , A_ : Union[str, Any]=4 , A_ : Union[str, Any]=37 , A_ : Tuple=0.1 , A_ : Any=0.1 , A_ : Any=20 , A_ : Optional[Any]=2 , A_ : Optional[Any]=1 , A_ : str=0 , ) -> Dict: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = eos_token_id lowerCamelCase_ = pad_token_id lowerCamelCase_ = bos_token_id def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase_ = prepare_blenderbot_inputs_dict(A_ , A_ , A_ ) return config, inputs_dict def a__ ( self : Optional[Any] , A_ : Union[str, Any] , A_ : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFBlenderbotModel(config=A_ ).get_decoder() lowerCamelCase_ = inputs_dict['input_ids'] lowerCamelCase_ = input_ids[:1, :] lowerCamelCase_ = inputs_dict['attention_mask'][:1, :] lowerCamelCase_ = inputs_dict['head_mask'] lowerCamelCase_ = 1 # first forward pass lowerCamelCase_ = model(A_ , attention_mask=A_ , head_mask=A_ , use_cache=A_ ) lowerCamelCase_ , lowerCamelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase_ = model(A_ , attention_mask=A_ )[0] lowerCamelCase_ = model(A_ , attention_mask=A_ , past_key_values=A_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A_ , A_ , rtol=1E-3 ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : List[Any] , lowercase : Union[str, Any] , lowercase : List[str]=None , lowercase : Any=None , lowercase : List[str]=None , lowercase : Tuple=None , lowercase : List[Any]=None , ): '''simple docstring''' if attention_mask is None: lowerCamelCase_ = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () UpperCamelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () UpperCamelCase = ( { '''conversational''': TFBlenderbotForConditionalGeneration, '''feature-extraction''': TFBlenderbotModel, '''summarization''': TFBlenderbotForConditionalGeneration, '''text2text-generation''': TFBlenderbotForConditionalGeneration, '''translation''': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFBlenderbotModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A_ ) @require_tokenizers @require_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = ['''My friends are cool but they eat too many carbs.'''] UpperCamelCase = '''facebook/blenderbot-400M-distill''' @cached_property def a__ ( self : Tuple ) -> List[str]: """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def a__ ( self : Dict ) -> Any: """simple docstring""" lowerCamelCase_ = self.tokenizer(self.src_text , return_tensors='tf' ) lowerCamelCase_ = self.model.generate( model_inputs.input_ids , ) lowerCamelCase_ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
70
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowerCamelCase__ : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __A ( a_ : Optional[int] , a_ : str , a_ : str , a_ : str , a_ : List[str] )-> Tuple: '''simple docstring''' for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE : Any = getattr(a_ , a_ ) if weight_type is not None: SCREAMING_SNAKE_CASE : Optional[int] = getattr(a_ , a_ ).shape else: SCREAMING_SNAKE_CASE : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : List[Any] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Any = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : List[Any] = value else: SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __A ( a_ : Optional[Any] , a_ : Dict )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Optional[Any] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : Tuple = hf_model.feature_extractor SCREAMING_SNAKE_CASE : Tuple = hf_model.adapter for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : int = False if "conv_layers" in name: load_conv_layer( a_ , a_ , a_ , a_ , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE : List[str] = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(a_ , a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE : Union[str, Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Dict = name.split(a_ )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE : Optional[int] = mapped_key.replace('''*''' , a_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE : List[str] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE : str = '''bias''' elif "weight" in name: SCREAMING_SNAKE_CASE : Tuple = '''weight''' else: SCREAMING_SNAKE_CASE : str = None set_recursively(a_ , a_ , a_ , a_ , a_ ) continue if not is_used: unused_weights.append(a_ ) logger.warning(F"Unused weights: {unused_weights}" ) def __A ( a_ : Dict , a_ : int , a_ : Optional[int] , a_ : Optional[int] , a_ : Dict )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE : List[str] = name.split('''.''' ) SCREAMING_SNAKE_CASE : Dict = int(items[0] ) SCREAMING_SNAKE_CASE : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[int] , a_ : Optional[int] , a_ : Any , a_ : Any )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = full_name.split('''adaptor.''' )[-1] SCREAMING_SNAKE_CASE : List[Any] = name.split('''.''' ) if items[1].isdigit(): SCREAMING_SNAKE_CASE : List[Any] = int(items[1] ) else: SCREAMING_SNAKE_CASE : str = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." SCREAMING_SNAKE_CASE : Optional[Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." SCREAMING_SNAKE_CASE : int = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(a_ , a_ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = emb.weight.shape SCREAMING_SNAKE_CASE : Any = nn.Linear(a_ , a_ , bias=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = emb.weight.data return lin_layer @torch.no_grad() def __A ( a_ : Tuple , a_ : Optional[int] , a_ : List[Any] , a_ : Any , a_ : Tuple , a_ : int , a_ : Any , a_ : str , a_ : Tuple , a_ : Union[str, Any] , a_ : Union[str, Any] , )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = WavaVecaConfig.from_pretrained( a_ , add_adapter=a_ , adapter_stride=a_ , adapter_kernel_size=a_ , use_auth_token=a_ , output_hidden_size=a_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = MBartConfig.from_pretrained(a_ ) # load model SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) SCREAMING_SNAKE_CASE : int = model[0].eval() # load feature extractor SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(a_ , use_auth_token=a_ ) # set weights for wav2vec2 encoder SCREAMING_SNAKE_CASE : str = WavaVecaModel(a_ ) recursively_load_weights_wavaveca(model.encoder , a_ ) # load decoder weights SCREAMING_SNAKE_CASE : Dict = MBartForCausalLM(a_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a_ ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechEncoderDecoderModel(encoder=a_ , decoder=a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer(a_ ) tokenizer.save_pretrained(a_ ) SCREAMING_SNAKE_CASE : Tuple = hf_wavavec.config.to_dict() SCREAMING_SNAKE_CASE : Any = tokenizer.pad_token_id SCREAMING_SNAKE_CASE : List[str] = tokenizer.bos_token_id SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = '''mbart50''' SCREAMING_SNAKE_CASE : Optional[int] = '''wav2vec2''' SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : List[str] = 25_00_04 SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Any = SpeechEncoderDecoderConfig.from_dict(a_ ) hf_wavavec.save_pretrained(a_ ) feature_extractor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250004, type=int, help="`decoder_start_token_id` of model config") lowerCamelCase__ : Dict = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
698
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def a__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=False ) -> int: """simple docstring""" UpperCAmelCase_ : List[str] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): UpperCAmelCase_ : int = "segformer.encoder." + key if key.startswith("backbone" ): UpperCAmelCase_ : Tuple = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCAmelCase_ : Optional[int] = key[key.find("patch_embed" ) + len("patch_embed" )] UpperCAmelCase_ : Optional[int] = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(_SCREAMING_SNAKE_CASE )-1}''' ) if "norm" in key: UpperCAmelCase_ : List[Any] = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCAmelCase_ : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] UpperCAmelCase_ : List[str] = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(_SCREAMING_SNAKE_CASE )-1}''' ) if "layer_norm1" in key: UpperCAmelCase_ : int = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: UpperCAmelCase_ : str = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 UpperCAmelCase_ : Optional[int] = key[key.find("block" ) + len("block" )] UpperCAmelCase_ : Any = key.replace(F'''block{idx}''' , F'''block.{int(_SCREAMING_SNAKE_CASE )-1}''' ) if "attn.q" in key: UpperCAmelCase_ : List[str] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: UpperCAmelCase_ : Union[str, Any] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: UpperCAmelCase_ : Union[str, Any] = key.replace("attn" , "attention.self" ) if "fc1" in key: UpperCAmelCase_ : int = key.replace("fc1" , "dense1" ) if "fc2" in key: UpperCAmelCase_ : int = key.replace("fc2" , "dense2" ) if "linear_pred" in key: UpperCAmelCase_ : List[str] = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: UpperCAmelCase_ : Union[str, Any] = key.replace("linear_fuse.conv" , "linear_fuse" ) UpperCAmelCase_ : Dict = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCAmelCase_ : List[str] = key[key.find("linear_c" ) + len("linear_c" )] UpperCAmelCase_ : List[Any] = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(_SCREAMING_SNAKE_CASE )-1}''' ) if key.startswith("head" ): UpperCAmelCase_ : Dict = key.replace("head" , "classifier" ) UpperCAmelCase_ : str = value return new_state_dict def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCAmelCase_ : int = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict UpperCAmelCase_ : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] UpperCAmelCase_ : Optional[int] = kv_bias[: config.hidden_sizes[i]] UpperCAmelCase_ : int = kv_weight[ config.hidden_sizes[i] :, : ] UpperCAmelCase_ : Tuple = kv_bias[ config.hidden_sizes[i] : ] def a__ ( ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : int = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase_ : Tuple = SegformerConfig() UpperCAmelCase_ : Any = False # set attributes based on model_name UpperCAmelCase_ : Optional[Any] = "huggingface/label-files" if "segformer" in model_name: UpperCAmelCase_ : Optional[int] = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: UpperCAmelCase_ : List[str] = 1_50 UpperCAmelCase_ : List[Any] = "ade20k-id2label.json" UpperCAmelCase_ : str = (1, 1_50, 1_28, 1_28) elif "city" in model_name: UpperCAmelCase_ : Optional[int] = 19 UpperCAmelCase_ : Union[str, Any] = "cityscapes-id2label.json" UpperCAmelCase_ : List[Any] = (1, 19, 1_28, 1_28) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : List[Any] = model_name[4:6] UpperCAmelCase_ : Optional[int] = 10_00 UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : Optional[int] = (1, 10_00) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes UpperCAmelCase_ : Tuple = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ : List[str] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = idalabel UpperCAmelCase_ : Any = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": UpperCAmelCase_ : Optional[Any] = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : Dict = 2_56 elif size == "b2": UpperCAmelCase_ : Tuple = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : Union[str, Any] = 7_68 UpperCAmelCase_ : Union[str, Any] = [3, 4, 6, 3] elif size == "b3": UpperCAmelCase_ : Union[str, Any] = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : int = 7_68 UpperCAmelCase_ : Optional[Any] = [3, 4, 18, 3] elif size == "b4": UpperCAmelCase_ : List[Any] = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : List[Any] = 7_68 UpperCAmelCase_ : Tuple = [3, 8, 27, 3] elif size == "b5": UpperCAmelCase_ : Dict = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : Optional[int] = 7_68 UpperCAmelCase_ : List[Any] = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) UpperCAmelCase_ : Dict = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_SCREAMING_SNAKE_CASE , align=_SCREAMING_SNAKE_CASE , do_random_crop=_SCREAMING_SNAKE_CASE ) # prepare image UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : int = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: UpperCAmelCase_ : List[Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location=torch.device("cpu" ) ) else: UpperCAmelCase_ : Optional[int] = torch.load(_SCREAMING_SNAKE_CASE , map_location=torch.device("cpu" ) )["state_dict"] # rename keys UpperCAmelCase_ : Union[str, Any] = rename_keys(_SCREAMING_SNAKE_CASE , encoder_only=_SCREAMING_SNAKE_CASE ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict if encoder_only: UpperCAmelCase_ : Any = False UpperCAmelCase_ : Optional[Any] = SegformerForImageClassification(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : Any = SegformerForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # forward pass UpperCAmelCase_ : int = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": UpperCAmelCase_ : Any = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": UpperCAmelCase_ : Optional[Any] = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": UpperCAmelCase_ : Tuple = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": UpperCAmelCase_ : Any = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": UpperCAmelCase_ : Tuple = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": UpperCAmelCase_ : List[Any] = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": UpperCAmelCase_ : Any = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": UpperCAmelCase_ : Union[str, Any] = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": UpperCAmelCase_ : Optional[Any] = torch.tensor( [ [ [-1.1372E01, -1.2787E01, -1.3477E01], [-1.2536E01, -1.4194E01, -1.4409E01], [-1.3217E01, -1.4888E01, -1.5327E01], ], [ [-1.4791E01, -1.7122E01, -1.8277E01], [-1.7163E01, -1.9192E01, -1.9533E01], [-1.7897E01, -1.9991E01, -2.0315E01], ], [ [7.6723E-01, 4.1921E-01, -7.7878E-02], [4.7772E-01, 9.5557E-03, -2.8082E-01], [3.6032E-01, -2.4826E-01, -5.1168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": UpperCAmelCase_ : List[str] = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": UpperCAmelCase_ : List[str] = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": UpperCAmelCase_ : Union[str, Any] = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": UpperCAmelCase_ : int = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": UpperCAmelCase_ : Optional[Any] = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": UpperCAmelCase_ : List[Any] = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: UpperCAmelCase_ : Any = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _lowerCamelCase = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
71
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ : Union[str, Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
698
0
'''simple docstring''' def UpperCamelCase ( lowercase_ : int , lowercase_ : int ) -> str: '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
72
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCamelCase__ : List[Any] = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" lowerCamelCase__ : List[str] = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" lowerCamelCase__ : List[Any] = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :str=None , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :Optional[int]="auto" , lowerCamelCase_ :Dict=-1 , lowerCamelCase_ :str=0.9 , lowerCamelCase_ :str=5 , lowerCamelCase_ :Tuple=5_00 , lowerCamelCase_ :str="gpt2-large" , lowerCamelCase_ :List[Any]=-1 , lowerCamelCase_ :Dict=10_24 , lowerCamelCase_ :Tuple=25 , lowerCamelCase_ :List[Any]=5 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=25 , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = compute_mauve( p_text=lowerCamelCase_ , q_text=lowerCamelCase_ , p_features=lowerCamelCase_ , q_features=lowerCamelCase_ , p_tokens=lowerCamelCase_ , q_tokens=lowerCamelCase_ , num_buckets=lowerCamelCase_ , pca_max_data=lowerCamelCase_ , kmeans_explained_var=lowerCamelCase_ , kmeans_num_redo=lowerCamelCase_ , kmeans_max_iter=lowerCamelCase_ , featurize_model_name=lowerCamelCase_ , device_id=lowerCamelCase_ , max_text_length=lowerCamelCase_ , divergence_curve_discretization_size=lowerCamelCase_ , mauve_scaling_factor=lowerCamelCase_ , verbose=lowerCamelCase_ , seed=lowerCamelCase_ , ) return out
698
0
class _snake_case : def __init__( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = {} def SCREAMING_SNAKE_CASE__ ( self) -> None: print(self.vertex) for i in self.vertex: print(a , ' -> ' , ' -> '.join([str(a) for j in self.vertex[i]])) def SCREAMING_SNAKE_CASE__ ( self , a , a) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(a) else: # else make a new vertex SCREAMING_SNAKE_CASE = [to_vertex] def SCREAMING_SNAKE_CASE__ ( self) -> None: # visited array for storing already visited nodes SCREAMING_SNAKE_CASE = [False] * len(self.vertex) # call the recursive helper function for i in range(len(self.vertex)): if not visited[i]: self.dfs_recursive(a , a) def SCREAMING_SNAKE_CASE__ ( self , a , a) -> None: # mark start vertex as visited SCREAMING_SNAKE_CASE = True print(a , end=' ') # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(a , a) if __name__ == "__main__": a_ : Any = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
73
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : str = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Optional[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } lowerCamelCase__ : int = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRContextEncoderTokenizer class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRQuestionEncoderTokenizer lowerCamelCase__ : Union[str, Any] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) lowerCamelCase__ : int = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) lowerCamelCase__ : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_UpperCAmelCase ) class lowercase__: '''simple docstring''' def __call__( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :Optional[bool] = None , **lowerCamelCase_ :Tuple , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE : List[str] = titles if texts is None else texts return super().__call__( lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Dict = titles if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [titles] SCREAMING_SNAKE_CASE : Dict = texts if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [texts] SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = questions if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [questions] * n_passages assert len(lowerCamelCase_ ) == len( lowerCamelCase_ ), f"There should be as many titles than texts but got {len(lowerCamelCase_ )} titles and {len(lowerCamelCase_ )} texts." SCREAMING_SNAKE_CASE : Any = super().__call__(lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : Dict = super().__call__(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : int = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase_ , lowerCamelCase_ ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE : int = attention_mask return self.pad(lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :BatchEncoding , lowerCamelCase_ :DPRReaderOutput , lowerCamelCase_ :int = 16 , lowerCamelCase_ :int = 64 , lowerCamelCase_ :int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = reader_output[:3] SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = sorted(range(lowerCamelCase_ ) , reverse=lowerCamelCase_ , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase_ , top_spans=lowerCamelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase_ , start_index=lowerCamelCase_ , end_index=lowerCamelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCamelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] for start_index, start_score in enumerate(lowerCamelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE : Dict = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] , reverse=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"Wrong span indices: [{start_index}:{end_index}]" SCREAMING_SNAKE_CASE : Optional[int] = end_index - start_index + 1 assert length <= max_answer_length, f"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = DPRReaderTokenizer
698
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = ViTImageProcessor if is_vision_available() else None @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = (3, 32, 128) __SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() # fmt: off __SCREAMING_SNAKE_CASE : List[Any] = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(_A , range(len(_A ) ) ) ) __SCREAMING_SNAKE_CASE : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } __SCREAMING_SNAKE_CASE : Dict = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_A , _A ) def UpperCAmelCase__ ( self : Optional[Any] , **_A : Optional[Any] ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase__ ( self : int , **_A : List[str] ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __SCREAMING_SNAKE_CASE : Dict = Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) return image_input def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Tuple = MgpstrProcessor(tokenizer=_A , image_processor=_A ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Any = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : int = self.get_image_processor() __SCREAMING_SNAKE_CASE : str = MgpstrProcessor(tokenizer=_A , image_processor=_A ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : int = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __SCREAMING_SNAKE_CASE : str = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) __SCREAMING_SNAKE_CASE : Optional[int] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : str = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : Tuple = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Any = image_processor(_A , return_tensors='''np''' ) __SCREAMING_SNAKE_CASE : int = processor(images=_A , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : int = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : str = '''test''' __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=_A ) __SCREAMING_SNAKE_CASE : Any = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : str = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[int] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''test''' __SCREAMING_SNAKE_CASE : str = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : str = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.get_image_processor() __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE : Dict = processor.char_decode(_A ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.batch_decode(_A ) __SCREAMING_SNAKE_CASE : Tuple = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(_A , _A ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.get_image_processor() __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[int] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : List[Any] = None __SCREAMING_SNAKE_CASE : List[Any] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : List[str] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(1 , 27 , 38 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(1 , 27 , 5_0257 ) __SCREAMING_SNAKE_CASE : str = torch.randn(1 , 27 , 3_0522 ) __SCREAMING_SNAKE_CASE : str = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
74
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Optional[Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """markuplm""" def __init__( self :int , lowerCamelCase_ :List[str]=3_05_22 , lowerCamelCase_ :Union[str, Any]=7_68 , lowerCamelCase_ :str=12 , lowerCamelCase_ :Dict=12 , lowerCamelCase_ :str=30_72 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :Union[str, Any]=0.1 , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :Union[str, Any]=5_12 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Any=1E-12 , lowerCamelCase_ :Dict=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :str=2_56 , lowerCamelCase_ :List[Any]=10_24 , lowerCamelCase_ :Union[str, Any]=2_16 , lowerCamelCase_ :Dict=10_01 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :str=50 , lowerCamelCase_ :List[str]="absolute" , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :int=None , **lowerCamelCase_ :Dict , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : int = layer_norm_eps SCREAMING_SNAKE_CASE : int = position_embedding_type SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : str = classifier_dropout # additional properties SCREAMING_SNAKE_CASE : Optional[Any] = max_depth SCREAMING_SNAKE_CASE : Dict = max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE : Optional[int] = max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE : Tuple = tag_pad_id SCREAMING_SNAKE_CASE : str = subs_pad_id SCREAMING_SNAKE_CASE : List[Any] = xpath_unit_hidden_size
698
0
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCamelCase__ = threading.Lock() UpperCamelCase__ = None UpperCamelCase__ = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } UpperCamelCase__ = logging.WARNING UpperCamelCase__ = True def a__ ( ) -> List[Any]: UpperCAmelCase__ : Optional[Any] = os.getenv('''TRANSFORMERS_VERBOSITY''' , lowerCAmelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def a__ ( ) -> str: return __name__.split('''.''' )[0] def a__ ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def a__ ( ) -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return UpperCAmelCase__ : str = logging.StreamHandler() # Set sys.stderr as stream. UpperCAmelCase__ : Union[str, Any] = sys.stderr.flush # Apply our default configuration to the library root logger. UpperCAmelCase__ : List[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) UpperCAmelCase__ : List[Any] = False def a__ ( ) -> None: global _default_handler with _lock: if not _default_handler: return UpperCAmelCase__ : Union[str, Any] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) UpperCAmelCase__ : Dict = None def a__ ( ) -> Dict: return log_levels def a__ ( lowerCAmelCase__ = None ) -> logging.Logger: if name is None: UpperCAmelCase__ : List[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(lowerCAmelCase__ ) def a__ ( ) -> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def a__ ( lowerCAmelCase__ ) -> None: _configure_library_root_logger() _get_library_root_logger().setLevel(lowerCAmelCase__ ) def a__ ( ) -> Tuple: return set_verbosity(lowerCAmelCase__ ) def a__ ( ) -> Union[str, Any]: return set_verbosity(lowerCAmelCase__ ) def a__ ( ) -> List[str]: return set_verbosity(lowerCAmelCase__ ) def a__ ( ) -> int: return set_verbosity(lowerCAmelCase__ ) def a__ ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def a__ ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def a__ ( lowerCAmelCase__ ) -> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(lowerCAmelCase__ ) def a__ ( ) -> None: _configure_library_root_logger() UpperCAmelCase__ : List[Any] = False def a__ ( ) -> None: _configure_library_root_logger() UpperCAmelCase__ : str = True def a__ ( ) -> None: UpperCAmelCase__ : List[str] = _get_library_root_logger().handlers for handler in handlers: UpperCAmelCase__ : str = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' ) handler.setFormatter(lowerCAmelCase__ ) def a__ ( ) -> None: UpperCAmelCase__ : Optional[Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(lowerCAmelCase__ ) def a__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : Optional[Any] = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , lowerCAmelCase__ ) if no_advisory_warnings: return self.warning(*lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCamelCase__ = warning_advice @functools.lru_cache(lowerCAmelCase__ ) def a__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: self.warning(*lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCamelCase__ = warning_once class lowerCamelCase_ : def __init__( self : Union[str, Any] , *_A : Optional[int] , **_A : str ): # pylint: disable=unused-argument '''simple docstring''' UpperCAmelCase__ : Dict = args[0] if args else None def __iter__( self : List[Any] ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : Dict , _A : Union[str, Any] ): '''simple docstring''' def empty_fn(*_A : int , **_A : str ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Dict ): '''simple docstring''' return self def __exit__( self : Any , _A : Union[str, Any] , _A : int , _A : str ): '''simple docstring''' return class lowerCamelCase_ : def __call__( self : List[Any] , *_A : int , **_A : List[str] ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*_A , **_A ) else: return EmptyTqdm(*_A , **_A ) def lowercase_ ( self : Tuple , *_A : Dict , **_A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_A , **_A ) def lowercase_ ( self : Any ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCamelCase__ = _tqdm_cls() def a__ ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def a__ ( ) -> List[str]: global _tqdm_active UpperCAmelCase__ : int = True hf_hub_utils.enable_progress_bars() def a__ ( ) -> List[str]: global _tqdm_active UpperCAmelCase__ : Optional[Any] = False hf_hub_utils.disable_progress_bars()
75
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """resnet""" UpperCamelCase = ["""basic""", """bottleneck"""] def __init__( self :Optional[int] , lowerCamelCase_ :Tuple=3 , lowerCamelCase_ :Tuple=64 , lowerCamelCase_ :Union[str, Any]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase_ :int=[3, 4, 6, 3] , lowerCamelCase_ :Any="bottleneck" , lowerCamelCase_ :Optional[int]="relu" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=None , lowerCamelCase_ :Optional[int]=None , **lowerCamelCase_ :Optional[int] , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCamelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : List[Any] = layer_type SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = downsample_in_first_stage SCREAMING_SNAKE_CASE : int = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = version.parse("""1.11""" ) @property def __lowerCAmelCase ( self :Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self :str ) -> float: '''simple docstring''' return 1E-3
698
0
"""simple docstring""" import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): a_ = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) a_ = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a_ = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } a_ = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a_ = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) a_ = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a_ = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) a_ = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a_ = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a_ = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' a_ = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' a_ = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' a_ = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a_ = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' a_ = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a_ = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' a_ = '' a_ = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' a_ = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' a_ = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): assert ReadMe.from_string(__UpperCamelCase , __UpperCamelCase ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): with pytest.raises(__UpperCamelCase , match=re.escape(expected_error.format(path='''root''' ) ) ): __lowercase : Any = ReadMe.from_string(__UpperCamelCase , __UpperCamelCase ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): with pytest.raises(__UpperCamelCase , match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCAmelCase ( __UpperCamelCase ): ReadMe.from_string(__UpperCamelCase , __UpperCamelCase , suppress_parsing_errors=__UpperCamelCase ) @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): with tempfile.TemporaryDirectory() as tmp_dir: __lowercase : List[Any] = Path(__UpperCamelCase ) / '''README.md''' with open(__UpperCamelCase , '''w+''' ) as readme_file: readme_file.write(__UpperCamelCase ) __lowercase : List[Any] = ReadMe.from_readme(__UpperCamelCase , __UpperCamelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): with tempfile.TemporaryDirectory() as tmp_dir: __lowercase : Any = Path(__UpperCamelCase ) / '''README.md''' with open(__UpperCamelCase , '''w+''' ) as readme_file: readme_file.write(__UpperCamelCase ) __lowercase : Any = expected_error.format(path=__UpperCamelCase ) with pytest.raises(__UpperCamelCase , match=re.escape(__UpperCamelCase ) ): __lowercase : List[str] = ReadMe.from_readme(__UpperCamelCase , __UpperCamelCase ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): with tempfile.TemporaryDirectory() as tmp_dir: __lowercase : List[str] = Path(__UpperCamelCase ) / '''README.md''' with open(__UpperCamelCase , '''w+''' ) as readme_file: readme_file.write(__UpperCamelCase ) __lowercase : Union[str, Any] = expected_error.format(path=__UpperCamelCase ) with pytest.raises(__UpperCamelCase , match=re.escape(__UpperCamelCase ) ): ReadMe.from_readme(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCAmelCase ( __UpperCamelCase ): with tempfile.TemporaryDirectory() as tmp_dir: __lowercase : List[Any] = Path(__UpperCamelCase ) / '''README.md''' with open(__UpperCamelCase , '''w+''' ) as readme_file: readme_file.write(__UpperCamelCase ) ReadMe.from_readme(__UpperCamelCase , __UpperCamelCase , suppress_parsing_errors=__UpperCamelCase )
76
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """mra""" def __init__( self :int , lowerCamelCase_ :Optional[int]=5_02_65 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Tuple="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :int=1E-5 , lowerCamelCase_ :List[Any]="absolute" , lowerCamelCase_ :str=4 , lowerCamelCase_ :List[str]="full" , lowerCamelCase_ :List[Any]=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :List[str]=0 , lowerCamelCase_ :List[Any]=2 , **lowerCamelCase_ :str , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : List[str] = block_per_row SCREAMING_SNAKE_CASE : Optional[int] = approx_mode SCREAMING_SNAKE_CASE : List[Any] = initial_prior_first_n_blocks SCREAMING_SNAKE_CASE : Union[str, Any] = initial_prior_diagonal_n_blocks
698
0
"""simple docstring""" from __future__ import annotations A = list[list[int]] # assigning initial values to the grid A = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution A = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _UpperCamelCase ( UpperCamelCase ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _UpperCamelCase ( UpperCamelCase ) -> Matrix | None: """simple docstring""" if location := find_empty_location(UpperCamelCase ): __UpperCAmelCase , __UpperCAmelCase : Dict = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : Dict = digit if sudoku(UpperCamelCase ) is not None: return grid __UpperCAmelCase : Optional[Any] = 0 return None def _UpperCamelCase ( UpperCamelCase ) -> None: """simple docstring""" for row in grid: for cell in row: print(UpperCamelCase , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") A = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
77
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """nllb-moe""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :List[str] , lowerCamelCase_ :Optional[int]=12_81_12 , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :Any=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :Union[str, Any]=0.0_5 , lowerCamelCase_ :Optional[int]=0.0_5 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :Tuple="relu" , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Any=False , lowerCamelCase_ :Optional[Any]="float32" , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :List[Any]=1_28 , lowerCamelCase_ :Any=64 , lowerCamelCase_ :Optional[int]=4 , lowerCamelCase_ :List[str]=4 , lowerCamelCase_ :Union[str, Any]=0.0_0_1 , lowerCamelCase_ :Optional[int]=0.0_0_1 , lowerCamelCase_ :List[str]="all" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=False , lowerCamelCase_ :Tuple=1.0 , lowerCamelCase_ :Union[str, Any]=0.2 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :Optional[int]=0 , lowerCamelCase_ :int=2 , lowerCamelCase_ :List[str]=False , **lowerCamelCase_ :int , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : str = d_model SCREAMING_SNAKE_CASE : Optional[int] = encoder_ffn_dim SCREAMING_SNAKE_CASE : Any = encoder_layers SCREAMING_SNAKE_CASE : Any = encoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : List[str] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Any = activation_function SCREAMING_SNAKE_CASE : Tuple = init_std SCREAMING_SNAKE_CASE : str = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : Optional[int] = encoder_layers SCREAMING_SNAKE_CASE : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : int = router_z_loss_coef SCREAMING_SNAKE_CASE : Any = router_aux_loss_coef SCREAMING_SNAKE_CASE : str = decoder_sparse_step SCREAMING_SNAKE_CASE : str = encoder_sparse_step SCREAMING_SNAKE_CASE : List[str] = num_experts SCREAMING_SNAKE_CASE : Union[str, Any] = expert_capacity SCREAMING_SNAKE_CASE : Tuple = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = router_dtype SCREAMING_SNAKE_CASE : Union[str, Any] = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : int = batch_prioritized_routing SCREAMING_SNAKE_CASE : Optional[int] = second_expert_policy SCREAMING_SNAKE_CASE : Union[str, Any] = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE : Any = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE : Optional[Any] = moe_token_dropout SCREAMING_SNAKE_CASE : Tuple = output_router_logits super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
698
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : int=False ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCAmelCase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : Union[str, Any]=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ = "" else: UpperCAmelCase_ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ = in_proj_bias[: config.hidden_size] UpperCAmelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( snake_case_ : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Any , snake_case_ : Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = dct.pop(snake_case_ ) UpperCAmelCase_ = val def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = ViTConfig() UpperCAmelCase_ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": UpperCAmelCase_ = True UpperCAmelCase_ = int(vit_name[-12:-10] ) UpperCAmelCase_ = int(vit_name[-9:-6] ) else: UpperCAmelCase_ = 10_00 UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "imagenet-1k-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(snake_case_ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} UpperCAmelCase_ = int(vit_name[-6:-4] ) UpperCAmelCase_ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): UpperCAmelCase_ = 1_92 UpperCAmelCase_ = 7_68 UpperCAmelCase_ = 12 UpperCAmelCase_ = 3 elif vit_name[9:].startswith("small" ): UpperCAmelCase_ = 3_84 UpperCAmelCase_ = 15_36 UpperCAmelCase_ = 12 UpperCAmelCase_ = 6 else: pass else: if vit_name[4:].startswith("small" ): UpperCAmelCase_ = 7_68 UpperCAmelCase_ = 23_04 UpperCAmelCase_ = 8 UpperCAmelCase_ = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): UpperCAmelCase_ = 10_24 UpperCAmelCase_ = 40_96 UpperCAmelCase_ = 24 UpperCAmelCase_ = 16 elif vit_name[4:].startswith("huge" ): UpperCAmelCase_ = 12_80 UpperCAmelCase_ = 51_20 UpperCAmelCase_ = 32 UpperCAmelCase_ = 16 # load original model from timm UpperCAmelCase_ = timm.create_model(snake_case_ , pretrained=snake_case_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ = timm_model.state_dict() if base_model: remove_classification_head_(snake_case_ ) UpperCAmelCase_ = create_rename_keys(snake_case_ , snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) read_in_q_k_v(snake_case_ , snake_case_ , snake_case_ ) # load HuggingFace model if vit_name[-5:] == "in21k": UpperCAmelCase_ = ViTModel(snake_case_ ).eval() else: UpperCAmelCase_ = ViTForImageClassification(snake_case_ ).eval() model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: UpperCAmelCase_ = DeiTImageProcessor(size=config.image_size ) else: UpperCAmelCase_ = ViTImageProcessor(size=config.image_size ) UpperCAmelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) UpperCAmelCase_ = encoding["pixel_values"] UpperCAmelCase_ = model(snake_case_ ) if base_model: UpperCAmelCase_ = timm_model.forward_features(snake_case_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(snake_case_ , outputs.pooler_output , atol=1E-3 ) else: UpperCAmelCase_ = timm_model(snake_case_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(snake_case_ , outputs.logits , atol=1E-3 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_: List[str] =parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
78
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase__ : Union[str, Any] = "CompVis/stable-diffusion-v1-1" lowerCamelCase__ : Optional[Any] = "CompVis/stable-diffusion-v1-2" lowerCamelCase__ : Dict = "CompVis/stable-diffusion-v1-3" lowerCamelCase__ : List[str] = "CompVis/stable-diffusion-v1-4" class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :AutoencoderKL , lowerCamelCase_ :CLIPTextModel , lowerCamelCase_ :CLIPTokenizer , lowerCamelCase_ :UNetaDConditionModel , lowerCamelCase_ :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase_ :StableDiffusionSafetyChecker , lowerCamelCase_ :CLIPImageProcessor , lowerCamelCase_ :bool = True , ) -> List[str]: '''simple docstring''' super()._init_() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline( vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , requires_safety_checker=lowerCamelCase_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __lowerCAmelCase ( self :Dict ) -> Dict[str, Any]: '''simple docstring''' return {k: getattr(self , lowerCamelCase_ ) for k in self.config.keys() if not k.startswith('''_''' )} def __lowerCAmelCase ( self :int , lowerCamelCase_ :Optional[Union[str, int]] = "auto" ) -> Tuple: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.enable_attention_slicing(lowerCamelCase_ ) @torch.no_grad() def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :List[str] , ) -> Tuple: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Tuple , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Dict , ) -> List[str]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :List[Any] , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Optional[Any] , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(lowerCamelCase_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : str = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : Tuple = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : Union[str, Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
698
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__) class UpperCAmelCase_ ( __lowerCamelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
79
"""simple docstring""" def __A ( a_ : list , a_ : int = 0 )-> list: '''simple docstring''' SCREAMING_SNAKE_CASE : int = length or len(a_ ) SCREAMING_SNAKE_CASE : List[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : Optional[Any] = True return list_data if not swapped else bubble_sort(a_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
698
0
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self : Optional[Any] , _lowerCAmelCase : int = 101 ) -> Any: """simple docstring""" __lowercase = length def __len__( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return self.length def __getitem__( self : Tuple , _lowerCAmelCase : str ) -> int: """simple docstring""" return i class __UpperCamelCase : def __call__( self : List[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" return {"input_ids": torch.tensor(_lowerCAmelCase ), "labels": torch.tensor(_lowerCAmelCase )} class __UpperCamelCase ( nn.Module ): def __init__( self : List[str] ) -> Dict: """simple docstring""" super().__init__() # Add some (unused) params otherwise DDP will complain. __lowercase = nn.Linear(120 , 80 ) def _a ( self : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int]=None ) -> Optional[int]: """simple docstring""" if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class __UpperCamelCase ( _lowerCAmelCase ): @require_torch_neuroncore def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F'--output_dir {output_dir}'.split() __lowercase = ["""torchrun"""] + distributed_args + args execute_subprocess_async(_lowerCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class __UpperCamelCase ( _lowerCAmelCase ): @require_torch_multi_gpu def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F'--output_dir {output_dir}'.split() __lowercase = ["""torchrun"""] + distributed_args + args execute_subprocess_async(_lowerCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __UpperCamelCase : Dict = HfArgumentParser((TrainingArguments,)) __UpperCamelCase : Dict = parser.parse_args_into_dataclasses()[0] logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' F'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __UpperCamelCase : str = DummyDataset(dataset_length) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = list(range(len(lowerCamelCase ) ) ) __lowercase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( """Predictions and/or labels do not match expected results:\n - predictions: """ F'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} __UpperCamelCase : int = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __UpperCamelCase : Dict = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __UpperCamelCase : Tuple = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __UpperCamelCase : List[str] = 2 __UpperCamelCase : Optional[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __UpperCamelCase : List[Any] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __UpperCamelCase : Tuple = None
80
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self :List[str] , lowerCamelCase_ :UNetaDModel , lowerCamelCase_ :ScoreSdeVeScheduler ) -> int: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self :int , lowerCamelCase_ :int = 1 , lowerCamelCase_ :int = 20_00 , lowerCamelCase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , **lowerCamelCase_ :Union[str, Any] , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.sample_size SCREAMING_SNAKE_CASE : List[str] = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE : Any = self.unet SCREAMING_SNAKE_CASE : Dict = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ ) * self.scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase_ ) self.scheduler.set_sigmas(lowerCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): SCREAMING_SNAKE_CASE : Optional[Any] = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step_correct(lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample # prediction step SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.step_pred(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample, output.prev_sample_mean SCREAMING_SNAKE_CASE : List[str] = sample_mean.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Any = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Any = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase_ )
698
0
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : List[str] = len(__lowerCamelCase ) __snake_case : Union[str, Any] = len(__lowerCamelCase ) __snake_case : Optional[Any] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __snake_case : int = True for i in range(__lowerCamelCase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __snake_case : Any = True if a[i].islower(): __snake_case : List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
81
"""simple docstring""" import qiskit def __A ( a_ : int , a_ : int )-> qiskit.result.counts.Counts: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE : str = qiskit.QuantumCircuit(a_ , a_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE : int = qiskit.execute(a_ , a_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a_ ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
698
0
"""simple docstring""" class lowercase__ : '''simple docstring''' def __init__( self : str ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = "" UpperCAmelCase_ = "" UpperCAmelCase_ = [] def lowercase__ ( self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: UpperCAmelCase_ = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: UpperCAmelCase_ = self.__min_dist_top_down_dp(_UpperCAmelCase , n - 1 ) UpperCAmelCase_ = self.__min_dist_top_down_dp(m - 1 , _UpperCAmelCase ) UpperCAmelCase_ = self.__min_dist_top_down_dp(m - 1 , n - 1 ) UpperCAmelCase_ = 1 + min(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self.dp[m][n] def lowercase__ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> int: '''simple docstring''' UpperCAmelCase_ = worda UpperCAmelCase_ = worda UpperCAmelCase_ = [[-1 for _ in range(len(_UpperCAmelCase ) )] for _ in range(len(_UpperCAmelCase ) )] return self.__min_dist_top_down_dp(len(_UpperCAmelCase ) - 1 , len(_UpperCAmelCase ) - 1 ) def lowercase__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> int: '''simple docstring''' UpperCAmelCase_ = worda UpperCAmelCase_ = worda UpperCAmelCase_ = len(_UpperCAmelCase ) UpperCAmelCase_ = len(_UpperCAmelCase ) UpperCAmelCase_ = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty UpperCAmelCase_ = j elif j == 0: # second string is empty UpperCAmelCase_ = i elif worda[i - 1] == worda[j - 1]: # last characters are equal UpperCAmelCase_ = self.dp[i - 1][j - 1] else: UpperCAmelCase_ = self.dp[i][j - 1] UpperCAmelCase_ = self.dp[i - 1][j] UpperCAmelCase_ = self.dp[i - 1][j - 1] UpperCAmelCase_ = 1 + min(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self.dp[m][n] if __name__ == "__main__": lowerCamelCase = EditDistance() print("""****************** Testing Edit Distance DP Algorithm ******************""") print() lowerCamelCase = input("""Enter the first string: """).strip() lowerCamelCase = input("""Enter the second string: """).strip() print() print(F"The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}") print(F"The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}") print() print("""*************** End of Testing Edit Distance DP Algorithm ***************""")
82
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase__ : Optional[int] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def __A ( a_ : Dict )-> str: '''simple docstring''' config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __A ( a_ : Dict )-> Tuple: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_ ) def __A ( a_ : Union[str, Any] )-> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE : List[str] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(a_ , id=a_ ) def __A ( a_ : Dict , a_ : List[str] )-> Dict: '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE : List[str] = 0 # Doctest custom flag to ignore output. lowerCamelCase__ : Tuple = doctest.register_optionflag("IGNORE_RESULT") lowerCamelCase__ : Optional[int] = doctest.OutputChecker class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] ) -> Dict: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : str = CustomOutputChecker lowerCamelCase__ : Any = HfDoctestModule lowerCamelCase__ : int = HfDocTestParser
698
0
"""simple docstring""" import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''artists_file''': '''artists.json''', '''lyrics_file''': '''lyrics.json''', '''genres_file''': '''genres.json''', } lowerCAmelCase__ = { '''artists_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json''', }, '''genres_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json''', }, '''lyrics_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json''', }, } lowerCAmelCase__ = { '''jukebox''': 512, } class __snake_case ( _lowercase): snake_case__ : List[Any] = VOCAB_FILES_NAMES snake_case__ : int = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES snake_case__ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self : str , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int]=["v3", "v2", "v2"] , __lowerCAmelCase : Any=5_1_2 , __lowerCAmelCase : Tuple=5 , __lowerCAmelCase : List[str]="<|endoftext|>" , **__lowerCAmelCase : Any , ): """simple docstring""" _lowerCamelCase : List[Any] = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else unk_token super().__init__( unk_token=__lowerCAmelCase , n_genres=__lowerCAmelCase , version=__lowerCAmelCase , max_n_lyric_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) _lowerCamelCase : List[str] = version _lowerCamelCase : List[str] = max_n_lyric_tokens _lowerCamelCase : Optional[Any] = n_genres with open(__lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: _lowerCamelCase : Tuple = json.load(__lowerCAmelCase ) with open(__lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: _lowerCamelCase : Any = json.load(__lowerCAmelCase ) with open(__lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: _lowerCamelCase : List[Any] = json.load(__lowerCAmelCase ) _lowerCamelCase : List[str] = R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: _lowerCamelCase : Optional[Any] = oov.replace(R'''\-\'''' , R'''\-+\'''' ) _lowerCamelCase : Optional[Any] = regex.compile(__lowerCAmelCase ) _lowerCamelCase : Dict = {v: k for k, v in self.artists_encoder.items()} _lowerCamelCase : Tuple = {v: k for k, v in self.genres_encoder.items()} _lowerCamelCase : str = {v: k for k, v in self.lyrics_encoder.items()} @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [self.artists_encoder.get(__lowerCAmelCase , 0 ) for artist in list_artists] for genres in range(len(__lowerCAmelCase ) ): _lowerCamelCase : Union[str, Any] = [self.genres_encoder.get(__lowerCAmelCase , 0 ) for genre in list_genres[genres]] _lowerCamelCase : List[str] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) _lowerCamelCase : Union[str, Any] = [[self.lyrics_encoder.get(__lowerCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" return list(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , **__lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = self.prepare_for_tokenization(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[int] = self._tokenize(__lowerCAmelCase ) return artist, genre, lyrics def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : bool = False ): """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": _lowerCamelCase : Dict = artists[idx].lower() _lowerCamelCase : List[str] = [genres[idx].lower()] else: _lowerCamelCase : int = self._normalize(artists[idx] ) + '''.v2''' _lowerCamelCase : List[str] = [ self._normalize(__lowerCAmelCase ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": _lowerCamelCase : Tuple = regex.compile(R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) _lowerCamelCase : int = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' _lowerCamelCase : Optional[Any] = {vocab[index]: index + 1 for index in range(len(__lowerCAmelCase ) )} _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Any = len(__lowerCAmelCase ) + 1 _lowerCamelCase : int = self.vocab _lowerCamelCase : Dict = {v: k for k, v in self.vocab.items()} _lowerCamelCase : Tuple = '''''' else: _lowerCamelCase : int = regex.compile(R'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) _lowerCamelCase : Any = self._run_strip_accents(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = lyrics.replace('''\\''' , '''\n''' ) _lowerCamelCase : Optional[int] = self.out_of_vocab.sub('''''' , __lowerCAmelCase ), [], [] return artists, genres, lyrics def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Union[str, Any] = unicodedata.normalize('''NFD''' , __lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] for char in text: _lowerCamelCase : List[str] = unicodedata.category(__lowerCAmelCase ) if cat == "Mn": continue output.append(__lowerCAmelCase ) return "".join(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : List[Any] = ( [chr(__lowerCAmelCase ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(__lowerCAmelCase ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(__lowerCAmelCase ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) _lowerCamelCase : List[Any] = frozenset(__lowerCAmelCase ) _lowerCamelCase : Any = re.compile(R'''_+''' ) _lowerCamelCase : Optional[int] = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) _lowerCamelCase : List[str] = pattern.sub('''_''' , __lowerCAmelCase ).strip('''_''' ) return text def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : List[str] ): """simple docstring""" return " ".join(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , __lowerCAmelCase : bool = False ): """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : str = TensorType(__lowerCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf _lowerCamelCase : Optional[int] = tf.constant _lowerCamelCase : Optional[int] = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch _lowerCamelCase : Any = torch.tensor _lowerCamelCase : Tuple = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 _lowerCamelCase : str = jnp.array _lowerCamelCase : Dict = _is_jax else: _lowerCamelCase : Dict = np.asarray _lowerCamelCase : List[str] = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: _lowerCamelCase : int = [inputs] if not is_tensor(__lowerCAmelCase ): _lowerCamelCase : Dict = as_tensor(__lowerCAmelCase ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : int="" , __lowerCAmelCase : Union[str, Any]="pt" ): """simple docstring""" _lowerCamelCase : Optional[int] = [0, 0, 0] _lowerCamelCase : Optional[Any] = [artist] * len(self.version ) _lowerCamelCase : int = [genres] * len(self.version ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = self.tokenize(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = self._convert_token_to_id(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Any = [-INFINITY] * len(full_tokens[-1] ) _lowerCamelCase : Optional[int] = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__lowerCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCamelCase : Optional[int] = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=__lowerCAmelCase ) ) _lowerCamelCase : Dict = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=__lowerCAmelCase ) ) _lowerCamelCase : Optional[Any] = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__lowerCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : str = self.artists_decoder.get(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [self.genres_decoder.get(__lowerCAmelCase ) for genre in genres_index] _lowerCamelCase : Optional[int] = [self.lyrics_decoder.get(__lowerCAmelCase ) for character in lyric_index] return artist, genres, lyrics
83
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase__: '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple=13 , lowerCamelCase_ :List[str]=7 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :str=99 , lowerCamelCase_ :Optional[Any]=32 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :int=4 , lowerCamelCase_ :Optional[Any]=37 , lowerCamelCase_ :Any="gelu" , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Optional[int]=5_12 , lowerCamelCase_ :str=16 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :List[str]=0.0_2 , lowerCamelCase_ :int=3 , lowerCamelCase_ :List[Any]=4 , lowerCamelCase_ :Optional[Any]=None , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : str = 13 SCREAMING_SNAKE_CASE : str = 7 SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Any = 99 SCREAMING_SNAKE_CASE : Dict = 3_84 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Any = 37 SCREAMING_SNAKE_CASE : List[str] = '''gelu''' SCREAMING_SNAKE_CASE : List[str] = 0.1 SCREAMING_SNAKE_CASE : int = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = 5_12 SCREAMING_SNAKE_CASE : int = 16 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Tuple = 0.0_2 SCREAMING_SNAKE_CASE : List[str] = 3 SCREAMING_SNAKE_CASE : Union[str, Any] = 4 SCREAMING_SNAKE_CASE : str = 1_28 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = 9 SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : List[str] = None def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[str] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : Dict = [input_ids, input_mask] SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertForMaskedLM(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : Dict = TFConvBertForSequenceClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.num_choices SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertForMultipleChoice(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForTokenClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = TFConvBertForQuestionAnswering(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self :Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Tuple = True if hasattr(lowerCamelCase_ , '''use_cache''' ): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : str = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = len(model(lowerCamelCase_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = os.path.join(lowerCamelCase_ , '''saved_model''' , '''1''' ) SCREAMING_SNAKE_CASE : Tuple = tf.keras.models.load_model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Optional[int] = outputs['''encoder_hidden_states'''] SCREAMING_SNAKE_CASE : str = outputs['''encoder_attentions'''] else: SCREAMING_SNAKE_CASE : List[str] = outputs['''hidden_states'''] SCREAMING_SNAKE_CASE : List[Any] = outputs['''attentions'''] self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self :Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) def check_decoder_attentions_output(lowerCamelCase_ :Optional[Any] ): SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(out_len % 2 , 0 ) SCREAMING_SNAKE_CASE : int = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowerCamelCase_ :Optional[int] ): SCREAMING_SNAKE_CASE : List[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_decoder_attentions_output(lowerCamelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase_ ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) @require_tf class lowercase__( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self :int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) SCREAMING_SNAKE_CASE : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Optional[Any] = [1, 6, 7_68] self.assertEqual(output.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 )
698
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''ConvNextFeatureExtractor'''] UpperCAmelCase = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
84
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """bert""" def __init__( self :Any , lowerCamelCase_ :List[Any]=3_05_22 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :int=5_12 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :int="absolute" , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :List[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
698
0
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def _a ( lowercase__ : Any , lowercase__ : Any="shi-labs/oneformer_demo" ): '''simple docstring''' with open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) as f: SCREAMING_SNAKE_CASE__ : List[str] = json.load(lowercase__ ) SCREAMING_SNAKE_CASE__ : int = {} SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : Any = [] for key, info in class_info.items(): SCREAMING_SNAKE_CASE__ : str = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowercase__ ) ) SCREAMING_SNAKE_CASE__ : Dict = thing_ids SCREAMING_SNAKE_CASE__ : int = class_names return metadata class snake_case ( unittest.TestCase ): def __init__( self : int , a_ : Optional[int] , a_ : Any=7 , a_ : Optional[Any]=3 , a_ : Optional[int]=30 , a_ : List[str]=400 , a_ : Optional[Any]=None , a_ : List[str]=True , a_ : Union[str, Any]=True , a_ : Tuple=[0.5, 0.5, 0.5] , a_ : str=[0.5, 0.5, 0.5] , a_ : List[Any]=10 , a_ : Any=False , a_ : str=255 , a_ : List[str]="shi-labs/oneformer_demo" , a_ : Optional[int]="ade20k_panoptic.json" , a_ : Dict=10 , )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = parent SCREAMING_SNAKE_CASE__ : Optional[Any] = batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE__ : str = min_resolution SCREAMING_SNAKE_CASE__ : int = max_resolution SCREAMING_SNAKE_CASE__ : Optional[Any] = do_resize SCREAMING_SNAKE_CASE__ : Tuple = {'shortest_edge': 32, 'longest_edge': 1333} if size is None else size SCREAMING_SNAKE_CASE__ : Any = do_normalize SCREAMING_SNAKE_CASE__ : List[Any] = image_mean SCREAMING_SNAKE_CASE__ : List[Any] = image_std SCREAMING_SNAKE_CASE__ : int = class_info_file SCREAMING_SNAKE_CASE__ : Any = prepare_metadata(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Tuple = num_text SCREAMING_SNAKE_CASE__ : str = repo_path # for the post_process_functions SCREAMING_SNAKE_CASE__ : List[Any] = 2 SCREAMING_SNAKE_CASE__ : Tuple = 10 SCREAMING_SNAKE_CASE__ : Optional[int] = 10 SCREAMING_SNAKE_CASE__ : Optional[Any] = 3 SCREAMING_SNAKE_CASE__ : Tuple = 4 SCREAMING_SNAKE_CASE__ : str = num_labels SCREAMING_SNAKE_CASE__ : List[Any] = do_reduce_labels SCREAMING_SNAKE_CASE__ : Tuple = ignore_index def __lowercase( self : Dict )-> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def __lowercase( self : Optional[int] , a_ : Optional[int] , a_ : Dict=False )-> str: """simple docstring""" if not batched: SCREAMING_SNAKE_CASE__ : List[str] = image_inputs[0] if isinstance(a_ , Image.Image ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = image.size else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE__ : Tuple = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE__ : str = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE__ : Any = self.size['shortest_edge'] SCREAMING_SNAKE_CASE__ : Dict = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE__ : str = self.size['shortest_edge'] SCREAMING_SNAKE_CASE__ : str = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE__ : int = [] for image in image_inputs: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = max(a_ , key=lambda a_ : item[0] )[0] SCREAMING_SNAKE_CASE__ : Tuple = max(a_ , key=lambda a_ : item[1] )[1] return expected_height, expected_width def __lowercase( self : Union[str, Any] )-> int: """simple docstring""" return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class snake_case ( UpperCamelCase_ , unittest.TestCase ): lowercase_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string lowercase_ = image_processing_class def __lowercase( self : Optional[Any] )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = OneFormerImageProcessorTester(self ) @property def __lowercase( self : Tuple )-> Optional[Any]: """simple docstring""" return self.image_processing_tester.prepare_image_processor_dict() def __lowercase( self : Optional[Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , 'image_mean' ) ) self.assertTrue(hasattr(a_ , 'image_std' ) ) self.assertTrue(hasattr(a_ , 'do_normalize' ) ) self.assertTrue(hasattr(a_ , 'do_resize' ) ) self.assertTrue(hasattr(a_ , 'size' ) ) self.assertTrue(hasattr(a_ , 'ignore_index' ) ) self.assertTrue(hasattr(a_ , 'class_info_file' ) ) self.assertTrue(hasattr(a_ , 'num_text' ) ) self.assertTrue(hasattr(a_ , 'repo_path' ) ) self.assertTrue(hasattr(a_ , 'metadata' ) ) self.assertTrue(hasattr(a_ , 'do_reduce_labels' ) ) def __lowercase( self : Dict )-> List[Any]: """simple docstring""" pass def __lowercase( self : str )-> Tuple: """simple docstring""" # Initialize image_processor SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : Dict = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.image_processing_tester.get_expected_values(a_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self.image_processing_tester.get_expected_values(a_ , batched=a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processor( a_ , ['semantic'] * len(a_ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase( self : int )-> Union[str, Any]: """simple docstring""" # Initialize image_processor SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ : List[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_tester.get_expected_values(a_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.image_processing_tester.get_expected_values(a_ , batched=a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processor( a_ , ['semantic'] * len(a_ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" # Initialize image_processor SCREAMING_SNAKE_CASE__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = self.image_processing_tester.get_expected_values(a_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.image_processing_tester.get_expected_values(a_ , batched=a_ ) SCREAMING_SNAKE_CASE__ : List[str] = image_processor( a_ , ['semantic'] * len(a_ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase( self : str , a_ : Optional[int]=False , a_ : Optional[Any]=False , a_ : str="np" )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class(**self.image_processor_dict ) # prepare image and target SCREAMING_SNAKE_CASE__ : List[Any] = self.image_processing_tester.num_labels SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=a_ ) if with_segmentation_maps: SCREAMING_SNAKE_CASE__ : Optional[int] = num_labels if is_instance_map: SCREAMING_SNAKE_CASE__ : Dict = list(range(a_ ) ) * 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = dict(enumerate(a_ ) ) SCREAMING_SNAKE_CASE__ : List[str] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": SCREAMING_SNAKE_CASE__ : Optional[Any] = [Image.fromarray(a_ ) for annotation in annotations] SCREAMING_SNAKE_CASE__ : Dict = image_processor( a_ , ['semantic'] * len(a_ ) , a_ , return_tensors='pt' , instance_id_to_semantic_id=a_ , pad_and_return_pixel_mask=a_ , ) return inputs def __lowercase( self : Any )-> List[str]: """simple docstring""" pass def __lowercase( self : Optional[int] )-> Optional[int]: """simple docstring""" def common(a_ : Optional[Any]=False , a_ : Tuple=None ): SCREAMING_SNAKE_CASE__ : int = self.comm_get_image_processor_inputs( with_segmentation_maps=a_ , is_instance_map=a_ , segmentation_type=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = inputs['mask_labels'] SCREAMING_SNAKE_CASE__ : List[Any] = inputs['class_labels'] SCREAMING_SNAKE_CASE__ : Optional[int] = inputs['pixel_values'] SCREAMING_SNAKE_CASE__ : List[str] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(a_ , a_ , a_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(a_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=a_ ) common(is_instance_map=a_ , segmentation_type='pil' ) common(is_instance_map=a_ , segmentation_type='pil' ) def __lowercase( self : Union[str, Any] )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = np.zeros((20, 50) ) SCREAMING_SNAKE_CASE__ : List[Any] = 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 SCREAMING_SNAKE_CASE__ : int = binary_mask_to_rle(a_ ) self.assertEqual(len(a_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def __lowercase( self : Optional[Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() SCREAMING_SNAKE_CASE__ : int = fature_extractor.post_process_semantic_segmentation(a_ ) self.assertEqual(len(a_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] SCREAMING_SNAKE_CASE__ : List[str] = fature_extractor.post_process_semantic_segmentation(a_ , target_sizes=a_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def __lowercase( self : Optional[int] )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) SCREAMING_SNAKE_CASE__ : List[Any] = self.image_processing_tester.get_fake_oneformer_outputs() SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processor.post_process_instance_segmentation(a_ , threshold=0 ) self.assertTrue(len(a_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , a_ ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def __lowercase( self : Union[str, Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processor.post_process_panoptic_segmentation(a_ , threshold=0 ) self.assertTrue(len(a_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , a_ ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
85
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : str = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """luke""" def __init__( self :List[Any] , lowerCamelCase_ :Optional[int]=5_02_67 , lowerCamelCase_ :List[Any]=50_00_00 , lowerCamelCase_ :str=7_68 , lowerCamelCase_ :Optional[Any]=2_56 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :Any=30_72 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int=None , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :str=0 , lowerCamelCase_ :int=2 , **lowerCamelCase_ :List[str] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = entity_vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Dict = entity_emb_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = use_entity_aware_attention SCREAMING_SNAKE_CASE : str = classifier_dropout
698
0
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __a :Optional[Any] = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __a :List[str] = concatenate_datasets __a :Optional[Any] = DownloadConfig __a :Any = DownloadManager __a :Any = DownloadMode __a :Any = DownloadConfig __a :int = DownloadMode __a :Union[str, Any] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
86
"""simple docstring""" # using dfs for finding eulerian path traversal def __A ( a_ : Dict , a_ : int , a_ : str , a_ : Optional[Any]=None )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = True, True SCREAMING_SNAKE_CASE : List[str] = dfs(a_ , a_ , a_ , a_ ) return path def __A ( a_ : List[str] , a_ : Any )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = -1 for i in range(a_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 SCREAMING_SNAKE_CASE : Tuple = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __A ( a_ : Any , a_ : int )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = check_circuit_or_path(a_ , a_ ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return SCREAMING_SNAKE_CASE : Tuple = 1 if check == 2: SCREAMING_SNAKE_CASE : Optional[int] = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) SCREAMING_SNAKE_CASE : Optional[int] = dfs(a_ , a_ , a_ ) print(a_ ) def __A ( )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} SCREAMING_SNAKE_CASE : int = {1: [2, 3], 2: [1, 3], 3: [1, 2]} SCREAMING_SNAKE_CASE : int = { 1: [], 2: [] # all degree is zero } SCREAMING_SNAKE_CASE : List[str] = 10 check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) if __name__ == "__main__": main()
698
0
def SCREAMING_SNAKE_CASE ( lowercase_ = 1_000 ) -> int: """simple docstring""" A__ = 3 A__ = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
87
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase__ : List[str] = 250004 lowerCamelCase__ : str = 250020 @require_sentencepiece @require_tokenizers class lowercase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MBartaaTokenizer UpperCamelCase = MBartaaTokenizerFast UpperCamelCase = True UpperCamelCase = True def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[int] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = '''<s>''' SCREAMING_SNAKE_CASE : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_54 ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __lowerCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE : str = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = tokenizer_r.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE : Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : int = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): '''simple docstring''' UpperCamelCase = """facebook/mbart-large-50-one-to-many-mmt""" UpperCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCamelCase = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def __lowerCAmelCase ( cls :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) SCREAMING_SNAKE_CASE : Dict = 1 return cls def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def __lowerCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE : int = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[0] , lowerCamelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> List[str]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ ) @require_torch def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Dict = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __lowerCAmelCase ( self :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : List[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : List[Any] = targets['''input_ids'''] SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(lowerCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
698
0
"""simple docstring""" import argparse import os import re UpperCAmelCase = """src/transformers""" # Pattern that looks at the indentation in a line. UpperCAmelCase = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. UpperCAmelCase = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCAmelCase = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. UpperCAmelCase = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCAmelCase = re.compile(r"""\[([^\]]+)\]""") def _snake_case ( __snake_case : Any ): """simple docstring""" _lowerCamelCase : Tuple = _re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def _snake_case ( __snake_case : List[Any] , __snake_case : Any="" , __snake_case : Tuple=None , __snake_case : List[str]=None ): """simple docstring""" _lowerCamelCase : List[str] = 0 _lowerCamelCase : Tuple = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 _lowerCamelCase : Union[str, Any] = ["""\n""".join(lines[:index] )] else: _lowerCamelCase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCamelCase : Optional[int] = [lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(__snake_case ) ) if index < len(__snake_case ) - 1: _lowerCamelCase : Optional[int] = [lines[index + 1]] index += 1 else: _lowerCamelCase : int = [] else: blocks.append("""\n""".join(__snake_case ) ) _lowerCamelCase : Dict = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append("""\n""".join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def _snake_case ( __snake_case : Tuple ): """simple docstring""" def _inner(__snake_case : List[str] ): return key(__snake_case ).lower().replace("""_""" , """""" ) return _inner def _snake_case ( __snake_case : Optional[int] , __snake_case : Optional[int]=None ): """simple docstring""" def noop(__snake_case : List[str] ): return x if key is None: _lowerCamelCase : Dict = noop # Constants are all uppercase, they go first. _lowerCamelCase : List[Any] = [obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCamelCase : Any = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. _lowerCamelCase : Union[str, Any] = [obj for obj in objects if not key(__snake_case )[0].isupper()] _lowerCamelCase : List[Any] = ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def _snake_case ( __snake_case : Dict ): """simple docstring""" def _replace(__snake_case : Union[str, Any] ): _lowerCamelCase : Any = match.groups()[0] if "," not in imports: return F'[{imports}]' _lowerCamelCase : Optional[Any] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCamelCase : Dict = keys[:-1] return "[" + ", ".join([F'"{k}"' for k in sort_objects(__snake_case )] ) + "]" _lowerCamelCase : Tuple = import_statement.split("""\n""" ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCamelCase : Union[str, Any] = 2 if lines[1].strip() == """[""" else 1 _lowerCamelCase : Optional[Any] = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCamelCase : Optional[Any] = sort_objects(__snake_case , key=lambda __snake_case : x[1] ) _lowerCamelCase : str = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCamelCase : str = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCamelCase : Optional[Any] = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCamelCase : str = keys[:-1] _lowerCamelCase : Optional[int] = get_indent(lines[1] ) + """, """.join([F'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line _lowerCamelCase : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case ) return import_statement def _snake_case ( __snake_case : List[str] , __snake_case : Dict=True ): """simple docstring""" with open(__snake_case , encoding="""utf-8""" ) as f: _lowerCamelCase : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCamelCase : Optional[int] = split_code_in_indented_blocks( __snake_case , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCamelCase : Union[str, Any] = main_blocks[block_idx] _lowerCamelCase : List[Any] = block.split("""\n""" ) # Get to the start of the imports. _lowerCamelCase : List[str] = 0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCamelCase : Tuple = len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. _lowerCamelCase : List[str] = """\n""".join(block_lines[line_idx:-1] ) _lowerCamelCase : Union[str, Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCamelCase : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCamelCase : List[str] = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCamelCase : List[Any] = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCamelCase : Union[str, Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None] _lowerCamelCase : Optional[Any] = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCamelCase : Tuple = 0 _lowerCamelCase : Dict = [] for i in range(len(__snake_case ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCamelCase : Any = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. _lowerCamelCase : Tuple = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(F'Overwriting {file}.' ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(__snake_case ) ) def _snake_case ( __snake_case : int=True ): """simple docstring""" _lowerCamelCase : Dict = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: _lowerCamelCase : int = sort_imports(os.path.join(__snake_case , """__init__.py""" ) , check_only=__snake_case ) if result: _lowerCamelCase : str = [os.path.join(__snake_case , """__init__.py""" )] if len(__snake_case ) > 0: raise ValueError(F'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") UpperCAmelCase = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
88
"""simple docstring""" from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __lowerCAmelCase ( self :Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._create_example_records() SCREAMING_SNAKE_CASE : List[Any] = Dataset.from_list(lowerCamelCase_ ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(lowerCamelCase_ ): self.assertDictEqual(lowerCamelCase_ , example_records[i] ) def __lowerCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self._create_example_records() SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def __lowerCAmelCase ( self :List[str] ) -> Dict: # checks what happens with missing columns '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: # checks if the type can be inferred from the second record '''simple docstring''' SCREAMING_SNAKE_CASE : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE : List[str] = Dataset.from_list(lowerCamelCase_ ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = Dataset.from_list([] ) self.assertEqual(len(lowerCamelCase_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
698
0
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(lowerCamelCase_ , n - 1 , lowerCamelCase_ ) * a) % mod else: _lowercase : str = binary_exponentiation(lowerCamelCase_ , n / 2 , lowerCamelCase_ ) return (b * b) % mod # a prime number SCREAMING_SNAKE_CASE : str = 701 SCREAMING_SNAKE_CASE : Optional[int] = 1000000000 SCREAMING_SNAKE_CASE : Optional[int] = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
89
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def __A ( a_ : Callable[[int | float], int | float] , a_ : int | float , a_ : int | float , a_ : int = 1_00 , )-> float: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = x_start SCREAMING_SNAKE_CASE : Union[str, Any] = fnc(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = 0.0 for _ in range(a_ ): # Approximates curve as a sequence of linear lines and sums their length SCREAMING_SNAKE_CASE : int = (x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE : Optional[int] = fnc(a_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step SCREAMING_SNAKE_CASE : str = xa SCREAMING_SNAKE_CASE : Any = fxa return length if __name__ == "__main__": def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") lowerCamelCase__ : str = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
698
0
'''simple docstring''' from math import isqrt def _snake_case ( A ) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(A ) + 1 ) ) def _snake_case ( A = 10**6 ) -> int: lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 lowerCAmelCase__ = 7 while prime_candidate < max_prime: primes_count += is_prime(A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f"""{solution() = }""")
90
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __A ( a_ : int=None )-> Tuple: '''simple docstring''' if subparsers is not None: SCREAMING_SNAKE_CASE : List[str] = subparsers.add_parser('''test''' ) else: SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=a_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=a_ ) return parser def __A ( a_ : Any )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: SCREAMING_SNAKE_CASE : Tuple = script_name else: SCREAMING_SNAKE_CASE : Optional[Any] = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE : str = ['''accelerate-launch'''] + test_args.split() SCREAMING_SNAKE_CASE : List[str] = execute_subprocess_async(a_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __A ( )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : str = test_command_parser() SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() test_command(a_ ) if __name__ == "__main__": main()
698
0
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _snake_case ( snake_case__ : Union[str, Any] ): A = [ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def _snake_case ( snake_case__ : Union[str, Any] ): A , A = emb.weight.shape A = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) A = emb.weight.data return lin_layer def _snake_case ( snake_case__ : Tuple ): A = torch.load(snake_case__ , map_location='cpu' ) A = Namespace(**checkpoint['cfg']['model'] ) A = checkpoint['model'] remove_ignore_keys_(snake_case__ ) A = state_dict['decoder.embed_tokens.weight'].shape[0] A = {key.replace('decoder' , 'model' ): val for key, val in state_dict.items()} A = XGLMConfig( vocab_size=snake_case__ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='gelu' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) A = XGLMForCausalLM(snake_case__ ) A = model.load_state_dict(snake_case__ , strict=snake_case__ ) print(snake_case__ ) A = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _lowercase = parser.parse_args() _lowercase = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
91
"""simple docstring""" def __A ( a_ : int = 10 , a_ : int = 10_00 , a_ : bool = True )-> int: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def __A ( a_ : int , a_ : int )-> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def __A ( a_ : int , a_ : int , a_ : int )-> None: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(a_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = lower SCREAMING_SNAKE_CASE : int = higher SCREAMING_SNAKE_CASE : List[str] = [] while True: SCREAMING_SNAKE_CASE : Any = get_avg(a_ , a_ ) last_numbers.append(a_ ) if answer(a_ ) == "low": SCREAMING_SNAKE_CASE : Dict = number elif answer(a_ ) == "high": SCREAMING_SNAKE_CASE : Tuple = number else: break print(F"guess the number : {last_numbers[-1]}" ) print(F"details : {last_numbers!s}" ) def __A ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = int(input('''Enter lower value : ''' ).strip() ) SCREAMING_SNAKE_CASE : Tuple = int(input('''Enter high value : ''' ).strip() ) SCREAMING_SNAKE_CASE : List[str] = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(a_ , a_ , a_ ) if __name__ == "__main__": main()
698
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _lowerCAmelCase ( ) -> List[str]: lowercase : Optional[int] =ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__magic_name__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__magic_name__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__magic_name__ ) return parser.parse_args() def _lowerCAmelCase ( ) -> List[str]: lowercase : Dict =parse_args() # Import training_script as a module. lowercase : str =Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : Dict =script_fpath.stem lowercase : Union[str, Any] =importlib.import_module(__magic_name__ ) # Patch sys.argv lowercase : Tuple =[args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
92
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowerCamelCase__ : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __A ( a_ : Optional[int] , a_ : str , a_ : str , a_ : str , a_ : List[str] )-> Tuple: '''simple docstring''' for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE : Any = getattr(a_ , a_ ) if weight_type is not None: SCREAMING_SNAKE_CASE : Optional[int] = getattr(a_ , a_ ).shape else: SCREAMING_SNAKE_CASE : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : List[Any] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Any = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : List[Any] = value else: SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __A ( a_ : Optional[Any] , a_ : Dict )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Optional[Any] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : Tuple = hf_model.feature_extractor SCREAMING_SNAKE_CASE : Tuple = hf_model.adapter for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : int = False if "conv_layers" in name: load_conv_layer( a_ , a_ , a_ , a_ , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE : List[str] = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(a_ , a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE : Union[str, Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Dict = name.split(a_ )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE : Optional[int] = mapped_key.replace('''*''' , a_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE : List[str] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE : str = '''bias''' elif "weight" in name: SCREAMING_SNAKE_CASE : Tuple = '''weight''' else: SCREAMING_SNAKE_CASE : str = None set_recursively(a_ , a_ , a_ , a_ , a_ ) continue if not is_used: unused_weights.append(a_ ) logger.warning(F"Unused weights: {unused_weights}" ) def __A ( a_ : Dict , a_ : int , a_ : Optional[int] , a_ : Optional[int] , a_ : Dict )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE : List[str] = name.split('''.''' ) SCREAMING_SNAKE_CASE : Dict = int(items[0] ) SCREAMING_SNAKE_CASE : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[int] , a_ : Optional[int] , a_ : Any , a_ : Any )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = full_name.split('''adaptor.''' )[-1] SCREAMING_SNAKE_CASE : List[Any] = name.split('''.''' ) if items[1].isdigit(): SCREAMING_SNAKE_CASE : List[Any] = int(items[1] ) else: SCREAMING_SNAKE_CASE : str = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." SCREAMING_SNAKE_CASE : Optional[Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." SCREAMING_SNAKE_CASE : int = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(a_ , a_ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = emb.weight.shape SCREAMING_SNAKE_CASE : Any = nn.Linear(a_ , a_ , bias=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = emb.weight.data return lin_layer @torch.no_grad() def __A ( a_ : Tuple , a_ : Optional[int] , a_ : List[Any] , a_ : Any , a_ : Tuple , a_ : int , a_ : Any , a_ : str , a_ : Tuple , a_ : Union[str, Any] , a_ : Union[str, Any] , )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = WavaVecaConfig.from_pretrained( a_ , add_adapter=a_ , adapter_stride=a_ , adapter_kernel_size=a_ , use_auth_token=a_ , output_hidden_size=a_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = MBartConfig.from_pretrained(a_ ) # load model SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) SCREAMING_SNAKE_CASE : int = model[0].eval() # load feature extractor SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(a_ , use_auth_token=a_ ) # set weights for wav2vec2 encoder SCREAMING_SNAKE_CASE : str = WavaVecaModel(a_ ) recursively_load_weights_wavaveca(model.encoder , a_ ) # load decoder weights SCREAMING_SNAKE_CASE : Dict = MBartForCausalLM(a_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a_ ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechEncoderDecoderModel(encoder=a_ , decoder=a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer(a_ ) tokenizer.save_pretrained(a_ ) SCREAMING_SNAKE_CASE : Tuple = hf_wavavec.config.to_dict() SCREAMING_SNAKE_CASE : Any = tokenizer.pad_token_id SCREAMING_SNAKE_CASE : List[str] = tokenizer.bos_token_id SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = '''mbart50''' SCREAMING_SNAKE_CASE : Optional[int] = '''wav2vec2''' SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : List[str] = 25_00_04 SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Any = SpeechEncoderDecoderConfig.from_dict(a_ ) hf_wavavec.save_pretrained(a_ ) feature_extractor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250004, type=int, help="`decoder_start_token_id` of model config") lowerCamelCase__ : Dict = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
698
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class _lowerCAmelCase : """simple docstring""" __magic_name__ :int = BlenderbotConfig __magic_name__ :Union[str, Any] = {} __magic_name__ :Any = """gelu""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=9_9 , __UpperCAmelCase=3_2 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=3_7 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=2_0 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , ): '''simple docstring''' lowerCAmelCase__ :Tuple = parent lowerCAmelCase__ :Union[str, Any] = batch_size lowerCAmelCase__ :List[Any] = seq_length lowerCAmelCase__ :Union[str, Any] = is_training lowerCAmelCase__ :int = use_labels lowerCAmelCase__ :List[Any] = vocab_size lowerCAmelCase__ :Optional[int] = hidden_size lowerCAmelCase__ :List[str] = num_hidden_layers lowerCAmelCase__ :Dict = num_attention_heads lowerCAmelCase__ :int = intermediate_size lowerCAmelCase__ :List[Any] = hidden_dropout_prob lowerCAmelCase__ :List[Any] = attention_probs_dropout_prob lowerCAmelCase__ :Optional[Any] = max_position_embeddings lowerCAmelCase__ :Tuple = eos_token_id lowerCAmelCase__ :int = pad_token_id lowerCAmelCase__ :Union[str, Any] = bos_token_id def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase__ :Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase__ :Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase__ :str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ :Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCAmelCase__ :List[str] = prepare_blenderbot_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = TFBlenderbotModel(config=__UpperCAmelCase ).get_decoder() lowerCAmelCase__ :Tuple = inputs_dict['input_ids'] lowerCAmelCase__ :int = input_ids[:1, :] lowerCAmelCase__ :Any = inputs_dict['attention_mask'][:1, :] lowerCAmelCase__ :Union[str, Any] = inputs_dict['head_mask'] lowerCAmelCase__ :Any = 1 # first forward pass lowerCAmelCase__ :Optional[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ :str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase__ :Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ :List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase__ :Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase__ :Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase__ :List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] lowerCAmelCase__ :List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase__ :Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase__ :Optional[int] = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase__ :List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-3 ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) ->Union[str, Any]: """simple docstring""" if attention_mask is None: lowerCAmelCase__ :Tuple = tf.cast(tf.math.not_equal(_SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCAmelCase__ :int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCAmelCase__ :Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase__ :Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase__ :str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Dict = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __magic_name__ :str = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __magic_name__ :Dict = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __magic_name__ :str = True __magic_name__ :str = False __magic_name__ :Dict = False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = TFBlenderbotModelTester(self ) lowerCAmelCase__ :int = ConfigTester(self , config_class=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) @require_tokenizers @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __magic_name__ :Optional[Any] = ["""My friends are cool but they eat too many carbs."""] __magic_name__ :int = """facebook/blenderbot-400M-distill""" @cached_property def snake_case ( self ): '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.tokenizer(self.src_text , return_tensors='tf' ) lowerCAmelCase__ :Optional[int] = self.model.generate( model_inputs.input_ids , ) lowerCAmelCase__ :Optional[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__UpperCAmelCase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
93
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ : Union[str, Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
698
0
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ ( __A ): """simple docstring""" def A__ ( self : Tuple ) -> List[str]: '''simple docstring''' lowercase : Any =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(UpperCAmelCase , '''num_heads''' ) ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any=13 , UpperCAmelCase : Tuple=64 , UpperCAmelCase : int=3 , UpperCAmelCase : Dict=[16, 48, 96] , UpperCAmelCase : Tuple=[1, 3, 6] , UpperCAmelCase : Optional[int]=[1, 2, 10] , UpperCAmelCase : List[str]=[7, 3, 3] , UpperCAmelCase : Any=[4, 2, 2] , UpperCAmelCase : Dict=[2, 1, 1] , UpperCAmelCase : int=[2, 2, 2] , UpperCAmelCase : str=[False, False, True] , UpperCAmelCase : Tuple=[0.0, 0.0, 0.0] , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : Any=1e-12 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[Any]=2 , ) -> List[str]: '''simple docstring''' lowercase : int =parent lowercase : Tuple =batch_size lowercase : Optional[int] =image_size lowercase : Optional[Any] =patch_sizes lowercase : int =patch_stride lowercase : Optional[int] =patch_padding lowercase : Tuple =is_training lowercase : Union[str, Any] =use_labels lowercase : Optional[Any] =num_labels lowercase : Any =num_channels lowercase : Tuple =embed_dim lowercase : int =num_heads lowercase : Optional[Any] =stride_kv lowercase : List[str] =depth lowercase : Dict =cls_token lowercase : Dict =attention_drop_rate lowercase : List[Any] =initializer_range lowercase : Optional[int] =layer_norm_eps def A__ ( self : str ) -> List[Any]: '''simple docstring''' lowercase : str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : List[Any] =None if self.use_labels: lowercase : List[str] =ids_tensor([self.batch_size] , self.num_labels ) lowercase : int =self.get_config() return config, pixel_values, labels def A__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' lowercase : str =CvtModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Optional[int] =model(UpperCAmelCase ) lowercase : str =(self.image_size, self.image_size) lowercase , lowercase : Any =image_size[0], image_size[1] for i in range(len(self.depth ) ): lowercase : str =floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowercase : str =floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple ) -> str: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : str =CvtForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : int =model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Any ) -> Any: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() lowercase , lowercase , lowercase : Optional[Any] =config_and_inputs lowercase : Tuple ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () UpperCamelCase_ = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Any ) -> List[str]: '''simple docstring''' lowercase : int =CvtModelTester(self ) lowercase : str =ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Tuple ) -> Tuple: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self : Dict ) -> Tuple: '''simple docstring''' return @unittest.skip(reason='''Cvt does not output attentions''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A__ ( self : str ) -> int: '''simple docstring''' pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A__ ( self : Any ) -> Dict: '''simple docstring''' pass def A__ ( self : List[str] ) -> int: '''simple docstring''' lowercase , lowercase : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Tuple =model_class(UpperCAmelCase ) lowercase : List[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Tuple =[*signature.parameters.keys()] lowercase : str =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> int: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] ): lowercase : List[str] =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase : Tuple =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase : List[str] =outputs.hidden_states lowercase : str =len(self.model_tester.depth ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowercase , lowercase : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Dict =True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : str =True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' pass @slow def A__ ( self : Dict ) -> Tuple: '''simple docstring''' for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : List[str] =CvtModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase_ ( ) -> List[str]: """simple docstring""" lowercase : Tuple =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Any =CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCAmelCase ) lowercase : Tuple =self.default_image_processor lowercase : str =prepare_img() lowercase : List[str] =image_processor(images=UpperCAmelCase , return_tensors='''pt''' ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase : Optional[Any] =model(**UpperCAmelCase ) # verify the logits lowercase : List[str] =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase : Optional[int] =torch.tensor([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
94
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCamelCase__ : List[Any] = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" lowerCamelCase__ : List[str] = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" lowerCamelCase__ : List[Any] = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :str=None , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :Optional[int]="auto" , lowerCamelCase_ :Dict=-1 , lowerCamelCase_ :str=0.9 , lowerCamelCase_ :str=5 , lowerCamelCase_ :Tuple=5_00 , lowerCamelCase_ :str="gpt2-large" , lowerCamelCase_ :List[Any]=-1 , lowerCamelCase_ :Dict=10_24 , lowerCamelCase_ :Tuple=25 , lowerCamelCase_ :List[Any]=5 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=25 , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = compute_mauve( p_text=lowerCamelCase_ , q_text=lowerCamelCase_ , p_features=lowerCamelCase_ , q_features=lowerCamelCase_ , p_tokens=lowerCamelCase_ , q_tokens=lowerCamelCase_ , num_buckets=lowerCamelCase_ , pca_max_data=lowerCamelCase_ , kmeans_explained_var=lowerCamelCase_ , kmeans_num_redo=lowerCamelCase_ , kmeans_max_iter=lowerCamelCase_ , featurize_model_name=lowerCamelCase_ , device_id=lowerCamelCase_ , max_text_length=lowerCamelCase_ , divergence_curve_discretization_size=lowerCamelCase_ , mauve_scaling_factor=lowerCamelCase_ , verbose=lowerCamelCase_ , seed=lowerCamelCase_ , ) return out
698
0
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case ( A__ ): if isinstance(A__ ,collections.abc.Iterable ): return x return (x, x) @require_flax class UpperCamelCase_ : def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]: pass def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float ) -> Dict: UpperCAmelCase_ : Tuple = np.abs((a - b) ).max() self.assertLessEqual(lowerCAmelCase_ , lowerCAmelCase_ , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : str ) -> List[Any]: UpperCAmelCase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = FlaxVisionTextDualEncoderModel(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : List[str] ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = {"vision_model": vision_model, "text_model": text_model} UpperCAmelCase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Optional[int] ) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ : str = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = {"vision_model": vision_model, "text_model": text_model} UpperCAmelCase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = after_output[0] UpperCAmelCase_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase_ , 1e-3 ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Union[str, Any] ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = {"vision_model": vision_model, "text_model": text_model} UpperCAmelCase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = model( input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , output_attentions=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ : str = to_atuple(vision_model.config.image_size ) UpperCAmelCase_ : Optional[Any] = to_atuple(vision_model.config.patch_size ) UpperCAmelCase_ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCAmelCase_ : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCAmelCase_ : List[str] = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> str: pt_model.to(lowerCAmelCase_ ) pt_model.eval() # prepare inputs UpperCAmelCase_ : Dict = inputs_dict UpperCAmelCase_ : List[str] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): UpperCAmelCase_ : int = pt_model(**lowerCAmelCase_ ).to_tuple() UpperCAmelCase_ : int = fx_model(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase_ , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = fx_model_loaded(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase_ , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ , from_flax=lowerCAmelCase_ ) pt_model_loaded.to(lowerCAmelCase_ ) pt_model_loaded.eval() with torch.no_grad(): UpperCAmelCase_ : Tuple = pt_model_loaded(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCAmelCase_ , pt_output_loaded.numpy() , 4e-2 ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ) -> Any: UpperCAmelCase_ : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = VisionTextDualEncoderModel(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = FlaxVisionTextDualEncoderModel(lowerCAmelCase_ ) UpperCAmelCase_ : Any = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase_ ) UpperCAmelCase_ : Dict = fx_state self.check_pt_flax_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ) -> Tuple: UpperCAmelCase_ : str = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = VisionTextDualEncoderModel(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = FlaxVisionTextDualEncoderModel(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = load_flax_weights_in_pytorch_model(lowerCAmelCase_ , fx_model.params ) self.check_pt_flax_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: UpperCAmelCase_ : str = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: UpperCAmelCase_ : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase_ ) @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: UpperCAmelCase_ : int = self.prepare_config_and_inputs() UpperCAmelCase_ : int = config_inputs_dict.pop("vision_config" ) UpperCAmelCase_ : int = config_inputs_dict.pop("text_config" ) UpperCAmelCase_ : Optional[Any] = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.check_equivalence_flax_to_pt(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ : int = self.get_pretrained_model_and_inputs() UpperCAmelCase_ : List[Any] = model_a(**lowerCAmelCase_ ) UpperCAmelCase_ : int = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Any = model_a(**lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = after_outputs[0] UpperCAmelCase_ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase_ , 1e-5 ) @require_flax class UpperCamelCase_ (__A , unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-bert" , vision_from_pt=lowerCAmelCase_ , text_from_pt=lowerCAmelCase_ , ) UpperCAmelCase_ : List[Any] = 13 UpperCAmelCase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCAmelCase_ : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCAmelCase_ : Optional[Any] = random_attention_mask([batch_size, 4] ) UpperCAmelCase_ : str = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> List[str]: UpperCAmelCase_ : List[str] = FlaxViTModel(lowerCAmelCase_ ) UpperCAmelCase_ : Any = FlaxBertModel(lowerCAmelCase_ ) return vision_model, text_model def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = FlaxViTModelTester(self ) UpperCAmelCase_ : Optional[int] = FlaxBertModelTester(self ) UpperCAmelCase_ : Any = vit_model_tester.prepare_config_and_inputs() UpperCAmelCase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ : Any = vision_config_and_inputs UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class UpperCamelCase_ (__A , unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" , "hf-internal-testing/tiny-bert" , vision_from_pt=lowerCAmelCase_ , text_from_pt=lowerCAmelCase_ , ) UpperCAmelCase_ : Any = 13 UpperCAmelCase_ : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCAmelCase_ : Optional[int] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCAmelCase_ : int = random_attention_mask([batch_size, 4] ) UpperCAmelCase_ : int = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ) -> str: UpperCAmelCase_ : Tuple = FlaxCLIPVisionModel(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(lowerCAmelCase_ ) return vision_model, text_model def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: UpperCAmelCase_ : List[Any] = FlaxCLIPVisionModelTester(self ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModelTester(self ) UpperCAmelCase_ : List[str] = clip_model_tester.prepare_config_and_inputs() UpperCAmelCase_ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ : Any = vision_config_and_inputs UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class UpperCamelCase_ (unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase_ : Any = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" , logit_scale_init_value=1.0 ) UpperCAmelCase_ : Tuple = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) UpperCAmelCase_ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase_ : int = processor( text=["una foto di un gatto", "una foto di un cane"] , images=lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors="np" ) UpperCAmelCase_ : Optional[int] = model(**lowerCAmelCase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) UpperCAmelCase_ : List[str] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase_ , atol=1e-3 ) )
95
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : str = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Optional[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } lowerCamelCase__ : int = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRContextEncoderTokenizer class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRQuestionEncoderTokenizer lowerCamelCase__ : Union[str, Any] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) lowerCamelCase__ : int = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) lowerCamelCase__ : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_UpperCAmelCase ) class lowercase__: '''simple docstring''' def __call__( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :Optional[bool] = None , **lowerCamelCase_ :Tuple , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE : List[str] = titles if texts is None else texts return super().__call__( lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Dict = titles if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [titles] SCREAMING_SNAKE_CASE : Dict = texts if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [texts] SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = questions if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [questions] * n_passages assert len(lowerCamelCase_ ) == len( lowerCamelCase_ ), f"There should be as many titles than texts but got {len(lowerCamelCase_ )} titles and {len(lowerCamelCase_ )} texts." SCREAMING_SNAKE_CASE : Any = super().__call__(lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : Dict = super().__call__(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : int = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase_ , lowerCamelCase_ ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE : int = attention_mask return self.pad(lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :BatchEncoding , lowerCamelCase_ :DPRReaderOutput , lowerCamelCase_ :int = 16 , lowerCamelCase_ :int = 64 , lowerCamelCase_ :int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = reader_output[:3] SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = sorted(range(lowerCamelCase_ ) , reverse=lowerCamelCase_ , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase_ , top_spans=lowerCamelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase_ , start_index=lowerCamelCase_ , end_index=lowerCamelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCamelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] for start_index, start_score in enumerate(lowerCamelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE : Dict = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] , reverse=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"Wrong span indices: [{start_index}:{end_index}]" SCREAMING_SNAKE_CASE : Optional[int] = end_index - start_index + 1 assert length <= max_answer_length, f"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = DPRReaderTokenizer
698
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __A : def __init__( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int]=1_3 , __snake_case : Tuple=7 , __snake_case : Optional[Any]=True , __snake_case : List[str]=True , __snake_case : List[Any]=True , __snake_case : List[str]=True , __snake_case : Dict=9_9 , __snake_case : Dict=3_2 , __snake_case : Optional[int]=2 , __snake_case : List[Any]=4 , __snake_case : List[str]=3_7 , __snake_case : str="gelu" , __snake_case : List[str]=0.1 , __snake_case : Tuple=0.1 , __snake_case : str=5_1_2 , __snake_case : Optional[int]=1_6 , __snake_case : List[str]=2 , __snake_case : str=0.02 , __snake_case : Optional[int]=3 , __snake_case : List[str]=4 , __snake_case : Any=None , __snake_case : int=0 , ) -> int: __magic_name__: int = parent __magic_name__: Tuple = batch_size __magic_name__: List[Any] = seq_length __magic_name__: str = is_training __magic_name__: Union[str, Any] = use_input_mask __magic_name__: Any = use_token_type_ids __magic_name__: Tuple = use_labels __magic_name__: Tuple = vocab_size __magic_name__: Tuple = hidden_size __magic_name__: str = num_hidden_layers __magic_name__: List[Any] = num_attention_heads __magic_name__: Any = intermediate_size __magic_name__: List[Any] = hidden_act __magic_name__: Optional[int] = hidden_dropout_prob __magic_name__: Dict = attention_probs_dropout_prob __magic_name__: Union[str, Any] = max_position_embeddings __magic_name__: Tuple = type_vocab_size __magic_name__: List[str] = type_sequence_label_size __magic_name__: Union[str, Any] = initializer_range __magic_name__: List[str] = num_labels __magic_name__: List[Any] = num_choices __magic_name__: str = scope __magic_name__: Dict = projection_dim def lowerCamelCase__ ( self : List[Any] ) -> int: __magic_name__: str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__: List[str] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py __magic_name__: Dict = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__: Dict = None if self.use_token_type_ids: __magic_name__: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__: str = None __magic_name__: Tuple = None __magic_name__: List[str] = None if self.use_labels: __magic_name__: Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__: Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__: Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__: List[str] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) __magic_name__: Any = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : str , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Union[str, Any] ) -> Optional[Any]: __magic_name__: int = TFDPRContextEncoder(config=__snake_case ) __magic_name__: Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) __magic_name__: Optional[Any] = model(__snake_case , token_type_ids=__snake_case ) __magic_name__: Tuple = model(__snake_case ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowerCamelCase__ ( self : List[str] , __snake_case : int , __snake_case : List[str] , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[Any] ) -> int: __magic_name__: Any = TFDPRQuestionEncoder(config=__snake_case ) __magic_name__: Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) __magic_name__: List[Any] = model(__snake_case , token_type_ids=__snake_case ) __magic_name__: int = model(__snake_case ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowerCamelCase__ ( self : Optional[int] , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : str , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : int ) -> List[Any]: __magic_name__: List[str] = TFDPRReader(config=__snake_case ) __magic_name__: Dict = model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def lowerCamelCase__ ( self : Dict ) -> Tuple: __magic_name__: int = self.prepare_config_and_inputs() ( ( __magic_name__ ), ( __magic_name__ ), ( __magic_name__ ), ( __magic_name__ ), ( __magic_name__ ), ( __magic_name__ ), ( __magic_name__ ), ): Optional[int] = config_and_inputs __magic_name__: List[str] = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) UpperCAmelCase__ = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def lowerCamelCase__ ( self : Any ) -> List[Any]: __magic_name__: List[Any] = TFDPRModelTester(self ) __magic_name__: Optional[Any] = ConfigTester(self , config_class=__snake_case , hidden_size=3_7 ) def lowerCamelCase__ ( self : List[str] ) -> str: self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[str] ) -> str: __magic_name__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__snake_case ) def lowerCamelCase__ ( self : str ) -> Optional[Any]: __magic_name__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__snake_case ) def lowerCamelCase__ ( self : Dict ) -> List[str]: __magic_name__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__snake_case ) @slow def lowerCamelCase__ ( self : Optional[int] ) -> int: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__: Tuple = TFDPRContextEncoder.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__: str = TFDPRContextEncoder.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__: Optional[Any] = TFDPRQuestionEncoder.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__: Optional[int] = TFDPRReader.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_tf class __A ( unittest.TestCase ): @slow def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: __magic_name__: int = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) __magic_name__: Optional[Any] = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] __magic_name__: Optional[Any] = model(__snake_case )[0] # embedding shape = (1, 768) # compare the actual values for a slice. __magic_name__: List[Any] = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1E-4 ) )
96
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Optional[Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """markuplm""" def __init__( self :int , lowerCamelCase_ :List[str]=3_05_22 , lowerCamelCase_ :Union[str, Any]=7_68 , lowerCamelCase_ :str=12 , lowerCamelCase_ :Dict=12 , lowerCamelCase_ :str=30_72 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :Union[str, Any]=0.1 , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :Union[str, Any]=5_12 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Any=1E-12 , lowerCamelCase_ :Dict=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :str=2_56 , lowerCamelCase_ :List[Any]=10_24 , lowerCamelCase_ :Union[str, Any]=2_16 , lowerCamelCase_ :Dict=10_01 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :str=50 , lowerCamelCase_ :List[str]="absolute" , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :int=None , **lowerCamelCase_ :Dict , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : int = layer_norm_eps SCREAMING_SNAKE_CASE : int = position_embedding_type SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : str = classifier_dropout # additional properties SCREAMING_SNAKE_CASE : Optional[Any] = max_depth SCREAMING_SNAKE_CASE : Dict = max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE : Optional[int] = max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE : Tuple = tag_pad_id SCREAMING_SNAKE_CASE : str = subs_pad_id SCREAMING_SNAKE_CASE : List[Any] = xpath_unit_hidden_size
698
0
import os def a ( ): '''simple docstring''' with open(os.path.dirname(snake_case__ ) + '''/p022_names.txt''' ) as file: lowercase_ = str(file.readlines()[0] ) lowercase_ = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowercase_ = 0 lowercase_ = 0 for i, name in enumerate(snake_case__ ): for letter in name: name_score += ord(snake_case__ ) - 64 total_score += (i + 1) * name_score lowercase_ = 0 return total_score if __name__ == "__main__": print(solution())
97
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """resnet""" UpperCamelCase = ["""basic""", """bottleneck"""] def __init__( self :Optional[int] , lowerCamelCase_ :Tuple=3 , lowerCamelCase_ :Tuple=64 , lowerCamelCase_ :Union[str, Any]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase_ :int=[3, 4, 6, 3] , lowerCamelCase_ :Any="bottleneck" , lowerCamelCase_ :Optional[int]="relu" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=None , lowerCamelCase_ :Optional[int]=None , **lowerCamelCase_ :Optional[int] , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCamelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : List[Any] = layer_type SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = downsample_in_first_stage SCREAMING_SNAKE_CASE : int = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = version.parse("""1.11""" ) @property def __lowerCAmelCase ( self :Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self :str ) -> float: '''simple docstring''' return 1E-3
698
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def a__ ( lowercase : Dict=None ) -> Tuple: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser(add_help=lowercase, allow_abbrev=lowercase ) # The main config parser _UpperCamelCase = config_command_parser(lowercase ) # The subparser to add commands to _UpperCamelCase = config_parser.add_subparsers(title='''subcommands''', dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(lowercase, parents=[parent_parser] ) update_command_parser(lowercase, parents=[parent_parser] ) return config_parser def a__ ( ) -> str: """simple docstring""" _UpperCamelCase = get_config_parser() _UpperCamelCase = config_parser.parse_args() if not hasattr(lowercase, '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
98
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """mra""" def __init__( self :int , lowerCamelCase_ :Optional[int]=5_02_65 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Tuple="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :int=1E-5 , lowerCamelCase_ :List[Any]="absolute" , lowerCamelCase_ :str=4 , lowerCamelCase_ :List[str]="full" , lowerCamelCase_ :List[Any]=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :List[str]=0 , lowerCamelCase_ :List[Any]=2 , **lowerCamelCase_ :str , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : List[str] = block_per_row SCREAMING_SNAKE_CASE : Optional[int] = approx_mode SCREAMING_SNAKE_CASE : List[Any] = initial_prior_first_n_blocks SCREAMING_SNAKE_CASE : Union[str, Any] = initial_prior_diagonal_n_blocks
698
0
from typing import TYPE_CHECKING from ...utils import _LazyModule SCREAMING_SNAKE_CASE = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
99
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """nllb-moe""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :List[str] , lowerCamelCase_ :Optional[int]=12_81_12 , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :Any=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :Union[str, Any]=0.0_5 , lowerCamelCase_ :Optional[int]=0.0_5 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :Tuple="relu" , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Any=False , lowerCamelCase_ :Optional[Any]="float32" , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :List[Any]=1_28 , lowerCamelCase_ :Any=64 , lowerCamelCase_ :Optional[int]=4 , lowerCamelCase_ :List[str]=4 , lowerCamelCase_ :Union[str, Any]=0.0_0_1 , lowerCamelCase_ :Optional[int]=0.0_0_1 , lowerCamelCase_ :List[str]="all" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=False , lowerCamelCase_ :Tuple=1.0 , lowerCamelCase_ :Union[str, Any]=0.2 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :Optional[int]=0 , lowerCamelCase_ :int=2 , lowerCamelCase_ :List[str]=False , **lowerCamelCase_ :int , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : str = d_model SCREAMING_SNAKE_CASE : Optional[int] = encoder_ffn_dim SCREAMING_SNAKE_CASE : Any = encoder_layers SCREAMING_SNAKE_CASE : Any = encoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : List[str] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Any = activation_function SCREAMING_SNAKE_CASE : Tuple = init_std SCREAMING_SNAKE_CASE : str = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : Optional[int] = encoder_layers SCREAMING_SNAKE_CASE : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : int = router_z_loss_coef SCREAMING_SNAKE_CASE : Any = router_aux_loss_coef SCREAMING_SNAKE_CASE : str = decoder_sparse_step SCREAMING_SNAKE_CASE : str = encoder_sparse_step SCREAMING_SNAKE_CASE : List[str] = num_experts SCREAMING_SNAKE_CASE : Union[str, Any] = expert_capacity SCREAMING_SNAKE_CASE : Tuple = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = router_dtype SCREAMING_SNAKE_CASE : Union[str, Any] = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : int = batch_prioritized_routing SCREAMING_SNAKE_CASE : Optional[int] = second_expert_policy SCREAMING_SNAKE_CASE : Union[str, Any] = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE : Any = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE : Optional[Any] = moe_token_dropout SCREAMING_SNAKE_CASE : Tuple = output_router_logits super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
698
0
from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : str = ["""keras_nlp"""] def __init__( self , *A_ , **A_ ): '''simple docstring''' requires_backends(self , ['''keras_nlp'''] )
100
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase__ : Union[str, Any] = "CompVis/stable-diffusion-v1-1" lowerCamelCase__ : Optional[Any] = "CompVis/stable-diffusion-v1-2" lowerCamelCase__ : Dict = "CompVis/stable-diffusion-v1-3" lowerCamelCase__ : List[str] = "CompVis/stable-diffusion-v1-4" class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :AutoencoderKL , lowerCamelCase_ :CLIPTextModel , lowerCamelCase_ :CLIPTokenizer , lowerCamelCase_ :UNetaDConditionModel , lowerCamelCase_ :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase_ :StableDiffusionSafetyChecker , lowerCamelCase_ :CLIPImageProcessor , lowerCamelCase_ :bool = True , ) -> List[str]: '''simple docstring''' super()._init_() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline( vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , requires_safety_checker=lowerCamelCase_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __lowerCAmelCase ( self :Dict ) -> Dict[str, Any]: '''simple docstring''' return {k: getattr(self , lowerCamelCase_ ) for k in self.config.keys() if not k.startswith('''_''' )} def __lowerCAmelCase ( self :int , lowerCamelCase_ :Optional[Union[str, int]] = "auto" ) -> Tuple: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.enable_attention_slicing(lowerCamelCase_ ) @torch.no_grad() def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :List[str] , ) -> Tuple: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Tuple , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Dict , ) -> List[str]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :List[Any] , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Optional[Any] , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(lowerCamelCase_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : str = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : Tuple = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : Union[str, Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
698
0
def a__ ( A__ ): if not isinstance(A__, A__ ): raise ValueError('multiplicative_persistence() only accepts integral values' ) if num < 0: raise ValueError('multiplicative_persistence() does not accept negative values' ) SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Dict = str(A__ ) while len(A__ ) != 1: SCREAMING_SNAKE_CASE_ : Optional[Any] = [int(A__ ) for i in num_string] SCREAMING_SNAKE_CASE_ : List[str] = 1 for i in range(0, len(A__ ) ): total *= numbers[i] SCREAMING_SNAKE_CASE_ : int = str(A__ ) steps += 1 return steps def a__ ( A__ ): if not isinstance(A__, A__ ): raise ValueError('additive_persistence() only accepts integral values' ) if num < 0: raise ValueError('additive_persistence() does not accept negative values' ) SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List[Any] = str(A__ ) while len(A__ ) != 1: SCREAMING_SNAKE_CASE_ : List[str] = [int(A__ ) for i in num_string] SCREAMING_SNAKE_CASE_ : str = 0 for i in range(0, len(A__ ) ): total += numbers[i] SCREAMING_SNAKE_CASE_ : int = str(A__ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
101
"""simple docstring""" def __A ( a_ : list , a_ : int = 0 )-> list: '''simple docstring''' SCREAMING_SNAKE_CASE : int = length or len(a_ ) SCREAMING_SNAKE_CASE : List[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : Optional[Any] = True return list_data if not swapped else bubble_sort(a_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
698
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase__ : """simple docstring""" @staticmethod def _a ( *_A , **_A ): '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class lowercase__ ( unittest.TestCase ): """simple docstring""" __lowerCAmelCase : List[str] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _a ( self , _A , _A , _A ): '''simple docstring''' UpperCamelCase : List[str] = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) UpperCamelCase : List[Any] = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def _a ( self , _A , _A ): '''simple docstring''' UpperCamelCase : str = vqa_pipeline(_A , top_k=1 ) self.assertEqual( _A , [ [{"""score""": ANY(_A ), """answer""": ANY(_A )}], [{"""score""": ANY(_A ), """answer""": ANY(_A )}], ] , ) @require_torch def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) UpperCamelCase : Optional[int] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" UpperCamelCase : Optional[int] = """How many cats are there?""" UpperCamelCase : Tuple = vqa_pipeline(image=_A , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( _A , [{"""score""": ANY(_A ), """answer""": ANY(_A )}, {"""score""": ANY(_A ), """answer""": ANY(_A )}] ) UpperCamelCase : Optional[int] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( _A , [{"""score""": ANY(_A ), """answer""": ANY(_A )}, {"""score""": ANY(_A ), """answer""": ANY(_A )}] ) @slow @require_torch def _a ( self ): '''simple docstring''' UpperCamelCase : List[Any] = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) UpperCamelCase : Tuple = """./tests/fixtures/tests_samples/COCO/000000039769.png""" UpperCamelCase : str = """How many cats are there?""" UpperCamelCase : List[Any] = vqa_pipeline(image=_A , question=_A , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [{"""score""": 0.87_99, """answer""": """2"""}, {"""score""": 0.2_96, """answer""": """1"""}] ) UpperCamelCase : Optional[Any] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [{"""score""": 0.87_99, """answer""": """2"""}, {"""score""": 0.2_96, """answer""": """1"""}] ) UpperCamelCase : int = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [[{"""score""": 0.87_99, """answer""": """2"""}, {"""score""": 0.2_96, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def _a ( self ): '''simple docstring''' pass
102
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self :List[str] , lowerCamelCase_ :UNetaDModel , lowerCamelCase_ :ScoreSdeVeScheduler ) -> int: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self :int , lowerCamelCase_ :int = 1 , lowerCamelCase_ :int = 20_00 , lowerCamelCase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , **lowerCamelCase_ :Union[str, Any] , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.sample_size SCREAMING_SNAKE_CASE : List[str] = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE : Any = self.unet SCREAMING_SNAKE_CASE : Dict = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ ) * self.scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase_ ) self.scheduler.set_sigmas(lowerCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): SCREAMING_SNAKE_CASE : Optional[Any] = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step_correct(lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample # prediction step SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.step_pred(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample, output.prev_sample_mean SCREAMING_SNAKE_CASE : List[str] = sample_mean.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Any = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Any = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase_ )
698
0
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class UpperCAmelCase ( yaml.SafeLoader ): def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[str] ): """simple docstring""" _snake_case = [self.constructed_objects[key_node] for key_node, _ in node.value] _snake_case = [tuple(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else key for key in keys] _snake_case = Counter(__lowerCamelCase ) _snake_case = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"""Got duplicate yaml keys: {duplicate_keys}""" ) def __UpperCAmelCase ( self : str , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any]=False ): """simple docstring""" _snake_case = super().construct_mapping(__lowerCamelCase , deep=__lowerCamelCase ) self._check_no_duplicates_on_constructed_node(__lowerCamelCase ) return mapping def snake_case ( lowerCAmelCase_ ) -> Tuple[Optional[str], str]: _snake_case = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: _snake_case = full_content[1:].index('''---''' ) + 1 _snake_case = '''\n'''.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase_ ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): # class attributes A__ : int = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def __UpperCAmelCase ( cls : str , __lowerCamelCase : Path ): """simple docstring""" with open(__lowerCamelCase , encoding='''utf-8''' ) as readme_file: _snake_case , _snake_case = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__lowerCamelCase ) else: return cls() def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Path ): """simple docstring""" if path.exists(): with open(__lowerCamelCase , encoding='''utf-8''' ) as readme_file: _snake_case = readme_file.read() else: _snake_case = None _snake_case = self._to_readme(__lowerCamelCase ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[str] = None ): """simple docstring""" if readme_content is not None: _snake_case , _snake_case = _split_yaml_from_readme(__lowerCamelCase ) _snake_case = '''---\n''' + self.to_yaml_string() + '''---\n''' + content else: _snake_case = '''---\n''' + self.to_yaml_string() + '''---\n''' return full_content @classmethod def __UpperCAmelCase ( cls : Tuple , __lowerCamelCase : str ): """simple docstring""" _snake_case = yaml.load(__lowerCamelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields _snake_case = { (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__lowerCamelCase ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=__lowerCamelCase , allow_unicode=__lowerCamelCase , encoding='''utf-8''' , ).decode('''utf-8''' ) snake_case = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser snake_case = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') snake_case = ap.parse_args() snake_case = Path(args.readme_filepath) snake_case = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
103
"""simple docstring""" import qiskit def __A ( a_ : int , a_ : int )-> qiskit.result.counts.Counts: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE : str = qiskit.QuantumCircuit(a_ , a_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE : int = qiskit.execute(a_ , a_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a_ ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
698
0
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : int, UpperCAmelCase_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) A__ = str(bin(UpperCAmelCase_ ) )[2:] # remove the leading "0b" A__ = str(bin(UpperCAmelCase_ ) )[2:] # remove the leading "0b" A__ = max(len(UpperCAmelCase_ ), len(UpperCAmelCase_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase_ ), b_binary.zfill(UpperCAmelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
104
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase__ : Optional[int] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def __A ( a_ : Dict )-> str: '''simple docstring''' config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __A ( a_ : Dict )-> Tuple: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_ ) def __A ( a_ : Union[str, Any] )-> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE : List[str] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(a_ , id=a_ ) def __A ( a_ : Dict , a_ : List[str] )-> Dict: '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE : List[str] = 0 # Doctest custom flag to ignore output. lowerCamelCase__ : Tuple = doctest.register_optionflag("IGNORE_RESULT") lowerCamelCase__ : Optional[int] = doctest.OutputChecker class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] ) -> Dict: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : str = CustomOutputChecker lowerCamelCase__ : Any = HfDoctestModule lowerCamelCase__ : int = HfDocTestParser
698
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCamelCase__ : int = logging.get_logger(__name__) UpperCamelCase__ : str = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = "perceiver" def __init__( self ,snake_case__=256 ,snake_case__=1280 ,snake_case__=768 ,snake_case__=1 ,snake_case__=26 ,snake_case__=8 ,snake_case__=8 ,snake_case__=None ,snake_case__=None ,snake_case__="kv" ,snake_case__=1 ,snake_case__=1 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=True ,snake_case__=262 ,snake_case__=2048 ,snake_case__=56 ,snake_case__=[368, 496] ,snake_case__=16 ,snake_case__=1920 ,snake_case__=16 ,snake_case__=[1, 16, 224, 224] ,**snake_case__ ,): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = num_latents SCREAMING_SNAKE_CASE_ : List[str] = d_latents SCREAMING_SNAKE_CASE_ : Optional[int] = d_model SCREAMING_SNAKE_CASE_ : Tuple = num_blocks SCREAMING_SNAKE_CASE_ : Optional[Any] = num_self_attends_per_block SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_self_attention_heads SCREAMING_SNAKE_CASE_ : Dict = num_cross_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = qk_channels SCREAMING_SNAKE_CASE_ : Any = v_channels SCREAMING_SNAKE_CASE_ : Optional[int] = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE_ : Union[str, Any] = self_attention_widening_factor SCREAMING_SNAKE_CASE_ : Dict = cross_attention_widening_factor SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE_ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Optional[int] = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE_ : str = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE_ : int = image_size # flow attributes SCREAMING_SNAKE_CASE_ : List[str] = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_frames SCREAMING_SNAKE_CASE_ : Optional[Any] = audio_samples_per_frame SCREAMING_SNAKE_CASE_ : List[Any] = samples_per_patch SCREAMING_SNAKE_CASE_ : Any = output_shape class lowerCAmelCase_ ( lowerCamelCase_ ): @property def snake_case ( self ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def snake_case ( self ): return 1E-4 def snake_case ( self ,snake_case__ ,snake_case__ = -1 ,snake_case__ = -1 ,snake_case__ = -1 ,snake_case__ = False ,snake_case__ = None ,snake_case__ = 3 ,snake_case__ = 40 ,snake_case__ = 40 ,): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(snake_case__ ,snake_case__ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Dict = compute_effective_axis_dimension( snake_case__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = preprocessor.num_special_tokens_to_add(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = compute_effective_axis_dimension( snake_case__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=snake_case__ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ : List[Any] = [' '.join(['a'] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ : Dict = dict(preprocessor(snake_case__ ,return_tensors=snake_case__ ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = inputs.pop('input_ids' ) return inputs elif isinstance(snake_case__ ,snake_case__ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Dict = compute_effective_axis_dimension(snake_case__ ,fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE_ : Tuple = self._generate_dummy_images(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = dict(preprocessor(images=snake_case__ ,return_tensors=snake_case__ ) ) SCREAMING_SNAKE_CASE_ : str = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
105
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase__: '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple=13 , lowerCamelCase_ :List[str]=7 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :str=99 , lowerCamelCase_ :Optional[Any]=32 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :int=4 , lowerCamelCase_ :Optional[Any]=37 , lowerCamelCase_ :Any="gelu" , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Optional[int]=5_12 , lowerCamelCase_ :str=16 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :List[str]=0.0_2 , lowerCamelCase_ :int=3 , lowerCamelCase_ :List[Any]=4 , lowerCamelCase_ :Optional[Any]=None , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : str = 13 SCREAMING_SNAKE_CASE : str = 7 SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Any = 99 SCREAMING_SNAKE_CASE : Dict = 3_84 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Any = 37 SCREAMING_SNAKE_CASE : List[str] = '''gelu''' SCREAMING_SNAKE_CASE : List[str] = 0.1 SCREAMING_SNAKE_CASE : int = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = 5_12 SCREAMING_SNAKE_CASE : int = 16 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Tuple = 0.0_2 SCREAMING_SNAKE_CASE : List[str] = 3 SCREAMING_SNAKE_CASE : Union[str, Any] = 4 SCREAMING_SNAKE_CASE : str = 1_28 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = 9 SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : List[str] = None def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[str] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : Dict = [input_ids, input_mask] SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertForMaskedLM(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : Dict = TFConvBertForSequenceClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.num_choices SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertForMultipleChoice(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForTokenClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = TFConvBertForQuestionAnswering(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self :Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Tuple = True if hasattr(lowerCamelCase_ , '''use_cache''' ): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : str = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = len(model(lowerCamelCase_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = os.path.join(lowerCamelCase_ , '''saved_model''' , '''1''' ) SCREAMING_SNAKE_CASE : Tuple = tf.keras.models.load_model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Optional[int] = outputs['''encoder_hidden_states'''] SCREAMING_SNAKE_CASE : str = outputs['''encoder_attentions'''] else: SCREAMING_SNAKE_CASE : List[str] = outputs['''hidden_states'''] SCREAMING_SNAKE_CASE : List[Any] = outputs['''attentions'''] self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self :Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) def check_decoder_attentions_output(lowerCamelCase_ :Optional[Any] ): SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(out_len % 2 , 0 ) SCREAMING_SNAKE_CASE : int = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowerCamelCase_ :Optional[int] ): SCREAMING_SNAKE_CASE : List[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_decoder_attentions_output(lowerCamelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase_ ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) @require_tf class lowercase__( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self :int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) SCREAMING_SNAKE_CASE : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Optional[Any] = [1, 6, 7_68] self.assertEqual(output.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 )
698
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :List[str] =logging.get_logger(__name__) __snake_case :Optional[Any] ={ 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class lowerCAmelCase__ ( _lowerCamelCase ): A_ : Any = 'switch_transformers' A_ : List[str] = ['past_key_values'] A_ : List[str] = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Dict , __UpperCamelCase : Dict=32_128 , __UpperCamelCase : List[str]=768 , __UpperCamelCase : List[Any]=64 , __UpperCamelCase : Union[str, Any]=2_048 , __UpperCamelCase : str=64 , __UpperCamelCase : int=12 , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : Union[str, Any]=12 , __UpperCamelCase : Tuple=3 , __UpperCamelCase : str=12 , __UpperCamelCase : Any=8 , __UpperCamelCase : int=False , __UpperCamelCase : Optional[Any]=0.0_1 , __UpperCamelCase : Dict="float32" , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=32 , __UpperCamelCase : Union[str, Any]=128 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Optional[Any]=1e-6 , __UpperCamelCase : Optional[Any]=0.0_0_1 , __UpperCamelCase : List[str]=0.0_0_1 , __UpperCamelCase : Dict=1.0 , __UpperCamelCase : Dict="relu" , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : List[str]=True , __UpperCamelCase : List[str]=0 , __UpperCamelCase : Optional[Any]=1 , **__UpperCamelCase : List[Any] , ) -> List[Any]: A = vocab_size A = d_model A = d_kv A = d_ff A = num_sparse_encoder_layers A = num_layers A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: A = self.num_layers // self.num_sparse_encoder_layers else: A = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: A = self.num_decoder_layers // self.num_sparse_decoder_layers else: A = self.num_decoder_layers # HACK: this will create 0 sparse layers A = num_heads A = num_experts A = expert_capacity A = router_bias A = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) A = router_dtype A = router_ignore_padding_tokens A = relative_attention_num_buckets A = relative_attention_max_distance A = dropout_rate A = layer_norm_epsilon A = initializer_factor A = feed_forward_proj A = use_cache A = add_router_probs A = router_z_loss_coef A = router_aux_loss_coef A = self.feed_forward_proj.split('-' ) A = act_info[-1] A = act_info[0] == 'gated' if len(__UpperCamelCase ) > 1 and act_info[0] != "gated" or len(__UpperCamelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": A = 'gelu_new' super().__init__( pad_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase , )
106
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """bert""" def __init__( self :Any , lowerCamelCase_ :List[Any]=3_05_22 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :int=5_12 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :int="absolute" , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :List[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
698
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( __snake_case : int ): if not isinstance(__snake_case , __snake_case ): raise TypeError('Input value must be an \'int\' type' ) _A = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
107
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : str = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """luke""" def __init__( self :List[Any] , lowerCamelCase_ :Optional[int]=5_02_67 , lowerCamelCase_ :List[Any]=50_00_00 , lowerCamelCase_ :str=7_68 , lowerCamelCase_ :Optional[Any]=2_56 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :Any=30_72 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int=None , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :str=0 , lowerCamelCase_ :int=2 , **lowerCamelCase_ :List[str] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = entity_vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Dict = entity_emb_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = use_entity_aware_attention SCREAMING_SNAKE_CASE : str = classifier_dropout
698
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __a: Any = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = '''encoder-decoder''' _lowerCamelCase = True def __init__( self : int , **lowerCamelCase : Any ) -> List[Any]: """simple docstring""" super().__init__(**lowerCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _UpperCAmelCase = kwargs.pop("""encoder""" ) _UpperCAmelCase = encoder_config.pop("""model_type""" ) _UpperCAmelCase = kwargs.pop("""decoder""" ) _UpperCAmelCase = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig _UpperCAmelCase = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) _UpperCAmelCase = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) _UpperCAmelCase = True @classmethod def lowerCamelCase ( cls : Optional[Any] , lowerCamelCase : PretrainedConfig , lowerCamelCase : PretrainedConfig , **lowerCamelCase : int ) -> PretrainedConfig: """simple docstring""" logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _UpperCAmelCase = True _UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase ) def lowerCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.encoder.to_dict() _UpperCAmelCase = self.decoder.to_dict() _UpperCAmelCase = self.__class__.model_type return output
108
"""simple docstring""" # using dfs for finding eulerian path traversal def __A ( a_ : Dict , a_ : int , a_ : str , a_ : Optional[Any]=None )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = True, True SCREAMING_SNAKE_CASE : List[str] = dfs(a_ , a_ , a_ , a_ ) return path def __A ( a_ : List[str] , a_ : Any )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = -1 for i in range(a_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 SCREAMING_SNAKE_CASE : Tuple = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __A ( a_ : Any , a_ : int )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = check_circuit_or_path(a_ , a_ ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return SCREAMING_SNAKE_CASE : Tuple = 1 if check == 2: SCREAMING_SNAKE_CASE : Optional[int] = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) SCREAMING_SNAKE_CASE : Optional[int] = dfs(a_ , a_ , a_ ) print(a_ ) def __A ( )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} SCREAMING_SNAKE_CASE : int = {1: [2, 3], 2: [1, 3], 3: [1, 2]} SCREAMING_SNAKE_CASE : int = { 1: [], 2: [] # all degree is zero } SCREAMING_SNAKE_CASE : List[str] = 10 check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) if __name__ == "__main__": main()
698
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: __SCREAMING_SNAKE_CASE = _modexpt(__UpperCAmelCase , exponent // 2 , __UpperCAmelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__UpperCAmelCase , exponent - 1 , __UpperCAmelCase )) % modulo_value def __magic_name__ ( __UpperCAmelCase = 1777 , __UpperCAmelCase = 1855 , __UpperCAmelCase = 8 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = base for _ in range(1 , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = _modexpt(__UpperCAmelCase , __UpperCAmelCase , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
109
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase__ : List[str] = 250004 lowerCamelCase__ : str = 250020 @require_sentencepiece @require_tokenizers class lowercase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MBartaaTokenizer UpperCamelCase = MBartaaTokenizerFast UpperCamelCase = True UpperCamelCase = True def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[int] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = '''<s>''' SCREAMING_SNAKE_CASE : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_54 ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __lowerCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE : str = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = tokenizer_r.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE : Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : int = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): '''simple docstring''' UpperCamelCase = """facebook/mbart-large-50-one-to-many-mmt""" UpperCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCamelCase = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def __lowerCAmelCase ( cls :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) SCREAMING_SNAKE_CASE : Dict = 1 return cls def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def __lowerCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE : int = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[0] , lowerCamelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> List[str]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ ) @require_torch def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Dict = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __lowerCAmelCase ( self :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : List[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : List[Any] = targets['''input_ids'''] SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(lowerCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
698
0
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": UpperCamelCase__ : Dict = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=5_12, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F'could not parse string as bool {string}' ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : Dict = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
105
"""simple docstring""" from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __lowerCAmelCase ( self :Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._create_example_records() SCREAMING_SNAKE_CASE : List[Any] = Dataset.from_list(lowerCamelCase_ ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(lowerCamelCase_ ): self.assertDictEqual(lowerCamelCase_ , example_records[i] ) def __lowerCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self._create_example_records() SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def __lowerCAmelCase ( self :List[str] ) -> Dict: # checks what happens with missing columns '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: # checks if the type can be inferred from the second record '''simple docstring''' SCREAMING_SNAKE_CASE : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE : List[str] = Dataset.from_list(lowerCamelCase_ ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = Dataset.from_list([] ) self.assertEqual(len(lowerCamelCase_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
698
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Optional[Any] = logging.get_logger(__name__) __A : str = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class __snake_case ( _UpperCAmelCase ,_UpperCAmelCase): """simple docstring""" lowercase = 'bit' lowercase = ['preactivation', 'bottleneck'] lowercase = ['SAME', 'VALID'] def __init__( self : Union[str, Any] , lowerCamelCase : int=3 , lowerCamelCase : List[Any]=64 , lowerCamelCase : Any=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase : Union[str, Any]=[3, 4, 6, 3] , lowerCamelCase : Dict="preactivation" , lowerCamelCase : List[Any]="relu" , lowerCamelCase : Optional[int]=None , lowerCamelCase : Union[str, Any]=32 , lowerCamelCase : List[Any]=0.0 , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=32 , lowerCamelCase : Dict=1 , lowerCamelCase : List[Any]=None , lowerCamelCase : Optional[Any]=None , **lowerCamelCase : str , ) -> Any: super().__init__(**lowerCamelCase_ ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: lowerCAmelCase_ : Any = global_padding.upper() else: raise ValueError(F'Padding strategy {global_padding} not supported' ) lowerCAmelCase_ : List[Any] = num_channels lowerCAmelCase_ : Tuple = embedding_size lowerCAmelCase_ : Dict = hidden_sizes lowerCAmelCase_ : Optional[Any] = depths lowerCAmelCase_ : Tuple = layer_type lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : Any = global_padding lowerCAmelCase_ : int = num_groups lowerCAmelCase_ : Tuple = drop_path_rate lowerCAmelCase_ : Any = embedding_dynamic_padding lowerCAmelCase_ : List[Any] = output_stride lowerCAmelCase_ : List[str] = width_factor lowerCAmelCase_ : Any = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(lowerCamelCase_ ) + 1 )] lowerCAmelCase_ : Tuple = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names )
275
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def __A ( a_ : Callable[[int | float], int | float] , a_ : int | float , a_ : int | float , a_ : int = 1_00 , )-> float: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = x_start SCREAMING_SNAKE_CASE : Union[str, Any] = fnc(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = 0.0 for _ in range(a_ ): # Approximates curve as a sequence of linear lines and sums their length SCREAMING_SNAKE_CASE : int = (x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE : Optional[int] = fnc(a_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step SCREAMING_SNAKE_CASE : str = xa SCREAMING_SNAKE_CASE : Any = fxa return length if __name__ == "__main__": def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") lowerCamelCase__ : str = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
698
0
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class lowerCamelCase_ ( _UpperCAmelCase ): __lowercase : int = None __lowercase : Tuple = None __lowercase : Dict = None __lowercase : List[str] = None class lowerCamelCase_ ( _UpperCAmelCase ): def __init__( self , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=2 , lowerCamelCase_=5_12 , lowerCamelCase_="cls" , lowerCamelCase_=False , lowerCamelCase_=True , **lowerCamelCase_ , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) _UpperCamelCase = project_dim _UpperCamelCase = pooler_fn _UpperCamelCase = learn_encoder _UpperCamelCase = use_attention_mask class lowerCamelCase_ ( _UpperCAmelCase ): __lowercase : Dict = [R"pooler", R"logit_scale"] __lowercase : Optional[Any] = [R"position_ids", R"predictions.decoder.bias"] __lowercase : int = "roberta" __lowercase : str = RobertaSeriesConfig def __init__( self , lowerCamelCase_ ) -> Any: """simple docstring""" super().__init__(lowerCamelCase_ ) _UpperCamelCase = XLMRobertaModel(lowerCamelCase_ ) _UpperCamelCase = nn.Linear(config.hidden_size , config.project_dim ) _UpperCamelCase = getattr(lowerCamelCase_ , "has_pre_transformation" , lowerCamelCase_ ) if self.has_pre_transformation: _UpperCamelCase = nn.Linear(config.hidden_size , config.project_dim ) _UpperCamelCase = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def lowercase ( self , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = self.base_model( input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , position_ids=lowerCamelCase_ , head_mask=lowerCamelCase_ , inputs_embeds=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , output_attentions=lowerCamelCase_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=lowerCamelCase_ , ) if self.has_pre_transformation: _UpperCamelCase = outputs['''hidden_states'''][-2] _UpperCamelCase = self.pre_LN(lowerCamelCase_ ) _UpperCamelCase = self.transformation_pre(lowerCamelCase_ ) return TransformationModelOutput( projection_state=lowerCamelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: _UpperCamelCase = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=lowerCamelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
147
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __A ( a_ : int=None )-> Tuple: '''simple docstring''' if subparsers is not None: SCREAMING_SNAKE_CASE : List[str] = subparsers.add_parser('''test''' ) else: SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=a_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=a_ ) return parser def __A ( a_ : Any )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: SCREAMING_SNAKE_CASE : Tuple = script_name else: SCREAMING_SNAKE_CASE : Optional[Any] = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE : str = ['''accelerate-launch'''] + test_args.split() SCREAMING_SNAKE_CASE : List[str] = execute_subprocess_async(a_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __A ( )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : str = test_command_parser() SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() test_command(a_ ) if __name__ == "__main__": main()
698
0
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _lowerCAmelCase ( _UpperCAmelCase , _UpperCAmelCase ): @register_to_config def __init__( self , *, a_ = 4 , a_ = 768 , a_ , a_ , ) -> Union[str, Any]: super().__init__() _UpperCAmelCase = nn.Parameter(torch.zeros(lowerCamelCase_ ) ) # parameters for additional clip time embeddings _UpperCAmelCase = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) _UpperCAmelCase = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) # parameters for encoder hidden states _UpperCAmelCase = clip_extra_context_tokens _UpperCAmelCase = nn.Linear( lowerCamelCase_ , self.clip_extra_context_tokens * cross_attention_dim ) _UpperCAmelCase = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) _UpperCAmelCase = nn.LayerNorm(lowerCamelCase_ ) def _a ( self , *, a_ , a_ , a_ , a_ ) -> Optional[Any]: if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _UpperCAmelCase = image_embeddings.shape[0] _UpperCAmelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) _UpperCAmelCase = classifier_free_guidance_embeddings.expand( lowerCamelCase_ , -1 ) _UpperCAmelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _UpperCAmelCase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _UpperCAmelCase = self.embedding_proj(lowerCamelCase_ ) _UpperCAmelCase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase_ ) _UpperCAmelCase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _UpperCAmelCase = self.clip_extra_context_tokens_proj(lowerCamelCase_ ) _UpperCAmelCase = clip_extra_context_tokens.reshape(lowerCamelCase_ , -1 , self.clip_extra_context_tokens ) _UpperCAmelCase = clip_extra_context_tokens.permute(0 , 2 , 1 ) _UpperCAmelCase = self.encoder_hidden_states_proj(lowerCamelCase_ ) _UpperCAmelCase = self.text_encoder_hidden_states_norm(lowerCamelCase_ ) _UpperCAmelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
657
"""simple docstring""" def __A ( a_ : int = 10 , a_ : int = 10_00 , a_ : bool = True )-> int: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def __A ( a_ : int , a_ : int )-> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def __A ( a_ : int , a_ : int , a_ : int )-> None: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(a_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = lower SCREAMING_SNAKE_CASE : int = higher SCREAMING_SNAKE_CASE : List[str] = [] while True: SCREAMING_SNAKE_CASE : Any = get_avg(a_ , a_ ) last_numbers.append(a_ ) if answer(a_ ) == "low": SCREAMING_SNAKE_CASE : Dict = number elif answer(a_ ) == "high": SCREAMING_SNAKE_CASE : Tuple = number else: break print(F"guess the number : {last_numbers[-1]}" ) print(F"details : {last_numbers!s}" ) def __A ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = int(input('''Enter lower value : ''' ).strip() ) SCREAMING_SNAKE_CASE : Tuple = int(input('''Enter high value : ''' ).strip() ) SCREAMING_SNAKE_CASE : List[str] = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(a_ , a_ , a_ ) if __name__ == "__main__": main()
698
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _UpperCAmelCase , unittest.TestCase ): UpperCamelCase =RobertaTokenizer UpperCamelCase =RobertaTokenizerFast UpperCamelCase =True UpperCamelCase ={"cls_token": "<s>"} def _lowerCamelCase ( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : List[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __lowercase : List[Any] = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) __lowercase : Optional[int] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowercase : str = {'''unk_token''': '''<unk>'''} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase_ ) ) def _lowerCamelCase ( self , **UpperCamelCase_ ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def _lowerCamelCase ( self , **UpperCamelCase_ ) -> str: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> List[str]: __lowercase : Union[str, Any] = '''lower newer''' __lowercase : Any = '''lower newer''' return input_text, output_text def _lowerCamelCase ( self ) -> List[str]: __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = '''lower newer''' __lowercase : List[Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowercase : Tuple = tokenizer.tokenize(lowerCamelCase_ ) # , add_prefix_space=True) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) __lowercase : Optional[int] = tokens + [tokenizer.unk_token] __lowercase : int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , lowerCamelCase_ ) def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : Dict = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowerCamelCase_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowerCamelCase_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def _lowerCamelCase ( self ) -> Tuple: __lowercase : List[str] = self.tokenizer_class.from_pretrained('''roberta-base''' ) __lowercase : List[str] = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCamelCase_ ) __lowercase : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCamelCase_ ) __lowercase : Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) __lowercase : str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) __lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) __lowercase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowerCamelCase ( self ) -> List[str]: __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[str] = '''Encode this sequence.''' __lowercase : int = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) __lowercase : Optional[Any] = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) __lowercase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __lowercase : Optional[Any] = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) __lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) # Testing spaces after special tokens __lowercase : int = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ )} ) # mask token has a left space __lowercase : str = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) __lowercase : Any = '''Encode <mask> sequence''' __lowercase : Any = '''Encode <mask>sequence''' __lowercase : Optional[Any] = tokenizer.encode(lowerCamelCase_ ) __lowercase : Optional[int] = encoded.index(lowerCamelCase_ ) __lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) __lowercase : Union[str, Any] = tokenizer.encode(lowerCamelCase_ ) __lowercase : List[str] = encoded.index(lowerCamelCase_ ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) def _lowerCamelCase ( self ) -> List[Any]: pass def _lowerCamelCase ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) __lowercase : Optional[int] = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) __lowercase : str = '''A, <mask> AllenNLP sentence.''' __lowercase : Any = tokenizer_r.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) __lowercase : Tuple = tokenizer_p.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __lowercase : Tuple = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __lowercase : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowerCamelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowerCamelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def _lowerCamelCase ( self ) -> Dict: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Tuple = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) __lowercase : List[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowerCamelCase_ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowerCamelCase_ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowerCamelCase_ ) def _lowerCamelCase ( self ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowercase : List[Any] = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : Dict = F"""{text_of_1_token} {text_of_1_token}""" __lowercase : List[Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) __lowercase : str = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ) + 1, len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) __lowercase : Any = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ) + 1, len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) __lowercase : Any = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ), len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) __lowercase : Optional[Any] = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ), len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) __lowercase : int = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Any = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) __lowercase : List[Any] = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ) + 1, 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) __lowercase : List[str] = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ), 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) __lowercase : Optional[Any] = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ), 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , )
76
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowerCamelCase__ : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __A ( a_ : Optional[int] , a_ : str , a_ : str , a_ : str , a_ : List[str] )-> Tuple: '''simple docstring''' for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE : Any = getattr(a_ , a_ ) if weight_type is not None: SCREAMING_SNAKE_CASE : Optional[int] = getattr(a_ , a_ ).shape else: SCREAMING_SNAKE_CASE : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : List[Any] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Any = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : List[Any] = value else: SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __A ( a_ : Optional[Any] , a_ : Dict )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Optional[Any] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : Tuple = hf_model.feature_extractor SCREAMING_SNAKE_CASE : Tuple = hf_model.adapter for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : int = False if "conv_layers" in name: load_conv_layer( a_ , a_ , a_ , a_ , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE : List[str] = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(a_ , a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE : Union[str, Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Dict = name.split(a_ )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE : Optional[int] = mapped_key.replace('''*''' , a_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE : List[str] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE : str = '''bias''' elif "weight" in name: SCREAMING_SNAKE_CASE : Tuple = '''weight''' else: SCREAMING_SNAKE_CASE : str = None set_recursively(a_ , a_ , a_ , a_ , a_ ) continue if not is_used: unused_weights.append(a_ ) logger.warning(F"Unused weights: {unused_weights}" ) def __A ( a_ : Dict , a_ : int , a_ : Optional[int] , a_ : Optional[int] , a_ : Dict )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE : List[str] = name.split('''.''' ) SCREAMING_SNAKE_CASE : Dict = int(items[0] ) SCREAMING_SNAKE_CASE : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[int] , a_ : Optional[int] , a_ : Any , a_ : Any )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = full_name.split('''adaptor.''' )[-1] SCREAMING_SNAKE_CASE : List[Any] = name.split('''.''' ) if items[1].isdigit(): SCREAMING_SNAKE_CASE : List[Any] = int(items[1] ) else: SCREAMING_SNAKE_CASE : str = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." SCREAMING_SNAKE_CASE : Optional[Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." SCREAMING_SNAKE_CASE : int = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(a_ , a_ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = emb.weight.shape SCREAMING_SNAKE_CASE : Any = nn.Linear(a_ , a_ , bias=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = emb.weight.data return lin_layer @torch.no_grad() def __A ( a_ : Tuple , a_ : Optional[int] , a_ : List[Any] , a_ : Any , a_ : Tuple , a_ : int , a_ : Any , a_ : str , a_ : Tuple , a_ : Union[str, Any] , a_ : Union[str, Any] , )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = WavaVecaConfig.from_pretrained( a_ , add_adapter=a_ , adapter_stride=a_ , adapter_kernel_size=a_ , use_auth_token=a_ , output_hidden_size=a_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = MBartConfig.from_pretrained(a_ ) # load model SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) SCREAMING_SNAKE_CASE : int = model[0].eval() # load feature extractor SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(a_ , use_auth_token=a_ ) # set weights for wav2vec2 encoder SCREAMING_SNAKE_CASE : str = WavaVecaModel(a_ ) recursively_load_weights_wavaveca(model.encoder , a_ ) # load decoder weights SCREAMING_SNAKE_CASE : Dict = MBartForCausalLM(a_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a_ ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechEncoderDecoderModel(encoder=a_ , decoder=a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer(a_ ) tokenizer.save_pretrained(a_ ) SCREAMING_SNAKE_CASE : Tuple = hf_wavavec.config.to_dict() SCREAMING_SNAKE_CASE : Any = tokenizer.pad_token_id SCREAMING_SNAKE_CASE : List[str] = tokenizer.bos_token_id SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = '''mbart50''' SCREAMING_SNAKE_CASE : Optional[int] = '''wav2vec2''' SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : List[str] = 25_00_04 SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Any = SpeechEncoderDecoderConfig.from_dict(a_ ) hf_wavavec.save_pretrained(a_ ) feature_extractor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250004, type=int, help="`decoder_start_token_id` of model config") lowerCamelCase__ : Dict = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
698
0
def UpperCamelCase__ ( _A: list , _A: int = 0 ): '''simple docstring''' __lowerCamelCase = length or len(a_ ) __lowerCamelCase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __lowerCamelCase = list_data[i + 1], list_data[i] __lowerCamelCase = True return list_data if not swapped else bubble_sort(a_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
479
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ : Union[str, Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
698
0
from math import pi def __lowerCamelCase ( A__ : int , A__ : int ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
278
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCamelCase__ : List[Any] = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" lowerCamelCase__ : List[str] = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" lowerCamelCase__ : List[Any] = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :str=None , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :Optional[int]="auto" , lowerCamelCase_ :Dict=-1 , lowerCamelCase_ :str=0.9 , lowerCamelCase_ :str=5 , lowerCamelCase_ :Tuple=5_00 , lowerCamelCase_ :str="gpt2-large" , lowerCamelCase_ :List[Any]=-1 , lowerCamelCase_ :Dict=10_24 , lowerCamelCase_ :Tuple=25 , lowerCamelCase_ :List[Any]=5 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=25 , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = compute_mauve( p_text=lowerCamelCase_ , q_text=lowerCamelCase_ , p_features=lowerCamelCase_ , q_features=lowerCamelCase_ , p_tokens=lowerCamelCase_ , q_tokens=lowerCamelCase_ , num_buckets=lowerCamelCase_ , pca_max_data=lowerCamelCase_ , kmeans_explained_var=lowerCamelCase_ , kmeans_num_redo=lowerCamelCase_ , kmeans_max_iter=lowerCamelCase_ , featurize_model_name=lowerCamelCase_ , device_id=lowerCamelCase_ , max_text_length=lowerCamelCase_ , divergence_curve_discretization_size=lowerCamelCase_ , mauve_scaling_factor=lowerCamelCase_ , verbose=lowerCamelCase_ , seed=lowerCamelCase_ , ) return out
698
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCamelCase_ : """simple docstring""" UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : Optional[int] = None # sigma(t_i) @classmethod def __A ( cls : Optional[int] ) -> List[str]: return cls() @dataclass class UpperCamelCase_ ( _UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = 42 UpperCAmelCase__ : Optional[int] = 42 UpperCAmelCase__ : List[str] = 42 class UpperCamelCase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" @property def __A ( self : List[Any] ) -> Tuple: return True @register_to_config def __init__( self : List[str] , _lowerCamelCase : float = 0.02 , _lowerCamelCase : float = 1_00 , _lowerCamelCase : float = 1.007 , _lowerCamelCase : float = 80 , _lowerCamelCase : float = 0.05 , _lowerCamelCase : float = 50 , ) -> int: pass def __A ( self : Optional[int] ) -> Dict: return KarrasVeSchedulerState.create() def __A ( self : Dict , _lowerCamelCase : KarrasVeSchedulerState , _lowerCamelCase : int , _lowerCamelCase : Tuple = () ) -> KarrasVeSchedulerState: __magic_name__ = jnp.arange(0 , lowerCamelCase_ )[::-1].copy() __magic_name__ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowerCamelCase_ , schedule=jnp.array(lowerCamelCase_ , dtype=jnp.floataa ) , timesteps=lowerCamelCase_ , ) def __A ( self : Tuple , _lowerCamelCase : KarrasVeSchedulerState , _lowerCamelCase : jnp.ndarray , _lowerCamelCase : float , _lowerCamelCase : random.KeyArray , ) -> Tuple[jnp.ndarray, float]: if self.config.s_min <= sigma <= self.config.s_max: __magic_name__ = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: __magic_name__ = 0 # sample eps ~ N(0, S_noise^2 * I) __magic_name__ = random.split(lowerCamelCase_ , num=1 ) __magic_name__ = self.config.s_noise * random.normal(key=lowerCamelCase_ , shape=sample.shape ) __magic_name__ = sigma + gamma * sigma __magic_name__ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __A ( self : List[str] , _lowerCamelCase : KarrasVeSchedulerState , _lowerCamelCase : jnp.ndarray , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : jnp.ndarray , _lowerCamelCase : bool = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: __magic_name__ = sample_hat + sigma_hat * model_output __magic_name__ = (sample_hat - pred_original_sample) / sigma_hat __magic_name__ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCamelCase_ , derivative=lowerCamelCase_ , state=lowerCamelCase_ ) def __A ( self : Optional[int] , _lowerCamelCase : KarrasVeSchedulerState , _lowerCamelCase : jnp.ndarray , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : jnp.ndarray , _lowerCamelCase : jnp.ndarray , _lowerCamelCase : jnp.ndarray , _lowerCamelCase : bool = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: __magic_name__ = sample_prev + sigma_prev * model_output __magic_name__ = (sample_prev - pred_original_sample) / sigma_prev __magic_name__ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCamelCase_ , derivative=lowerCamelCase_ , state=lowerCamelCase_ ) def __A ( self : Tuple , _lowerCamelCase : KarrasVeSchedulerState , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] ) -> Optional[int]: raise NotImplementedError()
664
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : str = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Optional[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } lowerCamelCase__ : int = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRContextEncoderTokenizer class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRQuestionEncoderTokenizer lowerCamelCase__ : Union[str, Any] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) lowerCamelCase__ : int = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) lowerCamelCase__ : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_UpperCAmelCase ) class lowercase__: '''simple docstring''' def __call__( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :Optional[bool] = None , **lowerCamelCase_ :Tuple , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE : List[str] = titles if texts is None else texts return super().__call__( lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Dict = titles if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [titles] SCREAMING_SNAKE_CASE : Dict = texts if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [texts] SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = questions if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [questions] * n_passages assert len(lowerCamelCase_ ) == len( lowerCamelCase_ ), f"There should be as many titles than texts but got {len(lowerCamelCase_ )} titles and {len(lowerCamelCase_ )} texts." SCREAMING_SNAKE_CASE : Any = super().__call__(lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : Dict = super().__call__(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : int = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase_ , lowerCamelCase_ ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE : int = attention_mask return self.pad(lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :BatchEncoding , lowerCamelCase_ :DPRReaderOutput , lowerCamelCase_ :int = 16 , lowerCamelCase_ :int = 64 , lowerCamelCase_ :int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = reader_output[:3] SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = sorted(range(lowerCamelCase_ ) , reverse=lowerCamelCase_ , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase_ , top_spans=lowerCamelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase_ , start_index=lowerCamelCase_ , end_index=lowerCamelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCamelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] for start_index, start_score in enumerate(lowerCamelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE : Dict = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] , reverse=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"Wrong span indices: [{start_index}:{end_index}]" SCREAMING_SNAKE_CASE : Optional[int] = end_index - start_index + 1 assert length <= max_answer_length, f"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = DPRReaderTokenizer
698
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _a = logging.get_logger(__name__) def lowerCAmelCase__(__snake_case ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(a_ ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(a_ ,(list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(a_ ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class __A ( _UpperCAmelCase ): '''simple docstring''' lowerCAmelCase_ = ["""pixel_values"""] def __init__( self , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = PILImageResampling.BILINEAR , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = 1 / 2_5_5 , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) lowerCamelCase__ = size if size is not None else {'''shortest_edge''': 2_2_4} lowerCamelCase__ = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) lowerCamelCase__ = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCamelCase__ = get_size_dict(lowerCamelCase_ , param_name='''crop_size''' ) lowerCamelCase__ = do_resize lowerCamelCase__ = size lowerCamelCase__ = do_center_crop lowerCamelCase__ = crop_size lowerCamelCase__ = resample lowerCamelCase__ = do_rescale lowerCamelCase__ = rescale_factor lowerCamelCase__ = do_normalize lowerCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = PILImageResampling.BILINEAR , __lowerCAmelCase = None , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) if "shortest_edge" in size: lowerCamelCase__ = get_resize_output_image_size(lowerCamelCase_ , size['''shortest_edge'''] , default_to_square=lowerCamelCase_ ) elif "height" in size and "width" in size: lowerCamelCase__ = (size['''height'''], size['''width''']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowerCamelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): '''simple docstring''' return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): '''simple docstring''' return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , ): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowerCamelCase__ = to_numpy_array(lowerCamelCase_ ) if do_resize: lowerCamelCase__ = self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) if do_center_crop: lowerCamelCase__ = self.center_crop(lowerCamelCase_ , size=lowerCamelCase_ ) if do_rescale: lowerCamelCase__ = self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) if do_normalize: lowerCamelCase__ = self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) lowerCamelCase__ = to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) return image def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ = resample if resample is not None else self.resample lowerCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ = image_mean if image_mean is not None else self.image_mean lowerCamelCase__ = image_std if image_std is not None else self.image_std lowerCamelCase__ = size if size is not None else self.size lowerCamelCase__ = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) lowerCamelCase__ = crop_size if crop_size is not None else self.crop_size lowerCamelCase__ = get_size_dict(lowerCamelCase_ , param_name='''crop_size''' ) if not valid_images(lowerCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowerCamelCase__ = make_batched(lowerCamelCase_ ) lowerCamelCase__ = [ [ self._preprocess_image( image=lowerCamelCase_ , do_resize=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , do_center_crop=lowerCamelCase_ , crop_size=lowerCamelCase_ , do_rescale=lowerCamelCase_ , rescale_factor=lowerCamelCase_ , do_normalize=lowerCamelCase_ , image_mean=lowerCamelCase_ , image_std=lowerCamelCase_ , data_format=lowerCamelCase_ , ) for img in video ] for video in videos ] lowerCamelCase__ = {'''pixel_values''': videos} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
481
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Optional[Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """markuplm""" def __init__( self :int , lowerCamelCase_ :List[str]=3_05_22 , lowerCamelCase_ :Union[str, Any]=7_68 , lowerCamelCase_ :str=12 , lowerCamelCase_ :Dict=12 , lowerCamelCase_ :str=30_72 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :Union[str, Any]=0.1 , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :Union[str, Any]=5_12 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Any=1E-12 , lowerCamelCase_ :Dict=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :str=2_56 , lowerCamelCase_ :List[Any]=10_24 , lowerCamelCase_ :Union[str, Any]=2_16 , lowerCamelCase_ :Dict=10_01 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :str=50 , lowerCamelCase_ :List[str]="absolute" , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :int=None , **lowerCamelCase_ :Dict , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : int = layer_norm_eps SCREAMING_SNAKE_CASE : int = position_embedding_type SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : str = classifier_dropout # additional properties SCREAMING_SNAKE_CASE : Optional[Any] = max_depth SCREAMING_SNAKE_CASE : Dict = max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE : Optional[int] = max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE : Tuple = tag_pad_id SCREAMING_SNAKE_CASE : str = subs_pad_id SCREAMING_SNAKE_CASE : List[Any] = xpath_unit_hidden_size
698
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal SCREAMING_SNAKE_CASE_: List[Any] =datasets.utils.logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Dict =["names", "prefix"] SCREAMING_SNAKE_CASE_: List[str] =["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] SCREAMING_SNAKE_CASE_: Optional[int] =["encoding_errors", "on_bad_lines"] SCREAMING_SNAKE_CASE_: int =["date_format"] @dataclass class __A ( datasets.BuilderConfig ): a__ : List[Any] = """,""" a__ : Optional[int] = None a__ : Dict = """infer""" a__ : List[Any] = None a__ : List[str] = None a__ : int = None a__ : Optional[int] = None a__ : Any = None a__ : Any = True a__ : Tuple = None a__ : int = None a__ : str = None a__ : List[Any] = None a__ : Any = False a__ : Optional[Any] = None a__ : Optional[Any] = None a__ : Optional[Any] = None a__ : List[Any] = True a__ : int = True a__ : str = False a__ : Optional[int] = True a__ : Tuple = None a__ : List[str] = """.""" a__ : Optional[Any] = None a__ : Any = """\"""" a__ : str = 0 a__ : Any = None a__ : Union[str, Any] = None a__ : Optional[Any] = None a__ : Optional[int] = None a__ : Optional[Any] = True a__ : str = True a__ : Dict = 0 a__ : Any = True a__ : Dict = False a__ : Dict = None a__ : int = 10_000 a__ : Union[str, Any] = None a__ : Tuple = """strict""" a__ : List[Any] = """error""" a__ : Any = None def _lowercase (self : Dict ): if self.delimiter is not None: UpperCAmelCase_ = self.delimiter if self.column_names is not None: UpperCAmelCase_ = self.column_names @property def _lowercase (self : Dict ): UpperCAmelCase_ = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCamelCase_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __A ( datasets.ArrowBasedBuilder ): a__ : int = CsvConfig def _lowercase (self : List[str] ): return datasets.DatasetInfo(features=self.config.features ) def _lowercase (self : Dict , __a : str ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) UpperCAmelCase_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase_ , (str, list, tuple) ): UpperCAmelCase_ = data_files if isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase_ = [files] UpperCAmelCase_ = [dl_manager.iter_files(lowerCamelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] UpperCAmelCase_ = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase_ = [files] UpperCAmelCase_ = [dl_manager.iter_files(lowerCamelCase_ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCamelCase_ , gen_kwargs={"files": files} ) ) return splits def _lowercase (self : int , __a : pa.Table ): if self.config.features is not None: UpperCAmelCase_ = self.config.features.arrow_schema if all(not require_storage_cast(lowerCamelCase_ ) for feature in self.config.features.values() ): # cheaper cast UpperCAmelCase_ = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCamelCase_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example UpperCAmelCase_ = table_cast(lowerCamelCase_ , lowerCamelCase_ ) return pa_table def _lowercase (self : int , __a : Optional[int] ): UpperCAmelCase_ = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str UpperCAmelCase_ = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCamelCase_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase_ ) ): UpperCAmelCase_ = pd.read_csv(lowerCamelCase_ , iterator=lowerCamelCase_ , dtype=lowerCamelCase_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCamelCase_ ): UpperCAmelCase_ = pa.Table.from_pandas(lowerCamelCase_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCamelCase_ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(lowerCamelCase_ )}: {e}""" ) raise
78
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """resnet""" UpperCamelCase = ["""basic""", """bottleneck"""] def __init__( self :Optional[int] , lowerCamelCase_ :Tuple=3 , lowerCamelCase_ :Tuple=64 , lowerCamelCase_ :Union[str, Any]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase_ :int=[3, 4, 6, 3] , lowerCamelCase_ :Any="bottleneck" , lowerCamelCase_ :Optional[int]="relu" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=None , lowerCamelCase_ :Optional[int]=None , **lowerCamelCase_ :Optional[int] , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCamelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : List[Any] = layer_type SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = downsample_in_first_stage SCREAMING_SNAKE_CASE : int = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = version.parse("""1.11""" ) @property def __lowerCAmelCase ( self :Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self :str ) -> float: '''simple docstring''' return 1E-3
698
0
import argparse _A : Optional[int] = "docs/source/_static/js/custom.js" def _a ( UpperCAmelCase ) -> Any: """simple docstring""" with open(a_ , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase__ : str = f.readlines() lowerCamelCase__ : Tuple = 0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 lowerCamelCase__ : Optional[int] = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a_ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(a_ ) if __name__ == "__main__": _A : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') _A : int = parser.parse_args() update_custom_js(args.version)
315
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """mra""" def __init__( self :int , lowerCamelCase_ :Optional[int]=5_02_65 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Tuple="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :int=1E-5 , lowerCamelCase_ :List[Any]="absolute" , lowerCamelCase_ :str=4 , lowerCamelCase_ :List[str]="full" , lowerCamelCase_ :List[Any]=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :List[str]=0 , lowerCamelCase_ :List[Any]=2 , **lowerCamelCase_ :str , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : List[str] = block_per_row SCREAMING_SNAKE_CASE : Optional[int] = approx_mode SCREAMING_SNAKE_CASE : List[Any] = initial_prior_first_n_blocks SCREAMING_SNAKE_CASE : Union[str, Any] = initial_prior_diagonal_n_blocks
698
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : List[Any] = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Union[str, Any] = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys UpperCamelCase__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """nllb-moe""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :List[str] , lowerCamelCase_ :Optional[int]=12_81_12 , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :Any=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :Union[str, Any]=0.0_5 , lowerCamelCase_ :Optional[int]=0.0_5 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :Tuple="relu" , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Any=False , lowerCamelCase_ :Optional[Any]="float32" , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :List[Any]=1_28 , lowerCamelCase_ :Any=64 , lowerCamelCase_ :Optional[int]=4 , lowerCamelCase_ :List[str]=4 , lowerCamelCase_ :Union[str, Any]=0.0_0_1 , lowerCamelCase_ :Optional[int]=0.0_0_1 , lowerCamelCase_ :List[str]="all" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=False , lowerCamelCase_ :Tuple=1.0 , lowerCamelCase_ :Union[str, Any]=0.2 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :Optional[int]=0 , lowerCamelCase_ :int=2 , lowerCamelCase_ :List[str]=False , **lowerCamelCase_ :int , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : str = d_model SCREAMING_SNAKE_CASE : Optional[int] = encoder_ffn_dim SCREAMING_SNAKE_CASE : Any = encoder_layers SCREAMING_SNAKE_CASE : Any = encoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : List[str] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Any = activation_function SCREAMING_SNAKE_CASE : Tuple = init_std SCREAMING_SNAKE_CASE : str = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : Optional[int] = encoder_layers SCREAMING_SNAKE_CASE : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : int = router_z_loss_coef SCREAMING_SNAKE_CASE : Any = router_aux_loss_coef SCREAMING_SNAKE_CASE : str = decoder_sparse_step SCREAMING_SNAKE_CASE : str = encoder_sparse_step SCREAMING_SNAKE_CASE : List[str] = num_experts SCREAMING_SNAKE_CASE : Union[str, Any] = expert_capacity SCREAMING_SNAKE_CASE : Tuple = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = router_dtype SCREAMING_SNAKE_CASE : Union[str, Any] = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : int = batch_prioritized_routing SCREAMING_SNAKE_CASE : Optional[int] = second_expert_policy SCREAMING_SNAKE_CASE : Union[str, Any] = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE : Any = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE : Optional[Any] = moe_token_dropout SCREAMING_SNAKE_CASE : Tuple = output_router_logits super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
698
0
'''simple docstring''' import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput __A : str = "scheduler_config.json" class __snake_case ( _UpperCAmelCase): """simple docstring""" lowercase = 1 lowercase = 2 lowercase = 3 lowercase = 4 lowercase = 5 lowercase = 6 lowercase = 7 lowercase = 8 lowercase = 9 lowercase = 10 lowercase = 11 lowercase = 12 lowercase = 13 lowercase = 14 @dataclass class __snake_case ( _UpperCAmelCase): """simple docstring""" lowercase = 42 class __snake_case : """simple docstring""" lowercase = SCHEDULER_CONFIG_NAME lowercase = [] lowercase = True @classmethod def __lowercase ( cls : Dict , lowerCamelCase : Dict[str, Any] = None , lowerCamelCase : Optional[str] = None , lowerCamelCase : Dict=False , **lowerCamelCase : Tuple , ) -> Tuple: lowerCAmelCase_ : str = cls.load_config( pretrained_model_name_or_path=lowerCamelCase_ , subfolder=lowerCamelCase_ , return_unused_kwargs=lowerCamelCase_ , return_commit_hash=lowerCamelCase_ , **lowerCamelCase_ , ) return cls.from_config(lowerCamelCase_ , return_unused_kwargs=lowerCamelCase_ , **lowerCamelCase_ ) def __lowercase ( self : List[Any] , lowerCamelCase : Union[str, os.PathLike] , lowerCamelCase : bool = False , **lowerCamelCase : Any ) -> Optional[int]: self.save_config(save_directory=lowerCamelCase_ , push_to_hub=lowerCamelCase_ , **lowerCamelCase_ ) @property def __lowercase ( self : Any ) -> str: return self._get_compatibles() @classmethod def __lowercase ( cls : Dict ) -> Any: lowerCAmelCase_ : List[str] = list(set([cls.__name__] + cls._compatibles ) ) lowerCAmelCase_ : Union[str, Any] = importlib.import_module(__name__.split(""".""" )[0] ) lowerCAmelCase_ : List[Any] = [ getattr(lowerCamelCase_ , lowerCamelCase_ ) for c in compatible_classes_str if hasattr(lowerCamelCase_ , lowerCamelCase_ ) ] return compatible_classes
275
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase__ : Union[str, Any] = "CompVis/stable-diffusion-v1-1" lowerCamelCase__ : Optional[Any] = "CompVis/stable-diffusion-v1-2" lowerCamelCase__ : Dict = "CompVis/stable-diffusion-v1-3" lowerCamelCase__ : List[str] = "CompVis/stable-diffusion-v1-4" class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :AutoencoderKL , lowerCamelCase_ :CLIPTextModel , lowerCamelCase_ :CLIPTokenizer , lowerCamelCase_ :UNetaDConditionModel , lowerCamelCase_ :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase_ :StableDiffusionSafetyChecker , lowerCamelCase_ :CLIPImageProcessor , lowerCamelCase_ :bool = True , ) -> List[str]: '''simple docstring''' super()._init_() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline( vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , requires_safety_checker=lowerCamelCase_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __lowerCAmelCase ( self :Dict ) -> Dict[str, Any]: '''simple docstring''' return {k: getattr(self , lowerCamelCase_ ) for k in self.config.keys() if not k.startswith('''_''' )} def __lowerCAmelCase ( self :int , lowerCamelCase_ :Optional[Union[str, int]] = "auto" ) -> Tuple: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.enable_attention_slicing(lowerCamelCase_ ) @torch.no_grad() def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :List[str] , ) -> Tuple: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Tuple , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Dict , ) -> List[str]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :List[Any] , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Optional[Any] , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(lowerCamelCase_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : str = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : Tuple = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : Union[str, Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
698
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = "https://openaipublic.azureedge.net/jukebox/models/" __lowerCAmelCase = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def _lowercase ( a__ : List[str] ) -> Union[str, Any]: """simple docstring""" if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: _UpperCamelCase = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: _UpperCamelCase = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: _UpperCamelCase = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: _UpperCamelCase = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: _UpperCamelCase = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: _UpperCamelCase = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCamelCase = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: _UpperCamelCase = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def _lowercase ( a__ : Tuple , a__ : Any , a__ : List[str] , a__ : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCamelCase = {} import re _UpperCamelCase = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _UpperCamelCase = re.compile( R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _UpperCamelCase = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _UpperCamelCase = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) _UpperCamelCase = re.compile( R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _UpperCamelCase = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) _UpperCamelCase = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) _UpperCamelCase = re.compile( R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) _UpperCamelCase = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(a_ ): _UpperCamelCase = re_encoder_block_conv_in.match(a_ ) _UpperCamelCase = regex_match.groups() _UpperCamelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCamelCase = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' _UpperCamelCase = re_encoder_block_conv_in.sub(a_ , a_ ) elif re_encoder_block_resnet.fullmatch(a_ ): _UpperCamelCase = re_encoder_block_resnet.match(a_ ) _UpperCamelCase = regex_match.groups() _UpperCamelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCamelCase = {'''1''': 1, '''3''': 2}[groups[-2]] _UpperCamelCase = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' _UpperCamelCase = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _UpperCamelCase = prefix + resnet_block _UpperCamelCase = re_encoder_block_resnet.sub(a_ , a_ ) elif re_encoder_block_proj_out.fullmatch(a_ ): _UpperCamelCase = re_encoder_block_proj_out.match(a_ ) _UpperCamelCase = regex_match.groups() _UpperCamelCase = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' _UpperCamelCase = re_encoder_block_proj_out.sub(a_ , a_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(a_ ): _UpperCamelCase = re_decoder_block_conv_out.match(a_ ) _UpperCamelCase = regex_match.groups() _UpperCamelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCamelCase = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' _UpperCamelCase = re_decoder_block_conv_out.sub(a_ , a_ ) elif re_decoder_block_resnet.fullmatch(a_ ): _UpperCamelCase = re_decoder_block_resnet.match(a_ ) _UpperCamelCase = regex_match.groups() _UpperCamelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCamelCase = {'''1''': 1, '''3''': 2}[groups[-2]] _UpperCamelCase = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' _UpperCamelCase = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _UpperCamelCase = prefix + resnet_block _UpperCamelCase = re_decoder_block_resnet.sub(a_ , a_ ) elif re_decoder_block_proj_in.fullmatch(a_ ): _UpperCamelCase = re_decoder_block_proj_in.match(a_ ) _UpperCamelCase = regex_match.groups() _UpperCamelCase = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' _UpperCamelCase = re_decoder_block_proj_in.sub(a_ , a_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(a_ ): _UpperCamelCase = re_prior_cond_conv_out.match(a_ ) _UpperCamelCase = regex_match.groups() _UpperCamelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCamelCase = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' _UpperCamelCase = re_prior_cond_conv_out.sub(a_ , a_ ) elif re_prior_cond_resnet.fullmatch(a_ ): _UpperCamelCase = re_prior_cond_resnet.match(a_ ) _UpperCamelCase = regex_match.groups() _UpperCamelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCamelCase = {'''1''': 1, '''3''': 2}[groups[-2]] _UpperCamelCase = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' _UpperCamelCase = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _UpperCamelCase = prefix + resnet_block _UpperCamelCase = re_prior_cond_resnet.sub(a_ , a_ ) elif re_prior_cond_proj_in.fullmatch(a_ ): _UpperCamelCase = re_prior_cond_proj_in.match(a_ ) _UpperCamelCase = regex_match.groups() _UpperCamelCase = f'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' _UpperCamelCase = re_prior_cond_proj_in.sub(a_ , a_ ) # keep original key else: _UpperCamelCase = original_key _UpperCamelCase = replace_key(a_ ) if f'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(f'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[f'''{key_prefix}.{key}'''].shape: _UpperCamelCase = model_state_dict[f'''{key_prefix}.{key}'''] print(f'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) _UpperCamelCase = original_key _UpperCamelCase = original_key _UpperCamelCase = value return new_dict @torch.no_grad() def _lowercase ( a__ : Optional[Any]=None , a__ : Union[str, Any]=None ) -> str: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ): _UpperCamelCase = requests.get(f'''{PREFIX}{file}''' , allow_redirects=a_ ) os.makedirs(f'''{pytorch_dump_folder_path}/''' , exist_ok=a_ ) open(f'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' , "wb" ).write(r.content ) _UpperCamelCase = MODEL_MAPPING[model_name.split("/" )[-1]] _UpperCamelCase = JukeboxConfig.from_pretrained(a_ ) _UpperCamelCase = JukeboxModel(a_ ) _UpperCamelCase = [] _UpperCamelCase = {} for i, dict_name in enumerate(a_ ): _UpperCamelCase = torch.load(f'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )['''model'''] _UpperCamelCase = {} for k in old_dic.keys(): if k.endswith(".b" ): _UpperCamelCase = old_dic[k] elif k.endswith(".w" ): _UpperCamelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCamelCase = old_dic[k] else: _UpperCamelCase = old_dic[k] _UpperCamelCase = '''vqvae''' if i == 0 else f'''priors.{3 - i}''' _UpperCamelCase = fix_jukebox_keys(a_ , model.state_dict() , a_ , a_ ) weight_dict.append(a_ ) _UpperCamelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(a_ ) for i in range(len(a_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(a_ ).mkdir(exist_ok=a_ ) with open(f'''{pytorch_dump_folder_path}/mapping.json''' , "w" ) as txtfile: json.dump(a_ , a_ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) return weight_dict if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) __lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
147
"""simple docstring""" def __A ( a_ : list , a_ : int = 0 )-> list: '''simple docstring''' SCREAMING_SNAKE_CASE : int = length or len(a_ ) SCREAMING_SNAKE_CASE : List[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : Optional[Any] = True return list_data if not swapped else bubble_sort(a_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
698
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class _lowerCAmelCase ( _UpperCAmelCase ): lowercase_ : Dict = '''bert''' def __init__( self , a_=30522 , a_=768 , a_=12 , a_=12 , a_=3072 , a_="gelu" , a_=0.1 , a_=0.1 , a_=512 , a_=2 , a_=0.02 , a_=1e-12 , a_=0 , a_="absolute" , a_=True , a_=None , **a_ , ) -> List[str]: super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout class _lowerCAmelCase ( _UpperCAmelCase ): @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
657
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self :List[str] , lowerCamelCase_ :UNetaDModel , lowerCamelCase_ :ScoreSdeVeScheduler ) -> int: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self :int , lowerCamelCase_ :int = 1 , lowerCamelCase_ :int = 20_00 , lowerCamelCase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , **lowerCamelCase_ :Union[str, Any] , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.sample_size SCREAMING_SNAKE_CASE : List[str] = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE : Any = self.unet SCREAMING_SNAKE_CASE : Dict = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ ) * self.scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase_ ) self.scheduler.set_sigmas(lowerCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): SCREAMING_SNAKE_CASE : Optional[Any] = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step_correct(lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample # prediction step SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.step_pred(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample, output.prev_sample_mean SCREAMING_SNAKE_CASE : List[str] = sample_mean.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Any = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Any = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase_ )
698
0
"""simple docstring""" from manim import * class UpperCAmelCase_ ( _UpperCAmelCase ): def _lowerCamelCase ( self ) -> Dict: __lowercase : Any = Rectangle(height=0.5 , width=0.5 ) __lowercase : Optional[int] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) __lowercase : int = [mem.copy() for i in range(6 )] __lowercase : int = [mem.copy() for i in range(6 )] __lowercase : Union[str, Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) __lowercase : Union[str, Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) __lowercase : Optional[Any] = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) __lowercase : Union[str, Any] = Text('''CPU''' , font_size=24 ) __lowercase : Any = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase_ ) __lowercase : List[Any] = [mem.copy() for i in range(4 )] __lowercase : Union[str, Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) __lowercase : Any = Text('''GPU''' , font_size=24 ) __lowercase : Any = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase_ ) __lowercase : Dict = [mem.copy() for i in range(6 )] __lowercase : List[Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) __lowercase : Union[str, Any] = Text('''Model''' , font_size=24 ) __lowercase : Optional[Any] = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase_ ) __lowercase : Optional[Any] = [] for i, rect in enumerate(lowerCamelCase_ ): rect.set_stroke(lowerCamelCase_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) __lowercase : Union[str, Any] = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowerCamelCase_ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowerCamelCase_ , buff=0.0 ) self.add(lowerCamelCase_ ) cpu_targs.append(lowerCamelCase_ ) __lowercase : Any = [mem.copy() for i in range(6 )] __lowercase : Tuple = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) __lowercase : int = Text('''Loaded Checkpoint''' , font_size=24 ) __lowercase : Any = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , aligned_edge=lowerCamelCase_ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) __lowercase : Union[str, Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowercase : str = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase_ , lowerCamelCase_ ) __lowercase : int = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowerCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) __lowercase : Union[str, Any] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ ) , Write(lowerCamelCase_ ) ) self.play(Write(lowerCamelCase_ , run_time=1 ) , Create(lowerCamelCase_ , run_time=1 ) ) __lowercase : Any = [] __lowercase : Optional[int] = [] for i, rect in enumerate(lowerCamelCase_ ): __lowercase : Optional[int] = fill.copy().set_fill(lowerCamelCase_ , opacity=0.7 ) target.move_to(lowerCamelCase_ ) first_animations.append(GrowFromCenter(lowerCamelCase_ , run_time=1 ) ) __lowercase : str = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowerCamelCase_ , run_time=1.5 ) ) self.play(*lowerCamelCase_ ) self.play(*lowerCamelCase_ ) self.wait()
76
"""simple docstring""" import qiskit def __A ( a_ : int , a_ : int )-> qiskit.result.counts.Counts: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE : str = qiskit.QuantumCircuit(a_ , a_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE : int = qiskit.execute(a_ , a_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a_ ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
698
0
from __future__ import annotations def UpperCamelCase__ ( _A: int | float | str , _A: int | float | str ): '''simple docstring''' if nth_term == "": return [""] __lowerCamelCase = int(a_ ) __lowerCamelCase = int(a_ ) __lowerCamelCase = [] for temp in range(int(a_ ) ): series.append(f'''1 / {pow(temp + 1 , int(a_ ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() _a : int = int(input('Enter the last number (nth term) of the P-Series')) _a : Dict = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
479
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase__ : Optional[int] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def __A ( a_ : Dict )-> str: '''simple docstring''' config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __A ( a_ : Dict )-> Tuple: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_ ) def __A ( a_ : Union[str, Any] )-> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE : List[str] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(a_ , id=a_ ) def __A ( a_ : Dict , a_ : List[str] )-> Dict: '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE : List[str] = 0 # Doctest custom flag to ignore output. lowerCamelCase__ : Tuple = doctest.register_optionflag("IGNORE_RESULT") lowerCamelCase__ : Optional[int] = doctest.OutputChecker class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] ) -> Dict: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : str = CustomOutputChecker lowerCamelCase__ : Any = HfDoctestModule lowerCamelCase__ : int = HfDocTestParser
698
0
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList snake_case__ : List[Any] = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class SCREAMING_SNAKE_CASE_ (_UpperCAmelCase ): '''simple docstring''' def __init__( self : str , __a : List[str] , __a : Any , __a : Union[str, Any]=None , __a : int=1 ) ->Optional[int]: lowerCamelCase_ : List[Any] = tokenizer lowerCamelCase_ : Any = dataset lowerCamelCase_ : List[Any] = len(lowerCamelCase_ ) if n_tasks is None else n_tasks lowerCamelCase_ : Dict = n_copies def __iter__( self : Dict ) ->str: lowerCamelCase_ : str = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip() ) lowerCamelCase_ : str = self.tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors="""pt""" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class SCREAMING_SNAKE_CASE_ (_UpperCAmelCase ): '''simple docstring''' def __init__( self : Any , __a : int , __a : Dict , __a : Optional[Any] ) ->Optional[Any]: lowerCamelCase_ : List[str] = start_length lowerCamelCase_ : Dict = eof_strings lowerCamelCase_ : int = tokenizer def __call__( self : Dict , __a : Optional[Any] , __a : List[str] , **__a : Dict ) ->List[str]: lowerCamelCase_ : Tuple = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase_ : List[str] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase_ ) def __lowerCamelCase ( A__ : str ) -> Union[str, Any]: lowerCamelCase_ : Optional[Any] = re.split("""(%s)""" % """|""".join(a_ ) , a_ ) # last string should be "" return "".join(string_list[:-2] ) def __lowerCamelCase ( A__ : List[str] , A__ : str , A__ : str , A__ : Dict , A__ : Optional[Any] , A__ : str=20 , **A__ : Tuple ) -> List[str]: lowerCamelCase_ : Union[str, Any] = defaultdict(a_ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(a_ ) ): with torch.no_grad(): lowerCamelCase_ : str = batch['''ids'''].shape[-1] lowerCamelCase_ : List[str] = accelerator.unwrap_model(a_ ).generate( input_ids=batch["""ids"""][:, : batch["""input_len"""]] , num_return_sequences=a_ , **a_ ) # each task is generated batch_size times lowerCamelCase_ : Optional[int] = batch['''task_id'''].repeat(a_ ) lowerCamelCase_ : Any = accelerator.pad_across_processes( a_ , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase_ : Any = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase_ : Any = generated_tokens.cpu().numpy() lowerCamelCase_ : Dict = generated_tasks.cpu().numpy() for task, generated_tokens in zip(a_ , a_ ): gen_token_dict[task].append(a_ ) lowerCamelCase_ : Dict = [[] for _ in range(a_ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase_ : Tuple = tokenizer.decode(a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_ ) code_gens[task].append(remove_last_block(a_ ) ) return code_gens def __lowerCamelCase ( ) -> Optional[int]: lowerCamelCase_ : Any = HfArgumentParser(a_ ) lowerCamelCase_ : Any = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase_ : str = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase_ : Optional[int] = '''false''' if args.num_workers is None: lowerCamelCase_ : List[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase_ : List[str] = Accelerator() set_seed(args.seed , device_specific=a_ ) # Load model and tokenizer lowerCamelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase_ : Optional[int] = tokenizer.eos_token lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase_ : int = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , a_ , a_ )] ), } # Load evaluation dataset and metric lowerCamelCase_ : Optional[Any] = load_dataset("""openai_humaneval""" ) lowerCamelCase_ : Dict = load_metric("""code_eval""" ) lowerCamelCase_ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""] ) lowerCamelCase_ : Optional[Any] = args.n_samples // args.batch_size lowerCamelCase_ : List[str] = TokenizedDataset(a_ , human_eval["""test"""] , n_copies=a_ , n_tasks=a_ ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase_ : Dict = DataLoader(a_ , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase_ : Optional[int] = code_eval_metric.compute(references=[""""""] , predictions=[[""""""]] ) except ValueError as exception: print( """Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`""" """ flag to enable code evaluation.""" ) raise exception lowerCamelCase_ : Optional[int] = accelerator.prepare(a_ , a_ ) lowerCamelCase_ : int = complete_code( a_ , a_ , a_ , a_ , n_tasks=a_ , batch_size=args.batch_size , **a_ , ) if accelerator.is_main_process: lowerCamelCase_ : int = [] for task in tqdm(range(a_ ) ): lowerCamelCase_ : Tuple = human_eval['''test'''][task]['''test'''] lowerCamelCase_ : List[str] = f'''check({human_eval['test'][task]['entry_point']})''' references.append("""\n""" + test_func + """\n""" + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase_ : Optional[int] = code_eval_metric.compute( references=a_ , predictions=a_ , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , """w""" ) as fp: json.dump(a_ , a_ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
278
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase__: '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple=13 , lowerCamelCase_ :List[str]=7 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :str=99 , lowerCamelCase_ :Optional[Any]=32 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :int=4 , lowerCamelCase_ :Optional[Any]=37 , lowerCamelCase_ :Any="gelu" , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Optional[int]=5_12 , lowerCamelCase_ :str=16 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :List[str]=0.0_2 , lowerCamelCase_ :int=3 , lowerCamelCase_ :List[Any]=4 , lowerCamelCase_ :Optional[Any]=None , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : str = 13 SCREAMING_SNAKE_CASE : str = 7 SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Any = 99 SCREAMING_SNAKE_CASE : Dict = 3_84 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Any = 37 SCREAMING_SNAKE_CASE : List[str] = '''gelu''' SCREAMING_SNAKE_CASE : List[str] = 0.1 SCREAMING_SNAKE_CASE : int = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = 5_12 SCREAMING_SNAKE_CASE : int = 16 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Tuple = 0.0_2 SCREAMING_SNAKE_CASE : List[str] = 3 SCREAMING_SNAKE_CASE : Union[str, Any] = 4 SCREAMING_SNAKE_CASE : str = 1_28 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = 9 SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : List[str] = None def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[str] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : Dict = [input_ids, input_mask] SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertForMaskedLM(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : Dict = TFConvBertForSequenceClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.num_choices SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertForMultipleChoice(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForTokenClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = TFConvBertForQuestionAnswering(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self :Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Tuple = True if hasattr(lowerCamelCase_ , '''use_cache''' ): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : str = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = len(model(lowerCamelCase_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = os.path.join(lowerCamelCase_ , '''saved_model''' , '''1''' ) SCREAMING_SNAKE_CASE : Tuple = tf.keras.models.load_model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Optional[int] = outputs['''encoder_hidden_states'''] SCREAMING_SNAKE_CASE : str = outputs['''encoder_attentions'''] else: SCREAMING_SNAKE_CASE : List[str] = outputs['''hidden_states'''] SCREAMING_SNAKE_CASE : List[Any] = outputs['''attentions'''] self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self :Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) def check_decoder_attentions_output(lowerCamelCase_ :Optional[Any] ): SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(out_len % 2 , 0 ) SCREAMING_SNAKE_CASE : int = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowerCamelCase_ :Optional[int] ): SCREAMING_SNAKE_CASE : List[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_decoder_attentions_output(lowerCamelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase_ ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) @require_tf class lowercase__( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self :int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) SCREAMING_SNAKE_CASE : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Optional[Any] = [1, 6, 7_68] self.assertEqual(output.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 )
698
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ : Dict =logging.get_logger(__name__) __magic_name__ : str ={ "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class UpperCamelCase_ ( _UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : Any = '''swinv2''' UpperCAmelCase__ : Optional[int] = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : str , _lowerCamelCase : str=2_24 , _lowerCamelCase : Any=4 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : str=96 , _lowerCamelCase : Optional[Any]=[2, 2, 6, 2] , _lowerCamelCase : str=[3, 6, 12, 24] , _lowerCamelCase : Optional[Any]=7 , _lowerCamelCase : List[str]=4.0 , _lowerCamelCase : Dict=True , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : Optional[Any]="gelu" , _lowerCamelCase : List[Any]=False , _lowerCamelCase : List[str]=0.02 , _lowerCamelCase : Tuple=1e-5 , _lowerCamelCase : Any=32 , **_lowerCamelCase : List[str] , ) -> int: super().__init__(**lowerCamelCase_ ) __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = embed_dim __magic_name__ = depths __magic_name__ = len(lowerCamelCase_ ) __magic_name__ = num_heads __magic_name__ = window_size __magic_name__ = mlp_ratio __magic_name__ = qkv_bias __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = drop_path_rate __magic_name__ = hidden_act __magic_name__ = use_absolute_embeddings __magic_name__ = layer_norm_eps __magic_name__ = initializer_range __magic_name__ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __magic_name__ = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) __magic_name__ = (0, 0, 0, 0)
664
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """bert""" def __init__( self :Any , lowerCamelCase_ :List[Any]=3_05_22 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :int=5_12 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :int="absolute" , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :List[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
698
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _a = logging.get_logger(__name__) _a = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __A ( _UpperCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """perceiver""" def __init__( self , __lowerCAmelCase=2_5_6 , __lowerCAmelCase=1_2_8_0 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=1 , __lowerCAmelCase=2_6 , __lowerCAmelCase=8 , __lowerCAmelCase=8 , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="kv" , __lowerCAmelCase=1 , __lowerCAmelCase=1 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=True , __lowerCAmelCase=2_6_2 , __lowerCAmelCase=2_0_4_8 , __lowerCAmelCase=5_6 , __lowerCAmelCase=[3_6_8, 4_9_6] , __lowerCAmelCase=1_6 , __lowerCAmelCase=1_9_2_0 , __lowerCAmelCase=1_6 , __lowerCAmelCase=[1, 1_6, 2_2_4, 2_2_4] , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) lowerCamelCase__ = num_latents lowerCamelCase__ = d_latents lowerCamelCase__ = d_model lowerCamelCase__ = num_blocks lowerCamelCase__ = num_self_attends_per_block lowerCamelCase__ = num_self_attention_heads lowerCamelCase__ = num_cross_attention_heads lowerCamelCase__ = qk_channels lowerCamelCase__ = v_channels lowerCamelCase__ = cross_attention_shape_for_attention lowerCamelCase__ = self_attention_widening_factor lowerCamelCase__ = cross_attention_widening_factor lowerCamelCase__ = hidden_act lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = use_query_residual # masked language modeling attributes lowerCamelCase__ = vocab_size lowerCamelCase__ = max_position_embeddings # image classification attributes lowerCamelCase__ = image_size # flow attributes lowerCamelCase__ = train_size # multimodal autoencoding attributes lowerCamelCase__ = num_frames lowerCamelCase__ = audio_samples_per_frame lowerCamelCase__ = samples_per_patch lowerCamelCase__ = output_shape class __A ( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCamelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-4 def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = 3 , __lowerCAmelCase = 4_0 , __lowerCAmelCase = 4_0 , ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCamelCase__ = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ = preprocessor.num_special_tokens_to_add(lowerCamelCase_ ) lowerCamelCase__ = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ = [''' '''.join(['''a'''] ) * seq_length] * batch_size lowerCamelCase__ = dict(preprocessor(lowerCamelCase_ , return_tensors=lowerCamelCase_ ) ) lowerCamelCase__ = inputs.pop('''input_ids''' ) return inputs elif isinstance(lowerCamelCase_ , lowerCamelCase_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCamelCase__ = compute_effective_axis_dimension(lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch ) lowerCamelCase__ = self._generate_dummy_images(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ = dict(preprocessor(images=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) ) lowerCamelCase__ = inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
481
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : str = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """luke""" def __init__( self :List[Any] , lowerCamelCase_ :Optional[int]=5_02_67 , lowerCamelCase_ :List[Any]=50_00_00 , lowerCamelCase_ :str=7_68 , lowerCamelCase_ :Optional[Any]=2_56 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :Any=30_72 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int=None , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :str=0 , lowerCamelCase_ :int=2 , **lowerCamelCase_ :List[str] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = entity_vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Dict = entity_emb_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = use_entity_aware_attention SCREAMING_SNAKE_CASE : str = classifier_dropout
698
0
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __A ( unittest.TestCase ): def _lowercase (self : List[Any] , __a : Optional[Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): UpperCAmelCase_ = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(lowerCamelCase_ ) def _lowercase (self : int ): UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , ) UpperCAmelCase_ = PyTorchBenchmark(lowerCamelCase_ ) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = '''sgugger/tiny-distilbert-classification''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , only_pretrain_model=lowerCamelCase_ , ) UpperCAmelCase_ = PyTorchBenchmark(lowerCamelCase_ ) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase (self : Any ): UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , torchscript=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , ) UpperCAmelCase_ = PyTorchBenchmark(lowerCamelCase_ ) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , fpaa=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , ) UpperCAmelCase_ = PyTorchBenchmark(lowerCamelCase_ ) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase (self : List[str] ): UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(lowerCamelCase_ ) # set architectures equal to `None` UpperCAmelCase_ = None UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , ) UpperCAmelCase_ = PyTorchBenchmark(lowerCamelCase_ , configs=[config] ) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase (self : Tuple ): UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , ) UpperCAmelCase_ = PyTorchBenchmark(lowerCamelCase_ ) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can\'t do half precision" ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowerCamelCase_ , multi_process=lowerCamelCase_ , ) UpperCAmelCase_ = PyTorchBenchmark(lowerCamelCase_ ) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowercase (self : Any ): UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(lowerCamelCase_ ) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , ) UpperCAmelCase_ = PyTorchBenchmark(lowerCamelCase_ , configs=[config] ) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase (self : str ): UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(lowerCamelCase_ ) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , ) UpperCAmelCase_ = PyTorchBenchmark(lowerCamelCase_ , configs=[config] ) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase (self : Tuple ): UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(lowerCamelCase_ ) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , ) UpperCAmelCase_ = PyTorchBenchmark(lowerCamelCase_ , configs=[config] ) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(lowerCamelCase_ ) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , ) UpperCAmelCase_ = PyTorchBenchmark(lowerCamelCase_ , configs=[config] ) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowercase (self : Any ): UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , save_to_csv=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowerCamelCase_ , "inf_time.csv" ) , train_memory_csv_file=os.path.join(lowerCamelCase_ , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(lowerCamelCase_ , "inf_mem.csv" ) , train_time_csv_file=os.path.join(lowerCamelCase_ , "train_time.csv" ) , env_info_csv_file=os.path.join(lowerCamelCase_ , "env.csv" ) , multi_process=lowerCamelCase_ , ) UpperCAmelCase_ = PyTorchBenchmark(lowerCamelCase_ ) benchmark.run() self.assertTrue(Path(os.path.join(lowerCamelCase_ , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase_ , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase_ , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase_ , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase_ , "env.csv" ) ).exists() ) def _lowercase (self : Dict ): UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(__a : List[str] ): self.assertTrue(hasattr(lowerCamelCase_ , "sequential" ) ) self.assertTrue(hasattr(lowerCamelCase_ , "cumulative" ) ) self.assertTrue(hasattr(lowerCamelCase_ , "current" ) ) self.assertTrue(hasattr(lowerCamelCase_ , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowerCamelCase_ , "log.txt" ) , log_print=lowerCamelCase_ , trace_memory_line_by_line=lowerCamelCase_ , multi_process=lowerCamelCase_ , ) UpperCAmelCase_ = PyTorchBenchmark(lowerCamelCase_ ) UpperCAmelCase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowerCamelCase_ , "log.txt" ) ).exists() )
78
"""simple docstring""" # using dfs for finding eulerian path traversal def __A ( a_ : Dict , a_ : int , a_ : str , a_ : Optional[Any]=None )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = True, True SCREAMING_SNAKE_CASE : List[str] = dfs(a_ , a_ , a_ , a_ ) return path def __A ( a_ : List[str] , a_ : Any )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = -1 for i in range(a_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 SCREAMING_SNAKE_CASE : Tuple = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __A ( a_ : Any , a_ : int )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = check_circuit_or_path(a_ , a_ ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return SCREAMING_SNAKE_CASE : Tuple = 1 if check == 2: SCREAMING_SNAKE_CASE : Optional[int] = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) SCREAMING_SNAKE_CASE : Optional[int] = dfs(a_ , a_ , a_ ) print(a_ ) def __A ( )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} SCREAMING_SNAKE_CASE : int = {1: [2, 3], 2: [1, 3], 3: [1, 2]} SCREAMING_SNAKE_CASE : int = { 1: [], 2: [] # all degree is zero } SCREAMING_SNAKE_CASE : List[str] = 10 check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) if __name__ == "__main__": main()
698
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _A : Optional[Any] = logging.get_logger(__name__) _A : Union[str, Any] = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase ,_UpperCAmelCase ): _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : List[Any] = ["basic", "bottleneck"] def __init__( self : Optional[int] , A : Tuple=3 , A : Tuple=6_4 , A : Union[str, Any]=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , A : int=[3, 4, 6, 3] , A : Any="bottleneck" , A : Optional[int]="relu" , A : Optional[int]=False , A : Any=None , A : Optional[int]=None , **A : Optional[int] , ) ->Tuple: super().__init__(**lowerCamelCase_ ) if layer_type not in self.layer_types: raise ValueError(F"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) lowerCamelCase__ : Tuple = num_channels lowerCamelCase__ : Union[str, Any] = embedding_size lowerCamelCase__ : List[str] = hidden_sizes lowerCamelCase__ : Optional[Any] = depths lowerCamelCase__ : List[Any] = layer_type lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Optional[Any] = downsample_in_first_stage lowerCamelCase__ : int = ['''stem'''] + [F"stage{idx}" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] lowerCamelCase__ : Dict = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names ) class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): _UpperCAmelCase : List[Any] = version.parse("1.11" ) @property def __lowerCamelCase ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCamelCase ( self : str ) ->float: return 1e-3
315
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase__ : List[str] = 250004 lowerCamelCase__ : str = 250020 @require_sentencepiece @require_tokenizers class lowercase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MBartaaTokenizer UpperCamelCase = MBartaaTokenizerFast UpperCamelCase = True UpperCamelCase = True def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[int] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = '''<s>''' SCREAMING_SNAKE_CASE : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_54 ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __lowerCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE : str = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = tokenizer_r.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE : Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : int = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): '''simple docstring''' UpperCamelCase = """facebook/mbart-large-50-one-to-many-mmt""" UpperCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCamelCase = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def __lowerCAmelCase ( cls :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) SCREAMING_SNAKE_CASE : Dict = 1 return cls def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def __lowerCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE : int = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[0] , lowerCamelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> List[str]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ ) @require_torch def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Dict = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __lowerCAmelCase ( self :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : List[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : List[Any] = targets['''input_ids'''] SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(lowerCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
698
0
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = checkpoint SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : List[str] = vae_state_dict['''encoder.conv_in.weight'''] SCREAMING_SNAKE_CASE_ : Any = vae_state_dict['''encoder.conv_in.bias'''] SCREAMING_SNAKE_CASE_ : int = vae_state_dict['''encoder.conv_out.weight'''] SCREAMING_SNAKE_CASE_ : List[str] = vae_state_dict['''encoder.conv_out.bias'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = vae_state_dict['''encoder.norm_out.weight'''] SCREAMING_SNAKE_CASE_ : Tuple = vae_state_dict['''encoder.norm_out.bias'''] SCREAMING_SNAKE_CASE_ : Optional[int] = vae_state_dict['''decoder.conv_in.weight'''] SCREAMING_SNAKE_CASE_ : Optional[int] = vae_state_dict['''decoder.conv_in.bias'''] SCREAMING_SNAKE_CASE_ : Dict = vae_state_dict['''decoder.conv_out.weight'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = vae_state_dict['''decoder.conv_out.bias'''] SCREAMING_SNAKE_CASE_ : Tuple = vae_state_dict['''decoder.norm_out.weight'''] SCREAMING_SNAKE_CASE_ : str = vae_state_dict['''decoder.norm_out.bias'''] SCREAMING_SNAKE_CASE_ : List[Any] = vae_state_dict['''quant_conv.weight'''] SCREAMING_SNAKE_CASE_ : Tuple = vae_state_dict['''quant_conv.bias'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = vae_state_dict['''post_quant_conv.weight'''] SCREAMING_SNAKE_CASE_ : int = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only SCREAMING_SNAKE_CASE_ : List[str] = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) SCREAMING_SNAKE_CASE_ : List[Any] = { layer_id: [key for key in vae_state_dict if F'down.{layer_id}' in key] for layer_id in range(a_ ) } # Retrieves the keys for the decoder up blocks only SCREAMING_SNAKE_CASE_ : List[str] = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) SCREAMING_SNAKE_CASE_ : Tuple = { layer_id: [key for key in vae_state_dict if F'up.{layer_id}' in key] for layer_id in range(a_ ) } for i in range(a_ ): SCREAMING_SNAKE_CASE_ : str = [key for key in down_blocks[i] if F'down.{i}' in key and F'down.{i}.downsample' not in key] if F'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: SCREAMING_SNAKE_CASE_ : str = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.weight' ) SCREAMING_SNAKE_CASE_ : Dict = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.bias' ) SCREAMING_SNAKE_CASE_ : List[Any] = renew_vae_resnet_paths(a_ ) SCREAMING_SNAKE_CASE_ : List[str] = {'''old''': F'down.{i}.block', '''new''': F'down_blocks.{i}.resnets'} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) SCREAMING_SNAKE_CASE_ : List[Any] = [key for key in vae_state_dict if '''encoder.mid.block''' in key] SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE_ : Dict = [key for key in mid_resnets if F'encoder.mid.block_{i}' in key] SCREAMING_SNAKE_CASE_ : int = renew_vae_resnet_paths(a_ ) SCREAMING_SNAKE_CASE_ : int = {'''old''': F'mid.block_{i}', '''new''': F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) SCREAMING_SNAKE_CASE_ : str = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] SCREAMING_SNAKE_CASE_ : Union[str, Any] = renew_vae_attention_paths(a_ ) SCREAMING_SNAKE_CASE_ : Tuple = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) conv_attn_to_linear(a_ ) for i in range(a_ ): SCREAMING_SNAKE_CASE_ : str = num_up_blocks - 1 - i SCREAMING_SNAKE_CASE_ : List[str] = [ key for key in up_blocks[block_id] if F'up.{block_id}' in key and F'up.{block_id}.upsample' not in key ] if F'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: SCREAMING_SNAKE_CASE_ : str = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.weight' ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.bias' ] SCREAMING_SNAKE_CASE_ : Optional[Any] = renew_vae_resnet_paths(a_ ) SCREAMING_SNAKE_CASE_ : Tuple = {'''old''': F'up.{block_id}.block', '''new''': F'up_blocks.{i}.resnets'} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) SCREAMING_SNAKE_CASE_ : Any = [key for key in vae_state_dict if '''decoder.mid.block''' in key] SCREAMING_SNAKE_CASE_ : Dict = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [key for key in mid_resnets if F'decoder.mid.block_{i}' in key] SCREAMING_SNAKE_CASE_ : str = renew_vae_resnet_paths(a_ ) SCREAMING_SNAKE_CASE_ : List[str] = {'''old''': F'mid.block_{i}', '''new''': F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) SCREAMING_SNAKE_CASE_ : str = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] SCREAMING_SNAKE_CASE_ : List[Any] = renew_vae_attention_paths(a_ ) SCREAMING_SNAKE_CASE_ : str = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) conv_attn_to_linear(a_ ) return new_checkpoint def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) SCREAMING_SNAKE_CASE_ : int = io.BytesIO(r.content ) SCREAMING_SNAKE_CASE_ : Any = OmegaConf.load(a_ ) SCREAMING_SNAKE_CASE_ : str = 5_12 SCREAMING_SNAKE_CASE_ : str = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open SCREAMING_SNAKE_CASE_ : List[str] = {} with safe_open(a_ , framework='pt' , device='cpu' ) as f: for key in f.keys(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = f.get_tensor(a_ ) else: SCREAMING_SNAKE_CASE_ : Any = torch.load(a_ , map_location=a_ )['''state_dict'''] # Convert the VAE model. SCREAMING_SNAKE_CASE_ : Any = create_vae_diffusers_config(a_ , image_size=a_ ) SCREAMING_SNAKE_CASE_ : Dict = custom_convert_ldm_vae_checkpoint(a_ , a_ ) SCREAMING_SNAKE_CASE_ : Tuple = AutoencoderKL(**a_ ) vae.load_state_dict(a_ ) vae.save_pretrained(a_ ) if __name__ == "__main__": UpperCamelCase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') UpperCamelCase__ : int = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
105
"""simple docstring""" from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __lowerCAmelCase ( self :Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._create_example_records() SCREAMING_SNAKE_CASE : List[Any] = Dataset.from_list(lowerCamelCase_ ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(lowerCamelCase_ ): self.assertDictEqual(lowerCamelCase_ , example_records[i] ) def __lowerCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self._create_example_records() SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def __lowerCAmelCase ( self :List[str] ) -> Dict: # checks what happens with missing columns '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: # checks if the type can be inferred from the second record '''simple docstring''' SCREAMING_SNAKE_CASE : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE : List[str] = Dataset.from_list(lowerCamelCase_ ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = Dataset.from_list([] ) self.assertEqual(len(lowerCamelCase_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
698
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Tuple = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __A : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
275
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def __A ( a_ : Callable[[int | float], int | float] , a_ : int | float , a_ : int | float , a_ : int = 1_00 , )-> float: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = x_start SCREAMING_SNAKE_CASE : Union[str, Any] = fnc(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = 0.0 for _ in range(a_ ): # Approximates curve as a sequence of linear lines and sums their length SCREAMING_SNAKE_CASE : int = (x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE : Optional[int] = fnc(a_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step SCREAMING_SNAKE_CASE : str = xa SCREAMING_SNAKE_CASE : Any = fxa return length if __name__ == "__main__": def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") lowerCamelCase__ : str = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
698
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): def lowercase ( self ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase ( self ) -> int: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def lowercase ( self ) -> int: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def lowercase ( self ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) _UpperCamelCase = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def lowercase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) _UpperCamelCase = DDPMScheduler() _UpperCamelCase = AudioDiffusionPipeline(vqvae=lowerCamelCase_ , unet=self.dummy_unet , mel=lowerCamelCase_ , scheduler=lowerCamelCase_ ) _UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(42 ) _UpperCamelCase = pipe(generator=lowerCamelCase_ , steps=4 ) _UpperCamelCase = output.audios[0] _UpperCamelCase = output.images[0] _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(42 ) _UpperCamelCase = pipe(generator=lowerCamelCase_ , steps=4 , return_dict=lowerCamelCase_ ) _UpperCamelCase = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _UpperCamelCase = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] _UpperCamelCase = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] _UpperCamelCase = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _UpperCamelCase = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) _UpperCamelCase = DDIMScheduler() _UpperCamelCase = self.dummy_vqvae_and_unet _UpperCamelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=lowerCamelCase_ , scheduler=lowerCamelCase_ ) _UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) np.random.seed(0 ) _UpperCamelCase = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(42 ) _UpperCamelCase = pipe(raw_audio=lowerCamelCase_ , generator=lowerCamelCase_ , start_step=5 , steps=10 ) _UpperCamelCase = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _UpperCamelCase = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] _UpperCamelCase = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _UpperCamelCase = self.dummy_unet_condition _UpperCamelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=lowerCamelCase_ , mel=lowerCamelCase_ , scheduler=lowerCamelCase_ ) _UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) np.random.seed(0 ) _UpperCamelCase = torch.rand((1, 1, 10) ) _UpperCamelCase = pipe(generator=lowerCamelCase_ , encoding=lowerCamelCase_ ) _UpperCamelCase = output.images[0] _UpperCamelCase = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] _UpperCamelCase = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase ( self ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ) -> List[str]: """simple docstring""" _UpperCamelCase = torch_device _UpperCamelCase = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) _UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(42 ) _UpperCamelCase = pipe(generator=lowerCamelCase_ ) _UpperCamelCase = output.audios[0] _UpperCamelCase = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _UpperCamelCase = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] _UpperCamelCase = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
147
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __A ( a_ : int=None )-> Tuple: '''simple docstring''' if subparsers is not None: SCREAMING_SNAKE_CASE : List[str] = subparsers.add_parser('''test''' ) else: SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=a_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=a_ ) return parser def __A ( a_ : Any )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: SCREAMING_SNAKE_CASE : Tuple = script_name else: SCREAMING_SNAKE_CASE : Optional[Any] = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE : str = ['''accelerate-launch'''] + test_args.split() SCREAMING_SNAKE_CASE : List[str] = execute_subprocess_async(a_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __A ( )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : str = test_command_parser() SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() test_command(a_ ) if __name__ == "__main__": main()
698
0
"""simple docstring""" import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): def _a ( self ) -> Any: super().tearDown() gc.collect() def _a ( self ) -> int: _UpperCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) _UpperCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) _UpperCAmelCase = '''xvjiarui/stable-diffusion-2-inpainting''' _UpperCAmelCase = FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_ ) _UpperCAmelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = num_samples * [init_image] _UpperCAmelCase = num_samples * [mask_image] _UpperCAmelCase = pipeline.prepare_inputs(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # shard inputs and rng _UpperCAmelCase = replicate(lowerCamelCase_ ) _UpperCAmelCase = jax.random.split(lowerCamelCase_ , jax.device_count() ) _UpperCAmelCase = shard(lowerCamelCase_ ) _UpperCAmelCase = shard(lowerCamelCase_ ) _UpperCAmelCase = shard(lowerCamelCase_ ) _UpperCAmelCase = pipeline( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_ ) _UpperCAmelCase = output.images.reshape(lowerCamelCase_ , 512 , 512 , 3 ) _UpperCAmelCase = images[0, 253:256, 253:256, -1] _UpperCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCAmelCase = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
657
"""simple docstring""" def __A ( a_ : int = 10 , a_ : int = 10_00 , a_ : bool = True )-> int: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def __A ( a_ : int , a_ : int )-> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def __A ( a_ : int , a_ : int , a_ : int )-> None: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(a_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = lower SCREAMING_SNAKE_CASE : int = higher SCREAMING_SNAKE_CASE : List[str] = [] while True: SCREAMING_SNAKE_CASE : Any = get_avg(a_ , a_ ) last_numbers.append(a_ ) if answer(a_ ) == "low": SCREAMING_SNAKE_CASE : Dict = number elif answer(a_ ) == "high": SCREAMING_SNAKE_CASE : Tuple = number else: break print(F"guess the number : {last_numbers[-1]}" ) print(F"details : {last_numbers!s}" ) def __A ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = int(input('''Enter lower value : ''' ).strip() ) SCREAMING_SNAKE_CASE : Tuple = int(input('''Enter high value : ''' ).strip() ) SCREAMING_SNAKE_CASE : List[str] = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(a_ , a_ , a_ ) if __name__ == "__main__": main()
698
0
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _UpperCAmelCase , unittest.TestCase ): UpperCamelCase =GPTSanJapaneseTokenizer UpperCamelCase =False UpperCamelCase ={"do_clean_text": False, "add_prefix_space": False} def _lowerCamelCase ( self ) -> str: super().setUp() # fmt: off __lowercase : int = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on __lowercase : Optional[int] = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 __lowercase : List[Any] = {'''unk_token''': '''<unk>'''} __lowercase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCamelCase_ ) ) def _lowerCamelCase ( self , **UpperCamelCase_ ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> str: __lowercase : Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' __lowercase : Any = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def _lowerCamelCase ( self , UpperCamelCase_ ) -> int: __lowercase : Optional[int] = self.get_input_output_texts(lowerCamelCase_ ) __lowercase : Tuple = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) __lowercase : List[str] = tokenizer.decode(lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) return text, ids def _lowerCamelCase ( self ) -> Tuple: pass # TODO add if relevant def _lowerCamelCase ( self ) -> Any: pass # TODO add if relevant def _lowerCamelCase ( self ) -> List[str]: pass # TODO add if relevant def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : int = self.get_tokenizer() # Testing tokenization __lowercase : Any = '''こんにちは、世界。 こんばんは、㔺界。''' __lowercase : str = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] __lowercase : int = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # Testing conversion to ids without special tokens __lowercase : str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __lowercase : str = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # Testing conversion to ids with special tokens __lowercase : Any = tokens + [tokenizer.unk_token] __lowercase : List[Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] __lowercase : Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def _lowerCamelCase ( self ) -> int: __lowercase : List[str] = self.get_tokenizer() # Testing tokenization __lowercase : int = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' __lowercase : Any = '''こんにちは、、、、世界。こんばんは、、、、世界。''' __lowercase : Any = tokenizer.encode(lowerCamelCase_ ) __lowercase : Dict = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def _lowerCamelCase ( self ) -> int: __lowercase : List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization __lowercase : Dict = '''こんにちは、世界。''' __lowercase : Optional[int] = '''こんばんは、㔺界。😀''' __lowercase : Optional[Any] = '''こんにちは、世界。こんばんは、世界。😀''' __lowercase : List[Any] = tokenizer.encode(prefix_text + input_text ) __lowercase : List[Any] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) __lowercase : Optional[Any] = tokenizer.encode(lowerCamelCase_ , prefix_text=lowerCamelCase_ ) __lowercase : Union[str, Any] = tokenizer.decode(lowerCamelCase_ ) __lowercase : str = tokenizer.decode(lowerCamelCase_ ) __lowercase : Optional[Any] = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def _lowerCamelCase ( self ) -> str: __lowercase : List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization __lowercase : Tuple = '''こんにちは、世界。''' __lowercase : Optional[Any] = '''こんばんは、㔺界。😀''' __lowercase : Tuple = len(tokenizer.encode(lowerCamelCase_ ) ) - 2 __lowercase : Optional[int] = len(tokenizer.encode(lowerCamelCase_ ) ) - 2 __lowercase : str = [1] + [0] * (len_prefix + len_text + 1) __lowercase : Union[str, Any] = [1] * (len_prefix + len_text + 1) + [0] __lowercase : str = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __lowercase : Optional[int] = tokenizer(prefix_text + input_text ).token_type_ids __lowercase : List[str] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids __lowercase : Optional[Any] = tokenizer(lowerCamelCase_ , prefix_text=lowerCamelCase_ ).token_type_ids self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def _lowerCamelCase ( self ) -> str: __lowercase : Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) __lowercase : Any = tokenizer.encode('''あンいワ''' ) __lowercase : Optional[int] = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) __lowercase : Tuple = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(lowerCamelCase_ ) , tokenizer.decode(lowerCamelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCamelCase_ ) , tokenizer.decode(lowerCamelCase_ ) ) self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def _lowerCamelCase ( self ) -> List[Any]: __lowercase : int = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) __lowercase : Dict = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] __lowercase : Optional[Any] = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ ) __lowercase : List[Any] = tokenizer.batch_encode_plus(lowerCamelCase_ , padding=lowerCamelCase_ ) # fmt: off __lowercase : str = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] __lowercase : Any = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __lowercase : List[str] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCamelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCamelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCamelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCamelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCamelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCamelCase_ ) def _lowerCamelCase ( self ) -> Tuple: pass def _lowerCamelCase ( self ) -> Dict: pass
76
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowerCamelCase__ : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __A ( a_ : Optional[int] , a_ : str , a_ : str , a_ : str , a_ : List[str] )-> Tuple: '''simple docstring''' for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE : Any = getattr(a_ , a_ ) if weight_type is not None: SCREAMING_SNAKE_CASE : Optional[int] = getattr(a_ , a_ ).shape else: SCREAMING_SNAKE_CASE : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : List[Any] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Any = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : List[Any] = value else: SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __A ( a_ : Optional[Any] , a_ : Dict )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Optional[Any] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : Tuple = hf_model.feature_extractor SCREAMING_SNAKE_CASE : Tuple = hf_model.adapter for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : int = False if "conv_layers" in name: load_conv_layer( a_ , a_ , a_ , a_ , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE : List[str] = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(a_ , a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE : Union[str, Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Dict = name.split(a_ )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE : Optional[int] = mapped_key.replace('''*''' , a_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE : List[str] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE : str = '''bias''' elif "weight" in name: SCREAMING_SNAKE_CASE : Tuple = '''weight''' else: SCREAMING_SNAKE_CASE : str = None set_recursively(a_ , a_ , a_ , a_ , a_ ) continue if not is_used: unused_weights.append(a_ ) logger.warning(F"Unused weights: {unused_weights}" ) def __A ( a_ : Dict , a_ : int , a_ : Optional[int] , a_ : Optional[int] , a_ : Dict )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE : List[str] = name.split('''.''' ) SCREAMING_SNAKE_CASE : Dict = int(items[0] ) SCREAMING_SNAKE_CASE : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[int] , a_ : Optional[int] , a_ : Any , a_ : Any )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = full_name.split('''adaptor.''' )[-1] SCREAMING_SNAKE_CASE : List[Any] = name.split('''.''' ) if items[1].isdigit(): SCREAMING_SNAKE_CASE : List[Any] = int(items[1] ) else: SCREAMING_SNAKE_CASE : str = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." SCREAMING_SNAKE_CASE : Optional[Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." SCREAMING_SNAKE_CASE : int = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(a_ , a_ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = emb.weight.shape SCREAMING_SNAKE_CASE : Any = nn.Linear(a_ , a_ , bias=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = emb.weight.data return lin_layer @torch.no_grad() def __A ( a_ : Tuple , a_ : Optional[int] , a_ : List[Any] , a_ : Any , a_ : Tuple , a_ : int , a_ : Any , a_ : str , a_ : Tuple , a_ : Union[str, Any] , a_ : Union[str, Any] , )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = WavaVecaConfig.from_pretrained( a_ , add_adapter=a_ , adapter_stride=a_ , adapter_kernel_size=a_ , use_auth_token=a_ , output_hidden_size=a_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = MBartConfig.from_pretrained(a_ ) # load model SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) SCREAMING_SNAKE_CASE : int = model[0].eval() # load feature extractor SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(a_ , use_auth_token=a_ ) # set weights for wav2vec2 encoder SCREAMING_SNAKE_CASE : str = WavaVecaModel(a_ ) recursively_load_weights_wavaveca(model.encoder , a_ ) # load decoder weights SCREAMING_SNAKE_CASE : Dict = MBartForCausalLM(a_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a_ ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechEncoderDecoderModel(encoder=a_ , decoder=a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer(a_ ) tokenizer.save_pretrained(a_ ) SCREAMING_SNAKE_CASE : Tuple = hf_wavavec.config.to_dict() SCREAMING_SNAKE_CASE : Any = tokenizer.pad_token_id SCREAMING_SNAKE_CASE : List[str] = tokenizer.bos_token_id SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = '''mbart50''' SCREAMING_SNAKE_CASE : Optional[int] = '''wav2vec2''' SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : List[str] = 25_00_04 SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Any = SpeechEncoderDecoderConfig.from_dict(a_ ) hf_wavavec.save_pretrained(a_ ) feature_extractor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250004, type=int, help="`decoder_start_token_id` of model config") lowerCamelCase__ : Dict = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
698
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Tuple = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _a : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
479
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ : Union[str, Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
698
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[Any] = "▁" snake_case__ : Tuple = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} snake_case__ : Optional[Any] = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } snake_case__ : Union[str, Any] = {"vinai/bartpho-syllable": 1024} class SCREAMING_SNAKE_CASE_ (_UpperCAmelCase ): '''simple docstring''' _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __a : Dict , __a : Dict , __a : Any="<s>" , __a : Optional[int]="</s>" , __a : Union[str, Any]="</s>" , __a : List[str]="<s>" , __a : Dict="<unk>" , __a : Optional[int]="<pad>" , __a : Optional[Any]="<mask>" , __a : Optional[Dict[str, Any]] = None , **__a : Dict , ) ->None: lowerCamelCase_ : Optional[Any] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token lowerCamelCase_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) lowerCamelCase_ : Optional[Any] = vocab_file lowerCamelCase_ : Tuple = monolingual_vocab_file lowerCamelCase_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowerCamelCase_ : List[str] = {} lowerCamelCase_ : List[str] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase_ ) not in self.fairseq_tokens_to_ids: lowerCamelCase_ : Optional[Any] = cnt cnt += 1 with open(lowerCamelCase_ , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): lowerCamelCase_ : Dict = line.strip().split()[0] lowerCamelCase_ : Dict = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase_ ) not in self.fairseq_tokens_to_ids: lowerCamelCase_ : List[str] = len(self.fairseq_tokens_to_ids ) lowerCamelCase_ : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Union[str, Any] ) ->Tuple: lowerCamelCase_ : List[str] = self.__dict__.copy() lowerCamelCase_ : Union[str, Any] = None lowerCamelCase_ : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str] , __a : Tuple ) ->str: lowerCamelCase_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase_ : Optional[Any] = {} lowerCamelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _lowerCAmelCase ( self : str , __a : List[int] , __a : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ : int = [self.cls_token_id] lowerCamelCase_ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self : Optional[Any] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def _lowerCAmelCase ( self : Union[str, Any] , __a : List[int] , __a : Optional[List[int]] = None ) ->List[int]: lowerCamelCase_ : Dict = [self.sep_token_id] lowerCamelCase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCAmelCase ( self : Optional[Any] ) ->str: return len(self.fairseq_ids_to_tokens ) def _lowerCAmelCase ( self : Any ) ->Any: lowerCamelCase_ : Tuple = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase ( self : List[str] , __a : str ) ->List[str]: return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) def _lowerCAmelCase ( self : Tuple , __a : int ) ->Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _lowerCAmelCase ( self : Union[str, Any] , __a : List[str] ) ->List[str]: return self.fairseq_ids_to_tokens[index] def _lowerCAmelCase ( self : Optional[int] , __a : List[Any] ) ->List[Any]: lowerCamelCase_ : Optional[int] = ''''''.join(lowerCamelCase_ ).replace(lowerCamelCase_ , """ """ ).strip() return out_string def _lowerCAmelCase ( self : Union[str, Any] , __a : str , __a : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ : str = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase_ : int = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , """wb""" ) as fi: lowerCamelCase_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(lowerCamelCase_ )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
278
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCamelCase__ : List[Any] = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" lowerCamelCase__ : List[str] = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" lowerCamelCase__ : List[Any] = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :str=None , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :Optional[int]="auto" , lowerCamelCase_ :Dict=-1 , lowerCamelCase_ :str=0.9 , lowerCamelCase_ :str=5 , lowerCamelCase_ :Tuple=5_00 , lowerCamelCase_ :str="gpt2-large" , lowerCamelCase_ :List[Any]=-1 , lowerCamelCase_ :Dict=10_24 , lowerCamelCase_ :Tuple=25 , lowerCamelCase_ :List[Any]=5 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=25 , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = compute_mauve( p_text=lowerCamelCase_ , q_text=lowerCamelCase_ , p_features=lowerCamelCase_ , q_features=lowerCamelCase_ , p_tokens=lowerCamelCase_ , q_tokens=lowerCamelCase_ , num_buckets=lowerCamelCase_ , pca_max_data=lowerCamelCase_ , kmeans_explained_var=lowerCamelCase_ , kmeans_num_redo=lowerCamelCase_ , kmeans_max_iter=lowerCamelCase_ , featurize_model_name=lowerCamelCase_ , device_id=lowerCamelCase_ , max_text_length=lowerCamelCase_ , divergence_curve_discretization_size=lowerCamelCase_ , mauve_scaling_factor=lowerCamelCase_ , verbose=lowerCamelCase_ , seed=lowerCamelCase_ , ) return out
698
0
'''simple docstring''' import random from typing import Any def __snake_case ( lowerCamelCase_ : list ): '''simple docstring''' for _ in range(len(a_ ) ): __magic_name__ = random.randint(0 , len(a_ ) - 1 ) __magic_name__ = random.randint(0 , len(a_ ) - 1 ) __magic_name__ = data[b], data[a] return data if __name__ == "__main__": __magic_name__ : Union[str, Any] =[0, 1, 2, 3, 4, 5, 6, 7] __magic_name__ : Dict =["python", "says", "hello", "!"] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
664
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : str = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Optional[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } lowerCamelCase__ : int = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRContextEncoderTokenizer class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRQuestionEncoderTokenizer lowerCamelCase__ : Union[str, Any] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) lowerCamelCase__ : int = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) lowerCamelCase__ : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_UpperCAmelCase ) class lowercase__: '''simple docstring''' def __call__( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :Optional[bool] = None , **lowerCamelCase_ :Tuple , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE : List[str] = titles if texts is None else texts return super().__call__( lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Dict = titles if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [titles] SCREAMING_SNAKE_CASE : Dict = texts if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [texts] SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = questions if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [questions] * n_passages assert len(lowerCamelCase_ ) == len( lowerCamelCase_ ), f"There should be as many titles than texts but got {len(lowerCamelCase_ )} titles and {len(lowerCamelCase_ )} texts." SCREAMING_SNAKE_CASE : Any = super().__call__(lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : Dict = super().__call__(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : int = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase_ , lowerCamelCase_ ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE : int = attention_mask return self.pad(lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :BatchEncoding , lowerCamelCase_ :DPRReaderOutput , lowerCamelCase_ :int = 16 , lowerCamelCase_ :int = 64 , lowerCamelCase_ :int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = reader_output[:3] SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = sorted(range(lowerCamelCase_ ) , reverse=lowerCamelCase_ , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase_ , top_spans=lowerCamelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase_ , start_index=lowerCamelCase_ , end_index=lowerCamelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCamelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] for start_index, start_score in enumerate(lowerCamelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE : Dict = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] , reverse=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"Wrong span indices: [{start_index}:{end_index}]" SCREAMING_SNAKE_CASE : Optional[int] = end_index - start_index + 1 assert length <= max_answer_length, f"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = DPRReaderTokenizer
698
0
def lowerCAmelCase__(__snake_case ,__snake_case ) -> bool: '''simple docstring''' lowerCamelCase__ = len(a_ ) lowerCamelCase__ = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowerCamelCase__ = True # sum is not zero and set is empty then false for i in range(1 ,required_sum + 1 ): lowerCamelCase__ = False for i in range(1 ,arr_len + 1 ): for j in range(1 ,required_sum + 1 ): if arr[i - 1] > j: lowerCamelCase__ = subset[i - 1][j] if arr[i - 1] <= j: lowerCamelCase__ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
481
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Optional[Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """markuplm""" def __init__( self :int , lowerCamelCase_ :List[str]=3_05_22 , lowerCamelCase_ :Union[str, Any]=7_68 , lowerCamelCase_ :str=12 , lowerCamelCase_ :Dict=12 , lowerCamelCase_ :str=30_72 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :Union[str, Any]=0.1 , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :Union[str, Any]=5_12 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Any=1E-12 , lowerCamelCase_ :Dict=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :str=2_56 , lowerCamelCase_ :List[Any]=10_24 , lowerCamelCase_ :Union[str, Any]=2_16 , lowerCamelCase_ :Dict=10_01 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :str=50 , lowerCamelCase_ :List[str]="absolute" , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :int=None , **lowerCamelCase_ :Dict , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : int = layer_norm_eps SCREAMING_SNAKE_CASE : int = position_embedding_type SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : str = classifier_dropout # additional properties SCREAMING_SNAKE_CASE : Optional[Any] = max_depth SCREAMING_SNAKE_CASE : Dict = max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE : Optional[int] = max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE : Tuple = tag_pad_id SCREAMING_SNAKE_CASE : str = subs_pad_id SCREAMING_SNAKE_CASE : List[Any] = xpath_unit_hidden_size
698
0
'''simple docstring''' from __future__ import annotations import requests SCREAMING_SNAKE_CASE_: Tuple =set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : int = 1 , snake_case_ : str = "new" , snake_case_ : list | None = None ) -> dict: '''simple docstring''' UpperCAmelCase_ = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(a_ ) - valid_terms ) ): UpperCAmelCase_ = f"""Invalid search term: {invalid_search_terms}""" raise ValueError(a_ ) UpperCAmelCase_ = requests.get( f"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={"User-agent": "A random string"} , ) if response.status_code == 4_29: raise requests.HTTPError UpperCAmelCase_ = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(a_ )} UpperCAmelCase_ = {} for id_ in range(a_ ): UpperCAmelCase_ = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
78
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """resnet""" UpperCamelCase = ["""basic""", """bottleneck"""] def __init__( self :Optional[int] , lowerCamelCase_ :Tuple=3 , lowerCamelCase_ :Tuple=64 , lowerCamelCase_ :Union[str, Any]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase_ :int=[3, 4, 6, 3] , lowerCamelCase_ :Any="bottleneck" , lowerCamelCase_ :Optional[int]="relu" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=None , lowerCamelCase_ :Optional[int]=None , **lowerCamelCase_ :Optional[int] , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCamelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : List[Any] = layer_type SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = downsample_in_first_stage SCREAMING_SNAKE_CASE : int = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = version.parse("""1.11""" ) @property def __lowerCAmelCase ( self :Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self :str ) -> float: '''simple docstring''' return 1E-3
698
0
from math import factorial class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , A : Any , A : Any ) ->int: lowerCamelCase__ : List[Any] = real if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCamelCase__ : str = [1] * rank else: lowerCamelCase__ : Any = rank def __repr__( self : Optional[Any] ) ->str: return ( F"{self.real}+" F"{'+'.join(str(lowerCamelCase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}" ) def __lowerCamelCase ( self : List[Any] ) ->Any: lowerCamelCase__ : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowerCamelCase_ ) def __add__( self : List[str] , A : Any ) ->List[str]: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): return Dual(self.real + other , self.duals ) lowerCamelCase__ : Any = self.duals.copy() lowerCamelCase__ : List[str] = other.duals.copy() if len(lowerCamelCase_ ) > len(lowerCamelCase_ ): o_dual.extend([1] * (len(lowerCamelCase_ ) - len(lowerCamelCase_ )) ) elif len(lowerCamelCase_ ) < len(lowerCamelCase_ ): s_dual.extend([1] * (len(lowerCamelCase_ ) - len(lowerCamelCase_ )) ) lowerCamelCase__ : str = [] for i in range(len(lowerCamelCase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowerCamelCase_ ) _UpperCAmelCase : Optional[int] = __add__ def __sub__( self : Dict , A : Any ) ->Tuple: return self + other * -1 def __mul__( self : List[str] , A : List[Any] ) ->List[Any]: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCamelCase__ : Tuple = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowerCamelCase_ ) _UpperCAmelCase : Optional[Any] = __mul__ def __truediv__( self : Dict , A : Tuple ) ->Tuple: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCamelCase__ : int = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowerCamelCase_ ) raise ValueError def __floordiv__( self : Dict , A : str ) ->Tuple: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCamelCase__ : int = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowerCamelCase_ ) raise ValueError def __pow__( self : str , A : str ) ->Union[str, Any]: if n < 0 or isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('''power must be a positive integer''' ) if n == 0: return 1 if n == 1: return self lowerCamelCase__ : List[Any] = self for _ in range(n - 1 ): x *= self return x def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: """simple docstring""" if not callable(a_ ): raise ValueError('''differentiate() requires a function as input for func''' ) if not isinstance(a_ , (float, int) ): raise ValueError('''differentiate() requires a float as input for position''' ) if not isinstance(a_ , a_ ): raise ValueError('''differentiate() requires an int as input for order''' ) lowerCamelCase__ : str = Dual(a_ , 1 ) lowerCamelCase__ : List[str] = func(a_ ) if order == 0: return result.real return result.duals[order - 1] * factorial(a_ ) if __name__ == "__main__": import doctest doctest.testmod() def _a ( UpperCAmelCase ) -> str: """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
315
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """mra""" def __init__( self :int , lowerCamelCase_ :Optional[int]=5_02_65 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Tuple="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :int=1E-5 , lowerCamelCase_ :List[Any]="absolute" , lowerCamelCase_ :str=4 , lowerCamelCase_ :List[str]="full" , lowerCamelCase_ :List[Any]=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :List[str]=0 , lowerCamelCase_ :List[Any]=2 , **lowerCamelCase_ :str , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : List[str] = block_per_row SCREAMING_SNAKE_CASE : Optional[int] = approx_mode SCREAMING_SNAKE_CASE : List[Any] = initial_prior_first_n_blocks SCREAMING_SNAKE_CASE : Union[str, Any] = initial_prior_diagonal_n_blocks
698
0
from __future__ import annotations from collections.abc import Generator def __UpperCAmelCase ( ) -> Generator[int, None, None]: """simple docstring""" SCREAMING_SNAKE_CASE_ : dict[int, int] = {} SCREAMING_SNAKE_CASE_ : Dict = 2 while True: SCREAMING_SNAKE_CASE_ : Dict = factor_map.pop(a_ , a_ ) if factor: SCREAMING_SNAKE_CASE_ : Tuple = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ : Tuple = factor else: SCREAMING_SNAKE_CASE_ : List[str] = prime yield prime prime += 1 def __UpperCAmelCase ( lowerCamelCase_ : float = 1E10 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = sieve() SCREAMING_SNAKE_CASE_ : Tuple = 1 while True: SCREAMING_SNAKE_CASE_ : List[str] = next(a_ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(a_ ) n += 2 if __name__ == "__main__": print(solution())
105
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """nllb-moe""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :List[str] , lowerCamelCase_ :Optional[int]=12_81_12 , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :Any=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :Union[str, Any]=0.0_5 , lowerCamelCase_ :Optional[int]=0.0_5 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :Tuple="relu" , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Any=False , lowerCamelCase_ :Optional[Any]="float32" , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :List[Any]=1_28 , lowerCamelCase_ :Any=64 , lowerCamelCase_ :Optional[int]=4 , lowerCamelCase_ :List[str]=4 , lowerCamelCase_ :Union[str, Any]=0.0_0_1 , lowerCamelCase_ :Optional[int]=0.0_0_1 , lowerCamelCase_ :List[str]="all" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=False , lowerCamelCase_ :Tuple=1.0 , lowerCamelCase_ :Union[str, Any]=0.2 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :Optional[int]=0 , lowerCamelCase_ :int=2 , lowerCamelCase_ :List[str]=False , **lowerCamelCase_ :int , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : str = d_model SCREAMING_SNAKE_CASE : Optional[int] = encoder_ffn_dim SCREAMING_SNAKE_CASE : Any = encoder_layers SCREAMING_SNAKE_CASE : Any = encoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : List[str] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Any = activation_function SCREAMING_SNAKE_CASE : Tuple = init_std SCREAMING_SNAKE_CASE : str = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : Optional[int] = encoder_layers SCREAMING_SNAKE_CASE : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : int = router_z_loss_coef SCREAMING_SNAKE_CASE : Any = router_aux_loss_coef SCREAMING_SNAKE_CASE : str = decoder_sparse_step SCREAMING_SNAKE_CASE : str = encoder_sparse_step SCREAMING_SNAKE_CASE : List[str] = num_experts SCREAMING_SNAKE_CASE : Union[str, Any] = expert_capacity SCREAMING_SNAKE_CASE : Tuple = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = router_dtype SCREAMING_SNAKE_CASE : Union[str, Any] = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : int = batch_prioritized_routing SCREAMING_SNAKE_CASE : Optional[int] = second_expert_policy SCREAMING_SNAKE_CASE : Union[str, Any] = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE : Any = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE : Optional[Any] = moe_token_dropout SCREAMING_SNAKE_CASE : Tuple = output_router_logits super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
698
0
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING __A : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __snake_case ( _UpperCAmelCase): """simple docstring""" def __init__( self : Optional[int] , *lowerCamelCase : Any , **lowerCamelCase : Dict ) -> Tuple: super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) requires_backends(self , """vision""" ) self.check_model_type(lowerCamelCase_ ) def __call__( self : List[Any] , lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCamelCase : Tuple ) -> List[Any]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def __lowercase ( self : int , **lowerCamelCase : List[Any] ) -> Optional[Any]: return {}, {}, {} def __lowercase ( self : List[Any] , lowerCamelCase : Dict ) -> Any: lowerCAmelCase_ : Union[str, Any] = load_image(lowerCamelCase_ ) lowerCAmelCase_ : Optional[int] = image.size lowerCAmelCase_ : Optional[int] = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) return model_inputs def __lowercase ( self : Optional[int] , lowerCamelCase : List[Any] ) -> Optional[int]: lowerCAmelCase_ : Union[str, Any] = self.model(**lowerCamelCase_ ) return model_outputs def __lowercase ( self : Optional[Any] , lowerCamelCase : Any ) -> Optional[Any]: lowerCAmelCase_ : str = model_outputs.predicted_depth lowerCAmelCase_ : Tuple = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=lowerCamelCase_ ) lowerCAmelCase_ : Optional[int] = prediction.squeeze().cpu().numpy() lowerCAmelCase_ : Union[str, Any] = (output * 2_55 / np.max(lowerCamelCase_ )).astype("""uint8""" ) lowerCAmelCase_ : Dict = Image.fromarray(lowerCamelCase_ ) lowerCAmelCase_ : List[Any] = {} lowerCAmelCase_ : str = predicted_depth lowerCAmelCase_ : Tuple = depth return output_dict
275
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase__ : Union[str, Any] = "CompVis/stable-diffusion-v1-1" lowerCamelCase__ : Optional[Any] = "CompVis/stable-diffusion-v1-2" lowerCamelCase__ : Dict = "CompVis/stable-diffusion-v1-3" lowerCamelCase__ : List[str] = "CompVis/stable-diffusion-v1-4" class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :AutoencoderKL , lowerCamelCase_ :CLIPTextModel , lowerCamelCase_ :CLIPTokenizer , lowerCamelCase_ :UNetaDConditionModel , lowerCamelCase_ :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase_ :StableDiffusionSafetyChecker , lowerCamelCase_ :CLIPImageProcessor , lowerCamelCase_ :bool = True , ) -> List[str]: '''simple docstring''' super()._init_() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline( vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , requires_safety_checker=lowerCamelCase_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __lowerCAmelCase ( self :Dict ) -> Dict[str, Any]: '''simple docstring''' return {k: getattr(self , lowerCamelCase_ ) for k in self.config.keys() if not k.startswith('''_''' )} def __lowerCAmelCase ( self :int , lowerCamelCase_ :Optional[Union[str, int]] = "auto" ) -> Tuple: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.enable_attention_slicing(lowerCamelCase_ ) @torch.no_grad() def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :List[str] , ) -> Tuple: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Tuple , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Dict , ) -> List[str]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :List[Any] , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Union[str, List[str]] , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 50 , lowerCamelCase_ :float = 7.5 , lowerCamelCase_ :Optional[Union[str, List[str]]] = None , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :Optional[torch.Generator] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ :int = 1 , **lowerCamelCase_ :Optional[Any] , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(lowerCamelCase_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : str = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : Tuple = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : Union[str, Any] = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
698
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class lowerCamelCase_ ( _UpperCAmelCase ): __lowercase : Optional[Any] = "roc_bert" def __init__( self , lowerCamelCase_=3_05_22 , lowerCamelCase_=7_68 , lowerCamelCase_=12 , lowerCamelCase_=12 , lowerCamelCase_=30_72 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_12 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=1E-12 , lowerCamelCase_=True , lowerCamelCase_=0 , lowerCamelCase_="absolute" , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=7_68 , lowerCamelCase_=9_10 , lowerCamelCase_=5_12 , lowerCamelCase_=2_48_58 , lowerCamelCase_=True , **lowerCamelCase_ , ) -> Any: """simple docstring""" _UpperCamelCase = vocab_size _UpperCamelCase = max_position_embeddings _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = type_vocab_size _UpperCamelCase = layer_norm_eps _UpperCamelCase = use_cache _UpperCamelCase = enable_pronunciation _UpperCamelCase = enable_shape _UpperCamelCase = pronunciation_embed_dim _UpperCamelCase = pronunciation_vocab_size _UpperCamelCase = shape_embed_dim _UpperCamelCase = shape_vocab_size _UpperCamelCase = concat_input _UpperCamelCase = position_embedding_type _UpperCamelCase = classifier_dropout super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ )
147
"""simple docstring""" def __A ( a_ : list , a_ : int = 0 )-> list: '''simple docstring''' SCREAMING_SNAKE_CASE : int = length or len(a_ ) SCREAMING_SNAKE_CASE : List[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : Optional[Any] = True return list_data if not swapped else bubble_sort(a_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
698
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __magic_name__ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class _lowerCAmelCase ( _UpperCAmelCase ): def __init__( self , *a_ , **a_ ) -> Tuple: super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _a ( self , a_=None , a_=None , a_=None ) -> Union[str, Any]: _UpperCAmelCase = {} _UpperCAmelCase = {} if prompt is not None: _UpperCAmelCase = prompt if generate_kwargs is not None: _UpperCAmelCase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _UpperCAmelCase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter," " please use only one" ) _UpperCAmelCase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , a_ , **a_ ) -> Union[str, Any]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def _a ( self , a_ , a_=None ) -> Union[str, Any]: _UpperCAmelCase = load_image(lowerCamelCase_ ) if prompt is not None: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError( f"Received an invalid text input, got - {type(lowerCamelCase_ )} - but expected a single string. " "Note also that one single text can be provided for conditional image to text generation." ) _UpperCAmelCase = self.model.config.model_type if model_type == "git": _UpperCAmelCase = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) _UpperCAmelCase = self.tokenizer(text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids _UpperCAmelCase = [self.tokenizer.cls_token_id] + input_ids _UpperCAmelCase = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": _UpperCAmelCase = self.image_processor(images=lowerCamelCase_ , header_text=lowerCamelCase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _UpperCAmelCase = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) _UpperCAmelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework ) model_inputs.update(lowerCamelCase_ ) else: raise ValueError(f"Model type {model_type} does not support conditional text generation" ) else: _UpperCAmelCase = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _UpperCAmelCase = None return model_inputs def _a ( self , a_ , a_=None ) -> List[str]: if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , lowerCamelCase_ ) and all(x is None for x in model_inputs["input_ids"] ) ): _UpperCAmelCase = None if generate_kwargs is None: _UpperCAmelCase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _UpperCAmelCase = model_inputs.pop(self.model.main_input_name ) _UpperCAmelCase = self.model.generate(lowerCamelCase_ , **lowerCamelCase_ , **lowerCamelCase_ ) return model_outputs def _a ( self , a_ ) -> Dict: _UpperCAmelCase = [] for output_ids in model_outputs: _UpperCAmelCase = { '''generated_text''': self.tokenizer.decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , ) } records.append(lowerCamelCase_ ) return records
657
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self :List[str] , lowerCamelCase_ :UNetaDModel , lowerCamelCase_ :ScoreSdeVeScheduler ) -> int: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self :int , lowerCamelCase_ :int = 1 , lowerCamelCase_ :int = 20_00 , lowerCamelCase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , **lowerCamelCase_ :Union[str, Any] , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.sample_size SCREAMING_SNAKE_CASE : List[str] = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE : Any = self.unet SCREAMING_SNAKE_CASE : Dict = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ ) * self.scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase_ ) self.scheduler.set_sigmas(lowerCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): SCREAMING_SNAKE_CASE : Optional[Any] = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step_correct(lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample # prediction step SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.step_pred(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample, output.prev_sample_mean SCREAMING_SNAKE_CASE : List[str] = sample_mean.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Any = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Any = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase_ )
698
0
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } a_ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): for attribute in key.split('''.''' ): __lowercase : Any = getattr(a_ , a_ ) if weight_type is not None: __lowercase : Optional[int] = getattr(a_ , a_ ).shape else: __lowercase : Any = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowercase : List[Any] = value elif weight_type == "weight_g": __lowercase : Optional[int] = value elif weight_type == "weight_v": __lowercase : Any = value elif weight_type == "bias": __lowercase : List[Any] = value else: __lowercase : List[str] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : Dict = [] __lowercase : Optional[Any] = fairseq_model.state_dict() __lowercase : Tuple = hf_model.feature_extractor __lowercase : Tuple = hf_model.adapter for name, value in fairseq_dict.items(): __lowercase : int = False if "conv_layers" in name: load_conv_layer( a_ , a_ , a_ , a_ , hf_model.config.feat_extract_norm == '''group''' , ) __lowercase : List[str] = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(a_ , a_ , a_ , a_ ) __lowercase : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __lowercase : Union[str, Any] = True if "*" in mapped_key: __lowercase : Dict = name.split(a_ )[0].split('''.''' )[-2] __lowercase : Optional[int] = mapped_key.replace('''*''' , a_ ) if "weight_g" in name: __lowercase : List[str] = '''weight_g''' elif "weight_v" in name: __lowercase : Union[str, Any] = '''weight_v''' elif "bias" in name: __lowercase : str = '''bias''' elif "weight" in name: __lowercase : Tuple = '''weight''' else: __lowercase : str = None set_recursively(a_ , a_ , a_ , a_ , a_ ) continue if not is_used: unused_weights.append(a_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : List[str] = full_name.split('''conv_layers.''' )[-1] __lowercase : List[str] = name.split('''.''' ) __lowercase : Dict = int(items[0] ) __lowercase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowercase : List[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowercase : str = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowercase : str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowercase : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(a_ ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Optional[Any] = full_name.split('''adaptor.''' )[-1] __lowercase : List[Any] = name.split('''.''' ) if items[1].isdigit(): __lowercase : List[Any] = int(items[1] ) else: __lowercase : str = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" __lowercase : str = value logger.info(f"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" __lowercase : Optional[Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" __lowercase : Union[str, Any] = value logger.info(f"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" __lowercase : int = value logger.info(f"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(a_ , a_ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" __lowercase : str = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" __lowercase : List[str] = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(a_ ) def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Any = emb.weight.shape __lowercase : Any = nn.Linear(a_ , a_ , bias=a_ ) __lowercase : Optional[int] = emb.weight.data return lin_layer @torch.no_grad() def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): __lowercase : Tuple = WavaVecaConfig.from_pretrained( a_ , add_adapter=a_ , adapter_stride=a_ , adapter_kernel_size=a_ , use_auth_token=a_ , output_hidden_size=a_ , ) __lowercase : Union[str, Any] = MBartConfig.from_pretrained(a_ ) # load model __lowercase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) __lowercase : int = model[0].eval() # load feature extractor __lowercase : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(a_ , use_auth_token=a_ ) # set weights for wav2vec2 encoder __lowercase : str = WavaVecaModel(a_ ) recursively_load_weights_wavaveca(model.encoder , a_ ) # load decoder weights __lowercase : Dict = MBartForCausalLM(a_ ) __lowercase : str = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a_ ) logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __lowercase : Union[str, Any] = SpeechEncoderDecoderModel(encoder=a_ , decoder=a_ ) __lowercase : Union[str, Any] = False __lowercase : Optional[Any] = MBartaaTokenizer(a_ ) tokenizer.save_pretrained(a_ ) __lowercase : Tuple = hf_wavavec.config.to_dict() __lowercase : Any = tokenizer.pad_token_id __lowercase : List[str] = tokenizer.bos_token_id __lowercase : Dict = tokenizer.eos_token_id __lowercase : Optional[Any] = '''mbart50''' __lowercase : Optional[int] = '''wav2vec2''' __lowercase : Optional[Any] = tokenizer.eos_token_id __lowercase : List[str] = 25_00_04 __lowercase : Dict = tokenizer.eos_token_id __lowercase : Any = SpeechEncoderDecoderConfig.from_dict(a_ ) hf_wavavec.save_pretrained(a_ ) feature_extractor.save_pretrained(a_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1_0_2_4, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=2_5_0_0_0_4, type=int, help='`decoder_start_token_id` of model config') a_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
76
"""simple docstring""" import qiskit def __A ( a_ : int , a_ : int )-> qiskit.result.counts.Counts: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE : str = qiskit.QuantumCircuit(a_ , a_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE : int = qiskit.execute(a_ , a_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a_ ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
698
0
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def UpperCamelCase__ ( _A: List[str] , _A: List[str]=False ): '''simple docstring''' __lowerCamelCase = OmegaConf.load(a_ ) if display: print(yaml.dump(OmegaConf.to_container(a_ ) ) ) return config def UpperCamelCase__ ( _A: Optional[Any] , _A: Dict=None , _A: int=None ): '''simple docstring''' if conf_path is None: __lowerCamelCase = '''./model_checkpoints/vqgan_only.yaml''' __lowerCamelCase = load_config(a_ , display=a_ ) __lowerCamelCase = VQModel(**config.model.params ) if ckpt_path is None: __lowerCamelCase = '''./model_checkpoints/vqgan_only.pt''' __lowerCamelCase = torch.load(a_ , map_location=a_ ) if ".ckpt" in ckpt_path: __lowerCamelCase = sd['''state_dict'''] model.load_state_dict(a_ , strict=a_ ) model.to(a_ ) del sd return model def UpperCamelCase__ ( _A: List[Any] , _A: List[Any] ): '''simple docstring''' __lowerCamelCase = model.encode(a_ ) print(f'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) __lowerCamelCase = model.decode(a_ ) return xrec def UpperCamelCase__ ( _A: Tuple , _A: Optional[int]=False ): '''simple docstring''' __lowerCamelCase = string.rsplit(""".""" , 1 ) if reload: __lowerCamelCase = importlib.import_module(a_ ) importlib.reload(a_ ) return getattr(importlib.import_module(a_ , package=a_ ) , cls ) def UpperCamelCase__ ( _A: List[Any] ): '''simple docstring''' if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def UpperCamelCase__ ( _A: Dict , _A: Any , _A: List[str]=True , _A: Any=True ): '''simple docstring''' __lowerCamelCase = instantiate_from_config(a_ ) if sd is not None: model.load_state_dict(a_ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def UpperCamelCase__ ( _A: int , _A: Dict , _A: str , _A: List[Any] ): '''simple docstring''' if ckpt: __lowerCamelCase = torch.load(a_ , map_location="""cpu""" ) __lowerCamelCase = pl_sd['''global_step'''] print(f'''loaded model from global step {global_step}.''' ) else: __lowerCamelCase = {'''state_dict''': None} __lowerCamelCase = None __lowerCamelCase = load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=a_ , eval_mode=a_ )['''model'''] return model, global_step
479
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase__ : Optional[int] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def __A ( a_ : Dict )-> str: '''simple docstring''' config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __A ( a_ : Dict )-> Tuple: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_ ) def __A ( a_ : Union[str, Any] )-> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE : List[str] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(a_ , id=a_ ) def __A ( a_ : Dict , a_ : List[str] )-> Dict: '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE : List[str] = 0 # Doctest custom flag to ignore output. lowerCamelCase__ : Tuple = doctest.register_optionflag("IGNORE_RESULT") lowerCamelCase__ : Optional[int] = doctest.OutputChecker class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] ) -> Dict: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : str = CustomOutputChecker lowerCamelCase__ : Any = HfDoctestModule lowerCamelCase__ : int = HfDocTestParser
698
0
import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class SCREAMING_SNAKE_CASE_ (_UpperCAmelCase ): '''simple docstring''' def __init__( self : int , __a : Dict ) ->List[Any]: lowerCamelCase_ : List[str] = data def __iter__( self : Optional[int] ) ->Any: for element in self.data: yield element def __lowerCamelCase ( A__ : Union[str, Any]=True ) -> Any: lowerCamelCase_ : List[Any] = Accelerator(even_batches=a_ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def __lowerCamelCase ( A__ : Accelerator , A__ : int , A__ : int , A__ : bool = False ) -> Dict: if iterable: lowerCamelCase_ : List[Any] = DummyIterableDataset(torch.as_tensor(range(a_ ) ) ) else: lowerCamelCase_ : str = TensorDataset(torch.as_tensor(range(a_ ) ) ) lowerCamelCase_ : Tuple = DataLoader(a_ , batch_size=a_ ) lowerCamelCase_ : Dict = accelerator.prepare(a_ ) return dl def __lowerCamelCase ( A__ : Accelerator , A__ : int , A__ : int , A__ : List[int] , A__ : List[int] , ) -> Optional[int]: lowerCamelCase_ : Tuple = create_dataloader(accelerator=a_ , dataset_size=a_ , batch_size=a_ ) lowerCamelCase_ : Any = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def __lowerCamelCase ( ) -> Dict: lowerCamelCase_ : int = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( a_ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( a_ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def __lowerCamelCase ( ) -> List[Any]: lowerCamelCase_ : Tuple = create_accelerator(even_batches=a_ ) verify_dataloader_batch_sizes( a_ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( a_ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def __lowerCamelCase ( ) -> List[str]: lowerCamelCase_ : int = create_accelerator(even_batches=a_ ) lowerCamelCase_ : Optional[Any] = torch.nn.Linear(1 , 1 ) lowerCamelCase_ : str = accelerator.prepare(a_ ) lowerCamelCase_ : str = create_dataloader(a_ , dataset_size=3 , batch_size=1 ) lowerCamelCase_ : Optional[Any] = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(a_ ): lowerCamelCase_ : Tuple = ddp_model(batch[0].float() ) lowerCamelCase_ : Union[str, Any] = output.sum() loss.backward() batch_idxs.append(a_ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def __lowerCamelCase ( A__ : Union[str, Any] ) -> str: with warnings.catch_warnings(record=a_ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , a_ ) assert "only supported for multi-GPU" in str(w[-1].message ) def __lowerCamelCase ( ) -> Any: lowerCamelCase_ : Tuple = True lowerCamelCase_ : Any = False lowerCamelCase_ : Tuple = create_accelerator(even_batches=a_ ) lowerCamelCase_ : Optional[Any] = torch.nn.Linear(1 , 1 ) lowerCamelCase_ : str = accelerator.prepare(a_ ) lowerCamelCase_ : List[Any] = create_dataloader(a_ , dataset_size=3 , batch_size=1 ) lowerCamelCase_ : Optional[Any] = create_dataloader(a_ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=a_ ): lowerCamelCase_ : int = train_dl.batch_sampler.even_batches lowerCamelCase_ : Tuple = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def __lowerCamelCase ( ) -> Tuple: lowerCamelCase_ : Optional[Any] = True lowerCamelCase_ : List[Any] = False lowerCamelCase_ : Any = create_accelerator(even_batches=a_ ) lowerCamelCase_ : List[Any] = torch.nn.Linear(1 , 1 ) lowerCamelCase_ : Any = accelerator.prepare(a_ ) create_dataloader(a_ , dataset_size=3 , batch_size=1 , iterable=a_ ) lowerCamelCase_ : Optional[int] = create_dataloader(a_ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=a_ ): lowerCamelCase_ : Dict = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def __lowerCamelCase ( ) -> List[Any]: lowerCamelCase_ : Any = create_accelerator() lowerCamelCase_ : Dict = torch.nn.Linear(1 , 1 ) lowerCamelCase_ : Tuple = accelerator.prepare(a_ ) create_dataloader(a_ , dataset_size=3 , batch_size=1 , iterable=a_ ) with warnings.catch_warnings(record=a_ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=a_ ): pass assert issubclass(w[-1].category , a_ ) assert "only supported for map-style datasets" in str(w[-1].message ) def __lowerCamelCase ( ) -> List[Any]: lowerCamelCase_ : int = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) lowerCamelCase_ : List[Any] = accelerator.state.distributed_type lowerCamelCase_ : str = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(a_ ) lowerCamelCase_ : Optional[int] = original_state if __name__ == "__main__": main()
278
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase__: '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple=13 , lowerCamelCase_ :List[str]=7 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :str=99 , lowerCamelCase_ :Optional[Any]=32 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :int=4 , lowerCamelCase_ :Optional[Any]=37 , lowerCamelCase_ :Any="gelu" , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Optional[int]=5_12 , lowerCamelCase_ :str=16 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :List[str]=0.0_2 , lowerCamelCase_ :int=3 , lowerCamelCase_ :List[Any]=4 , lowerCamelCase_ :Optional[Any]=None , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : str = 13 SCREAMING_SNAKE_CASE : str = 7 SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Any = 99 SCREAMING_SNAKE_CASE : Dict = 3_84 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Any = 37 SCREAMING_SNAKE_CASE : List[str] = '''gelu''' SCREAMING_SNAKE_CASE : List[str] = 0.1 SCREAMING_SNAKE_CASE : int = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = 5_12 SCREAMING_SNAKE_CASE : int = 16 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Tuple = 0.0_2 SCREAMING_SNAKE_CASE : List[str] = 3 SCREAMING_SNAKE_CASE : Union[str, Any] = 4 SCREAMING_SNAKE_CASE : str = 1_28 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = 9 SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : List[str] = None def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[str] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE : Dict = [input_ids, input_mask] SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertForMaskedLM(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : Dict = TFConvBertForSequenceClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.num_choices SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertForMultipleChoice(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Any = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForTokenClassification(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = TFConvBertForQuestionAnswering(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self :Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Tuple = True if hasattr(lowerCamelCase_ , '''use_cache''' ): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : str = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = len(model(lowerCamelCase_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = os.path.join(lowerCamelCase_ , '''saved_model''' , '''1''' ) SCREAMING_SNAKE_CASE : Tuple = tf.keras.models.load_model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Optional[int] = outputs['''encoder_hidden_states'''] SCREAMING_SNAKE_CASE : str = outputs['''encoder_attentions'''] else: SCREAMING_SNAKE_CASE : List[str] = outputs['''hidden_states'''] SCREAMING_SNAKE_CASE : List[Any] = outputs['''attentions'''] self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self :Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[str] = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , '''key_length''' , lowerCamelCase_ ) def check_decoder_attentions_output(lowerCamelCase_ :Optional[Any] ): SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(out_len % 2 , 0 ) SCREAMING_SNAKE_CASE : int = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowerCamelCase_ :Optional[int] ): SCREAMING_SNAKE_CASE : List[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_decoder_attentions_output(lowerCamelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase_ ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) @require_tf class lowercase__( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self :int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) SCREAMING_SNAKE_CASE : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : Optional[Any] = [1, 6, 7_68] self.assertEqual(output.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 )
698
0
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ : Tuple =logging.get_logger(__name__) __magic_name__ : Optional[int] ={ "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __magic_name__ : Union[str, Any] ={ "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } __magic_name__ : Union[str, Any] ={"facebook/blenderbot_small-90M": 5_12} def __snake_case ( lowerCamelCase_ : Optional[int] ): '''simple docstring''' __magic_name__ = set() __magic_name__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ = char __magic_name__ = set(a_ ) return pairs class UpperCamelCase_ ( _UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str="__start__" , _lowerCamelCase : Any="__end__" , _lowerCamelCase : Optional[Any]="__unk__" , _lowerCamelCase : List[Any]="__null__" , **_lowerCamelCase : int , ) -> Optional[int]: super().__init__(unk_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , **lowerCamelCase_ ) with open(lowerCamelCase_ , encoding="utf-8" ) as vocab_handle: __magic_name__ = json.load(lowerCamelCase_ ) __magic_name__ = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase_ , encoding="utf-8" ) as merges_handle: __magic_name__ = merges_handle.read().split("\n" )[1:-1] __magic_name__ = [tuple(merge.split() ) for merge in merges] __magic_name__ = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) __magic_name__ = {} @property def __A ( self : Optional[int] ) -> int: return len(self.encoder ) def __A ( self : List[Any] ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self : Tuple , _lowerCamelCase : str ) -> str: if token in self.cache: return self.cache[token] __magic_name__ = re.sub("([.,!?()])" , r" \1" , lowerCamelCase_ ) __magic_name__ = re.sub("(\')" , r" \1 " , lowerCamelCase_ ) __magic_name__ = re.sub(r"\s{2,}" , " " , lowerCamelCase_ ) if "\n" in token: __magic_name__ = token.replace("\n" , " __newln__" ) __magic_name__ = token.split(" " ) __magic_name__ = [] for token in tokens: if not len(lowerCamelCase_ ): continue __magic_name__ = token.lower() __magic_name__ = tuple(lowerCamelCase_ ) __magic_name__ = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) __magic_name__ = get_pairs(lowerCamelCase_ ) if not pairs: words.append(lowerCamelCase_ ) continue while True: __magic_name__ = min(lowerCamelCase_ , key=lambda _lowerCamelCase : self.bpe_ranks.get(lowerCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ = bigram __magic_name__ = [] __magic_name__ = 0 while i < len(lowerCamelCase_ ): try: __magic_name__ = word.index(lowerCamelCase_ , lowerCamelCase_ ) new_word.extend(word[i:j] ) __magic_name__ = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ = tuple(lowerCamelCase_ ) __magic_name__ = new_word if len(lowerCamelCase_ ) == 1: break else: __magic_name__ = get_pairs(lowerCamelCase_ ) __magic_name__ = '''@@ '''.join(lowerCamelCase_ ) __magic_name__ = word[:-4] __magic_name__ = word words.append(lowerCamelCase_ ) return " ".join(lowerCamelCase_ ) def __A ( self : Optional[Any] , _lowerCamelCase : str ) -> List[str]: __magic_name__ = [] __magic_name__ = re.findall(r"\S+\n?" , lowerCamelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase_ ).split(" " ) ) ) return split_tokens def __A ( self : Any , _lowerCamelCase : str ) -> int: __magic_name__ = token.lower() return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def __A ( self : Optional[int] , _lowerCamelCase : int ) -> str: return self.decoder.get(lowerCamelCase_ , self.unk_token ) def __A ( self : List[Any] , _lowerCamelCase : List[str] ) -> str: __magic_name__ = ''' '''.join(lowerCamelCase_ ).replace("@@ " , "" ).strip() return out_string def __A ( self : int , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ = os.path.join( lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __magic_name__ = os.path.join( lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + "\n" ) __magic_name__ = 0 with open(lowerCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) __magic_name__ = token_index writer.write(" ".join(lowerCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file
664
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """bert""" def __init__( self :Any , lowerCamelCase_ :List[Any]=3_05_22 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :int=5_12 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :int="absolute" , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :List[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
698
0
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _a = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> Dict: '''simple docstring''' warnings.warn(a_ ,a_ ) requires_backends(a_ ,'''sklearn''' ) return (preds == labels).mean() def lowerCAmelCase__(__snake_case ,__snake_case ) -> int: '''simple docstring''' warnings.warn(a_ ,a_ ) requires_backends(a_ ,'''sklearn''' ) lowerCamelCase__ = simple_accuracy(a_ ,a_ ) lowerCamelCase__ = fa_score(y_true=a_ ,y_pred=a_ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def lowerCAmelCase__(__snake_case ,__snake_case ) -> List[Any]: '''simple docstring''' warnings.warn(a_ ,a_ ) requires_backends(a_ ,'''sklearn''' ) lowerCamelCase__ = pearsonr(a_ ,a_ )[0] lowerCamelCase__ = spearmanr(a_ ,a_ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> Union[str, Any]: '''simple docstring''' warnings.warn(a_ ,a_ ) requires_backends(a_ ,'''sklearn''' ) assert len(a_ ) == len(a_ ), F'Predictions and labels have mismatched lengths {len(a_ )} and {len(a_ )}' if task_name == "cola": return {"mcc": matthews_corrcoef(a_ ,a_ )} elif task_name == "sst-2": return {"acc": simple_accuracy(a_ ,a_ )} elif task_name == "mrpc": return acc_and_fa(a_ ,a_ ) elif task_name == "sts-b": return pearson_and_spearman(a_ ,a_ ) elif task_name == "qqp": return acc_and_fa(a_ ,a_ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(a_ ,a_ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(a_ ,a_ )} elif task_name == "qnli": return {"acc": simple_accuracy(a_ ,a_ )} elif task_name == "rte": return {"acc": simple_accuracy(a_ ,a_ )} elif task_name == "wnli": return {"acc": simple_accuracy(a_ ,a_ )} elif task_name == "hans": return {"acc": simple_accuracy(a_ ,a_ )} else: raise KeyError(a_ ) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> Any: '''simple docstring''' warnings.warn(a_ ,a_ ) requires_backends(a_ ,'''sklearn''' ) if len(a_ ) != len(a_ ): raise ValueError(F'Predictions and labels have mismatched lengths {len(a_ )} and {len(a_ )}' ) if task_name == "xnli": return {"acc": simple_accuracy(a_ ,a_ )} else: raise KeyError(a_ )
481
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : str = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """luke""" def __init__( self :List[Any] , lowerCamelCase_ :Optional[int]=5_02_67 , lowerCamelCase_ :List[Any]=50_00_00 , lowerCamelCase_ :str=7_68 , lowerCamelCase_ :Optional[Any]=2_56 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :Any=30_72 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int=None , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :str=0 , lowerCamelCase_ :int=2 , **lowerCamelCase_ :List[str] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = entity_vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Dict = entity_emb_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = use_entity_aware_attention SCREAMING_SNAKE_CASE : str = classifier_dropout
698
0
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) SCREAMING_SNAKE_CASE_: Optional[Any] =logging.getLogger(__name__) class __A ( _UpperCAmelCase ): def _lowercase (self : List[str] , __a : Any , __a : List[str] , __a : List[str]=None , __a : Optional[Any]=None ): UpperCAmelCase_ = self.layer[current_layer](lowerCamelCase_ , lowerCamelCase_ , head_mask[current_layer] ) UpperCAmelCase_ = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _UpperCAmelCase , ) class __A ( _UpperCAmelCase ): def __init__(self : Optional[Any] , __a : List[str] ): super().__init__(lowerCamelCase_ ) UpperCAmelCase_ = BertEncoderWithPabee(lowerCamelCase_ ) self.init_weights() UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 def _lowercase (self : List[str] , __a : Any ): UpperCAmelCase_ = threshold def _lowercase (self : List[str] , __a : int ): UpperCAmelCase_ = patience def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 def _lowercase (self : Tuple ): UpperCAmelCase_ = self.inference_layers_num / self.inference_instances_num UpperCAmelCase_ = ( f"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" f""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(lowerCamelCase_ ) @add_start_docstrings_to_model_forward(lowerCamelCase_ ) def _lowercase (self : Optional[Any] , __a : Union[str, Any]=None , __a : str=None , __a : Union[str, Any]=None , __a : List[str]=None , __a : Dict=None , __a : Optional[Any]=None , __a : Optional[int]=None , __a : Tuple=None , __a : Optional[Any]=None , __a : int=None , __a : Optional[int]=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: UpperCAmelCase_ = input_ids.size() elif inputs_embeds is not None: UpperCAmelCase_ = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) UpperCAmelCase_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCAmelCase_ = torch.ones(lowerCamelCase_ , device=lowerCamelCase_ ) if token_type_ids is None: UpperCAmelCase_ = torch.zeros(lowerCamelCase_ , dtype=torch.long , device=lowerCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCAmelCase_ = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: UpperCAmelCase_ = encoder_hidden_states.size() UpperCAmelCase_ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: UpperCAmelCase_ = torch.ones(lowerCamelCase_ , device=lowerCamelCase_ ) UpperCAmelCase_ = self.invert_attention_mask(lowerCamelCase_ ) else: UpperCAmelCase_ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCAmelCase_ = self.get_head_mask(lowerCamelCase_ , self.config.num_hidden_layers ) UpperCAmelCase_ = self.embeddings( input_ids=lowerCamelCase_ , position_ids=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , inputs_embeds=lowerCamelCase_ ) UpperCAmelCase_ = embedding_output if self.training: UpperCAmelCase_ = [] for i in range(self.config.num_hidden_layers ): UpperCAmelCase_ = self.encoder.adaptive_forward( lowerCamelCase_ , current_layer=lowerCamelCase_ , attention_mask=lowerCamelCase_ , head_mask=lowerCamelCase_ ) UpperCAmelCase_ = self.pooler(lowerCamelCase_ ) UpperCAmelCase_ = output_layers[i](output_dropout(lowerCamelCase_ ) ) res.append(lowerCamelCase_ ) elif self.patience == 0: # Use all layers for inference UpperCAmelCase_ = self.encoder( lowerCamelCase_ , attention_mask=lowerCamelCase_ , head_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , ) UpperCAmelCase_ = self.pooler(encoder_outputs[0] ) UpperCAmelCase_ = [output_layers[self.config.num_hidden_layers - 1](lowerCamelCase_ )] else: UpperCAmelCase_ = 0 UpperCAmelCase_ = None UpperCAmelCase_ = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 UpperCAmelCase_ = self.encoder.adaptive_forward( lowerCamelCase_ , current_layer=lowerCamelCase_ , attention_mask=lowerCamelCase_ , head_mask=lowerCamelCase_ ) UpperCAmelCase_ = self.pooler(lowerCamelCase_ ) UpperCAmelCase_ = output_layers[i](lowerCamelCase_ ) if regression: UpperCAmelCase_ = logits.detach() if patient_result is not None: UpperCAmelCase_ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: UpperCAmelCase_ = 0 else: UpperCAmelCase_ = logits.detach().argmax(dim=1 ) if patient_result is not None: UpperCAmelCase_ = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowerCamelCase_ ) ): patient_counter += 1 else: UpperCAmelCase_ = 0 UpperCAmelCase_ = logits if patient_counter == self.patience: break UpperCAmelCase_ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _UpperCAmelCase , ) class __A ( _UpperCAmelCase ): def __init__(self : Tuple , __a : str ): super().__init__(lowerCamelCase_ ) UpperCAmelCase_ = config.num_labels UpperCAmelCase_ = BertModelWithPabee(lowerCamelCase_ ) UpperCAmelCase_ = nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase_ = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCamelCase_ ) def _lowercase (self : int , __a : Optional[Any]=None , __a : Optional[int]=None , __a : Dict=None , __a : Dict=None , __a : Union[str, Any]=None , __a : Optional[int]=None , __a : str=None , ): UpperCAmelCase_ = self.bert( input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , position_ids=lowerCamelCase_ , head_mask=lowerCamelCase_ , inputs_embeds=lowerCamelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) UpperCAmelCase_ = (logits[-1],) if labels is not None: UpperCAmelCase_ = None UpperCAmelCase_ = 0 for ix, logits_item in enumerate(lowerCamelCase_ ): if self.num_labels == 1: # We are doing regression UpperCAmelCase_ = MSELoss() UpperCAmelCase_ = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase_ = CrossEntropyLoss() UpperCAmelCase_ = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: UpperCAmelCase_ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 UpperCAmelCase_ = (total_loss / total_weights,) + outputs return outputs
78
"""simple docstring""" # using dfs for finding eulerian path traversal def __A ( a_ : Dict , a_ : int , a_ : str , a_ : Optional[Any]=None )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = True, True SCREAMING_SNAKE_CASE : List[str] = dfs(a_ , a_ , a_ , a_ ) return path def __A ( a_ : List[str] , a_ : Any )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = -1 for i in range(a_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 SCREAMING_SNAKE_CASE : Tuple = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __A ( a_ : Any , a_ : int )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = check_circuit_or_path(a_ , a_ ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return SCREAMING_SNAKE_CASE : Tuple = 1 if check == 2: SCREAMING_SNAKE_CASE : Optional[int] = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) SCREAMING_SNAKE_CASE : Optional[int] = dfs(a_ , a_ , a_ ) print(a_ ) def __A ( )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} SCREAMING_SNAKE_CASE : str = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} SCREAMING_SNAKE_CASE : int = {1: [2, 3], 2: [1, 3], 3: [1, 2]} SCREAMING_SNAKE_CASE : int = { 1: [], 2: [] # all degree is zero } SCREAMING_SNAKE_CASE : List[str] = 10 check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) check_euler(a_ , a_ ) if __name__ == "__main__": main()
698
0
from __future__ import annotations import math def _a ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" lowerCamelCase__ : int = u for i in range(1 , a_ ): lowerCamelCase__ : List[Any] = temp * (u - i) return temp def _a ( ) -> None: """simple docstring""" lowerCamelCase__ : Union[str, Any] = int(input('''enter the numbers of values: ''' ) ) lowerCamelCase__ : list[list[float]] = [] for _ in range(a_ ): y.append([] ) for i in range(a_ ): for j in range(a_ ): y[i].append(a_ ) lowerCamelCase__ : Any = 0 print('''enter the values of parameters in a list: ''' ) lowerCamelCase__ : List[Any] = list(map(a_ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(a_ ): lowerCamelCase__ : str = float(input() ) lowerCamelCase__ : int = int(input('''enter the value to interpolate: ''' ) ) lowerCamelCase__ : Optional[int] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , a_ ): for j in range(n - i ): lowerCamelCase__ : str = y[j + 1][i - 1] - y[j][i - 1] lowerCamelCase__ : List[str] = y[0][0] for i in range(1 , a_ ): summ += (ucal(a_ , a_ ) * y[0][i]) / math.factorial(a_ ) print(f"the value at {value} is {summ}" ) if __name__ == "__main__": main()
315
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase__ : List[str] = 250004 lowerCamelCase__ : str = 250020 @require_sentencepiece @require_tokenizers class lowercase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MBartaaTokenizer UpperCamelCase = MBartaaTokenizerFast UpperCamelCase = True UpperCamelCase = True def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[int] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = '''<s>''' SCREAMING_SNAKE_CASE : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_54 ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __lowerCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE : str = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = tokenizer_r.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE : Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : int = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): '''simple docstring''' UpperCamelCase = """facebook/mbart-large-50-one-to-many-mmt""" UpperCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCamelCase = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def __lowerCAmelCase ( cls :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) SCREAMING_SNAKE_CASE : Dict = 1 return cls def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def __lowerCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE : int = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[0] , lowerCamelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> List[str]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ ) @require_torch def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Dict = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __lowerCAmelCase ( self :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : List[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : List[Any] = targets['''input_ids'''] SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(lowerCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
698
0
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : str = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class lowerCAmelCase_ ( _UpperCAmelCase ): __a : Dict = "van" def __init__( self ,snake_case__=224 ,snake_case__=3 ,snake_case__=[7, 3, 3, 3] ,snake_case__=[4, 2, 2, 2] ,snake_case__=[64, 128, 320, 512] ,snake_case__=[3, 3, 12, 3] ,snake_case__=[8, 8, 4, 4] ,snake_case__="gelu" ,snake_case__=0.02 ,snake_case__=1E-6 ,snake_case__=1E-2 ,snake_case__=0.0 ,snake_case__=0.0 ,**snake_case__ ,): super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = image_size SCREAMING_SNAKE_CASE_ : Optional[Any] = num_channels SCREAMING_SNAKE_CASE_ : Dict = patch_sizes SCREAMING_SNAKE_CASE_ : List[str] = strides SCREAMING_SNAKE_CASE_ : str = hidden_sizes SCREAMING_SNAKE_CASE_ : Tuple = depths SCREAMING_SNAKE_CASE_ : List[str] = mlp_ratios SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE_ : Dict = initializer_range SCREAMING_SNAKE_CASE_ : str = layer_norm_eps SCREAMING_SNAKE_CASE_ : Any = layer_scale_init_value SCREAMING_SNAKE_CASE_ : Optional[Any] = drop_path_rate SCREAMING_SNAKE_CASE_ : List[str] = dropout_rate
105
"""simple docstring""" from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __lowerCAmelCase ( self :Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._create_example_records() SCREAMING_SNAKE_CASE : List[Any] = Dataset.from_list(lowerCamelCase_ ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(lowerCamelCase_ ): self.assertDictEqual(lowerCamelCase_ , example_records[i] ) def __lowerCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self._create_example_records() SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def __lowerCAmelCase ( self :List[str] ) -> Dict: # checks what happens with missing columns '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list(lowerCamelCase_ ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: # checks if the type can be inferred from the second record '''simple docstring''' SCREAMING_SNAKE_CASE : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE : List[str] = Dataset.from_list(lowerCamelCase_ ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = Dataset.from_list([] ) self.assertEqual(len(lowerCamelCase_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
698
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : List[Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class __snake_case ( _UpperCAmelCase): """simple docstring""" lowercase = 'mra' def __init__( self : int , lowerCamelCase : Optional[int]=5_02_65 , lowerCamelCase : List[str]=7_68 , lowerCamelCase : List[str]=12 , lowerCamelCase : Optional[Any]=12 , lowerCamelCase : int=30_72 , lowerCamelCase : Tuple="gelu" , lowerCamelCase : List[Any]=0.1 , lowerCamelCase : str=0.1 , lowerCamelCase : str=5_12 , lowerCamelCase : List[str]=1 , lowerCamelCase : int=0.02 , lowerCamelCase : int=1E-5 , lowerCamelCase : List[Any]="absolute" , lowerCamelCase : str=4 , lowerCamelCase : List[str]="full" , lowerCamelCase : List[Any]=0 , lowerCamelCase : Optional[Any]=0 , lowerCamelCase : Union[str, Any]=1 , lowerCamelCase : List[str]=0 , lowerCamelCase : List[Any]=2 , **lowerCamelCase : str , ) -> Dict: super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Tuple = max_position_embeddings lowerCAmelCase_ : List[Any] = hidden_size lowerCAmelCase_ : Dict = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Any = hidden_act lowerCAmelCase_ : Tuple = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : Tuple = type_vocab_size lowerCAmelCase_ : Union[str, Any] = layer_norm_eps lowerCAmelCase_ : str = position_embedding_type lowerCAmelCase_ : List[str] = block_per_row lowerCAmelCase_ : Optional[int] = approx_mode lowerCAmelCase_ : List[Any] = initial_prior_first_n_blocks lowerCAmelCase_ : Union[str, Any] = initial_prior_diagonal_n_blocks
275
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def __A ( a_ : Callable[[int | float], int | float] , a_ : int | float , a_ : int | float , a_ : int = 1_00 , )-> float: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = x_start SCREAMING_SNAKE_CASE : Union[str, Any] = fnc(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = 0.0 for _ in range(a_ ): # Approximates curve as a sequence of linear lines and sums their length SCREAMING_SNAKE_CASE : int = (x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE : Optional[int] = fnc(a_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step SCREAMING_SNAKE_CASE : str = xa SCREAMING_SNAKE_CASE : Any = fxa return length if __name__ == "__main__": def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") lowerCamelCase__ : str = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
698
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase = inspect.getfile(accelerate.test_utils ) _UpperCamelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) _UpperCamelCase = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = f'''\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n '''.split() _UpperCamelCase = [sys.executable] + distributed_args execute_subprocess_async(lowerCamelCase_ , env=os.environ.copy() )
147
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __A ( a_ : int=None )-> Tuple: '''simple docstring''' if subparsers is not None: SCREAMING_SNAKE_CASE : List[str] = subparsers.add_parser('''test''' ) else: SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=a_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=a_ ) return parser def __A ( a_ : Any )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: SCREAMING_SNAKE_CASE : Tuple = script_name else: SCREAMING_SNAKE_CASE : Optional[Any] = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE : str = ['''accelerate-launch'''] + test_args.split() SCREAMING_SNAKE_CASE : List[str] = execute_subprocess_async(a_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __A ( )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : str = test_command_parser() SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() test_command(a_ ) if __name__ == "__main__": main()
698
0
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( _UpperCAmelCase , unittest.TestCase ): lowercase_ : Tuple = XLMTokenizer lowercase_ : int = False def _a ( self ) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _UpperCAmelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) _UpperCAmelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(lowerCamelCase_ ) ) def _a ( self , a_ ) -> List[str]: _UpperCAmelCase = '''lower newer''' _UpperCAmelCase = '''lower newer''' return input_text, output_text def _a ( self ) -> Dict: _UpperCAmelCase = XLMTokenizer(self.vocab_file , self.merges_file ) _UpperCAmelCase = '''lower''' _UpperCAmelCase = ['''low''', '''er</w>'''] _UpperCAmelCase = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _UpperCAmelCase = tokens + ['''<unk>'''] _UpperCAmelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , lowerCamelCase_ ) @slow def _a ( self ) -> List[str]: _UpperCAmelCase = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) _UpperCAmelCase = tokenizer.encode("sequence builders" , add_special_tokens=lowerCamelCase_ ) _UpperCAmelCase = tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCamelCase_ ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
657
"""simple docstring""" def __A ( a_ : int = 10 , a_ : int = 10_00 , a_ : bool = True )-> int: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def __A ( a_ : int , a_ : int )-> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def __A ( a_ : int , a_ : int , a_ : int )-> None: '''simple docstring''' assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(a_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = lower SCREAMING_SNAKE_CASE : int = higher SCREAMING_SNAKE_CASE : List[str] = [] while True: SCREAMING_SNAKE_CASE : Any = get_avg(a_ , a_ ) last_numbers.append(a_ ) if answer(a_ ) == "low": SCREAMING_SNAKE_CASE : Dict = number elif answer(a_ ) == "high": SCREAMING_SNAKE_CASE : Tuple = number else: break print(F"guess the number : {last_numbers[-1]}" ) print(F"details : {last_numbers!s}" ) def __A ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = int(input('''Enter lower value : ''' ).strip() ) SCREAMING_SNAKE_CASE : Tuple = int(input('''Enter high value : ''' ).strip() ) SCREAMING_SNAKE_CASE : List[str] = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(a_ , a_ , a_ ) if __name__ == "__main__": main()
698
0
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": a_ = pd.read_csv('sample_data.csv', header=None) a_ = df.shape[:1][0] # If you're using some other dataset input the target column a_ = df.iloc[:, 1:2] a_ = actual_data.values.reshape(len_data, 1) a_ = MinMaxScaler().fit_transform(actual_data) a_ = 1_0 a_ = 5 a_ = 2_0 a_ = len_data - periods * look_back a_ = actual_data[:division] a_ = actual_data[division - look_back :] a_ = [], [] a_ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) a_ = np.array(train_x) a_ = np.array(test_x) a_ = np.array([list(i.ravel()) for i in train_y]) a_ = np.array([list(i.ravel()) for i in test_y]) a_ = Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') a_ = model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) a_ = model.predict(x_test)
76
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowerCamelCase__ : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __A ( a_ : Optional[int] , a_ : str , a_ : str , a_ : str , a_ : List[str] )-> Tuple: '''simple docstring''' for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE : Any = getattr(a_ , a_ ) if weight_type is not None: SCREAMING_SNAKE_CASE : Optional[int] = getattr(a_ , a_ ).shape else: SCREAMING_SNAKE_CASE : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : List[Any] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Any = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : List[Any] = value else: SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __A ( a_ : Optional[Any] , a_ : Dict )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Optional[Any] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : Tuple = hf_model.feature_extractor SCREAMING_SNAKE_CASE : Tuple = hf_model.adapter for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : int = False if "conv_layers" in name: load_conv_layer( a_ , a_ , a_ , a_ , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE : List[str] = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(a_ , a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE : Union[str, Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Dict = name.split(a_ )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE : Optional[int] = mapped_key.replace('''*''' , a_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE : List[str] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE : str = '''bias''' elif "weight" in name: SCREAMING_SNAKE_CASE : Tuple = '''weight''' else: SCREAMING_SNAKE_CASE : str = None set_recursively(a_ , a_ , a_ , a_ , a_ ) continue if not is_used: unused_weights.append(a_ ) logger.warning(F"Unused weights: {unused_weights}" ) def __A ( a_ : Dict , a_ : int , a_ : Optional[int] , a_ : Optional[int] , a_ : Dict )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE : List[str] = name.split('''.''' ) SCREAMING_SNAKE_CASE : Dict = int(items[0] ) SCREAMING_SNAKE_CASE : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[int] , a_ : Optional[int] , a_ : Any , a_ : Any )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = full_name.split('''adaptor.''' )[-1] SCREAMING_SNAKE_CASE : List[Any] = name.split('''.''' ) if items[1].isdigit(): SCREAMING_SNAKE_CASE : List[Any] = int(items[1] ) else: SCREAMING_SNAKE_CASE : str = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." SCREAMING_SNAKE_CASE : Optional[Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." SCREAMING_SNAKE_CASE : int = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(a_ , a_ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = emb.weight.shape SCREAMING_SNAKE_CASE : Any = nn.Linear(a_ , a_ , bias=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = emb.weight.data return lin_layer @torch.no_grad() def __A ( a_ : Tuple , a_ : Optional[int] , a_ : List[Any] , a_ : Any , a_ : Tuple , a_ : int , a_ : Any , a_ : str , a_ : Tuple , a_ : Union[str, Any] , a_ : Union[str, Any] , )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = WavaVecaConfig.from_pretrained( a_ , add_adapter=a_ , adapter_stride=a_ , adapter_kernel_size=a_ , use_auth_token=a_ , output_hidden_size=a_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = MBartConfig.from_pretrained(a_ ) # load model SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) SCREAMING_SNAKE_CASE : int = model[0].eval() # load feature extractor SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(a_ , use_auth_token=a_ ) # set weights for wav2vec2 encoder SCREAMING_SNAKE_CASE : str = WavaVecaModel(a_ ) recursively_load_weights_wavaveca(model.encoder , a_ ) # load decoder weights SCREAMING_SNAKE_CASE : Dict = MBartForCausalLM(a_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a_ ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechEncoderDecoderModel(encoder=a_ , decoder=a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer(a_ ) tokenizer.save_pretrained(a_ ) SCREAMING_SNAKE_CASE : Tuple = hf_wavavec.config.to_dict() SCREAMING_SNAKE_CASE : Any = tokenizer.pad_token_id SCREAMING_SNAKE_CASE : List[str] = tokenizer.bos_token_id SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = '''mbart50''' SCREAMING_SNAKE_CASE : Optional[int] = '''wav2vec2''' SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : List[str] = 25_00_04 SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Any = SpeechEncoderDecoderConfig.from_dict(a_ ) hf_wavavec.save_pretrained(a_ ) feature_extractor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250004, type=int, help="`decoder_start_token_id` of model config") lowerCamelCase__ : Dict = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
698
0
import argparse import os import re _a : Union[str, Any] = "src/transformers" # Pattern that looks at the indentation in a line. _a : Tuple = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _a : Union[str, Any] = re.compile(r'^\s*\"([^\"]+)\":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _a : Optional[Any] = re.compile(r'^\s*_import_structure\[\"([^\"]+)\"\]') # Pattern that matches `"key",` and puts `key` in group 0. _a : str = re.compile(r'^\s*\"([^\"]+)\",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _a : List[str] = re.compile(r'\[([^\]]+)\]') def UpperCamelCase__ ( _A: Tuple ): '''simple docstring''' __lowerCamelCase = _re_indent.search(a_ ) return "" if search is None else search.groups()[0] def UpperCamelCase__ ( _A: Union[str, Any] , _A: Dict="" , _A: Dict=None , _A: List[Any]=None ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(a_ ): index += 1 __lowerCamelCase = ['''\n'''.join(lines[:index] )] else: __lowerCamelCase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowerCamelCase = [lines[index]] index += 1 while index < len(a_ ) and (end_prompt is None or not lines[index].startswith(a_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(a_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(a_ ) ) if index < len(a_ ) - 1: __lowerCamelCase = [lines[index + 1]] index += 1 else: __lowerCamelCase = [] else: blocks.append("""\n""".join(a_ ) ) __lowerCamelCase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(a_ ) > 0: blocks.append("""\n""".join(a_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(a_ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def UpperCamelCase__ ( _A: Any ): '''simple docstring''' def _inner(_A: List[str] ): return key(a_ ).lower().replace("""_""" , """""" ) return _inner def UpperCamelCase__ ( _A: Union[str, Any] , _A: Optional[int]=None ): '''simple docstring''' def noop(_A: Any ): return x if key is None: __lowerCamelCase = noop # Constants are all uppercase, they go first. __lowerCamelCase = [obj for obj in objects if key(a_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowerCamelCase = [obj for obj in objects if key(a_ )[0].isupper() and not key(a_ ).isupper()] # Functions begin with a lowercase, they go last. __lowerCamelCase = [obj for obj in objects if not key(a_ )[0].isupper()] __lowerCamelCase = ignore_underscore(a_ ) return sorted(a_ , key=a_ ) + sorted(a_ , key=a_ ) + sorted(a_ , key=a_ ) def UpperCamelCase__ ( _A: Any ): '''simple docstring''' def _replace(_A: Tuple ): __lowerCamelCase = match.groups()[0] if "," not in imports: return f'''[{imports}]''' __lowerCamelCase = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowerCamelCase = keys[:-1] return "[" + ", ".join([f'''\"{k}\"''' for k in sort_objects(a_ )] ) + "]" __lowerCamelCase = import_statement.split("""\n""" ) if len(a_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowerCamelCase = 2 if lines[1].strip() == '''[''' else 1 __lowerCamelCase = [(i, _re_strip_line.search(a_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowerCamelCase = sort_objects(a_ , key=lambda _A : x[1] ) __lowerCamelCase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(a_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowerCamelCase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowerCamelCase = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowerCamelCase = keys[:-1] __lowerCamelCase = get_indent(lines[1] ) + ''', '''.join([f'''\"{k}\"''' for k in sort_objects(a_ )] ) return "\n".join(a_ ) else: # Finally we have to deal with imports fitting on one line __lowerCamelCase = _re_bracket_content.sub(_replace , a_ ) return import_statement def UpperCamelCase__ ( _A: List[Any] , _A: Tuple=True ): '''simple docstring''' with open(a_ , encoding="""utf-8""" ) as f: __lowerCamelCase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowerCamelCase = split_code_in_indented_blocks( a_ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(a_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowerCamelCase = main_blocks[block_idx] __lowerCamelCase = block.split("""\n""" ) # Get to the start of the imports. __lowerCamelCase = 0 while line_idx < len(a_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowerCamelCase = len(a_ ) else: line_idx += 1 if line_idx >= len(a_ ): continue # Ignore beginning and last line: they don't contain anything. __lowerCamelCase = '''\n'''.join(block_lines[line_idx:-1] ) __lowerCamelCase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowerCamelCase = split_code_in_indented_blocks(a_ , indent_level=a_ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowerCamelCase = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowerCamelCase = [(pattern.search(a_ ).groups()[0] if pattern.search(a_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowerCamelCase = [(i, key) for i, key in enumerate(a_ ) if key is not None] __lowerCamelCase = [x[0] for x in sorted(a_ , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowerCamelCase = 0 __lowerCamelCase = [] for i in range(len(a_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: __lowerCamelCase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(a_ ) count += 1 # And we put our main block back together with its first and last line. __lowerCamelCase = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(a_ ): if check_only: return True else: print(f'''Overwriting {file}.''' ) with open(a_ , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(a_ ) ) def UpperCamelCase__ ( _A: Optional[int]=True ): '''simple docstring''' __lowerCamelCase = [] for root, _, files in os.walk(a_ ): if "__init__.py" in files: __lowerCamelCase = sort_imports(os.path.join(a_ , """__init__.py""" ) , check_only=a_ ) if result: __lowerCamelCase = [os.path.join(a_ , """__init__.py""" )] if len(a_ ) > 0: raise ValueError(f'''Would overwrite {len(a_ )} files, run `make style`.''' ) if __name__ == "__main__": _a : Optional[int] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _a : Tuple = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
479
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ : Union[str, Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
698
0