code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from diffusers import DiffusionPipeline, ImagePipelineOutput
class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ):
def __init__( self : Optional[int] , A : List[Any] , A : Tuple ) ->List[str]:
super().__init__()
self.register_modules(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase )
@torch.no_grad()
def __call__( self : Dict , A : Tuple = 1 , A : Optional[int] = None , A : List[str] = 5_0 , A : Any = "pil" , A : Union[str, Any] = True , **A : Union[str, Any] , ) ->List[Any]:
lowerCamelCase__ : List[str] = torch.randn(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__lowerCAmelCase , )
lowerCamelCase__ : Union[str, Any] = image.to(self.device )
# set step values
self.scheduler.set_timesteps(__lowerCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
lowerCamelCase__ : Union[str, Any] = self.unet(__lowerCAmelCase , __lowerCAmelCase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
lowerCamelCase__ : List[str] = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample
lowerCamelCase__ : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 )
lowerCamelCase__ : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCamelCase__ : Dict = self.numpy_to_pil(__lowerCAmelCase )
if not return_dict:
return (image,), "This is a local test"
return ImagePipelineOutput(images=__lowerCAmelCase ), "This is a local test"
| 315 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase_ ( lowerCamelCase ):
a__ = ['''image_processor''', '''tokenizer''']
a__ = '''ChineseCLIPImageProcessor'''
a__ = ('''BertTokenizer''', '''BertTokenizerFast''')
def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Tuple = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , __lowerCAmelCase , )
__magic_name__ :Optional[Any] = kwargs.pop('''feature_extractor''' )
__magic_name__ :Tuple = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(__lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :List[Any] = self.image_processor
def __call__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ):
"""simple docstring"""
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
__magic_name__ :int = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase )
if images is not None:
__magic_name__ :Dict = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase )
if text is not None and images is not None:
__magic_name__ :Union[str, Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase )
def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase )
def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase )
@property
def A ( self ):
"""simple docstring"""
__magic_name__ :List[Any] = self.tokenizer.model_input_names
__magic_name__ :Any = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def A ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowerCAmelCase , )
return self.image_processor_class
| 0 | 0 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {
"""asapp/sew-tiny-100k""": """https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json""",
# See all SEW models at https://huggingface.co/models?filter=sew
}
class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE ):
A_ : Dict = 'sew'
def __init__( self : Tuple , UpperCamelCase_ : Optional[int]=32 , UpperCamelCase_ : Dict=7_68 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : List[Any]=12 , UpperCamelCase_ : List[Any]=30_72 , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : Optional[int]=1e-5 , UpperCamelCase_ : str="group" , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : Union[str, Any]=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , UpperCamelCase_ : Any=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCamelCase_ : List[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : Any=1_28 , UpperCamelCase_ : int=16 , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Optional[int]=0.05 , UpperCamelCase_ : str=10 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : Union[str, Any]=0.0 , UpperCamelCase_ : List[Any]=10 , UpperCamelCase_ : Dict=0 , UpperCamelCase_ : Optional[Any]="mean" , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Any=False , UpperCamelCase_ : Any=2_56 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : Dict=1 , UpperCamelCase_ : List[Any]=2 , **UpperCamelCase_ : int , ) -> Union[str, Any]:
super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ :Optional[Any] = hidden_size
SCREAMING_SNAKE_CASE__ :str = feat_extract_norm
SCREAMING_SNAKE_CASE__ :str = feat_extract_activation
SCREAMING_SNAKE_CASE__ :Tuple = list(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ :int = list(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ :Any = list(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ :Tuple = conv_bias
SCREAMING_SNAKE_CASE__ :Union[str, Any] = num_conv_pos_embeddings
SCREAMING_SNAKE_CASE__ :str = num_conv_pos_embedding_groups
SCREAMING_SNAKE_CASE__ :List[Any] = len(self.conv_dim )
SCREAMING_SNAKE_CASE__ :Dict = num_hidden_layers
SCREAMING_SNAKE_CASE__ :Union[str, Any] = intermediate_size
SCREAMING_SNAKE_CASE__ :List[Any] = squeeze_factor
SCREAMING_SNAKE_CASE__ :Tuple = hidden_act
SCREAMING_SNAKE_CASE__ :int = num_attention_heads
SCREAMING_SNAKE_CASE__ :Union[str, Any] = hidden_dropout
SCREAMING_SNAKE_CASE__ :Dict = attention_dropout
SCREAMING_SNAKE_CASE__ :Any = activation_dropout
SCREAMING_SNAKE_CASE__ :Union[str, Any] = feat_proj_dropout
SCREAMING_SNAKE_CASE__ :Union[str, Any] = final_dropout
SCREAMING_SNAKE_CASE__ :Optional[Any] = layerdrop
SCREAMING_SNAKE_CASE__ :List[Any] = layer_norm_eps
SCREAMING_SNAKE_CASE__ :Union[str, Any] = initializer_range
SCREAMING_SNAKE_CASE__ :List[str] = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
SCREAMING_SNAKE_CASE__ :Any = apply_spec_augment
SCREAMING_SNAKE_CASE__ :Union[str, Any] = mask_time_prob
SCREAMING_SNAKE_CASE__ :Union[str, Any] = mask_time_length
SCREAMING_SNAKE_CASE__ :str = mask_time_min_masks
SCREAMING_SNAKE_CASE__ :Optional[int] = mask_feature_prob
SCREAMING_SNAKE_CASE__ :Tuple = mask_feature_length
SCREAMING_SNAKE_CASE__ :List[Any] = mask_feature_min_masks
# ctc loss
SCREAMING_SNAKE_CASE__ :Any = ctc_loss_reduction
SCREAMING_SNAKE_CASE__ :Optional[int] = ctc_zero_infinity
# sequence classification
SCREAMING_SNAKE_CASE__ :Optional[Any] = use_weighted_layer_sum
SCREAMING_SNAKE_CASE__ :List[Any] = classifier_proj_size
@property
def __lowerCamelCase ( self : Dict ) -> int:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 209 |
from sklearn.metrics import matthews_corrcoef
import datasets
SCREAMING_SNAKE_CASE__ : Optional[Any] = """
Compute the Matthews correlation coefficient (MCC)
The Matthews correlation coefficient is used in machine learning as a
measure of the quality of binary and multiclass classifications. It takes
into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are of
very different sizes. The MCC is in essence a correlation coefficient value
between -1 and +1. A coefficient of +1 represents a perfect prediction, 0
an average random prediction and -1 an inverse prediction. The statistic
is also known as the phi coefficient. [source: Wikipedia]
"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """
Args:
predictions (list of int): Predicted labels, as returned by a model.
references (list of int): Ground truth labels.
sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.
Returns:
matthews_correlation (dict containing float): Matthews correlation.
Examples:
Example 1, a basic example with only predictions and references as inputs:
>>> matthews_metric = datasets.load_metric(\"matthews_correlation\")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3])
>>> print(round(results['matthews_correlation'], 2))
0.54
Example 2, the same example as above, but also including sample weights:
>>> matthews_metric = datasets.load_metric(\"matthews_correlation\")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 3, 1, 1, 1, 2])
>>> print(round(results['matthews_correlation'], 2))
0.1
Example 3, the same example as above, but with sample weights that cause a negative correlation:
>>> matthews_metric = datasets.load_metric(\"matthews_correlation\")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 1, 0, 0, 0, 1])
>>> print(round(results['matthews_correlation'], 2))
-0.25
"""
SCREAMING_SNAKE_CASE__ : int = """\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase_ ( datasets.Metric ):
def A ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ) , reference_urls=[
'''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html'''
] , )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ):
"""simple docstring"""
return {
"matthews_correlation": float(matthews_corrcoef(__lowerCAmelCase , __lowerCAmelCase , sample_weight=__lowerCAmelCase ) ),
}
| 0 | 0 |
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def __UpperCamelCase (lowerCAmelCase : Union[str, Any], lowerCAmelCase : List[str] = True, lowerCAmelCase : str = math.inf, lowerCAmelCase : Optional[Any] = -math.inf, lowerCAmelCase : Optional[int] = math.inf, lowerCAmelCase : str = -math.inf, lowerCAmelCase : int = False, lowerCAmelCase : Any = 100, lowerCAmelCase : Tuple = 0.01, lowerCAmelCase : Optional[int] = 1, ) -> int:
A = False
A = search_prob
A = start_temperate
A = []
A = 0
A = None
while not search_end:
A = current_state.score()
if best_state is None or current_score > best_state.score():
A = current_state
scores.append(lowerCAmelCase )
iterations += 1
A = None
A = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
A = random.randint(0, len(lowerCAmelCase ) - 1 ) # picking a random neighbor
A = neighbors.pop(lowerCAmelCase )
A = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
A = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
A = picked_neighbor
else:
A = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
A = picked_neighbor
A = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
A = True
else:
A = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(lowerCAmelCase ), lowerCAmelCase )
plt.xlabel('Iterations' )
plt.ylabel('Function values' )
plt.show()
return best_state
if __name__ == "__main__":
def __UpperCamelCase (lowerCAmelCase : Tuple, lowerCAmelCase : Any ) -> str:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
_UpperCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCAmelCase = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
_UpperCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCAmelCase = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def __UpperCamelCase (lowerCAmelCase : Optional[Any], lowerCAmelCase : int ) -> List[Any]:
return (3 * x**2) - (6 * y)
_UpperCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCAmelCase = simulated_annealing(prob, find_max=False, visualization=True)
print(
"The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: "
F'''{local_min.score()}'''
)
_UpperCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCAmelCase = simulated_annealing(prob, find_max=True, visualization=True)
print(
"The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: "
F'''{local_min.score()}'''
)
| 699 |
from __future__ import annotations
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
print(f'''Vertex\tShortest Distance from vertex {src}''' )
for i, d in enumerate(snake_case ):
print(f'''{i}\t\t{d}''' )
def __lowercase ( snake_case, snake_case, snake_case ):
"""simple docstring"""
for j in range(snake_case ):
__magic_name__ , __magic_name__ , __magic_name__ :Tuple = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
return True
return False
def __lowercase ( snake_case, snake_case, snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :List[Any] = [float('''inf''' )] * vertex_count
__magic_name__ :Tuple = 0.0
for _ in range(vertex_count - 1 ):
for j in range(snake_case ):
__magic_name__ , __magic_name__ , __magic_name__ :Dict = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
__magic_name__ :Tuple = distance[u] + w
__magic_name__ :Tuple = check_negative_cycle(snake_case, snake_case, snake_case )
if negative_cycle_exists:
raise Exception('''Negative cycle found''' )
return distance
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE__ : Tuple = int(input("""Enter number of vertices: """).strip())
SCREAMING_SNAKE_CASE__ : Any = int(input("""Enter number of edges: """).strip())
SCREAMING_SNAKE_CASE__ : list[dict[str, int]] = [{} for _ in range(E)]
for i in range(E):
print("""Edge """, i + 1)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = (
int(x)
for x in input("""Enter source, destination, weight: """).strip().split(""" """)
)
SCREAMING_SNAKE_CASE__ : Dict = {"""src""": src, """dst""": dest, """weight""": weight}
SCREAMING_SNAKE_CASE__ : List[Any] = int(input("""\nEnter shortest path source:""").strip())
SCREAMING_SNAKE_CASE__ : List[str] = bellman_ford(graph, V, E, source)
print_distance(shortest_distance, 0)
| 0 | 0 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
snake_case_ = namedtuple('covid_data', 'cases deaths recovered')
def lowerCamelCase__ ( snake_case_ : Optional[int] = "https://www.worldometers.info/coronavirus/" ) -> Union[str, Any]:
__snake_case = '''//div[@class = "maincounter-number"]/span/text()'''
return covid_data(*html.fromstring(requests.get(snake_case_ ).content ).xpath(snake_case_ ) )
snake_case_ = """Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}"""
print(fmt.format(*covid_stats()))
| 592 |
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class lowerCamelCase_ :
def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=3_2 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ):
"""simple docstring"""
__magic_name__ :Optional[int] = parent
__magic_name__ :List[Any] = 1_3
__magic_name__ :Union[str, Any] = 7
__magic_name__ :Optional[Any] = True
__magic_name__ :Tuple = True
__magic_name__ :List[str] = True
__magic_name__ :List[Any] = True
__magic_name__ :int = 9_9
__magic_name__ :Any = 3_2
__magic_name__ :Union[str, Any] = 2
__magic_name__ :List[str] = 4
__magic_name__ :List[Any] = 3_7
__magic_name__ :Tuple = '''gelu'''
__magic_name__ :Any = 0.1
__magic_name__ :str = 0.1
__magic_name__ :List[str] = 5_1_2
__magic_name__ :int = 1_6
__magic_name__ :Any = 2
__magic_name__ :List[Any] = 0.02
__magic_name__ :Optional[Any] = 3
__magic_name__ :Tuple = 4
__magic_name__ :Optional[Any] = None
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ :str = None
if self.use_input_mask:
__magic_name__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
__magic_name__ :str = None
if self.use_token_type_ids:
__magic_name__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ :Union[str, Any] = None
__magic_name__ :Tuple = None
__magic_name__ :str = None
if self.use_labels:
__magic_name__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ :List[Any] = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ :str = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :int = TFRoFormerModel(config=__lowerCAmelCase )
__magic_name__ :Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
__magic_name__ :List[str] = [input_ids, input_mask]
__magic_name__ :Any = model(__lowerCAmelCase )
__magic_name__ :List[str] = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Dict = True
__magic_name__ :List[str] = TFRoFormerForCausalLM(config=__lowerCAmelCase )
__magic_name__ :str = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :Optional[Any] = model(__lowerCAmelCase )['''logits''']
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[Any] = TFRoFormerForMaskedLM(config=__lowerCAmelCase )
__magic_name__ :Any = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :Dict = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :int = self.num_labels
__magic_name__ :str = TFRoFormerForSequenceClassification(config=__lowerCAmelCase )
__magic_name__ :Optional[int] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :str = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = self.num_choices
__magic_name__ :Tuple = TFRoFormerForMultipleChoice(config=__lowerCAmelCase )
__magic_name__ :int = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
__magic_name__ :Optional[Any] = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
__magic_name__ :Union[str, Any] = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
__magic_name__ :str = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
__magic_name__ :Tuple = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[int] = self.num_labels
__magic_name__ :Any = TFRoFormerForTokenClassification(config=__lowerCAmelCase )
__magic_name__ :str = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :Dict = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :List[str] = TFRoFormerForQuestionAnswering(config=__lowerCAmelCase )
__magic_name__ :List[str] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :Union[str, Any] = model(__lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A ( self ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) :Union[str, Any] = config_and_inputs
__magic_name__ :Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class lowerCamelCase_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ):
a__ = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
a__ = (
{
'''feature-extraction''': TFRoFormerModel,
'''fill-mask''': TFRoFormerForMaskedLM,
'''question-answering''': TFRoFormerForQuestionAnswering,
'''text-classification''': TFRoFormerForSequenceClassification,
'''text-generation''': TFRoFormerForCausalLM,
'''token-classification''': TFRoFormerForTokenClassification,
'''zero-shot''': TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
a__ = False
a__ = False
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def A ( self ):
"""simple docstring"""
__magic_name__ :List[str] = TFRoFormerModelTester(self )
__magic_name__ :List[str] = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 )
def A ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase )
@slow
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' )
self.assertIsNotNone(__lowerCAmelCase )
@require_tf
class lowerCamelCase_ ( unittest.TestCase ):
@slow
def A ( self ):
"""simple docstring"""
__magic_name__ :int = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' )
__magic_name__ :Dict = tf.constant([[0, 1, 2, 3, 4, 5]] )
__magic_name__ :Optional[Any] = model(__lowerCAmelCase )[0]
# TODO Replace vocab size
__magic_name__ :int = 5_0_0_0_0
__magic_name__ :Tuple = [1, 6, vocab_size]
self.assertEqual(output.shape , __lowerCAmelCase )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
__magic_name__ :Any = tf.constant(
[
[
[-0.12053341, -1.0264901, 0.29221946],
[-1.5133783, 0.197433, 0.15190607],
[-5.0135403, -3.900256, -0.84038764],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1E-4 )
@require_tf
class lowerCamelCase_ ( unittest.TestCase ):
a__ = 1e-4
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = tf.constant([[4, 1_0]] )
__magic_name__ :Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
__magic_name__ :Optional[Any] = emba(input_ids.shape )
__magic_name__ :List[str] = tf.constant(
[[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] )
tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , atol=self.tolerance )
def A ( self ):
"""simple docstring"""
__magic_name__ :Tuple = tf.constant(
[
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.8415, 0.8219, 0.8020, 0.7819, 0.7617],
[0.9093, 0.9364, 0.9581, 0.9749, 0.9870],
] )
__magic_name__ :Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 )
emba([2, 1_6, 5_1_2] )
__magic_name__ :Optional[int] = emba.weight[:3, :5]
tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , atol=self.tolerance )
@require_tf
class lowerCamelCase_ ( unittest.TestCase ):
a__ = 1e-4
def A ( self ):
"""simple docstring"""
# 2,12,16,64
__magic_name__ :int = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0
__magic_name__ :str = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0
__magic_name__ :int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 )
__magic_name__ :List[str] = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :]
__magic_name__ , __magic_name__ :Union[str, Any] = TFRoFormerSelfAttention.apply_rotary_position_embeddings(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :Tuple = tf.constant(
[
[0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700],
[-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343],
[-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985],
[-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871],
[0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980],
[3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253],
] )
__magic_name__ :List[str] = tf.constant(
[
[0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700],
[0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343],
[1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985],
[2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871],
[-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980],
[-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __lowerCAmelCase , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __lowerCAmelCase , atol=self.tolerance )
| 0 | 0 |
import argparse
import re
from pathlib import Path
import requests
import torch
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
from transformers import (
EfficientFormerConfig,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerImageProcessor,
)
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __lowerCAmelCase ( _A ,_A ):
"""simple docstring"""
_lowercase = old_name
if "patch_embed" in old_name:
_lowercase = old_name.split(""".""" )
if layer == "0":
_lowercase = old_name.replace("""0""" ,"""convolution1""" )
elif layer == "1":
_lowercase = old_name.replace("""1""" ,"""batchnorm_before""" )
elif layer == "3":
_lowercase = old_name.replace("""3""" ,"""convolution2""" )
else:
_lowercase = old_name.replace("""4""" ,"""batchnorm_after""" )
if "network" in old_name and re.search(r"""\d\.\d""" ,_A ):
_lowercase = R'''\b\d{2}\b'''
if bool(re.search(_A ,_A ) ):
_lowercase = re.search(r"""\d\.\d\d.""" ,_A ).group()
else:
_lowercase = re.search(r"""\d\.\d.""" ,_A ).group()
if int(match[0] ) < 6:
_lowercase = old_name.replace(_A ,"""""" )
_lowercase = trimmed_name.replace("""network""" ,match[0] + """.meta4D_layers.blocks.""" + match[2:-1] )
_lowercase = '''intermediate_stages.''' + trimmed_name
else:
_lowercase = old_name.replace(_A ,"""""" )
if int(match[2] ) < num_meta4D_last_stage:
_lowercase = trimmed_name.replace("""network""" ,"""meta4D_layers.blocks.""" + match[2] )
else:
_lowercase = str(int(match[2] ) - num_meta4D_last_stage )
_lowercase = trimmed_name.replace("""network""" ,"""meta3D_layers.blocks.""" + layer_index )
if "norm1" in old_name:
_lowercase = trimmed_name.replace("""norm1""" ,"""layernorm1""" )
elif "norm2" in old_name:
_lowercase = trimmed_name.replace("""norm2""" ,"""layernorm2""" )
elif "fc1" in old_name:
_lowercase = trimmed_name.replace("""fc1""" ,"""linear_in""" )
elif "fc2" in old_name:
_lowercase = trimmed_name.replace("""fc2""" ,"""linear_out""" )
_lowercase = '''last_stage.''' + trimmed_name
elif "network" in old_name and re.search(r""".\d.""" ,_A ):
_lowercase = old_name.replace("""network""" ,"""intermediate_stages""" )
if "fc" in new_name:
_lowercase = new_name.replace("""fc""" ,"""convolution""" )
elif ("norm1" in new_name) and ("layernorm1" not in new_name):
_lowercase = new_name.replace("""norm1""" ,"""batchnorm_before""" )
elif ("norm2" in new_name) and ("layernorm2" not in new_name):
_lowercase = new_name.replace("""norm2""" ,"""batchnorm_after""" )
if "proj" in new_name:
_lowercase = new_name.replace("""proj""" ,"""projection""" )
if "dist_head" in new_name:
_lowercase = new_name.replace("""dist_head""" ,"""distillation_classifier""" )
elif "head" in new_name:
_lowercase = new_name.replace("""head""" ,"""classifier""" )
elif "patch_embed" in new_name:
_lowercase = '''efficientformer.''' + new_name
elif new_name == "norm.weight" or new_name == "norm.bias":
_lowercase = new_name.replace("""norm""" ,"""layernorm""" )
_lowercase = '''efficientformer.''' + new_name
else:
_lowercase = '''efficientformer.encoder.''' + new_name
return new_name
def __lowerCAmelCase ( _A ,_A ):
"""simple docstring"""
for key in checkpoint.copy().keys():
_lowercase = checkpoint.pop(_A )
_lowercase = val
return checkpoint
def __lowerCAmelCase ( ):
"""simple docstring"""
_lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
_lowercase = Image.open(requests.get(_A ,stream=_A ).raw )
return image
def __lowerCAmelCase ( _A ,_A ,_A ,_A ):
"""simple docstring"""
_lowercase = torch.load(_A ,map_location="""cpu""" )['''model''']
_lowercase = EfficientFormerConfig.from_json_file(_A )
_lowercase = EfficientFormerForImageClassificationWithTeacher(_A )
_lowercase = '''_'''.join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] )
_lowercase = config.depths[-1] - config.num_metaad_blocks + 1
_lowercase = convert_torch_checkpoint(_A ,_A )
model.load_state_dict(_A )
model.eval()
_lowercase = {
'''bilinear''': PILImageResampling.BILINEAR,
'''bicubic''': PILImageResampling.BICUBIC,
'''nearest''': PILImageResampling.NEAREST,
}
# prepare image
_lowercase = prepare_img()
_lowercase = 256
_lowercase = 224
_lowercase = EfficientFormerImageProcessor(
size={"""shortest_edge""": image_size} ,crop_size={"""height""": crop_size, """width""": crop_size} ,resample=pillow_resamplings["""bicubic"""] ,)
_lowercase = processor(images=_A ,return_tensors="""pt""" ).pixel_values
# original processing pipeline
_lowercase = Compose(
[
Resize(_A ,interpolation=pillow_resamplings["""bicubic"""] ),
CenterCrop(_A ),
ToTensor(),
Normalize(_A ,_A ),
] )
_lowercase = image_transforms(_A ).unsqueeze(0 )
assert torch.allclose(_A ,_A )
_lowercase = model(_A )
_lowercase = outputs.logits
_lowercase = (1, 1_000)
if "l1" in model_name:
_lowercase = torch.Tensor(
[-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] )
assert torch.allclose(logits[0, :10] ,_A ,atol=1E-3 )
assert logits.shape == expected_shape
elif "l3" in model_name:
_lowercase = torch.Tensor(
[-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] )
assert torch.allclose(logits[0, :10] ,_A ,atol=1E-3 )
assert logits.shape == expected_shape
elif "l7" in model_name:
_lowercase = torch.Tensor(
[-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] )
assert logits.shape == expected_shape
else:
raise ValueError(
f'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' )
# Save Checkpoints
Path(_A ).mkdir(exist_ok=_A )
model.save_pretrained(_A )
print(f'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' )
processor.save_pretrained(_A )
print(f'''Processor successfuly saved at {pytorch_dump_path}''' )
if push_to_hub:
print("""Pushing model to the hub...""" )
model.push_to_hub(
repo_id=f'''Bearnardd/{pytorch_dump_path}''' ,commit_message="""Add model""" ,use_temp_dir=_A ,)
processor.push_to_hub(
repo_id=f'''Bearnardd/{pytorch_dump_path}''' ,commit_message="""Add image processor""" ,use_temp_dir=_A ,)
if __name__ == "__main__":
A_: Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--pytorch_model_path',
default=None,
type=str,
required=True,
help='Path to EfficientFormer pytorch checkpoint.',
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The json file for EfficientFormer model config.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
parser.add_argument(
'--no-push_to_hub',
dest='push_to_hub',
action='store_false',
help='Do not push model and image processor to the hub',
)
parser.set_defaults(push_to_hub=True)
A_: List[str] = parser.parse_args()
convert_efficientformer_checkpoint(
checkpoint_path=args.pytorch_model_path,
efficientformer_config_file=args.config_file,
pytorch_dump_path=args.pytorch_dump_path,
push_to_hub=args.push_to_hub,
)
| 398 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
SCREAMING_SNAKE_CASE__ : Optional[int] = {"""tokenization_herbert""": ["""HerbertTokenizer"""]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""HerbertTokenizerFast"""]
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
SCREAMING_SNAKE_CASE__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 0 | 0 |
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A_ ( a_ ):
_SCREAMING_SNAKE_CASE = ["""image_processor""", """tokenizer"""]
_SCREAMING_SNAKE_CASE = """FlavaImageProcessor"""
_SCREAMING_SNAKE_CASE = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : int ):
__a = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __lowerCAmelCase , )
__a = kwargs.pop("feature_extractor" )
__a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__lowerCAmelCase , __lowerCAmelCase )
__a = self.image_processor
def __call__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Tuple = None , __SCREAMING_SNAKE_CASE : str = True , __SCREAMING_SNAKE_CASE : str = False , __SCREAMING_SNAKE_CASE : Union[str, Any] = False , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Tuple = 0 , __SCREAMING_SNAKE_CASE : List[Any] = None , __SCREAMING_SNAKE_CASE : Tuple = None , __SCREAMING_SNAKE_CASE : Any = None , __SCREAMING_SNAKE_CASE : Dict = None , __SCREAMING_SNAKE_CASE : int = None , __SCREAMING_SNAKE_CASE : Dict = False , __SCREAMING_SNAKE_CASE : Dict = False , __SCREAMING_SNAKE_CASE : str = False , __SCREAMING_SNAKE_CASE : Any = False , __SCREAMING_SNAKE_CASE : Union[str, Any] = True , __SCREAMING_SNAKE_CASE : str = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ):
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
__a = self.tokenizer(
text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , )
if images is not None:
__a = self.image_processor(
__lowerCAmelCase , return_image_mask=__lowerCAmelCase , return_codebook_pixels=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , )
if text is not None and images is not None:
encoding.update(__lowerCAmelCase )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase )
def _UpperCAmelCase ( self : Dict , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : List[str] ):
return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase )
def _UpperCAmelCase ( self : Optional[int] , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Any ):
return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase )
@property
def _UpperCAmelCase ( self : int ):
__a = self.tokenizer.model_input_names
__a = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def _UpperCAmelCase ( self : Union[str, Any] ):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCAmelCase , )
return self.image_processor_class
@property
def _UpperCAmelCase ( self : List[Any] ):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCAmelCase , )
return self.image_processor
| 197 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :str = XCLIPTextConfig()
# derive patch size from model name
__magic_name__ :Union[str, Any] = model_name.find('''patch''' )
__magic_name__ :Optional[Any] = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] )
__magic_name__ :int = XCLIPVisionConfig(patch_size=snake_case, num_frames=snake_case )
if "large" in model_name:
__magic_name__ :Dict = 7_6_8
__magic_name__ :int = 3_0_7_2
__magic_name__ :List[Any] = 1_2
__magic_name__ :str = 1_0_2_4
__magic_name__ :Any = 4_0_9_6
__magic_name__ :Optional[Any] = 1_6
__magic_name__ :Union[str, Any] = 2_4
__magic_name__ :Union[str, Any] = 7_6_8
__magic_name__ :Tuple = 3_0_7_2
if model_name == "xclip-large-patch14-16-frames":
__magic_name__ :List[str] = 3_3_6
__magic_name__ :Any = XCLIPConfig.from_text_vision_configs(snake_case, snake_case )
if "large" in model_name:
__magic_name__ :str = 7_6_8
return config
def __lowercase ( snake_case ):
"""simple docstring"""
if name == "token_embedding.weight":
__magic_name__ :Any = name.replace('''token_embedding.weight''', '''text_model.embeddings.token_embedding.weight''' )
if name == "positional_embedding":
__magic_name__ :Any = name.replace('''positional_embedding''', '''text_model.embeddings.position_embedding.weight''' )
if "ln_1" in name:
__magic_name__ :List[str] = name.replace('''ln_1''', '''layer_norm1''' )
if "ln_2" in name:
__magic_name__ :str = name.replace('''ln_2''', '''layer_norm2''' )
if "c_fc" in name:
__magic_name__ :List[Any] = name.replace('''c_fc''', '''fc1''' )
if "c_proj" in name:
__magic_name__ :Any = name.replace('''c_proj''', '''fc2''' )
if name.startswith('''transformer.resblocks''' ):
__magic_name__ :Any = name.replace('''transformer.resblocks''', '''text_model.encoder.layers''' )
if "attn.out_proj" in name and "message" not in name:
__magic_name__ :Union[str, Any] = name.replace('''attn.out_proj''', '''self_attn.out_proj''' )
if "ln_final" in name:
__magic_name__ :Tuple = name.replace('''ln_final''', '''text_model.final_layer_norm''' )
# visual encoder
if name == "visual.class_embedding":
__magic_name__ :List[Any] = name.replace('''visual.class_embedding''', '''vision_model.embeddings.class_embedding''' )
if name == "visual.positional_embedding":
__magic_name__ :Any = name.replace('''visual.positional_embedding''', '''vision_model.embeddings.position_embedding.weight''' )
if name.startswith('''visual.transformer.resblocks''' ):
__magic_name__ :Union[str, Any] = name.replace('''visual.transformer.resblocks''', '''vision_model.encoder.layers''' )
if "visual.conv1" in name:
__magic_name__ :Tuple = name.replace('''visual.conv1''', '''vision_model.embeddings.patch_embedding''' )
if "visual.ln_pre" in name:
__magic_name__ :Tuple = name.replace('''visual.ln_pre''', '''vision_model.pre_layernorm''' )
if "visual.ln_post" in name:
__magic_name__ :Optional[Any] = name.replace('''visual.ln_post''', '''vision_model.post_layernorm''' )
if "visual.proj" in name:
__magic_name__ :Tuple = name.replace('''visual.proj''', '''visual_projection.weight''' )
if "text_projection" in name:
__magic_name__ :int = name.replace('''text_projection''', '''text_projection.weight''' )
# things on top
if "prompts_visual_proj" in name:
__magic_name__ :int = name.replace('''prompts_visual_proj''', '''prompts_visual_projection''' )
if "prompts_visual_ln" in name:
__magic_name__ :Dict = name.replace('''prompts_visual_ln''', '''prompts_visual_layernorm''' )
# mit
if name == "mit.positional_embedding":
__magic_name__ :List[Any] = name.replace('''positional''', '''position''' )
if name.startswith('''mit.resblocks''' ):
__magic_name__ :Union[str, Any] = name.replace('''mit.resblocks''', '''mit.encoder.layers''' )
# prompts generator
if name.startswith('''prompts_generator.norm''' ):
__magic_name__ :str = name.replace('''prompts_generator.norm''', '''prompts_generator.layernorm''' )
return name
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
__magic_name__ :Any = orig_state_dict.pop(snake_case )
if "attn.in_proj" in key:
__magic_name__ :str = key.split('''.''' )
if key.startswith('''visual''' ):
__magic_name__ :List[Any] = key_split[3]
__magic_name__ :List[Any] = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
__magic_name__ :List[Any] = val[
:dim, :
]
__magic_name__ :List[str] = val[
dim : dim * 2, :
]
__magic_name__ :List[str] = val[
-dim:, :
]
else:
__magic_name__ :str = val[
:dim
]
__magic_name__ :Optional[int] = val[
dim : dim * 2
]
__magic_name__ :Any = val[
-dim:
]
else:
if "weight" in key:
__magic_name__ :int = val[
:dim, :
]
__magic_name__ :Union[str, Any] = val[
dim : dim * 2, :
]
__magic_name__ :List[Any] = val[
-dim:, :
]
else:
__magic_name__ :Union[str, Any] = val[:dim]
__magic_name__ :str = val[
dim : dim * 2
]
__magic_name__ :Dict = val[-dim:]
elif key.startswith('''mit''' ):
__magic_name__ :List[Any] = key_split[2]
__magic_name__ :Any = config.vision_config.mit_hidden_size
if "weight" in key:
__magic_name__ :Union[str, Any] = val[:dim, :]
__magic_name__ :Optional[int] = val[dim : dim * 2, :]
__magic_name__ :int = val[-dim:, :]
else:
__magic_name__ :Tuple = val[:dim]
__magic_name__ :Optional[int] = val[dim : dim * 2]
__magic_name__ :Optional[int] = val[-dim:]
else:
__magic_name__ :Any = key_split[2]
__magic_name__ :List[Any] = config.text_config.hidden_size
if "weight" in key:
__magic_name__ :Union[str, Any] = val[:dim, :]
__magic_name__ :Tuple = val[
dim : dim * 2, :
]
__magic_name__ :str = val[-dim:, :]
else:
__magic_name__ :int = val[:dim]
__magic_name__ :Any = val[
dim : dim * 2
]
__magic_name__ :str = val[-dim:]
else:
__magic_name__ :Tuple = rename_key(snake_case )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
__magic_name__ :List[Any] = val.T
__magic_name__ :Optional[Any] = val
return orig_state_dict
def __lowercase ( snake_case ):
"""simple docstring"""
if num_frames == 8:
__magic_name__ :Any = '''eating_spaghetti_8_frames.npy'''
elif num_frames == 1_6:
__magic_name__ :List[Any] = '''eating_spaghetti.npy'''
elif num_frames == 3_2:
__magic_name__ :Tuple = '''eating_spaghetti_32_frames.npy'''
__magic_name__ :str = hf_hub_download(
repo_id='''hf-internal-testing/spaghetti-video''', filename=snake_case, repo_type='''dataset''', )
__magic_name__ :List[Any] = np.load(snake_case )
return list(snake_case )
def __lowercase ( snake_case, snake_case=None, snake_case=False ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = {
# fully supervised kinetics-400 checkpoints
'''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''',
'''xclip-base-patch32-16-frames''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'''
),
'''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''',
'''xclip-base-patch16-16-frames''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'''
),
'''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb''',
'''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f''',
# fully supervised kinetics-600 checkpoints
'''xclip-base-patch16-kinetics-600''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'''
),
'''xclip-base-patch16-kinetics-600-16-frames''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'''
),
'''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be''',
# few shot
'''xclip-base-patch16-hmdb-2-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'''
),
'''xclip-base-patch16-hmdb-4-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'''
),
'''xclip-base-patch16-hmdb-8-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'''
),
'''xclip-base-patch16-hmdb-16-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'''
),
'''xclip-base-patch16-ucf-2-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'''
),
'''xclip-base-patch16-ucf-4-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'''
),
'''xclip-base-patch16-ucf-8-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'''
),
'''xclip-base-patch16-ucf-16-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'''
),
# zero shot
'''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''',
}
__magic_name__ :Optional[int] = model_to_url[model_name]
__magic_name__ :List[str] = 8
if "16-frames" in model_name:
__magic_name__ :List[Any] = 1_6
elif "shot" in model_name:
__magic_name__ :Dict = 3_2
__magic_name__ :str = get_xclip_config(snake_case, snake_case )
__magic_name__ :List[Any] = XCLIPModel(snake_case )
model.eval()
if "drive" in checkpoint_url:
__magic_name__ :Any = '''pytorch_model.bin'''
gdown.cached_download(snake_case, snake_case, quiet=snake_case )
__magic_name__ :Optional[Any] = torch.load(snake_case, map_location='''cpu''' )['''model''']
else:
__magic_name__ :Optional[int] = torch.hub.load_state_dict_from_url(snake_case )['''model''']
__magic_name__ :List[str] = convert_state_dict(snake_case, snake_case )
__magic_name__ :List[Any] = XCLIPModel(snake_case )
__magic_name__ , __magic_name__ :Optional[Any] = model.load_state_dict(snake_case, strict=snake_case )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
__magic_name__ :str = 3_3_6 if model_name == '''xclip-large-patch14-16-frames''' else 2_2_4
__magic_name__ :Optional[int] = VideoMAEImageProcessor(size=snake_case )
__magic_name__ :Optional[int] = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' )
__magic_name__ :Tuple = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' )
__magic_name__ :Optional[int] = XCLIPProcessor(image_processor=snake_case, tokenizer=snake_case )
__magic_name__ :List[Any] = prepare_video(snake_case )
__magic_name__ :str = processor(
text=['''playing sports''', '''eating spaghetti''', '''go shopping'''], videos=snake_case, return_tensors='''pt''', padding=snake_case )
print('''Shape of pixel values:''', inputs.pixel_values.shape )
with torch.no_grad():
__magic_name__ :Tuple = model(**snake_case )
# Verify outputs
__magic_name__ :Any = outputs.logits_per_video
__magic_name__ :str = logits_per_video.softmax(dim=1 )
print('''Probs:''', snake_case )
# kinetics-400
if model_name == "xclip-base-patch32":
__magic_name__ :Dict = torch.tensor([[0.0019, 0.9951, 0.0030]] )
elif model_name == "xclip-base-patch32-16-frames":
__magic_name__ :str = torch.tensor([[7.0_9_9_9E-0_4, 9.9_8_8_3E-0_1, 4.5_5_8_0E-0_4]] )
elif model_name == "xclip-base-patch16":
__magic_name__ :Tuple = torch.tensor([[0.0083, 0.9681, 0.0236]] )
elif model_name == "xclip-base-patch16-16-frames":
__magic_name__ :Tuple = torch.tensor([[7.6_9_3_7E-0_4, 9.9_7_2_8E-0_1, 1.9_4_7_3E-0_3]] )
elif model_name == "xclip-large-patch14":
__magic_name__ :str = torch.tensor([[0.0062, 0.9864, 0.0075]] )
elif model_name == "xclip-large-patch14-16-frames":
__magic_name__ :Optional[int] = torch.tensor([[3.3_8_7_7E-0_4, 9.9_9_3_7E-0_1, 2.8_8_8_8E-0_4]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
__magic_name__ :Optional[int] = torch.tensor([[0.0555, 0.8914, 0.0531]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
__magic_name__ :List[str] = torch.tensor([[3.8_5_5_4E-0_4, 9.9_9_2_9E-0_1, 3.2_7_5_4E-0_4]] )
elif model_name == "xclip-large-patch14-kinetics-600":
__magic_name__ :List[str] = torch.tensor([[0.0036, 0.9920, 0.0045]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
__magic_name__ :Tuple = torch.tensor([[7.1_8_9_0E-0_6, 9.9_9_9_4E-0_1, 5.6_5_5_9E-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
__magic_name__ :List[str] = torch.tensor([[1.0_3_2_0E-0_5, 9.9_9_9_3E-0_1, 6.2_4_3_5E-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
__magic_name__ :Optional[int] = torch.tensor([[4.1_3_7_7E-0_6, 9.9_9_9_0E-0_1, 9.8_3_8_6E-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
__magic_name__ :Optional[int] = torch.tensor([[4.1_3_4_7E-0_5, 9.9_9_6_2E-0_1, 3.3_4_1_1E-0_4]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
__magic_name__ :Union[str, Any] = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
__magic_name__ :Union[str, Any] = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
__magic_name__ :Optional[int] = torch.tensor([[0.0027, 0.9904, 0.0070]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
__magic_name__ :Any = torch.tensor([[9.8_2_1_9E-0_4, 9.9_5_9_3E-0_1, 3.0_8_6_3E-0_3]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
__magic_name__ :Optional[int] = torch.tensor([[3.5_0_8_2E-0_4, 9.9_7_8_5E-0_1, 1.7_9_6_6E-0_3]] )
else:
raise ValueError(f'''Model name {model_name} not supported''' )
assert torch.allclose(snake_case, snake_case, atol=1E-3 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case )
if push_to_hub:
print('''Pushing model, processor and slow tokenizer files to the hub...''' )
model.push_to_hub(snake_case, organization='''nielsr''' )
processor.push_to_hub(snake_case, organization='''nielsr''' )
slow_tokenizer.push_to_hub(snake_case, organization='''nielsr''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""xclip-base-patch32""",
type=str,
help="""Name of the model.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 0 | 0 |
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class A__ ( __SCREAMING_SNAKE_CASE):
_UpperCAmelCase : str = 42
_UpperCAmelCase : int = 42
def __init__( self , __magic_name__ , __magic_name__ ):
super().__init__()
self.register_modules(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase )
@torch.no_grad()
def __call__( self , __magic_name__ = 1 , __magic_name__ = 5_0 , __magic_name__ = None , __magic_name__ = "pil" , __magic_name__ = True , **__magic_name__ , ):
lowerCamelCase : List[Any] = self.unet.config.sample_size
lowerCamelCase : Tuple = (batch_size, 3, img_size, img_size)
lowerCamelCase : str = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
lowerCamelCase : Optional[int] = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(__lowerCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
lowerCamelCase : Tuple = self.scheduler.schedule[t]
lowerCamelCase : int = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
lowerCamelCase : Dict = self.scheduler.add_noise_to_input(__lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
lowerCamelCase : int = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
lowerCamelCase : List[str] = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
lowerCamelCase : List[Any] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
lowerCamelCase : str = self.scheduler.step_correct(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , step_output.prev_sample , step_output["""derivative"""] , )
lowerCamelCase : Dict = step_output.prev_sample
lowerCamelCase : Dict = (sample / 2 + 0.5).clamp(0 , 1 )
lowerCamelCase : str = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCamelCase : List[Any] = self.numpy_to_pil(__lowerCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__lowerCAmelCase )
| 681 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class lowerCamelCase_ ( lowerCamelCase ):
def __init__( self , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[int] = params
__magic_name__ :Any = np.array(__lowerCAmelCase )
__magic_name__ :Optional[Any] = np.array([len(__lowerCAmelCase ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self , __lowerCAmelCase ):
"""simple docstring"""
return (self.token_ids[index], self.lengths[index])
def __len__( self ):
"""simple docstring"""
return len(self.lengths )
def A ( self ):
"""simple docstring"""
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def A ( self ):
"""simple docstring"""
__magic_name__ :Any = self.params.max_model_input_size
__magic_name__ :int = self.lengths > max_len
logger.info(F'''Splitting {sum(__lowerCAmelCase )} too long sequences.''' )
def divide_chunks(__lowerCAmelCase , __lowerCAmelCase ):
return [l[i : i + n] for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )]
__magic_name__ :Optional[int] = []
__magic_name__ :List[Any] = []
if self.params.mlm:
__magic_name__ , __magic_name__ :Optional[Any] = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token''']
else:
__magic_name__ , __magic_name__ :Tuple = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token''']
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
__magic_name__ :int = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
__magic_name__ :List[Any] = np.insert(__lowerCAmelCase , 0 , __lowerCAmelCase )
if sub_s[-1] != sep_id:
__magic_name__ :Union[str, Any] = np.insert(__lowerCAmelCase , len(__lowerCAmelCase ) , __lowerCAmelCase )
assert len(__lowerCAmelCase ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(__lowerCAmelCase )
new_tok_ids.extend(__lowerCAmelCase )
new_lengths.extend([len(__lowerCAmelCase ) for l in sub_seqs] )
__magic_name__ :Tuple = np.array(__lowerCAmelCase )
__magic_name__ :Optional[int] = np.array(__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = len(self )
__magic_name__ :int = self.lengths > 1_1
__magic_name__ :List[str] = self.token_ids[indices]
__magic_name__ :Union[str, Any] = self.lengths[indices]
__magic_name__ :List[str] = len(self )
logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' )
def A ( self ):
"""simple docstring"""
if "unk_token" not in self.params.special_tok_ids:
return
else:
__magic_name__ :Tuple = self.params.special_tok_ids['''unk_token''']
__magic_name__ :Dict = len(self )
__magic_name__ :Tuple = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
__magic_name__ :int = (unk_occs / self.lengths) < 0.5
__magic_name__ :str = self.token_ids[indices]
__magic_name__ :str = self.lengths[indices]
__magic_name__ :Any = len(self )
logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' )
def A ( self ):
"""simple docstring"""
if not self.params.is_master:
return
logger.info(F'''{len(self )} sequences''' )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[Any] = [t[0] for t in batch]
__magic_name__ :List[Any] = [t[1] for t in batch]
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
# Max for paddings
__magic_name__ :Tuple = max(__lowerCAmelCase )
# Pad token ids
if self.params.mlm:
__magic_name__ :Any = self.params.special_tok_ids['''pad_token''']
else:
__magic_name__ :str = self.params.special_tok_ids['''unk_token''']
__magic_name__ :Any = [list(t.astype(__lowerCAmelCase ) ) + [pad_idx] * (max_seq_len_ - len(__lowerCAmelCase )) for t in token_ids]
assert len(tk_ ) == len(__lowerCAmelCase )
assert all(len(__lowerCAmelCase ) == max_seq_len_ for t in tk_ )
__magic_name__ :Optional[int] = torch.tensor(tk_ ) # (bs, max_seq_len_)
__magic_name__ :Optional[int] = torch.tensor(__lowerCAmelCase ) # (bs)
return tk_t, lg_t
| 0 | 0 |
'''simple docstring'''
from collections.abc import Sequence
def snake_case ( snake_case : int = None ) -> str:
"""simple docstring"""
if nums is None or not nums:
raise ValueError('Input sequence should not be empty' )
lowerCAmelCase = nums[0]
for i in range(1 , len(snake_case ) ):
lowerCAmelCase = nums[i]
lowerCAmelCase = max(snake_case , ans + num , snake_case )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_UpperCamelCase : Optional[int] = int(input("Enter number of elements : ").strip())
_UpperCamelCase : Any = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n]
print(max_subsequence_sum(array))
| 284 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Tuple = """▁"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""vocab_file""": """spiece.model"""}
SCREAMING_SNAKE_CASE__ : List[Any] = {
"""vocab_file""": {
"""google/reformer-crime-and-punishment""": (
"""https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model"""
)
}
}
SCREAMING_SNAKE_CASE__ : Optional[int] = {
"""google/reformer-crime-and-punishment""": 52_42_88,
}
class lowerCamelCase_ ( lowerCamelCase ):
a__ = VOCAB_FILES_NAMES
a__ = PRETRAINED_VOCAB_FILES_MAP
a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ = ['''input_ids''', '''attention_mask''']
def __init__( self , __lowerCAmelCase , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase=[] , __lowerCAmelCase = None , **__lowerCAmelCase , ):
"""simple docstring"""
__magic_name__ :int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , )
__magic_name__ :Optional[Any] = vocab_file
__magic_name__ :int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__lowerCAmelCase )
@property
def A ( self ):
"""simple docstring"""
return self.sp_model.get_piece_size()
def A ( self ):
"""simple docstring"""
__magic_name__ :str = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = self.__dict__.copy()
__magic_name__ :Optional[Any] = None
return state
def __setstate__( self , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Any = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__magic_name__ :Optional[int] = {}
__magic_name__ :Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase )
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
return self.sp_model.piece_to_id(__lowerCAmelCase )
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
if index < self.sp_model.get_piece_size():
__magic_name__ :int = self.sp_model.IdToPiece(__lowerCAmelCase )
return token
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[Any] = []
__magic_name__ :Tuple = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(__lowerCAmelCase ) + token
__magic_name__ :Optional[Any] = []
else:
current_sub_tokens.append(__lowerCAmelCase )
out_string += self.sp_model.decode(__lowerCAmelCase )
return out_string.strip()
def A ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
"""simple docstring"""
if not os.path.isdir(__lowerCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
__magic_name__ :Optional[int] = os.path.join(
__lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__lowerCAmelCase , '''wb''' ) as fi:
__magic_name__ :Dict = self.sp_model.serialized_model_proto()
fi.write(__lowerCAmelCase )
return (out_vocab_file,)
| 0 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case__ : Any = logging.get_logger(__name__)
snake_case__ : Union[str, Any] = {
"""microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""",
"""microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE_ (a__ ):
'''simple docstring'''
_a = "markuplm"
def __init__( self : List[Any] , __a : str=30_522 , __a : Tuple=768 , __a : Any=12 , __a : Union[str, Any]=12 , __a : Union[str, Any]=3_072 , __a : Union[str, Any]="gelu" , __a : Optional[int]=0.1 , __a : Optional[Any]=0.1 , __a : Union[str, Any]=512 , __a : Dict=2 , __a : Optional[Any]=0.02 , __a : Union[str, Any]=1e-12 , __a : int=0 , __a : Union[str, Any]=0 , __a : List[Any]=2 , __a : Dict=256 , __a : Optional[Any]=1_024 , __a : Tuple=216 , __a : Optional[int]=1_001 , __a : Union[str, Any]=32 , __a : Optional[int]=50 , __a : Dict="absolute" , __a : Any=True , __a : str=None , **__a : Tuple , ) ->Union[str, Any]:
super().__init__(
pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , )
lowerCamelCase_ : Optional[Any] = vocab_size
lowerCamelCase_ : List[Any] = hidden_size
lowerCamelCase_ : Optional[Any] = num_hidden_layers
lowerCamelCase_ : int = num_attention_heads
lowerCamelCase_ : Optional[Any] = hidden_act
lowerCamelCase_ : Tuple = intermediate_size
lowerCamelCase_ : List[str] = hidden_dropout_prob
lowerCamelCase_ : int = attention_probs_dropout_prob
lowerCamelCase_ : Optional[Any] = max_position_embeddings
lowerCamelCase_ : Dict = type_vocab_size
lowerCamelCase_ : str = initializer_range
lowerCamelCase_ : Optional[int] = layer_norm_eps
lowerCamelCase_ : Optional[int] = position_embedding_type
lowerCamelCase_ : Dict = use_cache
lowerCamelCase_ : Union[str, Any] = classifier_dropout
# additional properties
lowerCamelCase_ : str = max_depth
lowerCamelCase_ : List[Any] = max_xpath_tag_unit_embeddings
lowerCamelCase_ : Any = max_xpath_subs_unit_embeddings
lowerCamelCase_ : Any = tag_pad_id
lowerCamelCase_ : Dict = subs_pad_id
lowerCamelCase_ : int = xpath_unit_hidden_size
| 278 |
import os
import unittest
from transformers import MobileBertTokenizer, MobileBertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class lowerCamelCase_ ( lowerCamelCase , unittest.TestCase ):
a__ = MobileBertTokenizer
a__ = MobileBertTokenizerFast
a__ = True
a__ = True
a__ = filter_non_english
a__ = '''google/mobilebert-uncased'''
def A ( self ):
"""simple docstring"""
super().setUp()
__magic_name__ :Tuple = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
__magic_name__ :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
__magic_name__ :List[str] = [
(tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped
for tokenizer_def in self.tokenizers_list
]
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = '''UNwant\u00E9d,running'''
__magic_name__ :int = '''unwanted, running'''
return input_text, output_text
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = self.tokenizer_class(self.vocab_file )
__magic_name__ :List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__lowerCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [9, 6, 7, 1_2, 1_0, 1_1] )
def A ( self ):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
__magic_name__ :int = self.get_tokenizer()
__magic_name__ :Tuple = self.get_rust_tokenizer()
__magic_name__ :List[str] = '''UNwant\u00E9d,running'''
__magic_name__ :Optional[Any] = tokenizer.tokenize(__lowerCAmelCase )
__magic_name__ :List[Any] = rust_tokenizer.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :int = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__magic_name__ :str = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :List[Any] = self.get_rust_tokenizer()
__magic_name__ :Any = tokenizer.encode(__lowerCAmelCase )
__magic_name__ :Any = rust_tokenizer.encode(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
# With lower casing
__magic_name__ :Any = self.get_tokenizer(do_lower_case=__lowerCAmelCase )
__magic_name__ :List[Any] = self.get_rust_tokenizer(do_lower_case=__lowerCAmelCase )
__magic_name__ :Dict = '''UNwant\u00E9d,running'''
__magic_name__ :Tuple = tokenizer.tokenize(__lowerCAmelCase )
__magic_name__ :Union[str, Any] = rust_tokenizer.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :Optional[Any] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__magic_name__ :Dict = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :Tuple = self.get_rust_tokenizer()
__magic_name__ :Dict = tokenizer.encode(__lowerCAmelCase )
__magic_name__ :List[Any] = rust_tokenizer.encode(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :List[Any] = BasicTokenizer(do_lower_case=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :Dict = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = BasicTokenizer(do_lower_case=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :List[str] = BasicTokenizer(do_lower_case=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :int = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = BasicTokenizer(do_lower_case=__lowerCAmelCase , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :int = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
__magic_name__ :Union[str, Any] = {}
for i, token in enumerate(__lowerCAmelCase ):
__magic_name__ :Tuple = i
__magic_name__ :List[Any] = WordpieceTokenizer(vocab=__lowerCAmelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def A ( self ):
"""simple docstring"""
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def A ( self ):
"""simple docstring"""
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def A ( self ):
"""simple docstring"""
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def A ( self ):
"""simple docstring"""
__magic_name__ :Any = self.get_tokenizer()
__magic_name__ :Any = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(__lowerCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
self.assertListEqual(
[rust_tokenizer.tokenize(__lowerCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
@slow
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' )
__magic_name__ :Optional[int] = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowerCAmelCase )
__magic_name__ :List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowerCAmelCase )
__magic_name__ :Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase )
__magic_name__ :List[Any] = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase )
assert encoded_sentence == [1_0_1] + text + [1_0_2]
assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2]
def A ( self ):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__magic_name__ :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__magic_name__ :Optional[int] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
__magic_name__ :Optional[Any] = tokenizer_r.encode_plus(
__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , )
__magic_name__ :Any = tokenizer_r.do_lower_case if hasattr(__lowerCAmelCase , '''do_lower_case''' ) else False
__magic_name__ :Optional[int] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), '''Allen'''),
((2_1, 2_3), '''##NL'''),
((2_3, 2_4), '''##P'''),
((2_5, 3_3), '''sentence'''),
((3_3, 3_4), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), '''allen'''),
((2_1, 2_3), '''##nl'''),
((2_3, 2_4), '''##p'''),
((2_5, 3_3), '''sentence'''),
((3_3, 3_4), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :Dict = ['''的''', '''人''', '''有''']
__magic_name__ :Any = ''''''.join(__lowerCAmelCase )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__magic_name__ :Optional[Any] = True
__magic_name__ :Optional[int] = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__magic_name__ :Tuple = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__magic_name__ :Dict = tokenizer_p.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__magic_name__ :List[str] = tokenizer_r.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__magic_name__ :Dict = tokenizer_r.convert_ids_to_tokens(__lowerCAmelCase )
__magic_name__ :Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__lowerCAmelCase )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :List[str] = False
__magic_name__ :Tuple = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__magic_name__ :List[str] = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__magic_name__ :Optional[Any] = tokenizer_r.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__magic_name__ :Union[str, Any] = tokenizer_p.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__magic_name__ :List[str] = tokenizer_r.convert_ids_to_tokens(__lowerCAmelCase )
__magic_name__ :Optional[int] = tokenizer_p.convert_ids_to_tokens(__lowerCAmelCase )
# it is expected that only the first Chinese character is not preceded by "##".
__magic_name__ :Dict = [
F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__lowerCAmelCase )
]
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
| 0 | 0 |
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import VideoMAEConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEModel,
)
from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class A :
def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=1_0 , lowerCAmelCase=3 , lowerCAmelCase=2 , lowerCAmelCase=2 , lowerCAmelCase=2 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=3_7 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=1_0 , lowerCAmelCase=0.02 , lowerCAmelCase=0.9 , lowerCAmelCase=None , ):
__lowercase= parent
__lowercase= batch_size
__lowercase= image_size
__lowercase= num_channels
__lowercase= patch_size
__lowercase= tubelet_size
__lowercase= num_frames
__lowercase= is_training
__lowercase= use_labels
__lowercase= hidden_size
__lowercase= num_hidden_layers
__lowercase= num_attention_heads
__lowercase= intermediate_size
__lowercase= hidden_act
__lowercase= hidden_dropout_prob
__lowercase= attention_probs_dropout_prob
__lowercase= type_sequence_label_size
__lowercase= initializer_range
__lowercase= mask_ratio
__lowercase= scope
# in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame
__lowercase= (image_size // patch_size) ** 2
__lowercase= (num_frames // tubelet_size) * self.num_patches_per_frame
# use this variable to define bool_masked_pos
__lowercase= int(mask_ratio * self.seq_length )
def _A (self ):
__lowercase= floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__lowercase= None
if self.use_labels:
__lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase= self.get_config()
return config, pixel_values, labels
def _A (self ):
return VideoMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , )
def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
__lowercase= VideoMAEModel(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
__lowercase= model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
__lowercase= VideoMAEForPreTraining(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
__lowercase= torch.ones((self.num_masks,) )
__lowercase= torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] )
__lowercase= mask.expand(self.batch_size , -1 ).bool()
__lowercase= model(__lowerCAmelCase , __lowerCAmelCase )
# model only returns predictions for masked patches
__lowercase= mask.sum().item()
__lowercase= 3 * self.tubelet_size * self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) )
def _A (self ):
__lowercase= self.prepare_config_and_inputs()
__lowercase= config_and_inputs
__lowercase= {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class A ( A_ , A_ , unittest.TestCase ):
UpperCamelCase_ : str =(
(VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else ()
)
UpperCamelCase_ : List[str] =(
{'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification}
if is_torch_available()
else {}
)
UpperCamelCase_ : Dict =False
UpperCamelCase_ : Dict =False
UpperCamelCase_ : Any =False
UpperCamelCase_ : Optional[Any] =False
def _A (self ):
__lowercase= VideoMAEModelTester(self )
__lowercase= ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=3_7 )
def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ):
__lowercase= copy.deepcopy(__lowerCAmelCase )
if model_class == VideoMAEForPreTraining:
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
__lowercase= torch.ones((self.model_tester.num_masks,) )
__lowercase= torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] )
__lowercase= mask.expand(self.model_tester.batch_size , -1 ).bool()
__lowercase= bool_masked_pos.to(__lowerCAmelCase )
if return_labels:
if model_class in [
*get_values(__lowerCAmelCase ),
]:
__lowercase= torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase )
return inputs_dict
def _A (self ):
self.config_tester.run_common_tests()
@unittest.skip(reason='VideoMAE does not use inputs_embeds' )
def _A (self ):
pass
def _A (self ):
__lowercase= self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase= model_class(__lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__lowercase= model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) )
def _A (self ):
__lowercase= self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase= model_class(__lowerCAmelCase )
__lowercase= inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase= [*signature.parameters.keys()]
__lowercase= ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __lowerCAmelCase )
def _A (self ):
__lowercase= self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def _A (self ):
__lowercase= self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase )
@slow
def _A (self ):
for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase= VideoMAEModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
def _A (self ):
if not self.has_attentions:
pass
else:
__lowercase= self.model_tester.prepare_config_and_inputs_for_common()
__lowercase= True
for model_class in self.all_model_classes:
__lowercase= self.model_tester.seq_length - self.model_tester.num_masks
__lowercase= (
num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
)
__lowercase= True
__lowercase= False
__lowercase= True
__lowercase= model_class(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
with torch.no_grad():
__lowercase= model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) )
__lowercase= outputs.attentions
self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__lowercase= True
__lowercase= model_class(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
with torch.no_grad():
__lowercase= model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) )
__lowercase= outputs.attentions
self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
__lowercase= len(__lowerCAmelCase )
# Check attention is always last and order is fine
__lowercase= True
__lowercase= True
__lowercase= model_class(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
with torch.no_grad():
__lowercase= model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) )
self.assertEqual(out_len + 1 , len(__lowerCAmelCase ) )
__lowercase= outputs.attentions
self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def _A (self ):
def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
__lowercase= model_class(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
with torch.no_grad():
__lowercase= model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) )
__lowercase= outputs.hidden_states
__lowercase= self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase )
__lowercase= self.model_tester.seq_length - self.model_tester.num_masks
__lowercase= num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__lowercase= self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase= True
check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowercase= True
check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _A (self ):
pass
def _lowerCamelCase( ) -> List[str]:
'''simple docstring'''
__lowercase= hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' )
__lowercase= np.load(lowercase__ )
return list(lowercase__ )
@require_torch
@require_vision
class A ( unittest.TestCase ):
@cached_property
def _A (self ):
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def _A (self ):
__lowercase= VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to(
__lowerCAmelCase )
__lowercase= self.default_image_processor
__lowercase= prepare_video()
__lowercase= image_processor(__lowerCAmelCase , return_tensors='pt' ).to(__lowerCAmelCase )
# forward pass
with torch.no_grad():
__lowercase= model(**__lowerCAmelCase )
# verify the logits
__lowercase= torch.Size((1, 4_0_0) )
self.assertEqual(outputs.logits.shape , __lowerCAmelCase )
__lowercase= torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(__lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) )
@slow
def _A (self ):
__lowercase= VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(__lowerCAmelCase )
__lowercase= self.default_image_processor
__lowercase= prepare_video()
__lowercase= image_processor(__lowerCAmelCase , return_tensors='pt' ).to(__lowerCAmelCase )
# add boolean mask, indicating which patches to mask
__lowercase= hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' )
__lowercase= torch.load(__lowerCAmelCase )
# forward pass
with torch.no_grad():
__lowercase= model(**__lowerCAmelCase )
# verify the logits
__lowercase= torch.Size([1, 1_4_0_8, 1_5_3_6] )
__lowercase= torch.tensor(
[[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=__lowerCAmelCase )
self.assertEqual(outputs.logits.shape , __lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) )
# verify the loss (`config.norm_pix_loss` = `True`)
__lowercase= torch.tensor([0.51_42] , device=__lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.loss , __lowerCAmelCase , atol=1E-4 ) )
# verify the loss (`config.norm_pix_loss` = `False`)
__lowercase= VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=__lowerCAmelCase ).to(
__lowerCAmelCase )
with torch.no_grad():
__lowercase= model(**__lowerCAmelCase )
__lowercase= torch.tensor(torch.tensor([0.64_69] ) , device=__lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.loss , __lowerCAmelCase , atol=1E-4 ) )
| 230 |
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
SCREAMING_SNAKE_CASE__ : List[str] = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowerCamelCase_ ( lowerCamelCase ):
def __init__( self , *__lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ):
"""simple docstring"""
super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
__magic_name__ :Any = eval_examples
__magic_name__ :str = post_process_function
__magic_name__ :int = quant_trainer_args
__magic_name__ :List[str] = 1_2_8 # default number of calibration samples
def A ( self , __lowerCAmelCase=None ):
"""simple docstring"""
if calib_dataset is None and self.calib_dataset is None:
raise ValueError('''Trainer: calibration requires an calib_dataset.''' )
__magic_name__ :Optional[Any] = calib_dataset if calib_dataset is not None else self.calib_dataset
__magic_name__ :Optional[int] = self._remove_unused_columns(__lowerCAmelCase , description='''Calibration''' )
return DataLoader(
__lowerCAmelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__lowerCAmelCase , )
def A ( self , __lowerCAmelCase=None ):
"""simple docstring"""
__magic_name__ :Dict = self.train_dataset if calib_dataset is None else calib_dataset
__magic_name__ :Any = self.get_calib_dataloader(__lowerCAmelCase )
__magic_name__ :List[str] = self.model
quant_trainer.configure_model(__lowerCAmelCase , self.quant_trainer_args , calib=__lowerCAmelCase )
model.eval()
quant_trainer.enable_calibration(__lowerCAmelCase )
logger.info('''***** Running calibration *****''' )
logger.info(F''' Num examples = {self.calib_num}''' )
logger.info(F''' Batch size = {calib_dataloader.batch_size}''' )
for step, inputs in enumerate(__lowerCAmelCase ):
# Prediction step
__magic_name__ , __magic_name__ , __magic_name__ :str = self.prediction_step(__lowerCAmelCase , __lowerCAmelCase , prediction_loss_only=__lowerCAmelCase )
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(__lowerCAmelCase , self.quant_trainer_args )
__magic_name__ :Any = model
def A ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase = "eval" ):
"""simple docstring"""
__magic_name__ :Tuple = self.eval_dataset if eval_dataset is None else eval_dataset
__magic_name__ :Optional[Any] = self.get_eval_dataloader(__lowerCAmelCase )
__magic_name__ :str = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
__magic_name__ :Any = self.compute_metrics
__magic_name__ :List[Any] = None
__magic_name__ :List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__magic_name__ :Optional[Any] = eval_loop(
__lowerCAmelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCAmelCase , )
finally:
__magic_name__ :Union[str, Any] = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
__magic_name__ :Union[str, Any] = self.post_process_function(__lowerCAmelCase , __lowerCAmelCase , output.predictions )
__magic_name__ :int = self.compute_metrics(__lowerCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
__magic_name__ :Dict = metrics.pop(__lowerCAmelCase )
self.log(__lowerCAmelCase )
else:
__magic_name__ :List[str] = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
__magic_name__ :Optional[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCAmelCase )
return metrics
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase = "test" ):
"""simple docstring"""
__magic_name__ :int = self.get_test_dataloader(__lowerCAmelCase )
# Temporarily disable metric computation, we will do it in the loop here.
__magic_name__ :Dict = self.compute_metrics
__magic_name__ :str = None
__magic_name__ :Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__magic_name__ :int = eval_loop(
__lowerCAmelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCAmelCase , )
finally:
__magic_name__ :List[Any] = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
__magic_name__ :Optional[Any] = self.post_process_function(__lowerCAmelCase , __lowerCAmelCase , output.predictions , '''predict''' )
__magic_name__ :Dict = self.compute_metrics(__lowerCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
__magic_name__ :List[str] = metrics.pop(__lowerCAmelCase )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCAmelCase )
def A ( self , __lowerCAmelCase="./" ):
"""simple docstring"""
__magic_name__ :List[Any] = self.eval_dataset
__magic_name__ :Any = self.get_eval_dataloader(__lowerCAmelCase )
__magic_name__ :int = next(iter(__lowerCAmelCase ) )
# saving device - to make it consistent
__magic_name__ :str = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' )
# convert to tuple
__magic_name__ :int = tuple(v.to(__lowerCAmelCase ) for k, v in batch.items() )
logger.info('''Converting model to be onnx compatible''' )
from pytorch_quantization.nn import TensorQuantizer
__magic_name__ :Any = True
__magic_name__ :Optional[int] = self.model.to(__lowerCAmelCase )
model.eval()
model.float()
__magic_name__ :Any = model.module if hasattr(__lowerCAmelCase , '''module''' ) else model
quant_trainer.configure_model(__lowerCAmelCase , self.quant_trainer_args )
__magic_name__ :int = os.path.join(__lowerCAmelCase , '''model.onnx''' )
logger.info(F'''exporting model to {output_model_file}''' )
__magic_name__ :Dict = {0: '''batch_size''', 1: '''seq_len'''}
torch.onnx.export(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , export_params=__lowerCAmelCase , opset_version=1_3 , do_constant_folding=__lowerCAmelCase , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={
'''input_ids''': axes,
'''attention_mask''': axes,
'''token_type_ids''': axes,
'''output_start_logits''': axes,
'''output_end_logits''': axes,
} , verbose=__lowerCAmelCase , )
logger.info('''onnx export finished''' )
| 0 | 0 |
"""simple docstring"""
import math
def A__ ( __lowerCamelCase, __lowerCamelCase ):
"""simple docstring"""
if 0 not in (x, y):
# We use the relation x^y = y*log10(x), where 10 is the base.
return y * math.logaa(__lowerCamelCase )
else:
if x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
raise AssertionError('This should never happen' )
if __name__ == "__main__": # Main function
# Read two numbers from input and typecast them to int using map function.
# Here x is the base and y is the power.
a__ : Optional[Any] = """Enter the base and the power separated by a comma: """
a__ : Optional[int] = map(int, input(prompt).split(""","""))
a__ : int = map(int, input(prompt).split(""","""))
# We find the log of each number, using the function res(), which takes two
# arguments.
a__ : List[Any] = res(xa, ya)
a__ : Dict = res(xa, ya)
# We check for the largest number
if resa > resa:
print("""Largest number is""", xa, """^""", ya)
elif resa > resa:
print("""Largest number is""", xa, """^""", ya)
else:
print("""Both are equal""")
| 589 |
def __lowercase ( snake_case ):
"""simple docstring"""
return "".join([hex(snake_case )[2:].zfill(2 ).upper() for byte in list(snake_case )] )
def __lowercase ( snake_case ):
"""simple docstring"""
if (len(snake_case ) % 2) != 0:
raise ValueError(
'''Base16 encoded data is invalid:
Data does not have an even number of hex digits.''' )
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(snake_case ) <= set('''0123456789ABCDEF''' ):
raise ValueError(
'''Base16 encoded data is invalid:
Data is not uppercase hex or it contains invalid characters.''' )
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1], 1_6 ) for i in range(0, len(snake_case ), 2 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 0 |
def _a ( UpperCAmelCase ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase__ : str = current_set.copy()
for row_index, row in enumerate(UpperCAmelCase ):
lowerCamelCase__ : Tuple = row[0]
for column_index, column in enumerate(UpperCAmelCase ):
if magnitude == 0:
lowerCamelCase__ : Optional[Any] = column
continue
lowerCamelCase__ : Union[str, Any] = column / magnitude
# Subtract to cancel term
lowerCamelCase__ : List[str] = current_set[0]
lowerCamelCase__ : List[Any] = [first_row]
lowerCamelCase__ : Any = current_set[1::]
for row in current_set:
lowerCamelCase__ : str = []
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(UpperCAmelCase )
continue
for column_index in range(len(UpperCAmelCase ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(UpperCAmelCase )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
lowerCamelCase__ : Tuple = final_set[0]
lowerCamelCase__ : List[Any] = []
lowerCamelCase__ : int = []
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
lowerCamelCase__ : int = simplify(UpperCAmelCase )
for i in range(len(UpperCAmelCase ) ):
resultant[i].insert(0 , current_first_column[i] )
resultant.insert(0 , UpperCAmelCase )
lowerCamelCase__ : Any = resultant
return final_set
def _a ( UpperCAmelCase ) -> Tuple:
"""simple docstring"""
if len(UpperCAmelCase ) == 0:
raise IndexError('''solve_simultaneous() requires n lists of length n+1''' )
lowerCamelCase__ : int = len(UpperCAmelCase ) + 1
if any(len(UpperCAmelCase ) != _length for item in equations ):
raise IndexError('''solve_simultaneous() requires n lists of length n+1''' )
for row in equations:
if any(not isinstance(UpperCAmelCase , (int, float) ) for column in row ):
raise ValueError('''solve_simultaneous() requires lists of integers''' )
if len(UpperCAmelCase ) == 1:
return [equations[0][-1] / equations[0][0]]
lowerCamelCase__ : List[Any] = equations.copy()
if any(0 in row for row in data_set ):
lowerCamelCase__ : Any = data_set.copy()
lowerCamelCase__ : List[str] = []
for row_index, row in enumerate(UpperCAmelCase ):
if 0 not in row:
lowerCamelCase__ : Any = data_set.pop(UpperCAmelCase )
break
if not full_row:
raise ValueError('''solve_simultaneous() requires at least 1 full equation''' )
data_set.insert(0 , UpperCAmelCase )
lowerCamelCase__ : Tuple = data_set.copy()
lowerCamelCase__ : Optional[Any] = simplify(UpperCAmelCase )
lowerCamelCase__ : Optional[Any] = simplified[::-1]
lowerCamelCase__ : list = []
for row in simplified:
lowerCamelCase__ : int = row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
lowerCamelCase__ : Union[str, Any] = row.copy()[: len(UpperCAmelCase ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(UpperCAmelCase ) == 0:
solutions.append(0 )
continue
lowerCamelCase__ : Dict = temp_row[1::]
lowerCamelCase__ : Any = temp_row[::-1]
for column_index, column in enumerate(UpperCAmelCase ):
current_solution -= column * solutions[column_index]
solutions.append(UpperCAmelCase )
lowerCamelCase__ : List[Any] = []
for item in solutions:
final.append(float(round(UpperCAmelCase , 5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
_A : List[str] = [
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))
| 315 |
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def __lowercase ( ):
"""simple docstring"""
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(snake_case ):
requests.request('''GET''', '''https://huggingface.co''' )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request('''GET''', '''https://huggingface.co''', timeout=1.0 )
@pytest.mark.integration
def __lowercase ( ):
"""simple docstring"""
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request('''GET''', '''https://huggingface.co''' )
def __lowercase ( ):
"""simple docstring"""
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(snake_case ):
http_head('''https://huggingface.co''' )
| 0 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
UpperCamelCase_ = {"""tokenization_herbert""": ["""HerbertTokenizer"""]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["""HerbertTokenizerFast"""]
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 209 |
import math
from collections.abc import Iterator
from itertools import takewhile
def __lowercase ( snake_case ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(snake_case ) + 1 ), 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __lowercase ( ):
"""simple docstring"""
__magic_name__ :str = 2
while True:
if is_prime(snake_case ):
yield num
num += 1
def __lowercase ( snake_case = 2_0_0_0_0_0_0 ):
"""simple docstring"""
return sum(takewhile(lambda snake_case : x < n, prime_generator() ) )
if __name__ == "__main__":
print(f"{solution() = }")
| 0 | 0 |
import argparse
import copy
def __UpperCamelCase (lowerCAmelCase : Tuple ) -> str:
A = {}
with open(lowerCAmelCase ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
A = []
_list.append([line.split()[1], line.split()[2]] )
A = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
A = []
_list.append([line.split()[0], line.split()[2]] )
A = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def __UpperCamelCase (lowerCAmelCase : Optional[int], lowerCAmelCase : Optional[int] ) -> Tuple:
with open(lowerCAmelCase ) as f:
A = f.read(1 )
A = start_node
A = []
A = start_node
A = 0
while visiting not in first_solution:
A = 10_000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(lowerCAmelCase ) and k[0] not in first_solution:
A = k[1]
A = k[0]
first_solution.append(lowerCAmelCase )
A = distance_of_first_solution + int(lowerCAmelCase )
A = best_node
first_solution.append(lowerCAmelCase )
A = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
A = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 10_000
)
return first_solution, distance_of_first_solution
def __UpperCamelCase (lowerCAmelCase : Union[str, Any], lowerCAmelCase : Tuple ) -> Union[str, Any]:
A = []
for n in solution[1:-1]:
A = solution.index(lowerCAmelCase )
for kn in solution[1:-1]:
A = solution.index(lowerCAmelCase )
if n == kn:
continue
A = copy.deepcopy(lowerCAmelCase )
A = kn
A = n
A = 0
for k in _tmp[:-1]:
A = _tmp[_tmp.index(lowerCAmelCase ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
A = distance + int(i[1] )
_tmp.append(lowerCAmelCase )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
A = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda lowerCAmelCase : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def __UpperCamelCase (lowerCAmelCase : Optional[int], lowerCAmelCase : List[str], lowerCAmelCase : str, lowerCAmelCase : Tuple, lowerCAmelCase : Optional[int] ) -> Tuple:
A = 1
A = first_solution
A = []
A = distance_of_first_solution
A = solution
while count <= iters:
A = find_neighborhood(lowerCAmelCase, lowerCAmelCase )
A = 0
A = neighborhood[index_of_best_solution]
A = len(lowerCAmelCase ) - 1
A = False
while not found:
A = 0
while i < len(lowerCAmelCase ):
if best_solution[i] != solution[i]:
A = best_solution[i]
A = solution[i]
break
A = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
A = True
A = best_solution[:-1]
A = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
A = cost
A = solution
else:
A = index_of_best_solution + 1
A = neighborhood[index_of_best_solution]
if len(lowerCAmelCase ) >= size:
tabu_list.pop(0 )
A = count + 1
return best_solution_ever, best_cost
def __UpperCamelCase (lowerCAmelCase : Any=None ) -> Optional[Any]:
A = generate_neighbours(args.File )
A = generate_first_solution(
args.File, lowerCAmelCase )
A = tabu_search(
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, args.Iterations, args.Size, )
print(f'''Best solution: {best_sol}, with total distance: {best_cost}.''' )
if __name__ == "__main__":
_UpperCAmelCase = argparse.ArgumentParser(description="Tabu Search")
parser.add_argument(
"-f",
"--File",
type=str,
help="Path to the file containing the data",
required=True,
)
parser.add_argument(
"-i",
"--Iterations",
type=int,
help="How many iterations the algorithm should perform",
required=True,
)
parser.add_argument(
"-s", "--Size", type=int, help="Size of the tabu list", required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 699 |
import unittest
import numpy as np
from transformers.testing_utils import require_flax, require_tf, require_torch
from transformers.utils import (
expand_dims,
flatten_dict,
is_flax_available,
is_tf_available,
is_torch_available,
reshape,
squeeze,
transpose,
)
if is_flax_available():
import jax.numpy as jnp
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
class lowerCamelCase_ ( unittest.TestCase ):
def A ( self ):
"""simple docstring"""
__magic_name__ :List[Any] = {
'''task_specific_params''': {
'''summarization''': {'''length_penalty''': 1.0, '''max_length''': 1_2_8, '''min_length''': 1_2, '''num_beams''': 4},
'''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 1_4_2, '''min_length''': 5_6, '''num_beams''': 4},
'''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 6_2, '''min_length''': 1_1, '''num_beams''': 6},
}
}
__magic_name__ :List[str] = {
'''task_specific_params.summarization.length_penalty''': 1.0,
'''task_specific_params.summarization.max_length''': 1_2_8,
'''task_specific_params.summarization.min_length''': 1_2,
'''task_specific_params.summarization.num_beams''': 4,
'''task_specific_params.summarization_cnn.length_penalty''': 2.0,
'''task_specific_params.summarization_cnn.max_length''': 1_4_2,
'''task_specific_params.summarization_cnn.min_length''': 5_6,
'''task_specific_params.summarization_cnn.num_beams''': 4,
'''task_specific_params.summarization_xsum.length_penalty''': 1.0,
'''task_specific_params.summarization_xsum.max_length''': 6_2,
'''task_specific_params.summarization_xsum.min_length''': 1_1,
'''task_specific_params.summarization_xsum.num_beams''': 6,
}
self.assertEqual(flatten_dict(__lowerCAmelCase ) , __lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , x.transpose() ) )
__magic_name__ :List[Any] = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) )
@require_torch
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = np.random.randn(3 , 4 )
__magic_name__ :Tuple = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , transpose(__lowerCAmelCase ).numpy() ) )
__magic_name__ :int = np.random.randn(3 , 4 , 5 )
__magic_name__ :Union[str, Any] = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , transpose(__lowerCAmelCase , axes=(1, 2, 0) ).numpy() ) )
@require_tf
def A ( self ):
"""simple docstring"""
__magic_name__ :int = np.random.randn(3 , 4 )
__magic_name__ :Optional[Any] = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , transpose(__lowerCAmelCase ).numpy() ) )
__magic_name__ :List[str] = np.random.randn(3 , 4 , 5 )
__magic_name__ :Optional[Any] = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , transpose(__lowerCAmelCase , axes=(1, 2, 0) ).numpy() ) )
@require_flax
def A ( self ):
"""simple docstring"""
__magic_name__ :int = np.random.randn(3 , 4 )
__magic_name__ :Dict = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , np.asarray(transpose(__lowerCAmelCase ) ) ) )
__magic_name__ :Dict = np.random.randn(3 , 4 , 5 )
__magic_name__ :Dict = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , np.asarray(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) ) ) )
def A ( self ):
"""simple docstring"""
__magic_name__ :Any = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , np.reshape(__lowerCAmelCase , (4, 3) ) ) )
__magic_name__ :Union[str, Any] = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (1_2, 5) ) , np.reshape(__lowerCAmelCase , (1_2, 5) ) ) )
@require_torch
def A ( self ):
"""simple docstring"""
__magic_name__ :Dict = np.random.randn(3 , 4 )
__magic_name__ :Tuple = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , reshape(__lowerCAmelCase , (4, 3) ).numpy() ) )
__magic_name__ :Union[str, Any] = np.random.randn(3 , 4 , 5 )
__magic_name__ :List[str] = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (1_2, 5) ) , reshape(__lowerCAmelCase , (1_2, 5) ).numpy() ) )
@require_tf
def A ( self ):
"""simple docstring"""
__magic_name__ :Dict = np.random.randn(3 , 4 )
__magic_name__ :Union[str, Any] = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , reshape(__lowerCAmelCase , (4, 3) ).numpy() ) )
__magic_name__ :List[Any] = np.random.randn(3 , 4 , 5 )
__magic_name__ :Optional[int] = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (1_2, 5) ) , reshape(__lowerCAmelCase , (1_2, 5) ).numpy() ) )
@require_flax
def A ( self ):
"""simple docstring"""
__magic_name__ :List[str] = np.random.randn(3 , 4 )
__magic_name__ :Any = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , np.asarray(reshape(__lowerCAmelCase , (4, 3) ) ) ) )
__magic_name__ :List[Any] = np.random.randn(3 , 4 , 5 )
__magic_name__ :List[str] = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (1_2, 5) ) , np.asarray(reshape(__lowerCAmelCase , (1_2, 5) ) ) ) )
def A ( self ):
"""simple docstring"""
__magic_name__ :List[Any] = np.random.randn(1 , 3 , 4 )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , np.squeeze(__lowerCAmelCase ) ) )
__magic_name__ :Optional[Any] = np.random.randn(1 , 4 , 1 , 5 )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , np.squeeze(__lowerCAmelCase , axis=2 ) ) )
@require_torch
def A ( self ):
"""simple docstring"""
__magic_name__ :Dict = np.random.randn(1 , 3 , 4 )
__magic_name__ :List[Any] = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , squeeze(__lowerCAmelCase ).numpy() ) )
__magic_name__ :List[str] = np.random.randn(1 , 4 , 1 , 5 )
__magic_name__ :str = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , squeeze(__lowerCAmelCase , axis=2 ).numpy() ) )
@require_tf
def A ( self ):
"""simple docstring"""
__magic_name__ :int = np.random.randn(1 , 3 , 4 )
__magic_name__ :Tuple = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , squeeze(__lowerCAmelCase ).numpy() ) )
__magic_name__ :Tuple = np.random.randn(1 , 4 , 1 , 5 )
__magic_name__ :Optional[int] = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , squeeze(__lowerCAmelCase , axis=2 ).numpy() ) )
@require_flax
def A ( self ):
"""simple docstring"""
__magic_name__ :Tuple = np.random.randn(1 , 3 , 4 )
__magic_name__ :Optional[Any] = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , np.asarray(squeeze(__lowerCAmelCase ) ) ) )
__magic_name__ :List[Any] = np.random.randn(1 , 4 , 1 , 5 )
__magic_name__ :Optional[Any] = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , np.asarray(squeeze(__lowerCAmelCase , axis=2 ) ) ) )
def A ( self ):
"""simple docstring"""
__magic_name__ :Any = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , np.expand_dims(__lowerCAmelCase , axis=1 ) ) )
@require_torch
def A ( self ):
"""simple docstring"""
__magic_name__ :List[Any] = np.random.randn(3 , 4 )
__magic_name__ :Any = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , expand_dims(__lowerCAmelCase , axis=1 ).numpy() ) )
@require_tf
def A ( self ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = np.random.randn(3 , 4 )
__magic_name__ :Union[str, Any] = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , expand_dims(__lowerCAmelCase , axis=1 ).numpy() ) )
@require_flax
def A ( self ):
"""simple docstring"""
__magic_name__ :List[str] = np.random.randn(3 , 4 )
__magic_name__ :Tuple = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , np.asarray(expand_dims(__lowerCAmelCase , axis=1 ) ) ) )
| 0 | 0 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=_UpperCAmelCase )
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ):
A_ : List[str] = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} )
A_ : List[Any] = Features({'text': Value('string' )} )
A_ : Dict = Features({} )
A_ : str = 'text'
@property
def a (self : List[str] ):
"""simple docstring"""
return {self.text_column: "text"}
| 592 |
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class lowerCamelCase_ ( lowerCamelCase ):
a__ = ''''''
a__ = '''hf-legacy''' # "hf://"" is reserved for hffs
def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ):
"""simple docstring"""
super().__init__(self , **__lowerCAmelCase )
__magic_name__ :List[Any] = repo_info
__magic_name__ :Dict = token
__magic_name__ :Optional[Any] = None
def A ( self ):
"""simple docstring"""
if self.dir_cache is None:
__magic_name__ :Any = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
__magic_name__ :Optional[int] = {
'''name''': hf_file.rfilename,
'''size''': None,
'''type''': '''file''',
}
self.dir_cache.update(
{
str(__lowerCAmelCase ): {'''name''': str(__lowerCAmelCase ), '''size''': None, '''type''': '''directory'''}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def A ( self , __lowerCAmelCase , __lowerCAmelCase = "rb" , **__lowerCAmelCase , ):
"""simple docstring"""
if not isinstance(self.repo_info , __lowerCAmelCase ):
raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' )
__magic_name__ :Union[str, Any] = hf_hub_url(self.repo_info.id , __lowerCAmelCase , revision=self.repo_info.sha )
return fsspec.open(
__lowerCAmelCase , mode=__lowerCAmelCase , headers=get_authentication_headers_for_url(__lowerCAmelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open()
def A ( self , __lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
self._get_dirs()
__magic_name__ :str = self._strip_protocol(__lowerCAmelCase )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(__lowerCAmelCase )
def A ( self , __lowerCAmelCase , __lowerCAmelCase=False , **__lowerCAmelCase ):
"""simple docstring"""
self._get_dirs()
__magic_name__ :Union[str, Any] = PurePosixPath(path.strip('''/''' ) )
__magic_name__ :Dict = {}
for p, f in self.dir_cache.items():
__magic_name__ :int = PurePosixPath(p.strip('''/''' ) )
__magic_name__ :Tuple = p.parent
if root == path:
__magic_name__ :Optional[Any] = f
__magic_name__ :List[Any] = list(paths.values() )
if detail:
return out
else:
return sorted(f['''name'''] for f in out )
| 0 | 0 |
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class _lowercase ( _UpperCAmelCase ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ):
'''simple docstring'''
super().__init__(
__lowerCAmelCase , split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , num_proc=__lowerCAmelCase , **__lowerCAmelCase , )
_lowercase = field
_lowercase = path_or_paths if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else {self.split: path_or_paths}
_lowercase = Json(
cache_dir=__lowerCAmelCase , data_files=__lowerCAmelCase , features=__lowerCAmelCase , field=__lowerCAmelCase , **__lowerCAmelCase , )
def _UpperCAmelCase ( self ):
'''simple docstring'''
if self.streaming:
_lowercase = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
_lowercase = None
_lowercase = None
_lowercase = None
_lowercase = None
self.builder.download_and_prepare(
download_config=__lowerCAmelCase , download_mode=__lowerCAmelCase , verification_mode=__lowerCAmelCase , base_path=__lowerCAmelCase , num_proc=self.num_proc , )
_lowercase = self.builder.as_dataset(
split=self.split , verification_mode=__lowerCAmelCase , in_memory=self.keep_in_memory )
return dataset
class _lowercase :
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ):
'''simple docstring'''
if num_proc is not None and num_proc <= 0:
raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' )
_lowercase = dataset
_lowercase = path_or_buf
_lowercase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
_lowercase = num_proc
_lowercase = '''utf-8'''
_lowercase = to_json_kwargs
def _UpperCAmelCase ( self ):
'''simple docstring'''
_lowercase = self.to_json_kwargs.pop("""path_or_buf""" , __lowerCAmelCase )
_lowercase = self.to_json_kwargs.pop("""orient""" , """records""" )
_lowercase = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False )
_lowercase = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True )
_lowercase = self.to_json_kwargs.pop("""compression""" , __lowerCAmelCase )
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''' )
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with fsspec.open(self.path_or_buf , """wb""" , compression=__lowerCAmelCase ) as buffer:
_lowercase = self._write(file_obj=__lowerCAmelCase , orient=__lowerCAmelCase , lines=__lowerCAmelCase , index=__lowerCAmelCase , **self.to_json_kwargs )
else:
if compression:
raise NotImplementedError(
F'''The compression parameter is not supported when writing to a buffer, but compression={compression}'''
""" was passed. Please provide a local path instead.""" )
_lowercase = self._write(
file_obj=self.path_or_buf , orient=__lowerCAmelCase , lines=__lowerCAmelCase , index=__lowerCAmelCase , **self.to_json_kwargs )
return written
def _UpperCAmelCase ( self , UpperCAmelCase ):
'''simple docstring'''
_lowercase = args
_lowercase = query_table(
table=self.dataset.data , key=slice(__lowerCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , )
_lowercase = batch.to_pandas().to_json(
path_or_buf=__lowerCAmelCase , orient=__lowerCAmelCase , lines=__lowerCAmelCase , index=__lowerCAmelCase , **__lowerCAmelCase )
if not json_str.endswith("""\n""" ):
json_str += "\n"
return json_str.encode(self.encoding )
def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase , ):
'''simple docstring'''
_lowercase = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
_lowercase = self._batch_json((offset, orient, lines, index, to_json_kwargs) )
written += file_obj.write(__lowerCAmelCase )
else:
_lowercase = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __lowerCAmelCase , __lowerCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
written += file_obj.write(__lowerCAmelCase )
return written
| 398 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
assert isinstance(snake_case, snake_case )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''', [False, True] )
def __lowercase ( snake_case, snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :Tuple = tmp_path / '''cache'''
__magic_name__ :int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__magic_name__ :Optional[Any] = ParquetDatasetReader(snake_case, cache_dir=snake_case, keep_in_memory=snake_case ).read()
_check_parquet_dataset(snake_case, snake_case )
@pytest.mark.parametrize(
'''features''', [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
], )
def __lowercase ( snake_case, snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :List[str] = tmp_path / '''cache'''
__magic_name__ :int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__magic_name__ :Tuple = features.copy() if features else default_expected_features
__magic_name__ :Union[str, Any] = (
Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None
)
__magic_name__ :int = ParquetDatasetReader(snake_case, features=snake_case, cache_dir=snake_case ).read()
_check_parquet_dataset(snake_case, snake_case )
@pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def __lowercase ( snake_case, snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :str = tmp_path / '''cache'''
__magic_name__ :List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__magic_name__ :int = ParquetDatasetReader(snake_case, cache_dir=snake_case, split=snake_case ).read()
_check_parquet_dataset(snake_case, snake_case )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''', [str, list] )
def __lowercase ( snake_case, snake_case, snake_case ):
"""simple docstring"""
if issubclass(snake_case, snake_case ):
__magic_name__ :Union[str, Any] = parquet_path
elif issubclass(snake_case, snake_case ):
__magic_name__ :Union[str, Any] = [parquet_path]
__magic_name__ :Optional[int] = tmp_path / '''cache'''
__magic_name__ :Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__magic_name__ :str = ParquetDatasetReader(snake_case, cache_dir=snake_case ).read()
_check_parquet_dataset(snake_case, snake_case )
def __lowercase ( snake_case, snake_case, snake_case=("train",) ):
"""simple docstring"""
assert isinstance(snake_case, snake_case )
for split in splits:
__magic_name__ :Optional[Any] = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''', [False, True] )
def __lowercase ( snake_case, snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :Any = tmp_path / '''cache'''
__magic_name__ :Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__magic_name__ :Tuple = ParquetDatasetReader(
{'''train''': parquet_path}, cache_dir=snake_case, keep_in_memory=snake_case ).read()
_check_parquet_datasetdict(snake_case, snake_case )
@pytest.mark.parametrize(
'''features''', [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
], )
def __lowercase ( snake_case, snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :Optional[Any] = tmp_path / '''cache'''
__magic_name__ :Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__magic_name__ :int = features.copy() if features else default_expected_features
__magic_name__ :List[Any] = (
Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None
)
__magic_name__ :Optional[int] = ParquetDatasetReader({'''train''': parquet_path}, features=snake_case, cache_dir=snake_case ).read()
_check_parquet_datasetdict(snake_case, snake_case )
@pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def __lowercase ( snake_case, snake_case, snake_case ):
"""simple docstring"""
if split:
__magic_name__ :Dict = {split: parquet_path}
else:
__magic_name__ :Optional[int] = '''train'''
__magic_name__ :Dict = {'''train''': parquet_path, '''test''': parquet_path}
__magic_name__ :List[Any] = tmp_path / '''cache'''
__magic_name__ :Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__magic_name__ :Optional[Any] = ParquetDatasetReader(snake_case, cache_dir=snake_case ).read()
_check_parquet_datasetdict(snake_case, snake_case, splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :str = ParquetDatasetWriter(snake_case, tmp_path / '''foo.parquet''' )
assert writer.write() > 0
__magic_name__ :List[Any] = pq.ParquetFile(tmp_path / '''foo.parquet''' )
__magic_name__ :List[Any] = pf.read()
assert dataset.data.table == output_table
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :List[str] = str(shared_datadir / '''test_image_rgb.jpg''' )
__magic_name__ :Tuple = {'''image''': [image_path]}
__magic_name__ :List[Any] = Features({'''image''': Image()} )
__magic_name__ :Tuple = Dataset.from_dict(snake_case, features=snake_case )
__magic_name__ :Union[str, Any] = ParquetDatasetWriter(snake_case, tmp_path / '''foo.parquet''' )
assert writer.write() > 0
__magic_name__ :List[str] = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) )
assert dataset.features == reloaded_dataset.features
__magic_name__ :List[str] = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ), streaming=snake_case ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
'''feature, expected''', [
(Features({'''foo''': Value('''int32''' )} ), None),
(Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
], )
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
assert get_writer_batch_size(snake_case ) == expected
| 0 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : str = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
SCREAMING_SNAKE_CASE : Tuple = {
"""vocab_file""": {
"""facebook/mbart-large-en-ro""": (
"""https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"""
),
"""facebook/mbart-large-cc25""": (
"""https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""",
"""facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""",
},
}
SCREAMING_SNAKE_CASE : Dict = {
"""facebook/mbart-large-en-ro""": 1024,
"""facebook/mbart-large-cc25""": 1024,
}
# fmt: off
SCREAMING_SNAKE_CASE : Union[str, Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""]
class A_ ( a_ ):
_SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""]
_SCREAMING_SNAKE_CASE = MBartTokenizer
_SCREAMING_SNAKE_CASE = []
_SCREAMING_SNAKE_CASE = []
def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]="<s>" , __SCREAMING_SNAKE_CASE : int="</s>" , __SCREAMING_SNAKE_CASE : Optional[int]="</s>" , __SCREAMING_SNAKE_CASE : Any="<s>" , __SCREAMING_SNAKE_CASE : Optional[int]="<unk>" , __SCREAMING_SNAKE_CASE : str="<pad>" , __SCREAMING_SNAKE_CASE : str="<mask>" , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , **__SCREAMING_SNAKE_CASE : Tuple , ):
__a = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token
super().__init__(
vocab_file=__lowerCAmelCase , tokenizer_file=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , src_lang=__lowerCAmelCase , tgt_lang=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , )
__a = vocab_file
__a = False if not self.vocab_file else True
__a = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} )
__a = {
lang_code: self.convert_tokens_to_ids(__lowerCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__a = src_lang if src_lang is not None else '''en_XX'''
__a = self.convert_tokens_to_ids(self._src_lang )
__a = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def _UpperCAmelCase ( self : List[str] ):
return self._src_lang
@src_lang.setter
def _UpperCAmelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict ):
__a = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def _UpperCAmelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _UpperCAmelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] = None ):
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _UpperCAmelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Optional[int] ):
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" )
__a = src_lang
__a = self(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase )
__a = self.convert_tokens_to_ids(__lowerCAmelCase )
__a = tgt_lang_id
return inputs
def _UpperCAmelCase ( self : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str = "en_XX" , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : str = "ro_RO" , **__SCREAMING_SNAKE_CASE : int , ):
__a = src_lang
__a = tgt_lang
return super().prepare_seqaseq_batch(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
def _UpperCAmelCase ( self : Optional[int] ):
return self.set_src_lang_special_tokens(self.src_lang )
def _UpperCAmelCase ( self : Optional[int] ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def _UpperCAmelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Any ):
__a = self.convert_tokens_to_ids(__lowerCAmelCase )
__a = []
__a = [self.eos_token_id, self.cur_lang_code]
__a = self.convert_ids_to_tokens(self.prefix_tokens )
__a = self.convert_ids_to_tokens(self.suffix_tokens )
__a = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _UpperCAmelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict ):
__a = self.convert_tokens_to_ids(__lowerCAmelCase )
__a = []
__a = [self.eos_token_id, self.cur_lang_code]
__a = self.convert_ids_to_tokens(self.prefix_tokens )
__a = self.convert_ids_to_tokens(self.suffix_tokens )
__a = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _UpperCAmelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(__lowerCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" )
return
__a = os.path.join(
__lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ):
copyfile(self.vocab_file , __lowerCAmelCase )
return (out_vocab_file,)
| 197 |
def __lowercase ( snake_case ):
"""simple docstring"""
if not isinstance(snake_case, snake_case ):
raise ValueError('''multiplicative_persistence() only accepts integral values''' )
if num < 0:
raise ValueError('''multiplicative_persistence() does not accept negative values''' )
__magic_name__ :str = 0
__magic_name__ :Dict = str(snake_case )
while len(snake_case ) != 1:
__magic_name__ :Optional[Any] = [int(snake_case ) for i in num_string]
__magic_name__ :Dict = 1
for i in range(0, len(snake_case ) ):
total *= numbers[i]
__magic_name__ :int = str(snake_case )
steps += 1
return steps
def __lowercase ( snake_case ):
"""simple docstring"""
if not isinstance(snake_case, snake_case ):
raise ValueError('''additive_persistence() only accepts integral values''' )
if num < 0:
raise ValueError('''additive_persistence() does not accept negative values''' )
__magic_name__ :str = 0
__magic_name__ :Union[str, Any] = str(snake_case )
while len(snake_case ) != 1:
__magic_name__ :str = [int(snake_case ) for i in num_string]
__magic_name__ :Optional[int] = 0
for i in range(0, len(snake_case ) ):
total += numbers[i]
__magic_name__ :int = str(snake_case )
steps += 1
return steps
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 0 |
import random
from typing import Any
def _a ( lowerCamelCase ):
for _ in range(len(lowerCamelCase ) ):
lowerCamelCase : Optional[int] = random.randint(0, len(lowerCamelCase ) - 1 )
lowerCamelCase : Union[str, Any] = random.randint(0, len(lowerCamelCase ) - 1 )
lowerCamelCase : List[Any] = data[b], data[a]
return data
if __name__ == "__main__":
_lowerCamelCase =[0, 1, 2, 3, 4, 5, 6, 7]
_lowerCamelCase =["""python""", """says""", """hello""", """!"""]
print("""Fisher-Yates Shuffle:""")
print("""List""", integers, strings)
print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
| 681 |
import math
import os
import re
import sys
import unittest
from pathlib import Path
from typing import Tuple
from unittest.mock import patch
from parameterized import parameterized
from transformers.testing_utils import (
CaptureStderr,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
get_torch_dist_unique_port,
require_apex,
require_bitsandbytes,
require_fairscale,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
require_torch_non_multi_gpu,
slow,
)
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
SCREAMING_SNAKE_CASE__ : List[Any] = os.path.abspath(os.path.dirname(__file__))
with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"):
from run_translation import main # noqa
set_seed(42)
SCREAMING_SNAKE_CASE__ : Optional[Any] = """sshleifer/student_marian_en_ro_6_1"""
SCREAMING_SNAKE_CASE__ : List[Any] = """sshleifer/tiny-mbart"""
@require_torch
class lowerCamelCase_ ( lowerCamelCase ):
def A ( self , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , ):
"""simple docstring"""
__magic_name__ :List[Any] = self.run_trainer(
eval_steps=1 , max_len=1_2 , model_name=__lowerCAmelCase , num_train_epochs=1 , distributed=__lowerCAmelCase , extra_args_str=__lowerCAmelCase , predict_with_generate=__lowerCAmelCase , do_train=__lowerCAmelCase , do_eval=__lowerCAmelCase , do_predict=__lowerCAmelCase , )
__magic_name__ :Any = TrainerState.load_from_json(os.path.join(__lowerCAmelCase , '''trainer_state.json''' ) ).log_history
if not do_eval:
return
__magic_name__ :Any = [log for log in logs if '''eval_loss''' in log.keys()]
__magic_name__ :str = eval_metrics[0]
if predict_with_generate:
assert "eval_bleu" in first_step_stats
__magic_name__ :Tuple = eval_metrics[-1]
assert isinstance(last_step_stats['''eval_bleu'''] , __lowerCAmelCase )
assert not math.isnan(float(last_step_stats['''eval_loss'''] ) ), "eval_loss must not be `nan`"
@require_torch_non_multi_gpu
def A ( self ):
"""simple docstring"""
self.run_seqaseq_quick()
@require_torch_multi_gpu
def A ( self ):
"""simple docstring"""
self.run_seqaseq_quick(distributed=__lowerCAmelCase )
@require_torch_multi_gpu
def A ( self ):
"""simple docstring"""
self.run_seqaseq_quick(distributed=__lowerCAmelCase )
@unittest.skip('''Requires an update of the env running those tests''' )
@require_torch_multi_gpu
@require_fairscale
def A ( self ):
"""simple docstring"""
self.run_seqaseq_quick(distributed=__lowerCAmelCase , extra_args_str='''--sharded_ddp simple''' )
@unittest.skip('''Requires an update of the env running those tests''' )
@require_torch_multi_gpu
@require_fairscale
def A ( self ):
"""simple docstring"""
self.run_seqaseq_quick(distributed=__lowerCAmelCase , extra_args_str='''--sharded_ddp simple --fp16''' )
@unittest.skip('''Requires an update of the env running those tests''' )
@require_torch_multi_gpu
@require_fairscale
def A ( self ):
"""simple docstring"""
self.run_seqaseq_quick(distributed=__lowerCAmelCase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=__lowerCAmelCase )
@unittest.skip('''Requires an update of the env running those tests''' )
@require_torch_multi_gpu
@require_fairscale
def A ( self ):
"""simple docstring"""
self.run_seqaseq_quick(
distributed=__lowerCAmelCase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=__lowerCAmelCase )
@require_apex
@require_torch_gpu
def A ( self ):
"""simple docstring"""
# XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same
# program and it breaks other tests that run from the same pytest worker, therefore until this is
# sorted out it must be run only in an external program, that is distributed=True in this
# test and only under one or more gpus - if we want cpu will need to make a special test
#
# specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via
# 2nd main() call it botches the future eval.
#
self.run_seqaseq_quick(distributed=__lowerCAmelCase , extra_args_str='''--fp16 --fp16_backend=apex''' )
# test 2nd time - was getting eval_loss': nan'
# to reproduce the problem set distributed=False
self.run_seqaseq_quick(distributed=__lowerCAmelCase , extra_args_str='''--fp16 --fp16_backend=apex''' )
@parameterized.expand(['''base''', '''low''', '''high''', '''mixed'''] )
@require_torch_multi_gpu
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
# as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout
__magic_name__ :Any = {
# test with the default log_level - should be info and thus log info once
'''base''': {'''extra_args_str''': '''''', '''n_matches''': 1},
# test with low log_level and log_level_replica - should be noisy on all processes
# now the info string should appear twice on 2 processes
'''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2},
# test with high log_level and low log_level_replica
# now the info string should appear once only on the replica
'''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1},
# test with high log_level and log_level_replica - should be quiet on all processes
'''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0},
}
__magic_name__ :Optional[Any] = experiments[experiment_id]
__magic_name__ :List[Any] = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False}
__magic_name__ :Optional[int] = '''Running training'''
with CaptureStderr() as cl:
self.run_seqaseq_quick(**__lowerCAmelCase , extra_args_str=data['''extra_args_str'''] )
__magic_name__ :int = len(re.findall(__lowerCAmelCase , cl.err ) )
self.assertEqual(__lowerCAmelCase , data['''n_matches'''] )
@slow
def A ( self ):
"""simple docstring"""
__magic_name__ :List[str] = self.run_trainer(
eval_steps=2 , max_len=1_2_8 , model_name=__lowerCAmelCase , learning_rate=3E-4 , num_train_epochs=1_0 , distributed=__lowerCAmelCase , )
# Check metrics
__magic_name__ :Optional[int] = TrainerState.load_from_json(os.path.join(__lowerCAmelCase , '''trainer_state.json''' ) ).log_history
__magic_name__ :List[str] = [log for log in logs if '''eval_loss''' in log.keys()]
__magic_name__ :Any = eval_metrics[0]
__magic_name__ :int = eval_metrics[-1]
assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing"
assert isinstance(last_step_stats['''eval_bleu'''] , __lowerCAmelCase )
# test if do_predict saves generations and metrics
__magic_name__ :List[Any] = os.listdir(__lowerCAmelCase )
__magic_name__ :List[str] = {os.path.basename(__lowerCAmelCase ) for p in contents}
assert "generated_predictions.txt" in contents
assert "predict_results.json" in contents
@slow
@require_bitsandbytes
def A ( self ):
"""simple docstring"""
from transformers.training_args import OptimizerNames
def train_and_return_metrics(__lowerCAmelCase ) -> Tuple[int, float]:
__magic_name__ :str = '''--skip_memory_metrics 0'''
__magic_name__ :Dict = self.run_trainer(
max_len=1_2_8 , model_name=__lowerCAmelCase , learning_rate=3E-4 , num_train_epochs=1 , optim=__lowerCAmelCase , distributed=__lowerCAmelCase , extra_args_str=__lowerCAmelCase , do_eval=__lowerCAmelCase , do_predict=__lowerCAmelCase , n_gpus_to_use=1 , )
# Check metrics
__magic_name__ :Optional[Any] = TrainerState.load_from_json(Path(__lowerCAmelCase , '''trainer_state.json''' ) ).log_history
__magic_name__ :int = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**2_0 )
__magic_name__ :Optional[Any] = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**2_0 )
__magic_name__ :Any = logs[0]['''train_loss''']
return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss
__magic_name__ , __magic_name__ , __magic_name__ :int = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value )
__magic_name__ , __magic_name__ , __magic_name__ :Tuple = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value )
__magic_name__ :Tuple = gpu_alloc_mem_orig - gpu_alloc_mem_bnb
__magic_name__ :Tuple = gpu_peak_mem_orig + gpu_alloc_mem_orig
__magic_name__ :List[Any] = gpu_peak_mem_bnb + gpu_alloc_mem_bnb
__magic_name__ :Optional[int] = gpu_total_mem_orig - gpu_total_mem_bnb
# sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which
# doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized
# in 2 bytes and the diff in optim memory usage is derived as so:
#
# - normal 25*8=~200MB (8 bytes per param)
# - bnb 25*2= ~50MB (2 bytes per param)
#
# Thus we should expect ~150MB total memory saved.
#
# Peak memory should be the same - the total should be different by about that same margin
#
# After leaving a small margin to accommodate for differences between gpus let's check
# that we have at least 120MB in savings
__magic_name__ :Optional[Any] = 1_2_0
# uncomment the following if this test starts failing - requires py38 for a new print feature
# gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb
# print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB")
# print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB")
# print(f"{gpu_alloc_mem_diff=}MB")
# print(f"{gpu_peak_mem_diff=}MB")
# print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB")
# print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB")
self.assertGreater(
__lowerCAmelCase , __lowerCAmelCase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got'''
F''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and'''
F''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , )
self.assertGreater(
__lowerCAmelCase , __lowerCAmelCase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got'''
F''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and'''
F''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , )
self.assertEqual(
__lowerCAmelCase , __lowerCAmelCase , F'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 3E-3 , __lowerCAmelCase = "adafactor" , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = 0 , __lowerCAmelCase = True , __lowerCAmelCase = True , __lowerCAmelCase = True , __lowerCAmelCase = True , __lowerCAmelCase = None , ):
"""simple docstring"""
__magic_name__ :int = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro'''
__magic_name__ :Dict = self.get_auto_remove_tmp_dir()
__magic_name__ :Tuple = F'''
--model_name_or_path {model_name}
--train_file {data_dir}/train.json
--validation_file {data_dir}/val.json
--test_file {data_dir}/test.json
--output_dir {output_dir}
--overwrite_output_dir
--max_train_samples 8
--max_source_length {max_len}
--max_target_length {max_len}
--do_train
--num_train_epochs {str(__lowerCAmelCase )}
--per_device_train_batch_size 4
--learning_rate {learning_rate}
--warmup_steps 8
--logging_steps 0
--logging_strategy no
--save_steps {str(__lowerCAmelCase )}
--group_by_length
--label_smoothing_factor 0.1
--target_lang ro_RO
--source_lang en_XX
'''.split()
__magic_name__ :str = F'''
--do_eval
--per_device_eval_batch_size 4
--max_eval_samples 8
--val_max_target_length {max_len}
--evaluation_strategy steps
--eval_steps {str(__lowerCAmelCase )}
'''.split()
__magic_name__ :Dict = '''
--do_predict
'''.split()
__magic_name__ :Optional[int] = []
if do_train:
args += args_train
if do_eval:
args += args_eval
if do_predict:
args += args_predict
if predict_with_generate:
args += "--predict_with_generate".split()
if do_train:
if optim == "adafactor":
args += "--adafactor".split()
else:
args += F'''--optim {optim}'''.split()
if extra_args_str is not None:
args += extra_args_str.split()
if distributed:
if n_gpus_to_use is None:
__magic_name__ :List[Any] = get_gpu_count()
__magic_name__ :Tuple = get_torch_dist_unique_port()
__magic_name__ :Union[str, Any] = F'''
-m torch.distributed.run
--nproc_per_node={n_gpus_to_use}
--master_port={master_port}
{self.examples_dir_str}/pytorch/translation/run_translation.py
'''.split()
__magic_name__ :Any = [sys.executable] + distributed_args + args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(__lowerCAmelCase , env=self.get_env() )
else:
__magic_name__ :List[Any] = ['''run_translation.py'''] + args
with patch.object(__lowerCAmelCase , '''argv''' , __lowerCAmelCase ):
main()
return output_dir
| 0 | 0 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class _snake_case ( a_ ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="last" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ):
'''simple docstring'''
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_lengths
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = gelu_activation
lowerCAmelCase = sinusoidal_embeddings
lowerCAmelCase = causal
lowerCAmelCase = asm
lowerCAmelCase = n_langs
lowerCAmelCase = vocab_size
lowerCAmelCase = n_special
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = summary_type
lowerCAmelCase = use_proj
lowerCAmelCase = scope
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
if self.use_input_lengths:
lowerCAmelCase = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , 2 ).float()
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ):
'''simple docstring'''
lowerCAmelCase = FlaubertModel(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
lowerCAmelCase = model(__lowerCAmelCase , lengths=__lowerCAmelCase , langs=__lowerCAmelCase )
lowerCAmelCase = model(__lowerCAmelCase , langs=__lowerCAmelCase )
lowerCAmelCase = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ):
'''simple docstring'''
lowerCAmelCase = FlaubertWithLMHeadModel(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
lowerCAmelCase = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ):
'''simple docstring'''
lowerCAmelCase = FlaubertForQuestionAnsweringSimple(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
lowerCAmelCase = model(__lowerCAmelCase )
lowerCAmelCase = model(__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ):
'''simple docstring'''
lowerCAmelCase = FlaubertForQuestionAnswering(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
lowerCAmelCase = model(__lowerCAmelCase )
lowerCAmelCase = model(
__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , cls_index=__lowerCAmelCase , is_impossible=__lowerCAmelCase , p_mask=__lowerCAmelCase , )
lowerCAmelCase = model(
__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , cls_index=__lowerCAmelCase , is_impossible=__lowerCAmelCase , )
(lowerCAmelCase ) = result_with_labels.to_tuple()
lowerCAmelCase = model(__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase )
(lowerCAmelCase ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ):
'''simple docstring'''
lowerCAmelCase = FlaubertForSequenceClassification(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
lowerCAmelCase = model(__lowerCAmelCase )
lowerCAmelCase = model(__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ):
'''simple docstring'''
lowerCAmelCase = self.num_labels
lowerCAmelCase = FlaubertForTokenClassification(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
lowerCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ):
'''simple docstring'''
lowerCAmelCase = self.num_choices
lowerCAmelCase = FlaubertForMultipleChoice(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCAmelCase = model(
__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.prepare_config_and_inputs()
(
lowerCAmelCase
) = config_and_inputs
lowerCAmelCase = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''lengths''': input_lengths,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class _snake_case ( a_ , a_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE : List[str] = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE : Dict = (
{
'''feature-extraction''': FlaubertModel,
'''fill-mask''': FlaubertWithLMHeadModel,
'''question-answering''': FlaubertForQuestionAnsweringSimple,
'''text-classification''': FlaubertForSequenceClassification,
'''token-classification''': FlaubertForTokenClassification,
'''zero-shot''': FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('Fast' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ):
'''simple docstring'''
lowerCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase )
lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase )
return inputs_dict
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = FlaubertModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , emb_dim=37 )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*__lowerCAmelCase )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*__lowerCAmelCase )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*__lowerCAmelCase )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*__lowerCAmelCase )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*__lowerCAmelCase )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*__lowerCAmelCase )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*__lowerCAmelCase )
@slow
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = FlaubertModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
@slow
@require_torch_gpu
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
lowerCAmelCase = True
lowerCAmelCase = model_class(config=__lowerCAmelCase )
lowerCAmelCase = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase )
lowerCAmelCase = torch.jit.trace(
__lowerCAmelCase , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , 'traced_model.pt' ) )
lowerCAmelCase = torch.jit.load(os.path.join(__lowerCAmelCase , 'traced_model.pt' ) , map_location=__lowerCAmelCase )
loaded(inputs_dict['input_ids'].to(__lowerCAmelCase ) , inputs_dict['attention_mask'].to(__lowerCAmelCase ) )
@require_torch
class _snake_case ( unittest.TestCase ):
@slow
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' )
lowerCAmelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
with torch.no_grad():
lowerCAmelCase = model(__lowerCAmelCase )[0]
lowerCAmelCase = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , __lowerCAmelCase )
lowerCAmelCase = torch.tensor(
[[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 ) )
| 284 |
import sys
SCREAMING_SNAKE_CASE__ : Optional[Any] = (
"""73167176531330624919225119674426574742355349194934"""
"""96983520312774506326239578318016984801869478851843"""
"""85861560789112949495459501737958331952853208805511"""
"""12540698747158523863050715693290963295227443043557"""
"""66896648950445244523161731856403098711121722383113"""
"""62229893423380308135336276614282806444486645238749"""
"""30358907296290491560440772390713810515859307960866"""
"""70172427121883998797908792274921901699720888093776"""
"""65727333001053367881220235421809751254540594752243"""
"""52584907711670556013604839586446706324415722155397"""
"""53697817977846174064955149290862569321978468622482"""
"""83972241375657056057490261407972968652414535100474"""
"""82166370484403199890008895243450658541227588666881"""
"""16427171479924442928230863465674813919123162824586"""
"""17866458359124566529476545682848912883142607690042"""
"""24219022671055626321111109370544217506941658960408"""
"""07198403850962455444362981230987879927244284909188"""
"""84580156166097919133875499200524063689912560717606"""
"""05886116467109405077541002256983155200055935729725"""
"""71636269561882670428252483600823257530420752963450"""
)
def __lowercase ( snake_case = N ):
"""simple docstring"""
__magic_name__ :Optional[int] = -sys.maxsize - 1
for i in range(len(snake_case ) - 1_2 ):
__magic_name__ :List[Any] = 1
for j in range(1_3 ):
product *= int(n[i + j] )
if product > largest_product:
__magic_name__ :str = product
return largest_product
if __name__ == "__main__":
print(f"{solution() = }")
| 0 | 0 |
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO,
)
snake_case__ : str = logging.getLogger(__name__)
def __lowerCamelCase ( A__ : Optional[Any] ) -> Dict:
lowerCamelCase_ : Optional[Any] = git.Repo(search_parent_directories=A__ )
lowerCamelCase_ : Dict = {
'''repo_id''': str(A__ ),
'''repo_sha''': str(repo.head.object.hexsha ),
'''repo_branch''': str(repo.active_branch ),
}
with open(os.path.join(A__ , """git_log.json""" ) , """w""" ) as f:
json.dump(A__ , A__ , indent=4 )
def __lowerCamelCase ( A__ : List[str] ) -> Optional[int]:
if params.n_gpu <= 0:
lowerCamelCase_ : Union[str, Any] = 0
lowerCamelCase_ : Optional[Any] = -1
lowerCamelCase_ : int = True
lowerCamelCase_ : Union[str, Any] = False
return
assert torch.cuda.is_available()
logger.info("""Initializing GPUs""" )
if params.n_gpu > 1:
assert params.local_rank != -1
lowerCamelCase_ : Any = int(os.environ["""WORLD_SIZE"""] )
lowerCamelCase_ : str = int(os.environ["""N_GPU_NODE"""] )
lowerCamelCase_ : List[str] = int(os.environ["""RANK"""] )
# number of nodes / node ID
lowerCamelCase_ : Optional[Any] = params.world_size // params.n_gpu_per_node
lowerCamelCase_ : Optional[int] = params.global_rank // params.n_gpu_per_node
lowerCamelCase_ : str = True
assert params.n_nodes == int(os.environ["""N_NODES"""] )
assert params.node_id == int(os.environ["""NODE_RANK"""] )
# local job (single GPU)
else:
assert params.local_rank == -1
lowerCamelCase_ : str = 1
lowerCamelCase_ : str = 0
lowerCamelCase_ : Dict = 0
lowerCamelCase_ : Tuple = 0
lowerCamelCase_ : int = 1
lowerCamelCase_ : int = 1
lowerCamelCase_ : Dict = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
lowerCamelCase_ : List[Any] = params.node_id == 0 and params.local_rank == 0
lowerCamelCase_ : Tuple = params.n_nodes > 1
# summary
lowerCamelCase_ : Optional[int] = f'''--- Global rank: {params.global_rank} - '''
logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes )
logger.info(PREFIX + """Node ID : %i""" % params.node_id )
logger.info(PREFIX + """Local rank : %i""" % params.local_rank )
logger.info(PREFIX + """World size : %i""" % params.world_size )
logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node )
logger.info(PREFIX + """Master : %s""" % str(params.is_master ) )
logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) )
logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) )
logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info("""Initializing PyTorch distributed""" )
torch.distributed.init_process_group(
init_method="""env://""" , backend="""nccl""" , )
def __lowerCamelCase ( A__ : List[str] ) -> Union[str, Any]:
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 278 |
SCREAMING_SNAKE_CASE__ : Tuple = {
"""a""": """AAAAA""",
"""b""": """AAAAB""",
"""c""": """AAABA""",
"""d""": """AAABB""",
"""e""": """AABAA""",
"""f""": """AABAB""",
"""g""": """AABBA""",
"""h""": """AABBB""",
"""i""": """ABAAA""",
"""j""": """BBBAA""",
"""k""": """ABAAB""",
"""l""": """ABABA""",
"""m""": """ABABB""",
"""n""": """ABBAA""",
"""o""": """ABBAB""",
"""p""": """ABBBA""",
"""q""": """ABBBB""",
"""r""": """BAAAA""",
"""s""": """BAAAB""",
"""t""": """BAABA""",
"""u""": """BAABB""",
"""v""": """BBBAB""",
"""w""": """BABAA""",
"""x""": """BABAB""",
"""y""": """BABBA""",
"""z""": """BABBB""",
""" """: """ """,
}
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {value: key for key, value in encode_dict.items()}
def __lowercase ( snake_case ):
"""simple docstring"""
__magic_name__ :Tuple = ''''''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('''encode() accepts only letters of the alphabet and spaces''' )
return encoded
def __lowercase ( snake_case ):
"""simple docstring"""
if set(snake_case ) - {"A", "B", " "} != set():
raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' )
__magic_name__ :Dict = ''''''
for word in coded.split():
while len(snake_case ) != 0:
decoded += decode_dict[word[:5]]
__magic_name__ :int = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 0 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase = [
"""VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTMAEForPreTraining""",
"""ViTMAELayer""",
"""ViTMAEModel""",
"""ViTMAEPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase = [
"""TFViTMAEForPreTraining""",
"""TFViTMAEModel""",
"""TFViTMAEPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 230 |
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def __lowercase ( snake_case ):
"""simple docstring"""
__magic_name__ :Optional[Any] = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(snake_case, snake_case )
def __lowercase ( snake_case ):
"""simple docstring"""
__magic_name__ , __magic_name__ :Tuple = emb.weight.shape
__magic_name__ :int = nn.Linear(snake_case, snake_case, bias=snake_case )
__magic_name__ :str = emb.weight.data
return lin_layer
def __lowercase ( snake_case ):
"""simple docstring"""
__magic_name__ :int = torch.load(snake_case, map_location='''cpu''' )
__magic_name__ :Optional[Any] = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model''']
__magic_name__ :List[Any] = mam_aaa['''model''']
remove_ignore_keys_(snake_case )
__magic_name__ :Tuple = state_dict['''encoder.embed_tokens.weight'''].shape[0]
__magic_name__ :List[str] = MaMaaaConfig(
vocab_size=snake_case, max_position_embeddings=1_0_2_4, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, encoder_layerdrop=args.encoder_layerdrop, decoder_layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='''relu''', )
__magic_name__ :int = state_dict['''decoder.embed_tokens.weight''']
__magic_name__ :List[str] = MaMaaaForConditionalGeneration(snake_case )
model.model.load_state_dict(snake_case, strict=snake_case )
__magic_name__ :List[str] = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""")
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
SCREAMING_SNAKE_CASE__ : int = parser.parse_args()
SCREAMING_SNAKE_CASE__ : Any = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 0 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __magic_name__ ( _UpperCamelCase ,unittest.TestCase ):
UpperCamelCase : List[Any] = KandinskyVaaPipeline
UpperCamelCase : List[str] = [
"image_embeds",
"negative_image_embeds",
]
UpperCamelCase : Union[str, Any] = ["image_embeds", "negative_image_embeds"]
UpperCamelCase : Any = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
UpperCamelCase : Optional[Any] = False
@property
def _lowerCamelCase ( self ):
"""simple docstring"""
return 3_2
@property
def _lowerCamelCase ( self ):
"""simple docstring"""
return 3_2
@property
def _lowerCamelCase ( self ):
"""simple docstring"""
return self.time_input_dim
@property
def _lowerCamelCase ( self ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def _lowerCamelCase ( self ):
"""simple docstring"""
return 1_0_0
@property
def _lowerCamelCase ( self ):
"""simple docstring"""
torch.manual_seed(0 )
_lowerCAmelCase = {
'''in_channels''': 4,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''image''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
_lowerCAmelCase = UNetaDConditionModel(**__lowerCAmelCase )
return model
@property
def _lowerCamelCase ( self ):
"""simple docstring"""
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _lowerCamelCase ( self ):
"""simple docstring"""
torch.manual_seed(0 )
_lowerCAmelCase = VQModel(**self.dummy_movq_kwargs )
return model
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.dummy_unet
_lowerCAmelCase = self.dummy_movq
_lowerCAmelCase = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule='linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=__lowerCAmelCase , )
_lowerCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def _lowerCamelCase ( self , __magic_name__ , __magic_name__=0 ):
"""simple docstring"""
_lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
_lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCAmelCase )
if str(__lowerCAmelCase ).startswith('mps' ):
_lowerCAmelCase = torch.manual_seed(__lowerCAmelCase )
else:
_lowerCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
_lowerCAmelCase = {
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''generator''': generator,
'''height''': 6_4,
'''width''': 6_4,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowerCAmelCase = '''cpu'''
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = self.pipeline_class(**__lowerCAmelCase )
_lowerCAmelCase = pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
_lowerCAmelCase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) )
_lowerCAmelCase = output.images
_lowerCAmelCase = pipe(
**self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0]
_lowerCAmelCase = image[0, -3:, -3:, -1]
_lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
_lowerCAmelCase = np.array(
[0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class __magic_name__ ( unittest.TestCase ):
def _lowerCamelCase ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowerCAmelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy' )
_lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCAmelCase )
_lowerCAmelCase = KandinskyVaaPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa )
_lowerCAmelCase = pipeline.to(__lowerCAmelCase )
pipeline.set_progress_bar_config(disable=__lowerCAmelCase )
_lowerCAmelCase = '''red cat, 4k photo'''
_lowerCAmelCase = torch.Generator(device='cuda' ).manual_seed(0 )
_lowerCAmelCase = pipe_prior(
__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple()
_lowerCAmelCase = torch.Generator(device='cuda' ).manual_seed(0 )
_lowerCAmelCase = pipeline(
image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=1_0_0 , output_type='np' , )
_lowerCAmelCase = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
| 589 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
SCREAMING_SNAKE_CASE__ : Dict = {
"""configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""],
"""tokenization_canine""": ["""CanineTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : str = [
"""CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""CanineForMultipleChoice""",
"""CanineForQuestionAnswering""",
"""CanineForSequenceClassification""",
"""CanineForTokenClassification""",
"""CanineLayer""",
"""CanineModel""",
"""CaninePreTrainedModel""",
"""load_tf_weights_in_canine""",
]
if TYPE_CHECKING:
from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
from .tokenization_canine import CanineTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_canine import (
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
CanineForMultipleChoice,
CanineForQuestionAnswering,
CanineForSequenceClassification,
CanineForTokenClassification,
CanineLayer,
CanineModel,
CaninePreTrainedModel,
load_tf_weights_in_canine,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 0 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_A : Any = logging.get_logger(__name__)
_A : Optional[Any] = {
"""google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""",
"""google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""",
"""google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""",
# See all BigBird models at https://huggingface.co/models?filter=big_bird
}
class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ):
_UpperCAmelCase : List[Any] = "big_bird"
def __init__( self : List[Any] , A : int=5_0_3_5_8 , A : Dict=7_6_8 , A : Any=1_2 , A : List[Any]=1_2 , A : Tuple=3_0_7_2 , A : List[Any]="gelu_new" , A : Any=0.1 , A : List[str]=0.1 , A : Union[str, Any]=4_0_9_6 , A : Union[str, Any]=2 , A : Dict=0.02 , A : List[Any]=1e-12 , A : Optional[Any]=True , A : List[str]=0 , A : Dict=1 , A : List[str]=2 , A : str=6_6 , A : Optional[Any]="block_sparse" , A : Tuple=True , A : Any=False , A : int=6_4 , A : int=3 , A : int=None , **A : str , ) ->Optional[Any]:
super().__init__(
pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , sep_token_id=__lowerCAmelCase , **__lowerCAmelCase , )
lowerCamelCase__ : Union[str, Any] = vocab_size
lowerCamelCase__ : List[str] = max_position_embeddings
lowerCamelCase__ : Dict = hidden_size
lowerCamelCase__ : Union[str, Any] = num_hidden_layers
lowerCamelCase__ : str = num_attention_heads
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : List[Any] = hidden_act
lowerCamelCase__ : Any = hidden_dropout_prob
lowerCamelCase__ : str = attention_probs_dropout_prob
lowerCamelCase__ : Union[str, Any] = initializer_range
lowerCamelCase__ : Optional[int] = type_vocab_size
lowerCamelCase__ : Optional[Any] = layer_norm_eps
lowerCamelCase__ : List[str] = use_cache
lowerCamelCase__ : Optional[Any] = rescale_embeddings
lowerCamelCase__ : Optional[Any] = attention_type
lowerCamelCase__ : Optional[Any] = use_bias
lowerCamelCase__ : Optional[int] = block_size
lowerCamelCase__ : List[Any] = num_random_blocks
lowerCamelCase__ : List[str] = classifier_dropout
class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ):
@property
def __lowerCamelCase ( self : int ) ->Any:
if self.task == "multiple-choice":
lowerCamelCase__ : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
lowerCamelCase__ : Dict = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 315 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase_ ( lowerCamelCase ):
a__ = ['''image_processor''', '''tokenizer''']
a__ = '''ChineseCLIPImageProcessor'''
a__ = ('''BertTokenizer''', '''BertTokenizerFast''')
def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Tuple = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , __lowerCAmelCase , )
__magic_name__ :Optional[Any] = kwargs.pop('''feature_extractor''' )
__magic_name__ :Tuple = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(__lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :List[Any] = self.image_processor
def __call__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ):
"""simple docstring"""
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
__magic_name__ :int = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase )
if images is not None:
__magic_name__ :Dict = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase )
if text is not None and images is not None:
__magic_name__ :Union[str, Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase )
def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase )
def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase )
@property
def A ( self ):
"""simple docstring"""
__magic_name__ :List[Any] = self.tokenizer.model_input_names
__magic_name__ :Any = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def A ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowerCAmelCase , )
return self.image_processor_class
| 0 | 0 |
'''simple docstring'''
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int ) -> List[Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Tuple = TapasConfig.from_json_file(UpperCAmelCase__ )
# set absolute/relative position embeddings parameter
SCREAMING_SNAKE_CASE__ :Optional[int] = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
SCREAMING_SNAKE_CASE__ :Any = TapasForQuestionAnswering(config=UpperCAmelCase__ )
elif task == "WTQ":
# run_task_main.py hparams
SCREAMING_SNAKE_CASE__ :Any = 4
SCREAMING_SNAKE_CASE__ :int = True
# hparam_utils.py hparams
SCREAMING_SNAKE_CASE__ :int = 0.66_4694
SCREAMING_SNAKE_CASE__ :str = 0.20_7951
SCREAMING_SNAKE_CASE__ :List[Any] = 0.12_1194
SCREAMING_SNAKE_CASE__ :List[Any] = True
SCREAMING_SNAKE_CASE__ :int = True
SCREAMING_SNAKE_CASE__ :Tuple = False
SCREAMING_SNAKE_CASE__ :Tuple = 0.035_2513
SCREAMING_SNAKE_CASE__ :str = TapasForQuestionAnswering(config=UpperCAmelCase__ )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
SCREAMING_SNAKE_CASE__ :Optional[Any] = 4
SCREAMING_SNAKE_CASE__ :Union[str, Any] = False
# hparam_utils.py hparams
SCREAMING_SNAKE_CASE__ :Optional[int] = 36.4519
SCREAMING_SNAKE_CASE__ :Dict = 0.90_3421
SCREAMING_SNAKE_CASE__ :Any = 222.088
SCREAMING_SNAKE_CASE__ :str = True
SCREAMING_SNAKE_CASE__ :int = True
SCREAMING_SNAKE_CASE__ :int = True
SCREAMING_SNAKE_CASE__ :List[str] = 0.76_3141
SCREAMING_SNAKE_CASE__ :Optional[Any] = TapasForQuestionAnswering(config=UpperCAmelCase__ )
elif task == "TABFACT":
SCREAMING_SNAKE_CASE__ :str = TapasForSequenceClassification(config=UpperCAmelCase__ )
elif task == "MLM":
SCREAMING_SNAKE_CASE__ :Any = TapasForMaskedLM(config=UpperCAmelCase__ )
elif task == "INTERMEDIATE_PRETRAINING":
SCREAMING_SNAKE_CASE__ :str = TapasModel(config=UpperCAmelCase__ )
else:
raise ValueError(F'''Task {task} not supported.''' )
print(F'''Building PyTorch model from configuration: {config}''' )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# Save pytorch-model (weights and configuration)
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
model.save_pretrained(UpperCAmelCase__ )
# Save tokenizer files
print(F'''Save tokenizer files to {pytorch_dump_path}''' )
SCREAMING_SNAKE_CASE__ :List[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-1_0] + 'vocab.txt' , model_max_length=5_1_2 )
tokenizer.save_pretrained(UpperCAmelCase__ )
print('Used relative position embeddings:' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.'''
)
parser.add_argument(
'''--reset_position_index_per_cell''',
default=False,
action='''store_true''',
help='''Whether to use relative position embeddings or not. Defaults to True.''',
)
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--tapas_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained TAPAS model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
UpperCamelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 209 |
from sklearn.metrics import matthews_corrcoef
import datasets
SCREAMING_SNAKE_CASE__ : Optional[Any] = """
Compute the Matthews correlation coefficient (MCC)
The Matthews correlation coefficient is used in machine learning as a
measure of the quality of binary and multiclass classifications. It takes
into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are of
very different sizes. The MCC is in essence a correlation coefficient value
between -1 and +1. A coefficient of +1 represents a perfect prediction, 0
an average random prediction and -1 an inverse prediction. The statistic
is also known as the phi coefficient. [source: Wikipedia]
"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """
Args:
predictions (list of int): Predicted labels, as returned by a model.
references (list of int): Ground truth labels.
sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.
Returns:
matthews_correlation (dict containing float): Matthews correlation.
Examples:
Example 1, a basic example with only predictions and references as inputs:
>>> matthews_metric = datasets.load_metric(\"matthews_correlation\")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3])
>>> print(round(results['matthews_correlation'], 2))
0.54
Example 2, the same example as above, but also including sample weights:
>>> matthews_metric = datasets.load_metric(\"matthews_correlation\")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 3, 1, 1, 1, 2])
>>> print(round(results['matthews_correlation'], 2))
0.1
Example 3, the same example as above, but with sample weights that cause a negative correlation:
>>> matthews_metric = datasets.load_metric(\"matthews_correlation\")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 1, 0, 0, 0, 1])
>>> print(round(results['matthews_correlation'], 2))
-0.25
"""
SCREAMING_SNAKE_CASE__ : int = """\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase_ ( datasets.Metric ):
def A ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ) , reference_urls=[
'''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html'''
] , )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ):
"""simple docstring"""
return {
"matthews_correlation": float(matthews_corrcoef(__lowerCAmelCase , __lowerCAmelCase , sample_weight=__lowerCAmelCase ) ),
}
| 0 | 0 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, ClassLabel, Features
from .base import TaskTemplate
@dataclass(frozen=__lowercase )
class _UpperCAmelCase ( __lowercase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
SCREAMING_SNAKE_CASE : Optional[int] = Features({'''audio''': Audio()} )
SCREAMING_SNAKE_CASE : str = Features({'''labels''': ClassLabel} )
SCREAMING_SNAKE_CASE : Optional[int] = '''audio'''
SCREAMING_SNAKE_CASE : Dict = '''labels'''
def UpperCamelCase ( self : Any , UpperCamelCase__ : str ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , __lowerCAmelCase ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
A = copy.deepcopy(self )
A = self.label_schema.copy()
A = features[self.label_column]
A = label_schema
return task_template
@property
def UpperCamelCase ( self : str ):
return {
self.audio_column: "audio",
self.label_column: "labels",
}
| 699 |
from __future__ import annotations
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
print(f'''Vertex\tShortest Distance from vertex {src}''' )
for i, d in enumerate(snake_case ):
print(f'''{i}\t\t{d}''' )
def __lowercase ( snake_case, snake_case, snake_case ):
"""simple docstring"""
for j in range(snake_case ):
__magic_name__ , __magic_name__ , __magic_name__ :Tuple = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
return True
return False
def __lowercase ( snake_case, snake_case, snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :List[Any] = [float('''inf''' )] * vertex_count
__magic_name__ :Tuple = 0.0
for _ in range(vertex_count - 1 ):
for j in range(snake_case ):
__magic_name__ , __magic_name__ , __magic_name__ :Dict = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
__magic_name__ :Tuple = distance[u] + w
__magic_name__ :Tuple = check_negative_cycle(snake_case, snake_case, snake_case )
if negative_cycle_exists:
raise Exception('''Negative cycle found''' )
return distance
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE__ : Tuple = int(input("""Enter number of vertices: """).strip())
SCREAMING_SNAKE_CASE__ : Any = int(input("""Enter number of edges: """).strip())
SCREAMING_SNAKE_CASE__ : list[dict[str, int]] = [{} for _ in range(E)]
for i in range(E):
print("""Edge """, i + 1)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = (
int(x)
for x in input("""Enter source, destination, weight: """).strip().split(""" """)
)
SCREAMING_SNAKE_CASE__ : Dict = {"""src""": src, """dst""": dest, """weight""": weight}
SCREAMING_SNAKE_CASE__ : List[Any] = int(input("""\nEnter shortest path source:""").strip())
SCREAMING_SNAKE_CASE__ : List[str] = bellman_ford(graph, V, E, source)
print_distance(shortest_distance, 0)
| 0 | 0 |
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 592 |
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class lowerCamelCase_ :
def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=3_2 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ):
"""simple docstring"""
__magic_name__ :Optional[int] = parent
__magic_name__ :List[Any] = 1_3
__magic_name__ :Union[str, Any] = 7
__magic_name__ :Optional[Any] = True
__magic_name__ :Tuple = True
__magic_name__ :List[str] = True
__magic_name__ :List[Any] = True
__magic_name__ :int = 9_9
__magic_name__ :Any = 3_2
__magic_name__ :Union[str, Any] = 2
__magic_name__ :List[str] = 4
__magic_name__ :List[Any] = 3_7
__magic_name__ :Tuple = '''gelu'''
__magic_name__ :Any = 0.1
__magic_name__ :str = 0.1
__magic_name__ :List[str] = 5_1_2
__magic_name__ :int = 1_6
__magic_name__ :Any = 2
__magic_name__ :List[Any] = 0.02
__magic_name__ :Optional[Any] = 3
__magic_name__ :Tuple = 4
__magic_name__ :Optional[Any] = None
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ :str = None
if self.use_input_mask:
__magic_name__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
__magic_name__ :str = None
if self.use_token_type_ids:
__magic_name__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ :Union[str, Any] = None
__magic_name__ :Tuple = None
__magic_name__ :str = None
if self.use_labels:
__magic_name__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ :List[Any] = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ :str = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :int = TFRoFormerModel(config=__lowerCAmelCase )
__magic_name__ :Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
__magic_name__ :List[str] = [input_ids, input_mask]
__magic_name__ :Any = model(__lowerCAmelCase )
__magic_name__ :List[str] = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Dict = True
__magic_name__ :List[str] = TFRoFormerForCausalLM(config=__lowerCAmelCase )
__magic_name__ :str = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :Optional[Any] = model(__lowerCAmelCase )['''logits''']
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[Any] = TFRoFormerForMaskedLM(config=__lowerCAmelCase )
__magic_name__ :Any = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :Dict = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :int = self.num_labels
__magic_name__ :str = TFRoFormerForSequenceClassification(config=__lowerCAmelCase )
__magic_name__ :Optional[int] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :str = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = self.num_choices
__magic_name__ :Tuple = TFRoFormerForMultipleChoice(config=__lowerCAmelCase )
__magic_name__ :int = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
__magic_name__ :Optional[Any] = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
__magic_name__ :Union[str, Any] = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
__magic_name__ :str = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
__magic_name__ :Tuple = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[int] = self.num_labels
__magic_name__ :Any = TFRoFormerForTokenClassification(config=__lowerCAmelCase )
__magic_name__ :str = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :Dict = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :List[str] = TFRoFormerForQuestionAnswering(config=__lowerCAmelCase )
__magic_name__ :List[str] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :Union[str, Any] = model(__lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A ( self ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) :Union[str, Any] = config_and_inputs
__magic_name__ :Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class lowerCamelCase_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ):
a__ = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
a__ = (
{
'''feature-extraction''': TFRoFormerModel,
'''fill-mask''': TFRoFormerForMaskedLM,
'''question-answering''': TFRoFormerForQuestionAnswering,
'''text-classification''': TFRoFormerForSequenceClassification,
'''text-generation''': TFRoFormerForCausalLM,
'''token-classification''': TFRoFormerForTokenClassification,
'''zero-shot''': TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
a__ = False
a__ = False
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def A ( self ):
"""simple docstring"""
__magic_name__ :List[str] = TFRoFormerModelTester(self )
__magic_name__ :List[str] = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 )
def A ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase )
@slow
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' )
self.assertIsNotNone(__lowerCAmelCase )
@require_tf
class lowerCamelCase_ ( unittest.TestCase ):
@slow
def A ( self ):
"""simple docstring"""
__magic_name__ :int = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' )
__magic_name__ :Dict = tf.constant([[0, 1, 2, 3, 4, 5]] )
__magic_name__ :Optional[Any] = model(__lowerCAmelCase )[0]
# TODO Replace vocab size
__magic_name__ :int = 5_0_0_0_0
__magic_name__ :Tuple = [1, 6, vocab_size]
self.assertEqual(output.shape , __lowerCAmelCase )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
__magic_name__ :Any = tf.constant(
[
[
[-0.12053341, -1.0264901, 0.29221946],
[-1.5133783, 0.197433, 0.15190607],
[-5.0135403, -3.900256, -0.84038764],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1E-4 )
@require_tf
class lowerCamelCase_ ( unittest.TestCase ):
a__ = 1e-4
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = tf.constant([[4, 1_0]] )
__magic_name__ :Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
__magic_name__ :Optional[Any] = emba(input_ids.shape )
__magic_name__ :List[str] = tf.constant(
[[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] )
tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , atol=self.tolerance )
def A ( self ):
"""simple docstring"""
__magic_name__ :Tuple = tf.constant(
[
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.8415, 0.8219, 0.8020, 0.7819, 0.7617],
[0.9093, 0.9364, 0.9581, 0.9749, 0.9870],
] )
__magic_name__ :Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 )
emba([2, 1_6, 5_1_2] )
__magic_name__ :Optional[int] = emba.weight[:3, :5]
tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , atol=self.tolerance )
@require_tf
class lowerCamelCase_ ( unittest.TestCase ):
a__ = 1e-4
def A ( self ):
"""simple docstring"""
# 2,12,16,64
__magic_name__ :int = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0
__magic_name__ :str = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0
__magic_name__ :int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 )
__magic_name__ :List[str] = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :]
__magic_name__ , __magic_name__ :Union[str, Any] = TFRoFormerSelfAttention.apply_rotary_position_embeddings(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :Tuple = tf.constant(
[
[0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700],
[-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343],
[-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985],
[-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871],
[0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980],
[3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253],
] )
__magic_name__ :List[str] = tf.constant(
[
[0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700],
[0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343],
[1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985],
[2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871],
[-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980],
[-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __lowerCAmelCase , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __lowerCAmelCase , atol=self.tolerance )
| 0 | 0 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCAmelCase__ = StableDiffusionDiffEditPipeline
lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'}
lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'}
lowerCAmelCase__ = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
lowerCAmelCase__ = frozenset([] )
def _UpperCAmelCase ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowercase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__lowerCAmelCase , )
_lowercase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , )
_lowercase = DDIMInverseScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_zero=__lowerCAmelCase , )
torch.manual_seed(0 )
_lowercase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
_lowercase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , )
_lowercase = CLIPTextModel(__lowerCAmelCase )
_lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowercase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''inverse_scheduler''': inverse_scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=0 ):
'''simple docstring'''
_lowercase = floats_tensor((1, 16, 16) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
_lowercase = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
if str(__lowerCAmelCase ).startswith("""mps""" ):
_lowercase = torch.manual_seed(__lowerCAmelCase )
else:
_lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
_lowercase = {
'''prompt''': '''a dog and a newt''',
'''mask_image''': mask,
'''image_latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=0 ):
'''simple docstring'''
_lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
_lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" )
if str(__lowerCAmelCase ).startswith("""mps""" ):
_lowercase = torch.manual_seed(__lowerCAmelCase )
else:
_lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
_lowercase = {
'''image''': image,
'''source_prompt''': '''a cat and a frog''',
'''target_prompt''': '''a dog and a newt''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''num_maps_per_mask''': 2,
'''mask_encode_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=0 ):
'''simple docstring'''
_lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
_lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" )
if str(__lowerCAmelCase ).startswith("""mps""" ):
_lowercase = torch.manual_seed(__lowerCAmelCase )
else:
_lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
_lowercase = {
'''image''': image,
'''prompt''': '''a cat and a frog''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''decode_latents''': True,
'''output_type''': '''numpy''',
}
return inputs
def _UpperCAmelCase ( self ):
'''simple docstring'''
if not hasattr(self.pipeline_class , """_optional_components""" ):
return
_lowercase = self.get_dummy_components()
_lowercase = self.pipeline_class(**__lowerCAmelCase )
pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
_lowercase = self.get_dummy_inputs(__lowerCAmelCase )
_lowercase = pipe(**__lowerCAmelCase )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(__lowerCAmelCase )
_lowercase = self.pipeline_class.from_pretrained(__lowerCAmelCase )
pipe_loaded.to(__lowerCAmelCase )
pipe_loaded.set_progress_bar_config(disable=__lowerCAmelCase )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(__lowerCAmelCase , __lowerCAmelCase ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , )
_lowercase = self.get_dummy_inputs(__lowerCAmelCase )
_lowercase = pipe_loaded(**__lowerCAmelCase )[0]
_lowercase = np.abs(output - output_loaded ).max()
self.assertLess(__lowerCAmelCase , 1e-4 )
def _UpperCAmelCase ( self ):
'''simple docstring'''
_lowercase = '''cpu'''
_lowercase = self.get_dummy_components()
_lowercase = self.pipeline_class(**__lowerCAmelCase )
pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
_lowercase = self.get_dummy_mask_inputs(__lowerCAmelCase )
_lowercase = pipe.generate_mask(**__lowerCAmelCase )
_lowercase = mask[0, -3:, -3:]
self.assertEqual(mask.shape , (1, 16, 16) )
_lowercase = np.array([0] * 9 )
_lowercase = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(__lowerCAmelCase , 1e-3 )
self.assertEqual(mask[0, -3, -4] , 0 )
def _UpperCAmelCase ( self ):
'''simple docstring'''
_lowercase = '''cpu'''
_lowercase = self.get_dummy_components()
_lowercase = self.pipeline_class(**__lowerCAmelCase )
pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
_lowercase = self.get_dummy_inversion_inputs(__lowerCAmelCase )
_lowercase = pipe.invert(**__lowerCAmelCase ).images
_lowercase = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
_lowercase = np.array(
[0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , )
_lowercase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(__lowerCAmelCase , 1e-3 )
def _UpperCAmelCase ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=5e-3 )
def _UpperCAmelCase ( self ):
'''simple docstring'''
_lowercase = '''cpu'''
_lowercase = self.get_dummy_components()
_lowercase = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''}
_lowercase = DPMSolverMultistepScheduler(**__lowerCAmelCase )
_lowercase = DPMSolverMultistepInverseScheduler(**__lowerCAmelCase )
_lowercase = self.pipeline_class(**__lowerCAmelCase )
pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
_lowercase = self.get_dummy_inversion_inputs(__lowerCAmelCase )
_lowercase = pipe.invert(**__lowerCAmelCase ).images
_lowercase = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
_lowercase = np.array(
[0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , )
_lowercase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(__lowerCAmelCase , 1e-3 )
@require_torch_gpu
@slow
class _lowercase ( unittest.TestCase ):
"""simple docstring"""
def _UpperCAmelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def _UpperCAmelCase ( cls ):
'''simple docstring'''
_lowercase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" )
_lowercase = raw_image.convert("""RGB""" ).resize((768, 768) )
_lowercase = raw_image
def _UpperCAmelCase ( self ):
'''simple docstring'''
_lowercase = torch.manual_seed(0 )
_lowercase = StableDiffusionDiffEditPipeline.from_pretrained(
"""stabilityai/stable-diffusion-2-1""" , safety_checker=__lowerCAmelCase , torch_dtype=torch.floataa )
_lowercase = DDIMScheduler.from_config(pipe.scheduler.config )
_lowercase = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
_lowercase = '''a bowl of fruit'''
_lowercase = '''a bowl of pears'''
_lowercase = pipe.generate_mask(
image=self.raw_image , source_prompt=__lowerCAmelCase , target_prompt=__lowerCAmelCase , generator=__lowerCAmelCase , )
_lowercase = pipe.invert(
prompt=__lowerCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__lowerCAmelCase ).latents
_lowercase = pipe(
prompt=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_latents=__lowerCAmelCase , generator=__lowerCAmelCase , negative_prompt=__lowerCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0]
_lowercase = (
np.array(
load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/diffedit/pears.png""" ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5e-1
def _UpperCAmelCase ( self ):
'''simple docstring'''
_lowercase = torch.manual_seed(0 )
_lowercase = StableDiffusionDiffEditPipeline.from_pretrained(
"""stabilityai/stable-diffusion-2-1""" , safety_checker=__lowerCAmelCase , torch_dtype=torch.floataa )
_lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
_lowercase = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
_lowercase = '''a bowl of fruit'''
_lowercase = '''a bowl of pears'''
_lowercase = pipe.generate_mask(
image=self.raw_image , source_prompt=__lowerCAmelCase , target_prompt=__lowerCAmelCase , generator=__lowerCAmelCase , )
_lowercase = pipe.invert(
prompt=__lowerCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__lowerCAmelCase , num_inference_steps=25 , ).latents
_lowercase = pipe(
prompt=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_latents=__lowerCAmelCase , generator=__lowerCAmelCase , negative_prompt=__lowerCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0]
_lowercase = (
np.array(
load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/diffedit/pears.png""" ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5e-1
| 398 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
SCREAMING_SNAKE_CASE__ : Optional[int] = {"""tokenization_herbert""": ["""HerbertTokenizer"""]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""HerbertTokenizerFast"""]
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
SCREAMING_SNAKE_CASE__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 0 | 0 |
def __A ( _A ):
"""simple docstring"""
if bit_count < 0:
raise ValueError("The given input must be positive" )
# get the generated string sequence
__a = gray_code_sequence_string(_A )
#
# convert them to integers
for i in range(len(_A ) ):
__a = int(sequence[i] , 2 )
return sequence
def __A ( _A ):
"""simple docstring"""
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
__a = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
__a = gray_code_sequence_string(bit_count - 1 )
__a = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
__a = '''0''' + smaller_sequence[i]
sequence.append(_A )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
__a = '''1''' + smaller_sequence[i]
sequence.append(_A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 197 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :str = XCLIPTextConfig()
# derive patch size from model name
__magic_name__ :Union[str, Any] = model_name.find('''patch''' )
__magic_name__ :Optional[Any] = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] )
__magic_name__ :int = XCLIPVisionConfig(patch_size=snake_case, num_frames=snake_case )
if "large" in model_name:
__magic_name__ :Dict = 7_6_8
__magic_name__ :int = 3_0_7_2
__magic_name__ :List[Any] = 1_2
__magic_name__ :str = 1_0_2_4
__magic_name__ :Any = 4_0_9_6
__magic_name__ :Optional[Any] = 1_6
__magic_name__ :Union[str, Any] = 2_4
__magic_name__ :Union[str, Any] = 7_6_8
__magic_name__ :Tuple = 3_0_7_2
if model_name == "xclip-large-patch14-16-frames":
__magic_name__ :List[str] = 3_3_6
__magic_name__ :Any = XCLIPConfig.from_text_vision_configs(snake_case, snake_case )
if "large" in model_name:
__magic_name__ :str = 7_6_8
return config
def __lowercase ( snake_case ):
"""simple docstring"""
if name == "token_embedding.weight":
__magic_name__ :Any = name.replace('''token_embedding.weight''', '''text_model.embeddings.token_embedding.weight''' )
if name == "positional_embedding":
__magic_name__ :Any = name.replace('''positional_embedding''', '''text_model.embeddings.position_embedding.weight''' )
if "ln_1" in name:
__magic_name__ :List[str] = name.replace('''ln_1''', '''layer_norm1''' )
if "ln_2" in name:
__magic_name__ :str = name.replace('''ln_2''', '''layer_norm2''' )
if "c_fc" in name:
__magic_name__ :List[Any] = name.replace('''c_fc''', '''fc1''' )
if "c_proj" in name:
__magic_name__ :Any = name.replace('''c_proj''', '''fc2''' )
if name.startswith('''transformer.resblocks''' ):
__magic_name__ :Any = name.replace('''transformer.resblocks''', '''text_model.encoder.layers''' )
if "attn.out_proj" in name and "message" not in name:
__magic_name__ :Union[str, Any] = name.replace('''attn.out_proj''', '''self_attn.out_proj''' )
if "ln_final" in name:
__magic_name__ :Tuple = name.replace('''ln_final''', '''text_model.final_layer_norm''' )
# visual encoder
if name == "visual.class_embedding":
__magic_name__ :List[Any] = name.replace('''visual.class_embedding''', '''vision_model.embeddings.class_embedding''' )
if name == "visual.positional_embedding":
__magic_name__ :Any = name.replace('''visual.positional_embedding''', '''vision_model.embeddings.position_embedding.weight''' )
if name.startswith('''visual.transformer.resblocks''' ):
__magic_name__ :Union[str, Any] = name.replace('''visual.transformer.resblocks''', '''vision_model.encoder.layers''' )
if "visual.conv1" in name:
__magic_name__ :Tuple = name.replace('''visual.conv1''', '''vision_model.embeddings.patch_embedding''' )
if "visual.ln_pre" in name:
__magic_name__ :Tuple = name.replace('''visual.ln_pre''', '''vision_model.pre_layernorm''' )
if "visual.ln_post" in name:
__magic_name__ :Optional[Any] = name.replace('''visual.ln_post''', '''vision_model.post_layernorm''' )
if "visual.proj" in name:
__magic_name__ :Tuple = name.replace('''visual.proj''', '''visual_projection.weight''' )
if "text_projection" in name:
__magic_name__ :int = name.replace('''text_projection''', '''text_projection.weight''' )
# things on top
if "prompts_visual_proj" in name:
__magic_name__ :int = name.replace('''prompts_visual_proj''', '''prompts_visual_projection''' )
if "prompts_visual_ln" in name:
__magic_name__ :Dict = name.replace('''prompts_visual_ln''', '''prompts_visual_layernorm''' )
# mit
if name == "mit.positional_embedding":
__magic_name__ :List[Any] = name.replace('''positional''', '''position''' )
if name.startswith('''mit.resblocks''' ):
__magic_name__ :Union[str, Any] = name.replace('''mit.resblocks''', '''mit.encoder.layers''' )
# prompts generator
if name.startswith('''prompts_generator.norm''' ):
__magic_name__ :str = name.replace('''prompts_generator.norm''', '''prompts_generator.layernorm''' )
return name
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
__magic_name__ :Any = orig_state_dict.pop(snake_case )
if "attn.in_proj" in key:
__magic_name__ :str = key.split('''.''' )
if key.startswith('''visual''' ):
__magic_name__ :List[Any] = key_split[3]
__magic_name__ :List[Any] = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
__magic_name__ :List[Any] = val[
:dim, :
]
__magic_name__ :List[str] = val[
dim : dim * 2, :
]
__magic_name__ :List[str] = val[
-dim:, :
]
else:
__magic_name__ :str = val[
:dim
]
__magic_name__ :Optional[int] = val[
dim : dim * 2
]
__magic_name__ :Any = val[
-dim:
]
else:
if "weight" in key:
__magic_name__ :int = val[
:dim, :
]
__magic_name__ :Union[str, Any] = val[
dim : dim * 2, :
]
__magic_name__ :List[Any] = val[
-dim:, :
]
else:
__magic_name__ :Union[str, Any] = val[:dim]
__magic_name__ :str = val[
dim : dim * 2
]
__magic_name__ :Dict = val[-dim:]
elif key.startswith('''mit''' ):
__magic_name__ :List[Any] = key_split[2]
__magic_name__ :Any = config.vision_config.mit_hidden_size
if "weight" in key:
__magic_name__ :Union[str, Any] = val[:dim, :]
__magic_name__ :Optional[int] = val[dim : dim * 2, :]
__magic_name__ :int = val[-dim:, :]
else:
__magic_name__ :Tuple = val[:dim]
__magic_name__ :Optional[int] = val[dim : dim * 2]
__magic_name__ :Optional[int] = val[-dim:]
else:
__magic_name__ :Any = key_split[2]
__magic_name__ :List[Any] = config.text_config.hidden_size
if "weight" in key:
__magic_name__ :Union[str, Any] = val[:dim, :]
__magic_name__ :Tuple = val[
dim : dim * 2, :
]
__magic_name__ :str = val[-dim:, :]
else:
__magic_name__ :int = val[:dim]
__magic_name__ :Any = val[
dim : dim * 2
]
__magic_name__ :str = val[-dim:]
else:
__magic_name__ :Tuple = rename_key(snake_case )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
__magic_name__ :List[Any] = val.T
__magic_name__ :Optional[Any] = val
return orig_state_dict
def __lowercase ( snake_case ):
"""simple docstring"""
if num_frames == 8:
__magic_name__ :Any = '''eating_spaghetti_8_frames.npy'''
elif num_frames == 1_6:
__magic_name__ :List[Any] = '''eating_spaghetti.npy'''
elif num_frames == 3_2:
__magic_name__ :Tuple = '''eating_spaghetti_32_frames.npy'''
__magic_name__ :str = hf_hub_download(
repo_id='''hf-internal-testing/spaghetti-video''', filename=snake_case, repo_type='''dataset''', )
__magic_name__ :List[Any] = np.load(snake_case )
return list(snake_case )
def __lowercase ( snake_case, snake_case=None, snake_case=False ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = {
# fully supervised kinetics-400 checkpoints
'''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''',
'''xclip-base-patch32-16-frames''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'''
),
'''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''',
'''xclip-base-patch16-16-frames''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'''
),
'''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb''',
'''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f''',
# fully supervised kinetics-600 checkpoints
'''xclip-base-patch16-kinetics-600''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'''
),
'''xclip-base-patch16-kinetics-600-16-frames''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'''
),
'''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be''',
# few shot
'''xclip-base-patch16-hmdb-2-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'''
),
'''xclip-base-patch16-hmdb-4-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'''
),
'''xclip-base-patch16-hmdb-8-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'''
),
'''xclip-base-patch16-hmdb-16-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'''
),
'''xclip-base-patch16-ucf-2-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'''
),
'''xclip-base-patch16-ucf-4-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'''
),
'''xclip-base-patch16-ucf-8-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'''
),
'''xclip-base-patch16-ucf-16-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'''
),
# zero shot
'''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''',
}
__magic_name__ :Optional[int] = model_to_url[model_name]
__magic_name__ :List[str] = 8
if "16-frames" in model_name:
__magic_name__ :List[Any] = 1_6
elif "shot" in model_name:
__magic_name__ :Dict = 3_2
__magic_name__ :str = get_xclip_config(snake_case, snake_case )
__magic_name__ :List[Any] = XCLIPModel(snake_case )
model.eval()
if "drive" in checkpoint_url:
__magic_name__ :Any = '''pytorch_model.bin'''
gdown.cached_download(snake_case, snake_case, quiet=snake_case )
__magic_name__ :Optional[Any] = torch.load(snake_case, map_location='''cpu''' )['''model''']
else:
__magic_name__ :Optional[int] = torch.hub.load_state_dict_from_url(snake_case )['''model''']
__magic_name__ :List[str] = convert_state_dict(snake_case, snake_case )
__magic_name__ :List[Any] = XCLIPModel(snake_case )
__magic_name__ , __magic_name__ :Optional[Any] = model.load_state_dict(snake_case, strict=snake_case )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
__magic_name__ :str = 3_3_6 if model_name == '''xclip-large-patch14-16-frames''' else 2_2_4
__magic_name__ :Optional[int] = VideoMAEImageProcessor(size=snake_case )
__magic_name__ :Optional[int] = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' )
__magic_name__ :Tuple = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' )
__magic_name__ :Optional[int] = XCLIPProcessor(image_processor=snake_case, tokenizer=snake_case )
__magic_name__ :List[Any] = prepare_video(snake_case )
__magic_name__ :str = processor(
text=['''playing sports''', '''eating spaghetti''', '''go shopping'''], videos=snake_case, return_tensors='''pt''', padding=snake_case )
print('''Shape of pixel values:''', inputs.pixel_values.shape )
with torch.no_grad():
__magic_name__ :Tuple = model(**snake_case )
# Verify outputs
__magic_name__ :Any = outputs.logits_per_video
__magic_name__ :str = logits_per_video.softmax(dim=1 )
print('''Probs:''', snake_case )
# kinetics-400
if model_name == "xclip-base-patch32":
__magic_name__ :Dict = torch.tensor([[0.0019, 0.9951, 0.0030]] )
elif model_name == "xclip-base-patch32-16-frames":
__magic_name__ :str = torch.tensor([[7.0_9_9_9E-0_4, 9.9_8_8_3E-0_1, 4.5_5_8_0E-0_4]] )
elif model_name == "xclip-base-patch16":
__magic_name__ :Tuple = torch.tensor([[0.0083, 0.9681, 0.0236]] )
elif model_name == "xclip-base-patch16-16-frames":
__magic_name__ :Tuple = torch.tensor([[7.6_9_3_7E-0_4, 9.9_7_2_8E-0_1, 1.9_4_7_3E-0_3]] )
elif model_name == "xclip-large-patch14":
__magic_name__ :str = torch.tensor([[0.0062, 0.9864, 0.0075]] )
elif model_name == "xclip-large-patch14-16-frames":
__magic_name__ :Optional[int] = torch.tensor([[3.3_8_7_7E-0_4, 9.9_9_3_7E-0_1, 2.8_8_8_8E-0_4]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
__magic_name__ :Optional[int] = torch.tensor([[0.0555, 0.8914, 0.0531]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
__magic_name__ :List[str] = torch.tensor([[3.8_5_5_4E-0_4, 9.9_9_2_9E-0_1, 3.2_7_5_4E-0_4]] )
elif model_name == "xclip-large-patch14-kinetics-600":
__magic_name__ :List[str] = torch.tensor([[0.0036, 0.9920, 0.0045]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
__magic_name__ :Tuple = torch.tensor([[7.1_8_9_0E-0_6, 9.9_9_9_4E-0_1, 5.6_5_5_9E-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
__magic_name__ :List[str] = torch.tensor([[1.0_3_2_0E-0_5, 9.9_9_9_3E-0_1, 6.2_4_3_5E-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
__magic_name__ :Optional[int] = torch.tensor([[4.1_3_7_7E-0_6, 9.9_9_9_0E-0_1, 9.8_3_8_6E-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
__magic_name__ :Optional[int] = torch.tensor([[4.1_3_4_7E-0_5, 9.9_9_6_2E-0_1, 3.3_4_1_1E-0_4]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
__magic_name__ :Union[str, Any] = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
__magic_name__ :Union[str, Any] = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
__magic_name__ :Optional[int] = torch.tensor([[0.0027, 0.9904, 0.0070]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
__magic_name__ :Any = torch.tensor([[9.8_2_1_9E-0_4, 9.9_5_9_3E-0_1, 3.0_8_6_3E-0_3]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
__magic_name__ :Optional[int] = torch.tensor([[3.5_0_8_2E-0_4, 9.9_7_8_5E-0_1, 1.7_9_6_6E-0_3]] )
else:
raise ValueError(f'''Model name {model_name} not supported''' )
assert torch.allclose(snake_case, snake_case, atol=1E-3 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case )
if push_to_hub:
print('''Pushing model, processor and slow tokenizer files to the hub...''' )
model.push_to_hub(snake_case, organization='''nielsr''' )
processor.push_to_hub(snake_case, organization='''nielsr''' )
slow_tokenizer.push_to_hub(snake_case, organization='''nielsr''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""xclip-base-patch32""",
type=str,
help="""Name of the model.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 0 | 0 |
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
_lowerCamelCase =5_0_0_0_0_0
_lowerCamelCase =os.path.split(__file__)
_lowerCamelCase =os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json"""))
@get_duration
def _a ( lowerCamelCase, **lowerCamelCase ):
lowerCamelCase : str = dataset.map(**lowerCamelCase )
@get_duration
def _a ( lowerCamelCase, **lowerCamelCase ):
lowerCamelCase : str = dataset.filter(**lowerCamelCase )
def _a ( ):
lowerCamelCase : Any = {'''num examples''': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase : Tuple = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} )
lowerCamelCase : Union[str, Any] = generate_example_dataset(
os.path.join(lowerCamelCase, """dataset.arrow""" ), lowerCamelCase, num_examples=lowerCamelCase )
lowerCamelCase : int = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""", use_fast=lowerCamelCase )
def tokenize(lowerCamelCase ):
return tokenizer(examples["""text"""] )
lowerCamelCase : str = map(lowerCamelCase )
lowerCamelCase : Tuple = map(lowerCamelCase, batched=lowerCamelCase )
lowerCamelCase : Optional[int] = map(lowerCamelCase, function=lambda lowerCamelCase : None, batched=lowerCamelCase )
with dataset.formatted_as(type="""numpy""" ):
lowerCamelCase : str = map(lowerCamelCase, function=lambda lowerCamelCase : None, batched=lowerCamelCase )
with dataset.formatted_as(type="""pandas""" ):
lowerCamelCase : Any = map(lowerCamelCase, function=lambda lowerCamelCase : None, batched=lowerCamelCase )
with dataset.formatted_as(type="""torch""", columns="""numbers""" ):
lowerCamelCase : List[Any] = map(lowerCamelCase, function=lambda lowerCamelCase : None, batched=lowerCamelCase )
with dataset.formatted_as(type="""tensorflow""", columns="""numbers""" ):
lowerCamelCase : Optional[Any] = map(lowerCamelCase, function=lambda lowerCamelCase : None, batched=lowerCamelCase )
lowerCamelCase : str = map(lowerCamelCase, function=lowerCamelCase, batched=lowerCamelCase )
lowerCamelCase : Tuple = filter(lowerCamelCase )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(lowerCamelCase, """wb""" ) as f:
f.write(json.dumps(lowerCamelCase ).encode("""utf-8""" ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 681 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class lowerCamelCase_ ( lowerCamelCase ):
def __init__( self , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[int] = params
__magic_name__ :Any = np.array(__lowerCAmelCase )
__magic_name__ :Optional[Any] = np.array([len(__lowerCAmelCase ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self , __lowerCAmelCase ):
"""simple docstring"""
return (self.token_ids[index], self.lengths[index])
def __len__( self ):
"""simple docstring"""
return len(self.lengths )
def A ( self ):
"""simple docstring"""
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def A ( self ):
"""simple docstring"""
__magic_name__ :Any = self.params.max_model_input_size
__magic_name__ :int = self.lengths > max_len
logger.info(F'''Splitting {sum(__lowerCAmelCase )} too long sequences.''' )
def divide_chunks(__lowerCAmelCase , __lowerCAmelCase ):
return [l[i : i + n] for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )]
__magic_name__ :Optional[int] = []
__magic_name__ :List[Any] = []
if self.params.mlm:
__magic_name__ , __magic_name__ :Optional[Any] = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token''']
else:
__magic_name__ , __magic_name__ :Tuple = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token''']
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
__magic_name__ :int = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
__magic_name__ :List[Any] = np.insert(__lowerCAmelCase , 0 , __lowerCAmelCase )
if sub_s[-1] != sep_id:
__magic_name__ :Union[str, Any] = np.insert(__lowerCAmelCase , len(__lowerCAmelCase ) , __lowerCAmelCase )
assert len(__lowerCAmelCase ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(__lowerCAmelCase )
new_tok_ids.extend(__lowerCAmelCase )
new_lengths.extend([len(__lowerCAmelCase ) for l in sub_seqs] )
__magic_name__ :Tuple = np.array(__lowerCAmelCase )
__magic_name__ :Optional[int] = np.array(__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = len(self )
__magic_name__ :int = self.lengths > 1_1
__magic_name__ :List[str] = self.token_ids[indices]
__magic_name__ :Union[str, Any] = self.lengths[indices]
__magic_name__ :List[str] = len(self )
logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' )
def A ( self ):
"""simple docstring"""
if "unk_token" not in self.params.special_tok_ids:
return
else:
__magic_name__ :Tuple = self.params.special_tok_ids['''unk_token''']
__magic_name__ :Dict = len(self )
__magic_name__ :Tuple = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
__magic_name__ :int = (unk_occs / self.lengths) < 0.5
__magic_name__ :str = self.token_ids[indices]
__magic_name__ :str = self.lengths[indices]
__magic_name__ :Any = len(self )
logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' )
def A ( self ):
"""simple docstring"""
if not self.params.is_master:
return
logger.info(F'''{len(self )} sequences''' )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[Any] = [t[0] for t in batch]
__magic_name__ :List[Any] = [t[1] for t in batch]
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
# Max for paddings
__magic_name__ :Tuple = max(__lowerCAmelCase )
# Pad token ids
if self.params.mlm:
__magic_name__ :Any = self.params.special_tok_ids['''pad_token''']
else:
__magic_name__ :str = self.params.special_tok_ids['''unk_token''']
__magic_name__ :Any = [list(t.astype(__lowerCAmelCase ) ) + [pad_idx] * (max_seq_len_ - len(__lowerCAmelCase )) for t in token_ids]
assert len(tk_ ) == len(__lowerCAmelCase )
assert all(len(__lowerCAmelCase ) == max_seq_len_ for t in tk_ )
__magic_name__ :Optional[int] = torch.tensor(tk_ ) # (bs, max_seq_len_)
__magic_name__ :Optional[int] = torch.tensor(__lowerCAmelCase ) # (bs)
return tk_t, lg_t
| 0 | 0 |
'''simple docstring'''
def snake_case ( snake_case : List[Any] ) -> Optional[int]:
"""simple docstring"""
for i in range(len(snake_case ) - 1 , 0 , -1 ):
lowerCAmelCase = False
for j in range(snake_case , 0 , -1 ):
if unsorted[j] < unsorted[j - 1]:
lowerCAmelCase = unsorted[j - 1], unsorted[j]
lowerCAmelCase = True
for j in range(snake_case ):
if unsorted[j] > unsorted[j + 1]:
lowerCAmelCase = unsorted[j + 1], unsorted[j]
lowerCAmelCase = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase : Optional[int] = input("Enter numbers separated by a comma:\n").strip()
_UpperCamelCase : str = [int(item) for item in user_input.split(",")]
print(F"""{cocktail_shaker_sort(unsorted) = }""")
| 284 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Tuple = """▁"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""vocab_file""": """spiece.model"""}
SCREAMING_SNAKE_CASE__ : List[Any] = {
"""vocab_file""": {
"""google/reformer-crime-and-punishment""": (
"""https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model"""
)
}
}
SCREAMING_SNAKE_CASE__ : Optional[int] = {
"""google/reformer-crime-and-punishment""": 52_42_88,
}
class lowerCamelCase_ ( lowerCamelCase ):
a__ = VOCAB_FILES_NAMES
a__ = PRETRAINED_VOCAB_FILES_MAP
a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ = ['''input_ids''', '''attention_mask''']
def __init__( self , __lowerCAmelCase , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase=[] , __lowerCAmelCase = None , **__lowerCAmelCase , ):
"""simple docstring"""
__magic_name__ :int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , )
__magic_name__ :Optional[Any] = vocab_file
__magic_name__ :int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__lowerCAmelCase )
@property
def A ( self ):
"""simple docstring"""
return self.sp_model.get_piece_size()
def A ( self ):
"""simple docstring"""
__magic_name__ :str = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = self.__dict__.copy()
__magic_name__ :Optional[Any] = None
return state
def __setstate__( self , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Any = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__magic_name__ :Optional[int] = {}
__magic_name__ :Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase )
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
return self.sp_model.piece_to_id(__lowerCAmelCase )
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
if index < self.sp_model.get_piece_size():
__magic_name__ :int = self.sp_model.IdToPiece(__lowerCAmelCase )
return token
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[Any] = []
__magic_name__ :Tuple = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(__lowerCAmelCase ) + token
__magic_name__ :Optional[Any] = []
else:
current_sub_tokens.append(__lowerCAmelCase )
out_string += self.sp_model.decode(__lowerCAmelCase )
return out_string.strip()
def A ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
"""simple docstring"""
if not os.path.isdir(__lowerCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
__magic_name__ :Optional[int] = os.path.join(
__lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__lowerCAmelCase , '''wb''' ) as fi:
__magic_name__ :Dict = self.sp_model.serialized_model_proto()
fi.write(__lowerCAmelCase )
return (out_vocab_file,)
| 0 | 0 |
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
snake_case__ : Optional[int] = logging.get_logger(__name__)
snake_case__ : str = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
snake_case__ : int = {
"""vocab_file""": {
"""allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json"""
},
"""merges_file""": {
"""allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt"""
},
}
snake_case__ : Optional[int] = {"""allegro/herbert-base-cased""": 514}
snake_case__ : Union[str, Any] = {}
class SCREAMING_SNAKE_CASE_ (a__ ):
'''simple docstring'''
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_INIT_CONFIGURATION
_a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = HerbertTokenizer
def __init__( self : Dict , __a : str=None , __a : List[Any]=None , __a : int=None , __a : List[Any]="<s>" , __a : List[Any]="<unk>" , __a : str="<pad>" , __a : Optional[int]="<mask>" , __a : Tuple="</s>" , **__a : Union[str, Any] , ) ->List[str]:
super().__init__(
__lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , **__lowerCAmelCase , )
def _lowerCAmelCase ( self : List[str] , __a : Any , __a : Union[str, Any] = None ) ->Optional[Any]:
lowerCamelCase_ : str = [self.cls_token_id]
lowerCamelCase_ : Tuple = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _lowerCAmelCase ( self : str , __a : Optional[int] , __a : Dict = None , __a : str = False ) ->Optional[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCAmelCase )) + [1]
return [1] + ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase )) + [1]
def _lowerCAmelCase ( self : Any , __a : str , __a : Any = None ) ->List[str]:
lowerCamelCase_ : Dict = [self.sep_token_id]
lowerCamelCase_ : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _lowerCAmelCase ( self : Any , __a : List[str] , __a : List[Any] = None ) ->Dict:
lowerCamelCase_ : Optional[int] = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase )
return tuple(__lowerCAmelCase )
| 278 |
import os
import unittest
from transformers import MobileBertTokenizer, MobileBertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class lowerCamelCase_ ( lowerCamelCase , unittest.TestCase ):
a__ = MobileBertTokenizer
a__ = MobileBertTokenizerFast
a__ = True
a__ = True
a__ = filter_non_english
a__ = '''google/mobilebert-uncased'''
def A ( self ):
"""simple docstring"""
super().setUp()
__magic_name__ :Tuple = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
__magic_name__ :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
__magic_name__ :List[str] = [
(tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped
for tokenizer_def in self.tokenizers_list
]
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = '''UNwant\u00E9d,running'''
__magic_name__ :int = '''unwanted, running'''
return input_text, output_text
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = self.tokenizer_class(self.vocab_file )
__magic_name__ :List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__lowerCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [9, 6, 7, 1_2, 1_0, 1_1] )
def A ( self ):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
__magic_name__ :int = self.get_tokenizer()
__magic_name__ :Tuple = self.get_rust_tokenizer()
__magic_name__ :List[str] = '''UNwant\u00E9d,running'''
__magic_name__ :Optional[Any] = tokenizer.tokenize(__lowerCAmelCase )
__magic_name__ :List[Any] = rust_tokenizer.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :int = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__magic_name__ :str = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :List[Any] = self.get_rust_tokenizer()
__magic_name__ :Any = tokenizer.encode(__lowerCAmelCase )
__magic_name__ :Any = rust_tokenizer.encode(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
# With lower casing
__magic_name__ :Any = self.get_tokenizer(do_lower_case=__lowerCAmelCase )
__magic_name__ :List[Any] = self.get_rust_tokenizer(do_lower_case=__lowerCAmelCase )
__magic_name__ :Dict = '''UNwant\u00E9d,running'''
__magic_name__ :Tuple = tokenizer.tokenize(__lowerCAmelCase )
__magic_name__ :Union[str, Any] = rust_tokenizer.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :Optional[Any] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__magic_name__ :Dict = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :Tuple = self.get_rust_tokenizer()
__magic_name__ :Dict = tokenizer.encode(__lowerCAmelCase )
__magic_name__ :List[Any] = rust_tokenizer.encode(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :List[Any] = BasicTokenizer(do_lower_case=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :Dict = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = BasicTokenizer(do_lower_case=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :List[str] = BasicTokenizer(do_lower_case=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :int = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = BasicTokenizer(do_lower_case=__lowerCAmelCase , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :int = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
__magic_name__ :Union[str, Any] = {}
for i, token in enumerate(__lowerCAmelCase ):
__magic_name__ :Tuple = i
__magic_name__ :List[Any] = WordpieceTokenizer(vocab=__lowerCAmelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def A ( self ):
"""simple docstring"""
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def A ( self ):
"""simple docstring"""
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def A ( self ):
"""simple docstring"""
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def A ( self ):
"""simple docstring"""
__magic_name__ :Any = self.get_tokenizer()
__magic_name__ :Any = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(__lowerCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
self.assertListEqual(
[rust_tokenizer.tokenize(__lowerCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
@slow
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' )
__magic_name__ :Optional[int] = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowerCAmelCase )
__magic_name__ :List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowerCAmelCase )
__magic_name__ :Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase )
__magic_name__ :List[Any] = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase )
assert encoded_sentence == [1_0_1] + text + [1_0_2]
assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2]
def A ( self ):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__magic_name__ :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__magic_name__ :Optional[int] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
__magic_name__ :Optional[Any] = tokenizer_r.encode_plus(
__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , )
__magic_name__ :Any = tokenizer_r.do_lower_case if hasattr(__lowerCAmelCase , '''do_lower_case''' ) else False
__magic_name__ :Optional[int] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), '''Allen'''),
((2_1, 2_3), '''##NL'''),
((2_3, 2_4), '''##P'''),
((2_5, 3_3), '''sentence'''),
((3_3, 3_4), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), '''allen'''),
((2_1, 2_3), '''##nl'''),
((2_3, 2_4), '''##p'''),
((2_5, 3_3), '''sentence'''),
((3_3, 3_4), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :Dict = ['''的''', '''人''', '''有''']
__magic_name__ :Any = ''''''.join(__lowerCAmelCase )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__magic_name__ :Optional[Any] = True
__magic_name__ :Optional[int] = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__magic_name__ :Tuple = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__magic_name__ :Dict = tokenizer_p.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__magic_name__ :List[str] = tokenizer_r.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__magic_name__ :Dict = tokenizer_r.convert_ids_to_tokens(__lowerCAmelCase )
__magic_name__ :Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__lowerCAmelCase )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :List[str] = False
__magic_name__ :Tuple = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__magic_name__ :List[str] = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__magic_name__ :Optional[Any] = tokenizer_r.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__magic_name__ :Union[str, Any] = tokenizer_p.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__magic_name__ :List[str] = tokenizer_r.convert_ids_to_tokens(__lowerCAmelCase )
__magic_name__ :Optional[int] = tokenizer_p.convert_ids_to_tokens(__lowerCAmelCase )
# it is expected that only the first Chinese character is not preceded by "##".
__magic_name__ :Dict = [
F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__lowerCAmelCase )
]
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
| 0 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase = logging.get_logger(__name__)
def _lowerCamelCase( lowercase__ , lowercase__=False , lowercase__=False , lowercase__=False ) -> Union[str, Any]:
'''simple docstring'''
__lowercase= []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'transformer.blocks.{i}.norm1.weight', F'vilt.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((F'transformer.blocks.{i}.norm1.bias', F'vilt.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append(
(F'transformer.blocks.{i}.attn.proj.weight', F'vilt.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append(
(F'transformer.blocks.{i}.attn.proj.bias', F'vilt.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((F'transformer.blocks.{i}.norm2.weight', F'vilt.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((F'transformer.blocks.{i}.norm2.bias', F'vilt.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append(
(F'transformer.blocks.{i}.mlp.fc1.weight', F'vilt.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((F'transformer.blocks.{i}.mlp.fc1.bias', F'vilt.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((F'transformer.blocks.{i}.mlp.fc2.weight', F'vilt.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((F'transformer.blocks.{i}.mlp.fc2.bias', F'vilt.encoder.layer.{i}.output.dense.bias') )
# embeddings
rename_keys.extend(
[
# text embeddings
('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'),
(
'text_embeddings.position_embeddings.weight',
'vilt.embeddings.text_embeddings.position_embeddings.weight',
),
('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'),
(
'text_embeddings.token_type_embeddings.weight',
'vilt.embeddings.text_embeddings.token_type_embeddings.weight',
),
('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'),
('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'),
# patch embeddings
('transformer.cls_token', 'vilt.embeddings.cls_token'),
('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'),
('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'),
('transformer.pos_embed', 'vilt.embeddings.position_embeddings'),
# token type embeddings
('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'),
] )
# final layernorm + pooler
rename_keys.extend(
[
('transformer.norm.weight', 'vilt.layernorm.weight'),
('transformer.norm.bias', 'vilt.layernorm.bias'),
('pooler.dense.weight', 'vilt.pooler.dense.weight'),
('pooler.dense.bias', 'vilt.pooler.dense.bias'),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('vqa_classifier.0.weight', 'classifier.0.weight'),
('vqa_classifier.0.bias', 'classifier.0.bias'),
('vqa_classifier.1.weight', 'classifier.1.weight'),
('vqa_classifier.1.bias', 'classifier.1.bias'),
('vqa_classifier.3.weight', 'classifier.3.weight'),
('vqa_classifier.3.bias', 'classifier.3.bias'),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('nlvr2_classifier.0.weight', 'classifier.0.weight'),
('nlvr2_classifier.0.bias', 'classifier.0.bias'),
('nlvr2_classifier.1.weight', 'classifier.1.weight'),
('nlvr2_classifier.1.bias', 'classifier.1.bias'),
('nlvr2_classifier.3.weight', 'classifier.3.weight'),
('nlvr2_classifier.3.bias', 'classifier.3.bias'),
] )
else:
pass
return rename_keys
def _lowerCamelCase( lowercase__ , lowercase__ ) -> List[str]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
__lowercase= '''vilt.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__lowercase= state_dict.pop(F'transformer.blocks.{i}.attn.qkv.weight' )
__lowercase= state_dict.pop(F'transformer.blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
__lowercase= in_proj_weight[
: config.hidden_size, :
]
__lowercase= in_proj_bias[: config.hidden_size]
__lowercase= in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__lowercase= in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__lowercase= in_proj_weight[
-config.hidden_size :, :
]
__lowercase= in_proj_bias[-config.hidden_size :]
def _lowerCamelCase( lowercase__ ) -> str:
'''simple docstring'''
__lowercase= ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Optional[Any]:
'''simple docstring'''
__lowercase= dct.pop(lowercase__ )
__lowercase= val
@torch.no_grad()
def _lowerCamelCase( lowercase__ , lowercase__ ) -> Tuple:
'''simple docstring'''
__lowercase= ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=lowercase__ )
__lowercase= False
__lowercase= False
__lowercase= False
__lowercase= False
if "vqa" in checkpoint_url:
__lowercase= True
__lowercase= 3_1_2_9
__lowercase= '''huggingface/label-files'''
__lowercase= '''vqa2-id2label.json'''
__lowercase= json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) )
__lowercase= {int(lowercase__ ): v for k, v in idalabel.items()}
__lowercase= idalabel
__lowercase= {v: k for k, v in idalabel.items()}
__lowercase= ViltForQuestionAnswering(lowercase__ )
elif "nlvr" in checkpoint_url:
__lowercase= True
__lowercase= 2
__lowercase= {0: '''False''', 1: '''True'''}
__lowercase= {v: k for k, v in config.idalabel.items()}
__lowercase= 3
__lowercase= ViltForImagesAndTextClassification(lowercase__ )
elif "irtr" in checkpoint_url:
__lowercase= True
__lowercase= ViltForImageAndTextRetrieval(lowercase__ )
elif "mlm_itm" in checkpoint_url:
__lowercase= True
__lowercase= ViltForMaskedLM(lowercase__ )
else:
raise ValueError('Unknown model type' )
# load state_dict of original model, remove and rename some keys
__lowercase= torch.hub.load_state_dict_from_url(lowercase__ , map_location='cpu' )['''state_dict''']
__lowercase= create_rename_keys(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
for src, dest in rename_keys:
rename_key(lowercase__ , lowercase__ , lowercase__ )
read_in_q_k_v(lowercase__ , lowercase__ )
if mlm_model or irtr_model:
__lowercase= ['''itm_score.fc.weight''', '''itm_score.fc.bias''']
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
__lowercase= model.load_state_dict(lowercase__ , strict=lowercase__ )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(lowercase__ )
# Define processor
__lowercase= ViltImageProcessor(size=3_8_4 )
__lowercase= BertTokenizer.from_pretrained('bert-base-uncased' )
__lowercase= ViltProcessor(lowercase__ , lowercase__ )
# Forward pass on example inputs (image + text)
if nlvr_model:
__lowercase= Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowercase__ ).raw )
__lowercase= Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowercase__ ).raw )
__lowercase= (
'''The left image contains twice the number of dogs as the right image, and at least two dogs in total are'''
''' standing.'''
)
__lowercase= processor(lowercase__ , lowercase__ , return_tensors='pt' )
__lowercase= processor(lowercase__ , lowercase__ , return_tensors='pt' )
__lowercase= model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
__lowercase= Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=lowercase__ ).raw )
if mlm_model:
__lowercase= '''a bunch of [MASK] laying on a [MASK].'''
else:
__lowercase= '''How many cats are there?'''
__lowercase= processor(lowercase__ , lowercase__ , return_tensors='pt' )
__lowercase= model(**lowercase__ )
# Verify outputs
if mlm_model:
__lowercase= torch.Size([1, 1_1, 3_0_5_2_2] )
__lowercase= torch.tensor([-12.5061, -12.5123, -12.5174] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , lowercase__ , atol=1E-4 )
# verify masked token prediction equals "cats"
__lowercase= outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
__lowercase= torch.Size([1, 3_1_2_9] )
__lowercase= torch.tensor([-15.9495, -18.1472, -10.3041] )
assert torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , lowercase__ , atol=1E-4 )
# verify vqa prediction equals "2"
__lowercase= outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
__lowercase= torch.Size([1, 2] )
__lowercase= torch.tensor([-2.8721, 2.1291] )
assert torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 )
assert outputs.logits.shape == expected_shape
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(F'Saving model and processor to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
processor.save_pretrained(lowercase__ )
if __name__ == "__main__":
lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
lowerCAmelCase = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 230 |
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
SCREAMING_SNAKE_CASE__ : List[str] = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowerCamelCase_ ( lowerCamelCase ):
def __init__( self , *__lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ):
"""simple docstring"""
super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
__magic_name__ :Any = eval_examples
__magic_name__ :str = post_process_function
__magic_name__ :int = quant_trainer_args
__magic_name__ :List[str] = 1_2_8 # default number of calibration samples
def A ( self , __lowerCAmelCase=None ):
"""simple docstring"""
if calib_dataset is None and self.calib_dataset is None:
raise ValueError('''Trainer: calibration requires an calib_dataset.''' )
__magic_name__ :Optional[Any] = calib_dataset if calib_dataset is not None else self.calib_dataset
__magic_name__ :Optional[int] = self._remove_unused_columns(__lowerCAmelCase , description='''Calibration''' )
return DataLoader(
__lowerCAmelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__lowerCAmelCase , )
def A ( self , __lowerCAmelCase=None ):
"""simple docstring"""
__magic_name__ :Dict = self.train_dataset if calib_dataset is None else calib_dataset
__magic_name__ :Any = self.get_calib_dataloader(__lowerCAmelCase )
__magic_name__ :List[str] = self.model
quant_trainer.configure_model(__lowerCAmelCase , self.quant_trainer_args , calib=__lowerCAmelCase )
model.eval()
quant_trainer.enable_calibration(__lowerCAmelCase )
logger.info('''***** Running calibration *****''' )
logger.info(F''' Num examples = {self.calib_num}''' )
logger.info(F''' Batch size = {calib_dataloader.batch_size}''' )
for step, inputs in enumerate(__lowerCAmelCase ):
# Prediction step
__magic_name__ , __magic_name__ , __magic_name__ :str = self.prediction_step(__lowerCAmelCase , __lowerCAmelCase , prediction_loss_only=__lowerCAmelCase )
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(__lowerCAmelCase , self.quant_trainer_args )
__magic_name__ :Any = model
def A ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase = "eval" ):
"""simple docstring"""
__magic_name__ :Tuple = self.eval_dataset if eval_dataset is None else eval_dataset
__magic_name__ :Optional[Any] = self.get_eval_dataloader(__lowerCAmelCase )
__magic_name__ :str = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
__magic_name__ :Any = self.compute_metrics
__magic_name__ :List[Any] = None
__magic_name__ :List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__magic_name__ :Optional[Any] = eval_loop(
__lowerCAmelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCAmelCase , )
finally:
__magic_name__ :Union[str, Any] = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
__magic_name__ :Union[str, Any] = self.post_process_function(__lowerCAmelCase , __lowerCAmelCase , output.predictions )
__magic_name__ :int = self.compute_metrics(__lowerCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
__magic_name__ :Dict = metrics.pop(__lowerCAmelCase )
self.log(__lowerCAmelCase )
else:
__magic_name__ :List[str] = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
__magic_name__ :Optional[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCAmelCase )
return metrics
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase = "test" ):
"""simple docstring"""
__magic_name__ :int = self.get_test_dataloader(__lowerCAmelCase )
# Temporarily disable metric computation, we will do it in the loop here.
__magic_name__ :Dict = self.compute_metrics
__magic_name__ :str = None
__magic_name__ :Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__magic_name__ :int = eval_loop(
__lowerCAmelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCAmelCase , )
finally:
__magic_name__ :List[Any] = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
__magic_name__ :Optional[Any] = self.post_process_function(__lowerCAmelCase , __lowerCAmelCase , output.predictions , '''predict''' )
__magic_name__ :Dict = self.compute_metrics(__lowerCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
__magic_name__ :List[str] = metrics.pop(__lowerCAmelCase )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCAmelCase )
def A ( self , __lowerCAmelCase="./" ):
"""simple docstring"""
__magic_name__ :List[Any] = self.eval_dataset
__magic_name__ :Any = self.get_eval_dataloader(__lowerCAmelCase )
__magic_name__ :int = next(iter(__lowerCAmelCase ) )
# saving device - to make it consistent
__magic_name__ :str = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' )
# convert to tuple
__magic_name__ :int = tuple(v.to(__lowerCAmelCase ) for k, v in batch.items() )
logger.info('''Converting model to be onnx compatible''' )
from pytorch_quantization.nn import TensorQuantizer
__magic_name__ :Any = True
__magic_name__ :Optional[int] = self.model.to(__lowerCAmelCase )
model.eval()
model.float()
__magic_name__ :Any = model.module if hasattr(__lowerCAmelCase , '''module''' ) else model
quant_trainer.configure_model(__lowerCAmelCase , self.quant_trainer_args )
__magic_name__ :int = os.path.join(__lowerCAmelCase , '''model.onnx''' )
logger.info(F'''exporting model to {output_model_file}''' )
__magic_name__ :Dict = {0: '''batch_size''', 1: '''seq_len'''}
torch.onnx.export(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , export_params=__lowerCAmelCase , opset_version=1_3 , do_constant_folding=__lowerCAmelCase , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={
'''input_ids''': axes,
'''attention_mask''': axes,
'''token_type_ids''': axes,
'''output_start_logits''': axes,
'''output_end_logits''': axes,
} , verbose=__lowerCAmelCase , )
logger.info('''onnx export finished''' )
| 0 | 0 |
"""simple docstring"""
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from tax import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder
a__ : Optional[int] = """base_with_context"""
def A__ ( __lowerCamelCase, __lowerCamelCase ):
"""simple docstring"""
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) )
_lowerCAmelCase = nn.Parameter(
torch.FloatTensor(weights['Embed_0']['embedding'] ), requires_grad=__lowerCamelCase )
for lyr_num, lyr in enumerate(model.encoders ):
_lowerCAmelCase = weights[F'''layers_{lyr_num}''']
_lowerCAmelCase = nn.Parameter(
torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) )
_lowerCAmelCase = ly_weight['''attention''']
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) )
return model
def A__ ( __lowerCamelCase, __lowerCamelCase ):
"""simple docstring"""
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(
torch.FloatTensor(weights['Embed_0']['embedding'] ), requires_grad=__lowerCamelCase )
for lyr_num, lyr in enumerate(model.encoders ):
_lowerCAmelCase = weights[F'''layers_{lyr_num}''']
_lowerCAmelCase = ly_weight['''attention''']
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(
torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) )
return model
def A__ ( __lowerCamelCase, __lowerCamelCase ):
"""simple docstring"""
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(
torch.FloatTensor(weights['Embed_0']['embedding'] ), requires_grad=__lowerCamelCase )
_lowerCAmelCase = nn.Parameter(
torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) )
for lyr_num, lyr in enumerate(model.decoders ):
_lowerCAmelCase = weights[F'''layers_{lyr_num}''']
_lowerCAmelCase = nn.Parameter(
torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) )
_lowerCAmelCase = nn.Parameter(
torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) )
_lowerCAmelCase = ly_weight['''self_attention''']
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) )
_lowerCAmelCase = ly_weight['''MultiHeadDotProductAttention_0''']
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(
torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) )
_lowerCAmelCase = nn.Parameter(
torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) )
_lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) )
return model
def A__ ( __lowerCamelCase ):
"""simple docstring"""
_lowerCAmelCase = checkpoints.load_tax_checkpoint(args.checkpoint_path )
_lowerCAmelCase = jnp.tree_util.tree_map(onp.array, __lowerCamelCase )
_lowerCAmelCase = [
'''from __gin__ import dynamic_registration''',
'''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''',
'''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''',
'''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''',
]
_lowerCAmelCase = os.path.join(args.checkpoint_path, '..', 'config.gin' )
_lowerCAmelCase = inference.parse_training_gin_file(__lowerCamelCase, __lowerCamelCase )
_lowerCAmelCase = inference.InferenceModel(args.checkpoint_path, __lowerCamelCase )
_lowerCAmelCase = DDPMScheduler(beta_schedule='squaredcos_cap_v2', variance_type='fixed_large' )
_lowerCAmelCase = SpectrogramNotesEncoder(
max_length=synth_model.sequence_length['inputs'], vocab_size=synth_model.model.module.config.vocab_size, d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj='gated-gelu', )
_lowerCAmelCase = SpectrogramContEncoder(
input_dims=synth_model.audio_codec.n_dims, targets_context_length=synth_model.sequence_length['targets_context'], d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj='gated-gelu', )
_lowerCAmelCase = TaFilmDecoder(
input_dims=synth_model.audio_codec.n_dims, targets_length=synth_model.sequence_length['targets_context'], max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time, d_model=synth_model.model.module.config.emb_dim, num_layers=synth_model.model.module.config.num_decoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, dropout_rate=synth_model.model.module.config.dropout_rate, )
_lowerCAmelCase = load_notes_encoder(ta_checkpoint['target']['token_encoder'], __lowerCamelCase )
_lowerCAmelCase = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'], __lowerCamelCase )
_lowerCAmelCase = load_decoder(ta_checkpoint['target']['decoder'], __lowerCamelCase )
_lowerCAmelCase = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' )
_lowerCAmelCase = SpectrogramDiffusionPipeline(
notes_encoder=__lowerCamelCase, continuous_encoder=__lowerCamelCase, decoder=__lowerCamelCase, scheduler=__lowerCamelCase, melgan=__lowerCamelCase, )
if args.save:
pipe.save_pretrained(args.output_path )
if __name__ == "__main__":
a__ : str = argparse.ArgumentParser()
parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""")
parser.add_argument(
"""--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not."""
)
parser.add_argument(
"""--checkpoint_path""",
default=f'{MODEL}/checkpoint_500000',
type=str,
required=False,
help="""Path to the original jax model checkpoint.""",
)
a__ : Dict = parser.parse_args()
main(args)
| 589 |
def __lowercase ( snake_case ):
"""simple docstring"""
return "".join([hex(snake_case )[2:].zfill(2 ).upper() for byte in list(snake_case )] )
def __lowercase ( snake_case ):
"""simple docstring"""
if (len(snake_case ) % 2) != 0:
raise ValueError(
'''Base16 encoded data is invalid:
Data does not have an even number of hex digits.''' )
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(snake_case ) <= set('''0123456789ABCDEF''' ):
raise ValueError(
'''Base16 encoded data is invalid:
Data is not uppercase hex or it contains invalid characters.''' )
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1], 1_6 ) for i in range(0, len(snake_case ), 2 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 0 |
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_torch_available
from ...utils import OptionalDependencyNotAvailable
_A : List[Any] = {
"""configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""],
"""tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : str = [
"""GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GPTNeoXJapaneseForCausalLM""",
"""GPTNeoXJapaneseLayer""",
"""GPTNeoXJapaneseModel""",
"""GPTNeoXJapanesePreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig
from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox_japanese import (
GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXJapaneseForCausalLM,
GPTNeoXJapaneseLayer,
GPTNeoXJapaneseModel,
GPTNeoXJapanesePreTrainedModel,
)
else:
import sys
_A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 315 |
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def __lowercase ( ):
"""simple docstring"""
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(snake_case ):
requests.request('''GET''', '''https://huggingface.co''' )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request('''GET''', '''https://huggingface.co''', timeout=1.0 )
@pytest.mark.integration
def __lowercase ( ):
"""simple docstring"""
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request('''GET''', '''https://huggingface.co''' )
def __lowercase ( ):
"""simple docstring"""
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(snake_case ):
http_head('''https://huggingface.co''' )
| 0 | 0 |
'''simple docstring'''
from math import isqrt
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :str = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , UpperCAmelCase__ , UpperCAmelCase__ ):
SCREAMING_SNAKE_CASE__ :List[Any] = False
return [i for i in range(2 , UpperCAmelCase__ ) if is_prime[i]]
def lowerCamelCase ( UpperCAmelCase__ : Any = 1_0**8 ) -> Any:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Any = calculate_prime_numbers(max_number // 2 )
SCREAMING_SNAKE_CASE__ :Optional[Any] = 0
SCREAMING_SNAKE_CASE__ :Optional[Any] = 0
SCREAMING_SNAKE_CASE__ :int = len(UpperCAmelCase__ ) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(f"{solution() = }")
| 209 |
import math
from collections.abc import Iterator
from itertools import takewhile
def __lowercase ( snake_case ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(snake_case ) + 1 ), 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __lowercase ( ):
"""simple docstring"""
__magic_name__ :str = 2
while True:
if is_prime(snake_case ):
yield num
num += 1
def __lowercase ( snake_case = 2_0_0_0_0_0_0 ):
"""simple docstring"""
return sum(takewhile(lambda snake_case : x < n, prime_generator() ) )
if __name__ == "__main__":
print(f"{solution() = }")
| 0 | 0 |
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
_UpperCAmelCase = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class _UpperCAmelCase ( __lowercase ):
'''simple docstring'''
def __init__( self : List[str] , *UpperCamelCase__ : str , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : int=None , **UpperCamelCase__ : int ):
super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
A = eval_examples
A = post_process_function
A = quant_trainer_args
A = 128 # default number of calibration samples
def UpperCamelCase ( self : int , UpperCamelCase__ : Union[str, Any]=None ):
if calib_dataset is None and self.calib_dataset is None:
raise ValueError('Trainer: calibration requires an calib_dataset.' )
A = calib_dataset if calib_dataset is not None else self.calib_dataset
A = self._remove_unused_columns(__lowerCAmelCase , description='Calibration' )
return DataLoader(
__lowerCAmelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__lowerCAmelCase , )
def UpperCamelCase ( self : int , UpperCamelCase__ : Dict=None ):
A = self.train_dataset if calib_dataset is None else calib_dataset
A = self.get_calib_dataloader(__lowerCAmelCase )
A = self.model
quant_trainer.configure_model(__lowerCAmelCase , self.quant_trainer_args , calib=__lowerCAmelCase )
model.eval()
quant_trainer.enable_calibration(__lowerCAmelCase )
logger.info('***** Running calibration *****' )
logger.info(f''' Num examples = {self.calib_num}''' )
logger.info(f''' Batch size = {calib_dataloader.batch_size}''' )
for step, inputs in enumerate(__lowerCAmelCase ):
# Prediction step
A = self.prediction_step(__lowerCAmelCase , __lowerCAmelCase , prediction_loss_only=__lowerCAmelCase )
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(__lowerCAmelCase , self.quant_trainer_args )
A = model
def UpperCamelCase ( self : List[Any] , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : int = "eval" ):
A = self.eval_dataset if eval_dataset is None else eval_dataset
A = self.get_eval_dataloader(__lowerCAmelCase )
A = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
A = self.compute_metrics
A = None
A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
A = eval_loop(
__lowerCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCAmelCase , )
finally:
A = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
A = self.post_process_function(__lowerCAmelCase , __lowerCAmelCase , output.predictions )
A = self.compute_metrics(__lowerCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'''{metric_key_prefix}_''' ):
A = metrics.pop(__lowerCAmelCase )
self.log(__lowerCAmelCase )
else:
A = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
A = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCAmelCase )
return metrics
def UpperCamelCase ( self : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : int = "test" ):
A = self.get_test_dataloader(__lowerCAmelCase )
# Temporarily disable metric computation, we will do it in the loop here.
A = self.compute_metrics
A = None
A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
A = eval_loop(
__lowerCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCAmelCase , )
finally:
A = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
A = self.post_process_function(__lowerCAmelCase , __lowerCAmelCase , output.predictions , 'predict' )
A = self.compute_metrics(__lowerCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'''{metric_key_prefix}_''' ):
A = metrics.pop(__lowerCAmelCase )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCAmelCase )
def UpperCamelCase ( self : Any , UpperCamelCase__ : Any="./" ):
A = self.eval_dataset
A = self.get_eval_dataloader(__lowerCAmelCase )
A = next(iter(__lowerCAmelCase ) )
# saving device - to make it consistent
A = torch.device('cuda' if torch.cuda.is_available() else 'cpu' )
# convert to tuple
A = tuple(v.to(__lowerCAmelCase ) for k, v in batch.items() )
logger.info('Converting model to be onnx compatible' )
from pytorch_quantization.nn import TensorQuantizer
A = True
A = self.model.to(__lowerCAmelCase )
model.eval()
model.float()
A = model.module if hasattr(__lowerCAmelCase , 'module' ) else model
quant_trainer.configure_model(__lowerCAmelCase , self.quant_trainer_args )
A = os.path.join(__lowerCAmelCase , 'model.onnx' )
logger.info(f'''exporting model to {output_model_file}''' )
A = {0: '''batch_size''', 1: '''seq_len'''}
torch.onnx.export(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , export_params=__lowerCAmelCase , opset_version=13 , do_constant_folding=__lowerCAmelCase , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={
'input_ids': axes,
'attention_mask': axes,
'token_type_ids': axes,
'output_start_logits': axes,
'output_end_logits': axes,
} , verbose=__lowerCAmelCase , )
logger.info('onnx export finished' )
| 699 |
import unittest
import numpy as np
from transformers.testing_utils import require_flax, require_tf, require_torch
from transformers.utils import (
expand_dims,
flatten_dict,
is_flax_available,
is_tf_available,
is_torch_available,
reshape,
squeeze,
transpose,
)
if is_flax_available():
import jax.numpy as jnp
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
class lowerCamelCase_ ( unittest.TestCase ):
def A ( self ):
"""simple docstring"""
__magic_name__ :List[Any] = {
'''task_specific_params''': {
'''summarization''': {'''length_penalty''': 1.0, '''max_length''': 1_2_8, '''min_length''': 1_2, '''num_beams''': 4},
'''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 1_4_2, '''min_length''': 5_6, '''num_beams''': 4},
'''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 6_2, '''min_length''': 1_1, '''num_beams''': 6},
}
}
__magic_name__ :List[str] = {
'''task_specific_params.summarization.length_penalty''': 1.0,
'''task_specific_params.summarization.max_length''': 1_2_8,
'''task_specific_params.summarization.min_length''': 1_2,
'''task_specific_params.summarization.num_beams''': 4,
'''task_specific_params.summarization_cnn.length_penalty''': 2.0,
'''task_specific_params.summarization_cnn.max_length''': 1_4_2,
'''task_specific_params.summarization_cnn.min_length''': 5_6,
'''task_specific_params.summarization_cnn.num_beams''': 4,
'''task_specific_params.summarization_xsum.length_penalty''': 1.0,
'''task_specific_params.summarization_xsum.max_length''': 6_2,
'''task_specific_params.summarization_xsum.min_length''': 1_1,
'''task_specific_params.summarization_xsum.num_beams''': 6,
}
self.assertEqual(flatten_dict(__lowerCAmelCase ) , __lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , x.transpose() ) )
__magic_name__ :List[Any] = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) )
@require_torch
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = np.random.randn(3 , 4 )
__magic_name__ :Tuple = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , transpose(__lowerCAmelCase ).numpy() ) )
__magic_name__ :int = np.random.randn(3 , 4 , 5 )
__magic_name__ :Union[str, Any] = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , transpose(__lowerCAmelCase , axes=(1, 2, 0) ).numpy() ) )
@require_tf
def A ( self ):
"""simple docstring"""
__magic_name__ :int = np.random.randn(3 , 4 )
__magic_name__ :Optional[Any] = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , transpose(__lowerCAmelCase ).numpy() ) )
__magic_name__ :List[str] = np.random.randn(3 , 4 , 5 )
__magic_name__ :Optional[Any] = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , transpose(__lowerCAmelCase , axes=(1, 2, 0) ).numpy() ) )
@require_flax
def A ( self ):
"""simple docstring"""
__magic_name__ :int = np.random.randn(3 , 4 )
__magic_name__ :Dict = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , np.asarray(transpose(__lowerCAmelCase ) ) ) )
__magic_name__ :Dict = np.random.randn(3 , 4 , 5 )
__magic_name__ :Dict = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , np.asarray(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) ) ) )
def A ( self ):
"""simple docstring"""
__magic_name__ :Any = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , np.reshape(__lowerCAmelCase , (4, 3) ) ) )
__magic_name__ :Union[str, Any] = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (1_2, 5) ) , np.reshape(__lowerCAmelCase , (1_2, 5) ) ) )
@require_torch
def A ( self ):
"""simple docstring"""
__magic_name__ :Dict = np.random.randn(3 , 4 )
__magic_name__ :Tuple = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , reshape(__lowerCAmelCase , (4, 3) ).numpy() ) )
__magic_name__ :Union[str, Any] = np.random.randn(3 , 4 , 5 )
__magic_name__ :List[str] = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (1_2, 5) ) , reshape(__lowerCAmelCase , (1_2, 5) ).numpy() ) )
@require_tf
def A ( self ):
"""simple docstring"""
__magic_name__ :Dict = np.random.randn(3 , 4 )
__magic_name__ :Union[str, Any] = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , reshape(__lowerCAmelCase , (4, 3) ).numpy() ) )
__magic_name__ :List[Any] = np.random.randn(3 , 4 , 5 )
__magic_name__ :Optional[int] = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (1_2, 5) ) , reshape(__lowerCAmelCase , (1_2, 5) ).numpy() ) )
@require_flax
def A ( self ):
"""simple docstring"""
__magic_name__ :List[str] = np.random.randn(3 , 4 )
__magic_name__ :Any = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , np.asarray(reshape(__lowerCAmelCase , (4, 3) ) ) ) )
__magic_name__ :List[Any] = np.random.randn(3 , 4 , 5 )
__magic_name__ :List[str] = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (1_2, 5) ) , np.asarray(reshape(__lowerCAmelCase , (1_2, 5) ) ) ) )
def A ( self ):
"""simple docstring"""
__magic_name__ :List[Any] = np.random.randn(1 , 3 , 4 )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , np.squeeze(__lowerCAmelCase ) ) )
__magic_name__ :Optional[Any] = np.random.randn(1 , 4 , 1 , 5 )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , np.squeeze(__lowerCAmelCase , axis=2 ) ) )
@require_torch
def A ( self ):
"""simple docstring"""
__magic_name__ :Dict = np.random.randn(1 , 3 , 4 )
__magic_name__ :List[Any] = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , squeeze(__lowerCAmelCase ).numpy() ) )
__magic_name__ :List[str] = np.random.randn(1 , 4 , 1 , 5 )
__magic_name__ :str = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , squeeze(__lowerCAmelCase , axis=2 ).numpy() ) )
@require_tf
def A ( self ):
"""simple docstring"""
__magic_name__ :int = np.random.randn(1 , 3 , 4 )
__magic_name__ :Tuple = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , squeeze(__lowerCAmelCase ).numpy() ) )
__magic_name__ :Tuple = np.random.randn(1 , 4 , 1 , 5 )
__magic_name__ :Optional[int] = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , squeeze(__lowerCAmelCase , axis=2 ).numpy() ) )
@require_flax
def A ( self ):
"""simple docstring"""
__magic_name__ :Tuple = np.random.randn(1 , 3 , 4 )
__magic_name__ :Optional[Any] = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , np.asarray(squeeze(__lowerCAmelCase ) ) ) )
__magic_name__ :List[Any] = np.random.randn(1 , 4 , 1 , 5 )
__magic_name__ :Optional[Any] = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , np.asarray(squeeze(__lowerCAmelCase , axis=2 ) ) ) )
def A ( self ):
"""simple docstring"""
__magic_name__ :Any = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , np.expand_dims(__lowerCAmelCase , axis=1 ) ) )
@require_torch
def A ( self ):
"""simple docstring"""
__magic_name__ :List[Any] = np.random.randn(3 , 4 )
__magic_name__ :Any = torch.tensor(__lowerCAmelCase )
self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , expand_dims(__lowerCAmelCase , axis=1 ).numpy() ) )
@require_tf
def A ( self ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = np.random.randn(3 , 4 )
__magic_name__ :Union[str, Any] = tf.constant(__lowerCAmelCase )
self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , expand_dims(__lowerCAmelCase , axis=1 ).numpy() ) )
@require_flax
def A ( self ):
"""simple docstring"""
__magic_name__ :List[str] = np.random.randn(3 , 4 )
__magic_name__ :Tuple = jnp.array(__lowerCAmelCase )
self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , np.asarray(expand_dims(__lowerCAmelCase , axis=1 ) ) ) )
| 0 | 0 |
def lowerCamelCase__ ( snake_case_ : List[Any] ) -> Dict:
if not all(char in '''01''' for char in bin_string ):
raise ValueError('''Non-binary value was passed to the function''' )
if not bin_string:
raise ValueError('''Empty string was passed to the function''' )
__snake_case = ''''''
while len(snake_case_ ) % 3 != 0:
__snake_case = '''0''' + bin_string
__snake_case = [
bin_string[index : index + 3]
for index in range(len(snake_case_ ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
__snake_case = 0
for index, val in enumerate(snake_case_ ):
oct_val += int(2 ** (2 - index) * int(snake_case_ ) )
oct_string += str(snake_case_ )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 592 |
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class lowerCamelCase_ ( lowerCamelCase ):
a__ = ''''''
a__ = '''hf-legacy''' # "hf://"" is reserved for hffs
def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ):
"""simple docstring"""
super().__init__(self , **__lowerCAmelCase )
__magic_name__ :List[Any] = repo_info
__magic_name__ :Dict = token
__magic_name__ :Optional[Any] = None
def A ( self ):
"""simple docstring"""
if self.dir_cache is None:
__magic_name__ :Any = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
__magic_name__ :Optional[int] = {
'''name''': hf_file.rfilename,
'''size''': None,
'''type''': '''file''',
}
self.dir_cache.update(
{
str(__lowerCAmelCase ): {'''name''': str(__lowerCAmelCase ), '''size''': None, '''type''': '''directory'''}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def A ( self , __lowerCAmelCase , __lowerCAmelCase = "rb" , **__lowerCAmelCase , ):
"""simple docstring"""
if not isinstance(self.repo_info , __lowerCAmelCase ):
raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' )
__magic_name__ :Union[str, Any] = hf_hub_url(self.repo_info.id , __lowerCAmelCase , revision=self.repo_info.sha )
return fsspec.open(
__lowerCAmelCase , mode=__lowerCAmelCase , headers=get_authentication_headers_for_url(__lowerCAmelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open()
def A ( self , __lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
self._get_dirs()
__magic_name__ :str = self._strip_protocol(__lowerCAmelCase )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(__lowerCAmelCase )
def A ( self , __lowerCAmelCase , __lowerCAmelCase=False , **__lowerCAmelCase ):
"""simple docstring"""
self._get_dirs()
__magic_name__ :Union[str, Any] = PurePosixPath(path.strip('''/''' ) )
__magic_name__ :Dict = {}
for p, f in self.dir_cache.items():
__magic_name__ :int = PurePosixPath(p.strip('''/''' ) )
__magic_name__ :Tuple = p.parent
if root == path:
__magic_name__ :Optional[Any] = f
__magic_name__ :List[Any] = list(paths.values() )
if detail:
return out
else:
return sorted(f['''name'''] for f in out )
| 0 | 0 |
import json
import os
import re
import sys
import urllib.request
import requests
from bsa import BeautifulSoup
A_: Union[str, Any] = {
"""User-Agent""": """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"""
""" (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582"""
}
def __lowerCAmelCase ( _A = "dhaka" ,_A = 5 ):
"""simple docstring"""
_lowercase = min(_A ,50 ) # Prevent abuse!
_lowercase = {
'''q''': query,
'''tbm''': '''isch''',
'''hl''': '''en''',
'''ijn''': '''0''',
}
_lowercase = requests.get("""https://www.google.com/search""" ,params=_A ,headers=_A )
_lowercase = BeautifulSoup(html.text ,"""html.parser""" )
_lowercase = ''''''.join(
re.findall(r"""AF_initDataCallback\(([^<]+)\);""" ,str(soup.select("""script""" ) ) ) )
_lowercase = json.dumps(_A )
_lowercase = json.loads(_A )
_lowercase = re.findall(
r"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" ,_A ,)
if not matched_google_image_data:
return 0
_lowercase = re.sub(
r"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" ,"""""" ,str(_A ) ,)
_lowercase = re.findall(
r"""(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" ,_A ,)
for index, fixed_full_res_image in enumerate(_A ):
if index >= max_images:
return index
_lowercase = bytes(_A ,"""ascii""" ).decode(
"""unicode-escape""" )
_lowercase = bytes(_A ,"""ascii""" ).decode(
"""unicode-escape""" )
_lowercase = urllib.request.build_opener()
_lowercase = [
(
'''User-Agent''',
'''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'''
''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''',
)
]
urllib.request.install_opener(_A )
_lowercase = f'''query_{query.replace(" " ,"_" )}'''
if not os.path.exists(_A ):
os.makedirs(_A )
urllib.request.urlretrieve( # noqa: S310
_A ,f'''{path_name}/original_size_img_{index}.jpg''' )
return index
if __name__ == "__main__":
try:
A_: Union[str, Any] = download_images_from_google_query(sys.argv[1])
print(F'''{image_count} images were downloaded to disk.''')
except IndexError:
print('Please provide a search term.')
raise
| 398 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
assert isinstance(snake_case, snake_case )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''', [False, True] )
def __lowercase ( snake_case, snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :Tuple = tmp_path / '''cache'''
__magic_name__ :int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__magic_name__ :Optional[Any] = ParquetDatasetReader(snake_case, cache_dir=snake_case, keep_in_memory=snake_case ).read()
_check_parquet_dataset(snake_case, snake_case )
@pytest.mark.parametrize(
'''features''', [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
], )
def __lowercase ( snake_case, snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :List[str] = tmp_path / '''cache'''
__magic_name__ :int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__magic_name__ :Tuple = features.copy() if features else default_expected_features
__magic_name__ :Union[str, Any] = (
Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None
)
__magic_name__ :int = ParquetDatasetReader(snake_case, features=snake_case, cache_dir=snake_case ).read()
_check_parquet_dataset(snake_case, snake_case )
@pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def __lowercase ( snake_case, snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :str = tmp_path / '''cache'''
__magic_name__ :List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__magic_name__ :int = ParquetDatasetReader(snake_case, cache_dir=snake_case, split=snake_case ).read()
_check_parquet_dataset(snake_case, snake_case )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''', [str, list] )
def __lowercase ( snake_case, snake_case, snake_case ):
"""simple docstring"""
if issubclass(snake_case, snake_case ):
__magic_name__ :Union[str, Any] = parquet_path
elif issubclass(snake_case, snake_case ):
__magic_name__ :Union[str, Any] = [parquet_path]
__magic_name__ :Optional[int] = tmp_path / '''cache'''
__magic_name__ :Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__magic_name__ :str = ParquetDatasetReader(snake_case, cache_dir=snake_case ).read()
_check_parquet_dataset(snake_case, snake_case )
def __lowercase ( snake_case, snake_case, snake_case=("train",) ):
"""simple docstring"""
assert isinstance(snake_case, snake_case )
for split in splits:
__magic_name__ :Optional[Any] = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''', [False, True] )
def __lowercase ( snake_case, snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :Any = tmp_path / '''cache'''
__magic_name__ :Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__magic_name__ :Tuple = ParquetDatasetReader(
{'''train''': parquet_path}, cache_dir=snake_case, keep_in_memory=snake_case ).read()
_check_parquet_datasetdict(snake_case, snake_case )
@pytest.mark.parametrize(
'''features''', [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
], )
def __lowercase ( snake_case, snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :Optional[Any] = tmp_path / '''cache'''
__magic_name__ :Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__magic_name__ :int = features.copy() if features else default_expected_features
__magic_name__ :List[Any] = (
Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None
)
__magic_name__ :Optional[int] = ParquetDatasetReader({'''train''': parquet_path}, features=snake_case, cache_dir=snake_case ).read()
_check_parquet_datasetdict(snake_case, snake_case )
@pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def __lowercase ( snake_case, snake_case, snake_case ):
"""simple docstring"""
if split:
__magic_name__ :Dict = {split: parquet_path}
else:
__magic_name__ :Optional[int] = '''train'''
__magic_name__ :Dict = {'''train''': parquet_path, '''test''': parquet_path}
__magic_name__ :List[Any] = tmp_path / '''cache'''
__magic_name__ :Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__magic_name__ :Optional[Any] = ParquetDatasetReader(snake_case, cache_dir=snake_case ).read()
_check_parquet_datasetdict(snake_case, snake_case, splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :str = ParquetDatasetWriter(snake_case, tmp_path / '''foo.parquet''' )
assert writer.write() > 0
__magic_name__ :List[Any] = pq.ParquetFile(tmp_path / '''foo.parquet''' )
__magic_name__ :List[Any] = pf.read()
assert dataset.data.table == output_table
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :List[str] = str(shared_datadir / '''test_image_rgb.jpg''' )
__magic_name__ :Tuple = {'''image''': [image_path]}
__magic_name__ :List[Any] = Features({'''image''': Image()} )
__magic_name__ :Tuple = Dataset.from_dict(snake_case, features=snake_case )
__magic_name__ :Union[str, Any] = ParquetDatasetWriter(snake_case, tmp_path / '''foo.parquet''' )
assert writer.write() > 0
__magic_name__ :List[str] = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) )
assert dataset.features == reloaded_dataset.features
__magic_name__ :List[str] = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ), streaming=snake_case ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
'''feature, expected''', [
(Features({'''foo''': Value('''int32''' )} ), None),
(Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
], )
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
assert get_writer_batch_size(snake_case ) == expected
| 0 | 0 |
def __A ( _A ):
"""simple docstring"""
if not grid or not grid[0]:
raise TypeError("The grid does not contain the appropriate information" )
for cell_n in range(1 , len(grid[0] ) ):
grid[0][cell_n] += grid[0][cell_n - 1]
__a = grid[0]
for row_n in range(1 , len(_A ) ):
__a = grid[row_n]
__a = fill_row(_A , _A )
__a = grid[row_n]
return grid[-1][-1]
def __A ( _A , _A ):
"""simple docstring"""
current_row[0] += row_above[0]
for cell_n in range(1 , len(_A ) ):
current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] )
return current_row
if __name__ == "__main__":
import doctest
doctest.testmod()
| 197 |
def __lowercase ( snake_case ):
"""simple docstring"""
if not isinstance(snake_case, snake_case ):
raise ValueError('''multiplicative_persistence() only accepts integral values''' )
if num < 0:
raise ValueError('''multiplicative_persistence() does not accept negative values''' )
__magic_name__ :str = 0
__magic_name__ :Dict = str(snake_case )
while len(snake_case ) != 1:
__magic_name__ :Optional[Any] = [int(snake_case ) for i in num_string]
__magic_name__ :Dict = 1
for i in range(0, len(snake_case ) ):
total *= numbers[i]
__magic_name__ :int = str(snake_case )
steps += 1
return steps
def __lowercase ( snake_case ):
"""simple docstring"""
if not isinstance(snake_case, snake_case ):
raise ValueError('''additive_persistence() only accepts integral values''' )
if num < 0:
raise ValueError('''additive_persistence() does not accept negative values''' )
__magic_name__ :str = 0
__magic_name__ :Union[str, Any] = str(snake_case )
while len(snake_case ) != 1:
__magic_name__ :str = [int(snake_case ) for i in num_string]
__magic_name__ :Optional[int] = 0
for i in range(0, len(snake_case ) ):
total += numbers[i]
__magic_name__ :int = str(snake_case )
steps += 1
return steps
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 | 0 |
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A__ :
def __init__( self , __magic_name__ , __magic_name__=1_3 , __magic_name__=3_0 , __magic_name__=2 , __magic_name__=3 , __magic_name__=True , __magic_name__=True , __magic_name__=3_2 , __magic_name__=2 , __magic_name__=4 , __magic_name__=3_7 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=1_0 , __magic_name__=0.02 , __magic_name__=3 , __magic_name__=0.6 , __magic_name__=None , ):
lowerCamelCase : Tuple = parent
lowerCamelCase : List[str] = batch_size
lowerCamelCase : Any = image_size
lowerCamelCase : List[str] = patch_size
lowerCamelCase : Optional[int] = num_channels
lowerCamelCase : int = is_training
lowerCamelCase : Tuple = use_labels
lowerCamelCase : List[Any] = hidden_size
lowerCamelCase : Dict = num_hidden_layers
lowerCamelCase : Union[str, Any] = num_attention_heads
lowerCamelCase : Any = intermediate_size
lowerCamelCase : List[Any] = hidden_act
lowerCamelCase : Tuple = hidden_dropout_prob
lowerCamelCase : str = attention_probs_dropout_prob
lowerCamelCase : int = type_sequence_label_size
lowerCamelCase : Dict = initializer_range
lowerCamelCase : Optional[Any] = mask_ratio
lowerCamelCase : Any = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
lowerCamelCase : int = (image_size // patch_size) ** 2
lowerCamelCase : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def UpperCamelCase__ ( self ):
lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase : List[str] = None
if self.use_labels:
lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase : Dict = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ ( self ):
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ ):
lowerCamelCase : Union[str, Any] = TFViTMAEModel(config=__lowerCAmelCase )
lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase , training=__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ ):
lowerCamelCase : Any = TFViTMAEForPreTraining(__lowerCAmelCase )
lowerCamelCase : List[str] = model(__lowerCAmelCase , training=__lowerCAmelCase )
# expected sequence length = num_patches
lowerCamelCase : List[str] = (self.image_size // self.patch_size) ** 2
lowerCamelCase : str = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
lowerCamelCase : Optional[Any] = 1
lowerCamelCase : Union[str, Any] = TFViTMAEForPreTraining(__lowerCAmelCase )
lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase , training=__lowerCAmelCase )
lowerCamelCase : List[str] = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def UpperCamelCase__ ( self ):
lowerCamelCase : List[str] = self.prepare_config_and_inputs()
(lowerCamelCase) : Tuple = config_and_inputs
lowerCamelCase : Optional[int] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase):
_UpperCAmelCase : Tuple = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
_UpperCAmelCase : Optional[Any] = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {}
_UpperCAmelCase : Dict = False
_UpperCAmelCase : Union[str, Any] = False
_UpperCAmelCase : Union[str, Any] = False
_UpperCAmelCase : Tuple = False
def UpperCamelCase__ ( self ):
lowerCamelCase : List[str] = TFViTMAEModelTester(self )
lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=3_7 )
def UpperCamelCase__ ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMAE does not use inputs_embeds""" )
def UpperCamelCase__ ( self ):
pass
def UpperCamelCase__ ( self ):
lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase : Dict = model_class(__lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
lowerCamelCase : Dict = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCAmelCase , tf.keras.layers.Layer ) )
def UpperCamelCase__ ( self ):
lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase )
lowerCamelCase : Dict = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase : Optional[Any] = [*signature.parameters.keys()]
lowerCamelCase : Union[str, Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __lowerCAmelCase )
def UpperCamelCase__ ( self ):
lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def UpperCamelCase__ ( self ):
lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase )
def UpperCamelCase__ ( self ):
np.random.seed(2 )
lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase : Any = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase : int = model_class(__lowerCAmelCase )
lowerCamelCase : str = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase : str = model(__lowerCAmelCase , noise=__lowerCAmelCase )
lowerCamelCase : str = copy.deepcopy(self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) )
lowerCamelCase : Optional[Any] = model(**__lowerCAmelCase , noise=__lowerCAmelCase )
lowerCamelCase : Any = outputs_dict[0].numpy()
lowerCamelCase : Any = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 )
def UpperCamelCase__ ( self ):
np.random.seed(2 )
lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase : str = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(__magic_name__ ):
lowerCamelCase : Dict = {}
for k, v in inputs_dict.items():
if tf.is_tensor(__lowerCAmelCase ):
lowerCamelCase : Optional[int] = v.numpy()
else:
lowerCamelCase : Union[str, Any] = np.array(__lowerCAmelCase )
return inputs_np_dict
for model_class in self.all_model_classes:
lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase )
lowerCamelCase : Optional[Any] = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase : Any = prepare_numpy_arrays(__lowerCAmelCase )
lowerCamelCase : Dict = model(__lowerCAmelCase , noise=__lowerCAmelCase )
lowerCamelCase : Dict = model(**__lowerCAmelCase , noise=__lowerCAmelCase )
self.assert_outputs_same(__lowerCAmelCase , __lowerCAmelCase )
def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ ):
np.random.seed(2 )
lowerCamelCase : Tuple = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
lowerCamelCase : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowerCamelCase : List[str] = tf.constant(__lowerCAmelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
lowerCamelCase : List[Any] = tf_noise
super().check_pt_tf_models(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
def UpperCamelCase__ ( self ):
np.random.seed(2 )
lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase : int = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(__lowerCAmelCase )
if module_member_name.endswith("""MainLayer""" )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )]
for module_member in (getattr(__lowerCAmelCase , __lowerCAmelCase ),)
if isinstance(__lowerCAmelCase , __lowerCAmelCase )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(__lowerCAmelCase , """_keras_serializable""" , __lowerCAmelCase )
}
lowerCamelCase : Dict = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowerCamelCase : Dict = tf.convert_to_tensor(__lowerCAmelCase )
inputs_dict.update({"""noise""": noise} )
for main_layer_class in tf_main_layer_classes:
lowerCamelCase : str = main_layer_class(__lowerCAmelCase )
lowerCamelCase : Optional[Any] = {
name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
lowerCamelCase : List[str] = tf.keras.Model(__lowerCAmelCase , outputs=main_layer(__lowerCAmelCase ) )
lowerCamelCase : Tuple = model(__lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase , """keras_model.h5""" )
model.save(__lowerCAmelCase )
lowerCamelCase : Dict = tf.keras.models.load_model(
__lowerCAmelCase , custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(__lowerCAmelCase , tf.keras.Model )
lowerCamelCase : int = model(__lowerCAmelCase )
self.assert_outputs_same(__lowerCAmelCase , __lowerCAmelCase )
@slow
def UpperCamelCase__ ( self ):
np.random.seed(2 )
lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase : Dict = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase : Tuple = model_class(__lowerCAmelCase )
lowerCamelCase : str = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase : List[Any] = model(__lowerCAmelCase , noise=__lowerCAmelCase )
if model_class.__name__ == "TFViTMAEModel":
lowerCamelCase : Dict = outputs.last_hidden_state.numpy()
lowerCamelCase : Any = 0
else:
lowerCamelCase : Dict = outputs.logits.numpy()
lowerCamelCase : Union[str, Any] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowerCAmelCase , saved_model=__lowerCAmelCase )
lowerCamelCase : List[str] = model_class.from_pretrained(__lowerCAmelCase )
lowerCamelCase : int = model(__lowerCAmelCase , noise=__lowerCAmelCase )
if model_class.__name__ == "TFViTMAEModel":
lowerCamelCase : Optional[int] = after_outputs['''last_hidden_state'''].numpy()
lowerCamelCase : str = 0
else:
lowerCamelCase : str = after_outputs['''logits'''].numpy()
lowerCamelCase : Optional[Any] = 0
lowerCamelCase : int = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__lowerCAmelCase , 1e-5 )
def UpperCamelCase__ ( self ):
np.random.seed(2 )
lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase : List[str] = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase )
lowerCamelCase : Union[str, Any] = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase : Tuple = model(__lowerCAmelCase , noise=__lowerCAmelCase )
lowerCamelCase : Tuple = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(__lowerCAmelCase )
lowerCamelCase : List[Any] = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
lowerCamelCase : Union[str, Any] = model_class.from_config(model.config )
lowerCamelCase : Dict = new_model(__lowerCAmelCase ) # Build model
new_model.set_weights(model.get_weights() )
lowerCamelCase : Any = new_model(__lowerCAmelCase , noise=__lowerCAmelCase )
self.assert_outputs_same(__lowerCAmelCase , __lowerCAmelCase )
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def UpperCamelCase__ ( self ):
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" )
def UpperCamelCase__ ( self ):
pass
@slow
def UpperCamelCase__ ( self ):
lowerCamelCase : Any = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" )
self.assertIsNotNone(__lowerCAmelCase )
def _a ( ):
lowerCamelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class A__ ( unittest.TestCase):
@cached_property
def UpperCamelCase__ ( self ):
return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None
@slow
def UpperCamelCase__ ( self ):
np.random.seed(2 )
lowerCamelCase : str = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" )
lowerCamelCase : Tuple = self.default_image_processor
lowerCamelCase : Dict = prepare_img()
lowerCamelCase : Dict = image_processor(images=__lowerCAmelCase , return_tensors="""tf""" )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
lowerCamelCase : Tuple = ViTMAEConfig()
lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
lowerCamelCase : List[str] = np.random.uniform(size=(1, num_patches) )
# forward pass
lowerCamelCase : str = model(**__lowerCAmelCase , noise=__lowerCAmelCase )
# verify the logits
lowerCamelCase : List[Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] )
self.assertEqual(outputs.logits.shape , __lowerCAmelCase )
lowerCamelCase : int = tf.convert_to_tensor(
[[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] , __lowerCAmelCase , atol=1e-4 )
| 681 |
import math
import os
import re
import sys
import unittest
from pathlib import Path
from typing import Tuple
from unittest.mock import patch
from parameterized import parameterized
from transformers.testing_utils import (
CaptureStderr,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
get_torch_dist_unique_port,
require_apex,
require_bitsandbytes,
require_fairscale,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
require_torch_non_multi_gpu,
slow,
)
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
SCREAMING_SNAKE_CASE__ : List[Any] = os.path.abspath(os.path.dirname(__file__))
with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"):
from run_translation import main # noqa
set_seed(42)
SCREAMING_SNAKE_CASE__ : Optional[Any] = """sshleifer/student_marian_en_ro_6_1"""
SCREAMING_SNAKE_CASE__ : List[Any] = """sshleifer/tiny-mbart"""
@require_torch
class lowerCamelCase_ ( lowerCamelCase ):
def A ( self , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , ):
"""simple docstring"""
__magic_name__ :List[Any] = self.run_trainer(
eval_steps=1 , max_len=1_2 , model_name=__lowerCAmelCase , num_train_epochs=1 , distributed=__lowerCAmelCase , extra_args_str=__lowerCAmelCase , predict_with_generate=__lowerCAmelCase , do_train=__lowerCAmelCase , do_eval=__lowerCAmelCase , do_predict=__lowerCAmelCase , )
__magic_name__ :Any = TrainerState.load_from_json(os.path.join(__lowerCAmelCase , '''trainer_state.json''' ) ).log_history
if not do_eval:
return
__magic_name__ :Any = [log for log in logs if '''eval_loss''' in log.keys()]
__magic_name__ :str = eval_metrics[0]
if predict_with_generate:
assert "eval_bleu" in first_step_stats
__magic_name__ :Tuple = eval_metrics[-1]
assert isinstance(last_step_stats['''eval_bleu'''] , __lowerCAmelCase )
assert not math.isnan(float(last_step_stats['''eval_loss'''] ) ), "eval_loss must not be `nan`"
@require_torch_non_multi_gpu
def A ( self ):
"""simple docstring"""
self.run_seqaseq_quick()
@require_torch_multi_gpu
def A ( self ):
"""simple docstring"""
self.run_seqaseq_quick(distributed=__lowerCAmelCase )
@require_torch_multi_gpu
def A ( self ):
"""simple docstring"""
self.run_seqaseq_quick(distributed=__lowerCAmelCase )
@unittest.skip('''Requires an update of the env running those tests''' )
@require_torch_multi_gpu
@require_fairscale
def A ( self ):
"""simple docstring"""
self.run_seqaseq_quick(distributed=__lowerCAmelCase , extra_args_str='''--sharded_ddp simple''' )
@unittest.skip('''Requires an update of the env running those tests''' )
@require_torch_multi_gpu
@require_fairscale
def A ( self ):
"""simple docstring"""
self.run_seqaseq_quick(distributed=__lowerCAmelCase , extra_args_str='''--sharded_ddp simple --fp16''' )
@unittest.skip('''Requires an update of the env running those tests''' )
@require_torch_multi_gpu
@require_fairscale
def A ( self ):
"""simple docstring"""
self.run_seqaseq_quick(distributed=__lowerCAmelCase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=__lowerCAmelCase )
@unittest.skip('''Requires an update of the env running those tests''' )
@require_torch_multi_gpu
@require_fairscale
def A ( self ):
"""simple docstring"""
self.run_seqaseq_quick(
distributed=__lowerCAmelCase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=__lowerCAmelCase )
@require_apex
@require_torch_gpu
def A ( self ):
"""simple docstring"""
# XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same
# program and it breaks other tests that run from the same pytest worker, therefore until this is
# sorted out it must be run only in an external program, that is distributed=True in this
# test and only under one or more gpus - if we want cpu will need to make a special test
#
# specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via
# 2nd main() call it botches the future eval.
#
self.run_seqaseq_quick(distributed=__lowerCAmelCase , extra_args_str='''--fp16 --fp16_backend=apex''' )
# test 2nd time - was getting eval_loss': nan'
# to reproduce the problem set distributed=False
self.run_seqaseq_quick(distributed=__lowerCAmelCase , extra_args_str='''--fp16 --fp16_backend=apex''' )
@parameterized.expand(['''base''', '''low''', '''high''', '''mixed'''] )
@require_torch_multi_gpu
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
# as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout
__magic_name__ :Any = {
# test with the default log_level - should be info and thus log info once
'''base''': {'''extra_args_str''': '''''', '''n_matches''': 1},
# test with low log_level and log_level_replica - should be noisy on all processes
# now the info string should appear twice on 2 processes
'''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2},
# test with high log_level and low log_level_replica
# now the info string should appear once only on the replica
'''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1},
# test with high log_level and log_level_replica - should be quiet on all processes
'''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0},
}
__magic_name__ :Optional[Any] = experiments[experiment_id]
__magic_name__ :List[Any] = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False}
__magic_name__ :Optional[int] = '''Running training'''
with CaptureStderr() as cl:
self.run_seqaseq_quick(**__lowerCAmelCase , extra_args_str=data['''extra_args_str'''] )
__magic_name__ :int = len(re.findall(__lowerCAmelCase , cl.err ) )
self.assertEqual(__lowerCAmelCase , data['''n_matches'''] )
@slow
def A ( self ):
"""simple docstring"""
__magic_name__ :List[str] = self.run_trainer(
eval_steps=2 , max_len=1_2_8 , model_name=__lowerCAmelCase , learning_rate=3E-4 , num_train_epochs=1_0 , distributed=__lowerCAmelCase , )
# Check metrics
__magic_name__ :Optional[int] = TrainerState.load_from_json(os.path.join(__lowerCAmelCase , '''trainer_state.json''' ) ).log_history
__magic_name__ :List[str] = [log for log in logs if '''eval_loss''' in log.keys()]
__magic_name__ :Any = eval_metrics[0]
__magic_name__ :int = eval_metrics[-1]
assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing"
assert isinstance(last_step_stats['''eval_bleu'''] , __lowerCAmelCase )
# test if do_predict saves generations and metrics
__magic_name__ :List[Any] = os.listdir(__lowerCAmelCase )
__magic_name__ :List[str] = {os.path.basename(__lowerCAmelCase ) for p in contents}
assert "generated_predictions.txt" in contents
assert "predict_results.json" in contents
@slow
@require_bitsandbytes
def A ( self ):
"""simple docstring"""
from transformers.training_args import OptimizerNames
def train_and_return_metrics(__lowerCAmelCase ) -> Tuple[int, float]:
__magic_name__ :str = '''--skip_memory_metrics 0'''
__magic_name__ :Dict = self.run_trainer(
max_len=1_2_8 , model_name=__lowerCAmelCase , learning_rate=3E-4 , num_train_epochs=1 , optim=__lowerCAmelCase , distributed=__lowerCAmelCase , extra_args_str=__lowerCAmelCase , do_eval=__lowerCAmelCase , do_predict=__lowerCAmelCase , n_gpus_to_use=1 , )
# Check metrics
__magic_name__ :Optional[Any] = TrainerState.load_from_json(Path(__lowerCAmelCase , '''trainer_state.json''' ) ).log_history
__magic_name__ :int = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**2_0 )
__magic_name__ :Optional[Any] = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**2_0 )
__magic_name__ :Any = logs[0]['''train_loss''']
return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss
__magic_name__ , __magic_name__ , __magic_name__ :int = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value )
__magic_name__ , __magic_name__ , __magic_name__ :Tuple = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value )
__magic_name__ :Tuple = gpu_alloc_mem_orig - gpu_alloc_mem_bnb
__magic_name__ :Tuple = gpu_peak_mem_orig + gpu_alloc_mem_orig
__magic_name__ :List[Any] = gpu_peak_mem_bnb + gpu_alloc_mem_bnb
__magic_name__ :Optional[int] = gpu_total_mem_orig - gpu_total_mem_bnb
# sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which
# doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized
# in 2 bytes and the diff in optim memory usage is derived as so:
#
# - normal 25*8=~200MB (8 bytes per param)
# - bnb 25*2= ~50MB (2 bytes per param)
#
# Thus we should expect ~150MB total memory saved.
#
# Peak memory should be the same - the total should be different by about that same margin
#
# After leaving a small margin to accommodate for differences between gpus let's check
# that we have at least 120MB in savings
__magic_name__ :Optional[Any] = 1_2_0
# uncomment the following if this test starts failing - requires py38 for a new print feature
# gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb
# print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB")
# print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB")
# print(f"{gpu_alloc_mem_diff=}MB")
# print(f"{gpu_peak_mem_diff=}MB")
# print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB")
# print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB")
self.assertGreater(
__lowerCAmelCase , __lowerCAmelCase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got'''
F''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and'''
F''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , )
self.assertGreater(
__lowerCAmelCase , __lowerCAmelCase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got'''
F''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and'''
F''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , )
self.assertEqual(
__lowerCAmelCase , __lowerCAmelCase , F'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 3E-3 , __lowerCAmelCase = "adafactor" , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = 0 , __lowerCAmelCase = True , __lowerCAmelCase = True , __lowerCAmelCase = True , __lowerCAmelCase = True , __lowerCAmelCase = None , ):
"""simple docstring"""
__magic_name__ :int = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro'''
__magic_name__ :Dict = self.get_auto_remove_tmp_dir()
__magic_name__ :Tuple = F'''
--model_name_or_path {model_name}
--train_file {data_dir}/train.json
--validation_file {data_dir}/val.json
--test_file {data_dir}/test.json
--output_dir {output_dir}
--overwrite_output_dir
--max_train_samples 8
--max_source_length {max_len}
--max_target_length {max_len}
--do_train
--num_train_epochs {str(__lowerCAmelCase )}
--per_device_train_batch_size 4
--learning_rate {learning_rate}
--warmup_steps 8
--logging_steps 0
--logging_strategy no
--save_steps {str(__lowerCAmelCase )}
--group_by_length
--label_smoothing_factor 0.1
--target_lang ro_RO
--source_lang en_XX
'''.split()
__magic_name__ :str = F'''
--do_eval
--per_device_eval_batch_size 4
--max_eval_samples 8
--val_max_target_length {max_len}
--evaluation_strategy steps
--eval_steps {str(__lowerCAmelCase )}
'''.split()
__magic_name__ :Dict = '''
--do_predict
'''.split()
__magic_name__ :Optional[int] = []
if do_train:
args += args_train
if do_eval:
args += args_eval
if do_predict:
args += args_predict
if predict_with_generate:
args += "--predict_with_generate".split()
if do_train:
if optim == "adafactor":
args += "--adafactor".split()
else:
args += F'''--optim {optim}'''.split()
if extra_args_str is not None:
args += extra_args_str.split()
if distributed:
if n_gpus_to_use is None:
__magic_name__ :List[Any] = get_gpu_count()
__magic_name__ :Tuple = get_torch_dist_unique_port()
__magic_name__ :Union[str, Any] = F'''
-m torch.distributed.run
--nproc_per_node={n_gpus_to_use}
--master_port={master_port}
{self.examples_dir_str}/pytorch/translation/run_translation.py
'''.split()
__magic_name__ :Any = [sys.executable] + distributed_args + args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(__lowerCAmelCase , env=self.get_env() )
else:
__magic_name__ :List[Any] = ['''run_translation.py'''] + args
with patch.object(__lowerCAmelCase , '''argv''' , __lowerCAmelCase ):
main()
return output_dir
| 0 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''squeezebert/squeezebert-uncased''': (
'''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'''
),
'''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''',
'''squeezebert/squeezebert-mnli-headless''': (
'''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''squeezebert/squeezebert-uncased''': (
'''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'''
),
'''squeezebert/squeezebert-mnli''': (
'''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'''
),
'''squeezebert/squeezebert-mnli-headless''': (
'''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'''
),
},
}
__snake_case = {
'''squeezebert/squeezebert-uncased''': 5_1_2,
'''squeezebert/squeezebert-mnli''': 5_1_2,
'''squeezebert/squeezebert-mnli-headless''': 5_1_2,
}
__snake_case = {
'''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True},
'''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True},
'''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True},
}
class __lowerCamelCase (_a ):
_lowercase = VOCAB_FILES_NAMES
_lowercase = PRETRAINED_VOCAB_FILES_MAP
_lowercase = PRETRAINED_INIT_CONFIGURATION
_lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase = SqueezeBertTokenizer
def __init__( self: Dict,A_: int=None,A_: int=None,A_: List[Any]=True,A_: Any="[UNK]",A_: List[Any]="[SEP]",A_: int="[PAD]",A_: Optional[Any]="[CLS]",A_: List[str]="[MASK]",A_: int=True,A_: Dict=None,**A_: int,):
'''simple docstring'''
super().__init__(
A_,tokenizer_file=A_,do_lower_case=A_,unk_token=A_,sep_token=A_,pad_token=A_,cls_token=A_,mask_token=A_,tokenize_chinese_chars=A_,strip_accents=A_,**A_,)
__UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase',A_ ) != do_lower_case
or normalizer_state.get('strip_accents',A_ ) != strip_accents
or normalizer_state.get('handle_chinese_chars',A_ ) != tokenize_chinese_chars
):
__UpperCamelCase = getattr(A_,normalizer_state.pop('type' ) )
__UpperCamelCase = do_lower_case
__UpperCamelCase = strip_accents
__UpperCamelCase = tokenize_chinese_chars
__UpperCamelCase = normalizer_class(**A_ )
__UpperCamelCase = do_lower_case
def snake_case_ ( self: Dict,A_: Tuple,A_: Union[str, Any]=None ):
'''simple docstring'''
__UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case_ ( self: Any,A_: List[int],A_: Optional[List[int]] = None ):
'''simple docstring'''
__UpperCamelCase = [self.sep_token_id]
__UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case_ ( self: Union[str, Any],A_: str,A_: Optional[str] = None ):
'''simple docstring'''
__UpperCamelCase = self._tokenizer.model.save(A_,name=A_ )
return tuple(A_ )
| 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = KandinskyInpaintPipeline
_lowercase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
_lowercase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
_lowercase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
_lowercase = False
@property
def snake_case_ ( self: int ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: Tuple ):
'''simple docstring'''
return self.time_input_dim
@property
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
return 100
@property
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' )
return tokenizer
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = MCLIPConfig(
numDims=self.cross_attention_dim,transformerDimensions=self.text_embedder_hidden_size,hidden_size=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_hidden_layers=5,vocab_size=1005,)
__UpperCamelCase = MultilingualCLIP(A_ )
__UpperCamelCase = text_encoder.eval()
return text_encoder
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'text_image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'text_image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
__UpperCamelCase = UNetaDConditionModel(**A_ )
return model
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def snake_case_ ( self: str ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = VQModel(**self.dummy_movq_kwargs )
return model
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = self.dummy_tokenizer
__UpperCamelCase = self.dummy_unet
__UpperCamelCase = self.dummy_movq
__UpperCamelCase = DDIMScheduler(
num_train_timesteps=1000,beta_schedule='linear',beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,clip_sample=A_,set_alpha_to_one=A_,steps_offset=1,prediction_type='epsilon',thresholding=A_,)
__UpperCamelCase = {
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def snake_case_ ( self: Tuple,A_: Optional[int],A_: Dict=0 ):
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(A_ ) ).to(A_ )
__UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(seed + 1 ) ).to(A_ )
# create init_image
__UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ )
__UpperCamelCase = image.cpu().permute(0,2,3,1 )[0]
__UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) )
# create mask
__UpperCamelCase = np.ones((64, 64),dtype=np.floataa )
__UpperCamelCase = 0
if str(A_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(A_ )
else:
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCamelCase = {
'prompt': 'horse',
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = 'cpu'
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = self.pipeline_class(**A_ )
__UpperCamelCase = pipe.to(A_ )
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) )
__UpperCamelCase = output.images
__UpperCamelCase = pipe(
**self.get_dummy_inputs(A_ ),return_dict=A_,)[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
print(F'''image.shape {image.shape}''' )
assert image.shape == (1, 64, 64, 3)
__UpperCamelCase = np.array(
[0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Tuple ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' )
__UpperCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
__UpperCamelCase = np.ones((768, 768),dtype=np.floataa )
__UpperCamelCase = 0
__UpperCamelCase = 'a hat'
__UpperCamelCase = KandinskyPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-prior',torch_dtype=torch.floataa )
pipe_prior.to(A_ )
__UpperCamelCase = KandinskyInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-inpaint',torch_dtype=torch.floataa )
__UpperCamelCase = pipeline.to(A_ )
pipeline.set_progress_bar_config(disable=A_ )
__UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
__UpperCamelCase, __UpperCamelCase = pipe_prior(
A_,generator=A_,num_inference_steps=5,negative_prompt='',).to_tuple()
__UpperCamelCase = pipeline(
A_,image=A_,mask_image=A_,image_embeds=A_,negative_image_embeds=A_,generator=A_,num_inference_steps=100,height=768,width=768,output_type='np',)
__UpperCamelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(A_,A_ )
| 1 | 1 |
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
__snake_case = version.parse(importlib_metadata.version('''nltk'''))
if NLTK_VERSION >= version.Version('''3.6.4'''):
from nltk import word_tokenize
__snake_case = '''\
@inproceedings{banarjee2005,
title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},
author = {Banerjee, Satanjeev and Lavie, Alon},
booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},
month = jun,
year = {2005},
address = {Ann Arbor, Michigan},
publisher = {Association for Computational Linguistics},
url = {https://www.aclweb.org/anthology/W05-0909},
pages = {65--72},
}
'''
__snake_case = '''\
METEOR, an automatic metric for machine translation evaluation
that is based on a generalized concept of unigram matching between the
machine-produced translation and human-produced reference translations.
Unigrams can be matched based on their surface forms, stemmed forms,
and meanings; furthermore, METEOR can be easily extended to include more
advanced matching strategies. Once all generalized unigram matches
between the two strings have been found, METEOR computes a score for
this matching using a combination of unigram-precision, unigram-recall, and
a measure of fragmentation that is designed to directly capture how
well-ordered the matched words in the machine translation are in relation
to the reference.
METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic
data and 0.331 on the Chinese data. This is shown to be an improvement on
using simply unigram-precision, unigram-recall and their harmonic F1
combination.
'''
__snake_case = '''
Computes METEOR score of translated segments against one or more references.
Args:
predictions: list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
alpha: Parameter for controlling relative weights of precision and recall. default: 0.9
beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3
gamma: Relative weight assigned to fragmentation penalty. default: 0.5
Returns:
\'meteor\': meteor score.
Examples:
>>> meteor = datasets.load_metric(\'meteor\')
>>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]
>>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]
>>> results = meteor.compute(predictions=predictions, references=references)
>>> print(round(results["meteor"], 4))
0.6944
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase (datasets.Metric ):
def snake_case_ ( self: List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(
{
'predictions': datasets.Value('string',id='sequence' ),
'references': datasets.Value('string',id='sequence' ),
} ),codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'],reference_urls=[
'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score',
'https://en.wikipedia.org/wiki/METEOR',
],)
def snake_case_ ( self: int,A_: str ):
'''simple docstring'''
import nltk
nltk.download('wordnet' )
if NLTK_VERSION >= version.Version('3.6.5' ):
nltk.download('punkt' )
if NLTK_VERSION >= version.Version('3.6.6' ):
nltk.download('omw-1.4' )
def snake_case_ ( self: str,A_: Any,A_: Optional[Any],A_: Any=0.9,A_: int=3,A_: Optional[Any]=0.5 ):
'''simple docstring'''
if NLTK_VERSION >= version.Version('3.6.5' ):
__UpperCamelCase = [
meteor_score.single_meteor_score(
word_tokenize(A_ ),word_tokenize(A_ ),alpha=A_,beta=A_,gamma=A_ )
for ref, pred in zip(A_,A_ )
]
else:
__UpperCamelCase = [
meteor_score.single_meteor_score(A_,A_,alpha=A_,beta=A_,gamma=A_ )
for ref, pred in zip(A_,A_ )
]
return {"meteor": np.mean(A_ )}
| 1 |
from typing import Any
class __lowerCamelCase :
def __init__( self: int,A_: Any ):
'''simple docstring'''
__UpperCamelCase = data
__UpperCamelCase = None
def __repr__( self: Any ):
'''simple docstring'''
return F'''Node({self.data})'''
class __lowerCamelCase :
def __init__( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = None
def __iter__( self: int ):
'''simple docstring'''
__UpperCamelCase = self.head
while node:
yield node.data
__UpperCamelCase = node.next
def __len__( self: List[str] ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self: Any ):
'''simple docstring'''
return "->".join([str(A_ ) for item in self] )
def __getitem__( self: int,A_: int ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self: int,A_: int,A_: Any ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
__UpperCamelCase = self.head
for _ in range(A_ ):
__UpperCamelCase = current.next
__UpperCamelCase = data
def snake_case_ ( self: Union[str, Any],A_: Any ):
'''simple docstring'''
self.insert_nth(len(self ),A_ )
def snake_case_ ( self: List[Any],A_: Any ):
'''simple docstring'''
self.insert_nth(0,A_ )
def snake_case_ ( self: Optional[Any],A_: int,A_: Any ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
__UpperCamelCase = Node(A_ )
if self.head is None:
__UpperCamelCase = new_node
elif index == 0:
__UpperCamelCase = self.head # link new_node to head
__UpperCamelCase = new_node
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = new_node
def snake_case_ ( self: str ): # print every node data
'''simple docstring'''
print(self )
def snake_case_ ( self: int ):
'''simple docstring'''
return self.delete_nth(0 )
def snake_case_ ( self: str ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def snake_case_ ( self: Any,A_: int = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
__UpperCamelCase = self.head # default first node
if index == 0:
__UpperCamelCase = self.head.next
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next.next
return delete_node.data
def snake_case_ ( self: Any ):
'''simple docstring'''
return self.head is None
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = self.head
while current:
# Store the current node's next node.
__UpperCamelCase = current.next
# Make the current node's next point backwards
__UpperCamelCase = prev
# Make the previous node be the current node
__UpperCamelCase = current
# Make the current node the next node (to progress iteration)
__UpperCamelCase = next_node
# Return prev in order to put the head at the end
__UpperCamelCase = prev
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(_lowercase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(_lowercase ) == i
linked_list.insert_nth(_lowercase , i + 1 )
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(_lowercase ) == 9
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
__UpperCamelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) )
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = [
-9,
1_00,
Node(77_34_51_12 ),
'dlrow olleH',
7,
55_55,
0,
-1_92.5_55_55,
'Hello, world!',
77.9,
Node(10 ),
None,
None,
12.20,
]
__UpperCamelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(_lowercase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
__UpperCamelCase = linked_list.delete_head()
assert result == -9
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
__UpperCamelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
__UpperCamelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(_lowercase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(_lowercase )
assert (
str(_lowercase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(_lowercase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def _A ( ) -> List[str]:
"""simple docstring"""
from doctest import testmod
testmod()
__UpperCamelCase = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(_lowercase )
print('\nReading/changing Node data using indexing:' )
print(f'''Element at Position 1: {linked_list[1]}''' )
__UpperCamelCase = input('Enter New Value: ' ).strip()
print('New list:' )
print(_lowercase )
print(f'''length of linked_list is : {len(_lowercase )}''' )
if __name__ == "__main__":
main()
| 1 | 1 |
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def _A ( _lowercase , _lowercase=0 ) -> Dict:
"""simple docstring"""
return sorted(_lowercase , key=lambda _lowercase : x[column] )
def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> List[Any]:
"""simple docstring"""
for i in range(points_counts - 1 ):
for j in range(i + 1 , _lowercase ):
__UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCamelCase = current_dis
return min_dis
def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> Tuple:
"""simple docstring"""
for i in range(min(6 , points_counts - 1 ) , _lowercase ):
for j in range(max(0 , i - 6 ) , _lowercase ):
__UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCamelCase = current_dis
return min_dis
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
"""simple docstring"""
if points_counts <= 3:
return dis_between_closest_pair(_lowercase , _lowercase )
# recursion
__UpperCamelCase = points_counts // 2
__UpperCamelCase = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[:mid] , _lowercase )
__UpperCamelCase = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[mid:] , points_counts - mid )
__UpperCamelCase = min(_lowercase , _lowercase )
__UpperCamelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(_lowercase )
__UpperCamelCase = dis_between_closest_in_strip(
_lowercase , len(_lowercase ) , _lowercase )
return min(_lowercase , _lowercase )
def _A ( _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = column_based_sort(_lowercase , column=0 )
__UpperCamelCase = column_based_sort(_lowercase , column=1 )
return (
closest_pair_of_points_sqr(
_lowercase , _lowercase , _lowercase )
) ** 0.5
if __name__ == "__main__":
__snake_case = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)]
print('''Distance:''', closest_pair_of_points(points, len(points)))
| 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__snake_case = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''UniSpeechForCTC''',
'''UniSpeechForPreTraining''',
'''UniSpeechForSequenceClassification''',
'''UniSpeechModel''',
'''UniSpeechPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 | 1 |
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def _A ( ) -> int:
"""simple docstring"""
__UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
__UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('RGB' )
return image
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = []
# fmt: off
# vision encoder
rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') )
rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') )
rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') )
rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') )
rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') )
rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') )
# QFormer
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') )
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') )
# fmt: on
return rename_keys
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = dct.pop(_lowercase )
__UpperCamelCase = val
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
__UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' )
__UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' )
# next, set bias in the state dict
__UpperCamelCase = torch.cat((q_bias, torch.zeros_like(_lowercase , requires_grad=_lowercase ), v_bias) )
__UpperCamelCase = qkv_bias
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = 3_64 if 'coco' in model_name else 2_24
__UpperCamelCase = BlipaVisionConfig(image_size=_lowercase ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
__UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_lowercase ).to_dict()
elif "opt-6.7b" in model_name:
__UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_lowercase ).to_dict()
elif "t5-xl" in model_name:
__UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
__UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
__UpperCamelCase = BlipaConfig(vision_config=_lowercase , text_config=_lowercase )
return config, image_size
@torch.no_grad()
def _A ( _lowercase , _lowercase=None , _lowercase=False ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = (
AutoTokenizer.from_pretrained('facebook/opt-2.7b' )
if 'opt' in model_name
else AutoTokenizer.from_pretrained('google/flan-t5-xl' )
)
__UpperCamelCase = tokenizer('\n' , add_special_tokens=_lowercase ).input_ids[0]
__UpperCamelCase, __UpperCamelCase = get_blipa_config(_lowercase , eos_token_id=_lowercase )
__UpperCamelCase = BlipaForConditionalGeneration(_lowercase ).eval()
__UpperCamelCase = {
'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'),
'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'),
'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'),
'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'),
'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'),
'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'),
'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'),
}
__UpperCamelCase, __UpperCamelCase = model_name_to_original[model_name]
# load original model
print('Loading original model...' )
__UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu'
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = load_model_and_preprocess(
name=_lowercase , model_type=_lowercase , is_eval=_lowercase , device=_lowercase )
original_model.eval()
print('Done!' )
# update state dict keys
__UpperCamelCase = original_model.state_dict()
__UpperCamelCase = create_rename_keys(_lowercase )
for src, dest in rename_keys:
rename_key(_lowercase , _lowercase , _lowercase )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
__UpperCamelCase = state_dict.pop(_lowercase )
if key.startswith('Qformer.bert' ):
__UpperCamelCase = key.replace('Qformer.bert' , 'qformer' )
if "attention.self" in key:
__UpperCamelCase = key.replace('self' , 'attention' )
if "opt_proj" in key:
__UpperCamelCase = key.replace('opt_proj' , 'language_projection' )
if "t5_proj" in key:
__UpperCamelCase = key.replace('t5_proj' , 'language_projection' )
if key.startswith('opt' ):
__UpperCamelCase = key.replace('opt' , 'language' )
if key.startswith('t5' ):
__UpperCamelCase = key.replace('t5' , 'language' )
__UpperCamelCase = val
# read in qv biases
read_in_q_v_bias(_lowercase , _lowercase )
__UpperCamelCase, __UpperCamelCase = hf_model.load_state_dict(_lowercase , strict=_lowercase )
assert len(_lowercase ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
__UpperCamelCase = load_demo_image()
__UpperCamelCase = vis_processors['eval'](_lowercase ).unsqueeze(0 ).to(_lowercase )
__UpperCamelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_lowercase )
# create processor
__UpperCamelCase = BlipImageProcessor(
size={'height': image_size, 'width': image_size} , image_mean=_lowercase , image_std=_lowercase )
__UpperCamelCase = BlipaProcessor(image_processor=_lowercase , tokenizer=_lowercase )
__UpperCamelCase = processor(images=_lowercase , return_tensors='pt' ).pixel_values.to(_lowercase )
# make sure processor creates exact same pixel values
assert torch.allclose(_lowercase , _lowercase )
original_model.to(_lowercase )
hf_model.to(_lowercase )
with torch.no_grad():
if "opt" in model_name:
__UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits
__UpperCamelCase = hf_model(_lowercase , _lowercase ).logits
else:
__UpperCamelCase = original_model(
{'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits
__UpperCamelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 )
__UpperCamelCase = hf_model(_lowercase , _lowercase , labels=_lowercase ).logits
assert original_logits.shape == logits.shape
print('First values of original logits:' , original_logits[0, :3, :3] )
print('First values of HF logits:' , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
__UpperCamelCase = torch.tensor(
[[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=_lowercase )
assert torch.allclose(logits[0, :3, :3] , _lowercase , atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
__UpperCamelCase = torch.tensor(
[[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=_lowercase )
else:
# cast to same type
__UpperCamelCase = logits.dtype
assert torch.allclose(original_logits.to(_lowercase ) , _lowercase , atol=1e-2 )
print('Looks ok!' )
print('Generating a caption...' )
__UpperCamelCase = ''
__UpperCamelCase = tokenizer(_lowercase , return_tensors='pt' ).input_ids.to(_lowercase )
__UpperCamelCase = original_model.generate({'image': original_pixel_values} )
__UpperCamelCase = hf_model.generate(
_lowercase , _lowercase , do_sample=_lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print('Original generation:' , _lowercase )
__UpperCamelCase = input_ids.shape[1]
__UpperCamelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowercase )
__UpperCamelCase = [text.strip() for text in output_text]
print('HF generation:' , _lowercase )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(_lowercase )
hf_model.save_pretrained(_lowercase )
if push_to_hub:
processor.push_to_hub(f'''nielsr/{model_name}''' )
hf_model.push_to_hub(f'''nielsr/{model_name}''' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
__snake_case = [
'''blip2-opt-2.7b''',
'''blip2-opt-6.7b''',
'''blip2-opt-2.7b-coco''',
'''blip2-opt-6.7b-coco''',
'''blip2-flan-t5-xl''',
'''blip2-flan-t5-xl-coco''',
'''blip2-flan-t5-xxl''',
]
parser.add_argument(
'''--model_name''',
default='''blip2-opt-2.7b''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
__snake_case = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 1 |
__snake_case = {
'''a''': '''AAAAA''',
'''b''': '''AAAAB''',
'''c''': '''AAABA''',
'''d''': '''AAABB''',
'''e''': '''AABAA''',
'''f''': '''AABAB''',
'''g''': '''AABBA''',
'''h''': '''AABBB''',
'''i''': '''ABAAA''',
'''j''': '''BBBAA''',
'''k''': '''ABAAB''',
'''l''': '''ABABA''',
'''m''': '''ABABB''',
'''n''': '''ABBAA''',
'''o''': '''ABBAB''',
'''p''': '''ABBBA''',
'''q''': '''ABBBB''',
'''r''': '''BAAAA''',
'''s''': '''BAAAB''',
'''t''': '''BAABA''',
'''u''': '''BAABB''',
'''v''': '''BBBAB''',
'''w''': '''BABAA''',
'''x''': '''BABAB''',
'''y''': '''BABBA''',
'''z''': '''BABBB''',
''' ''': ''' ''',
}
__snake_case = {value: key for key, value in encode_dict.items()}
def _A ( _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = ''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('encode() accepts only letters of the alphabet and spaces' )
return encoded
def _A ( _lowercase ) -> str:
"""simple docstring"""
if set(_lowercase ) - {"A", "B", " "} != set():
raise Exception('decode() accepts only \'A\', \'B\' and spaces' )
__UpperCamelCase = ''
for word in coded.split():
while len(_lowercase ) != 0:
decoded += decode_dict[word[:5]]
__UpperCamelCase = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase (unittest.TestCase ):
@slow
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' )
__UpperCamelCase = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]],dtype=tf.intaa,) # J'aime le camembert !"
__UpperCamelCase = model(A_ )['last_hidden_state']
__UpperCamelCase = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape,A_ )
# compare the actual values for a slice.
__UpperCamelCase = tf.convert_to_tensor(
[[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]],dtype=tf.floataa,)
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy(),expected_slice.numpy(),atol=1E-4 ) )
| 1 |
from collections.abc import Generator
from math import sin
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
if len(_lowercase ) != 32:
raise ValueError('Input must be of length 32' )
__UpperCamelCase = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
__UpperCamelCase = format(_lowercase , '08x' )[-8:]
__UpperCamelCase = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = B''
for char in message:
bit_string += format(_lowercase , '08b' ).encode('utf-8' )
__UpperCamelCase = format(len(_lowercase ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(_lowercase ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def _A ( _lowercase ) -> Generator[list[int], None, None]:
"""simple docstring"""
if len(_lowercase ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(_lowercase ) , 5_12 ):
__UpperCamelCase = bit_string[pos : pos + 5_12]
__UpperCamelCase = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def _A ( _lowercase ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
__UpperCamelCase = format(_lowercase , '032b' )
__UpperCamelCase = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(_lowercase , 2 )
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return (a + b) % 2**32
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = preprocess(_lowercase )
__UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__UpperCamelCase = 0X67_45_23_01
__UpperCamelCase = 0Xef_cd_ab_89
__UpperCamelCase = 0X98_ba_dc_fe
__UpperCamelCase = 0X10_32_54_76
__UpperCamelCase = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(_lowercase ):
__UpperCamelCase = aa
__UpperCamelCase = ba
__UpperCamelCase = ca
__UpperCamelCase = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__UpperCamelCase = d ^ (b & (c ^ d))
__UpperCamelCase = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__UpperCamelCase = c ^ (d & (b ^ c))
__UpperCamelCase = (5 * i + 1) % 16
elif i <= 47:
__UpperCamelCase = b ^ c ^ d
__UpperCamelCase = (3 * i + 5) % 16
else:
__UpperCamelCase = c ^ (b | not_aa(_lowercase ))
__UpperCamelCase = (7 * i) % 16
__UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32
__UpperCamelCase = d
__UpperCamelCase = c
__UpperCamelCase = b
__UpperCamelCase = sum_aa(_lowercase , left_rotate_aa(_lowercase , shift_amounts[i] ) )
# Add hashed chunk to running total
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_lxmert import LxmertTokenizer
__snake_case = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''',
},
'''tokenizer_file''': {
'''unc-nlp/lxmert-base-uncased''': (
'''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json'''
),
},
}
__snake_case = {
'''unc-nlp/lxmert-base-uncased''': 5_1_2,
}
__snake_case = {
'''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True},
}
class __lowerCamelCase (_a ):
_lowercase = VOCAB_FILES_NAMES
_lowercase = PRETRAINED_VOCAB_FILES_MAP
_lowercase = PRETRAINED_INIT_CONFIGURATION
_lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase = LxmertTokenizer
def __init__( self: Tuple,A_: str=None,A_: Any=None,A_: List[Any]=True,A_: int="[UNK]",A_: Union[str, Any]="[SEP]",A_: str="[PAD]",A_: Dict="[CLS]",A_: int="[MASK]",A_: int=True,A_: Optional[int]=None,**A_: Union[str, Any],):
'''simple docstring'''
super().__init__(
A_,tokenizer_file=A_,do_lower_case=A_,unk_token=A_,sep_token=A_,pad_token=A_,cls_token=A_,mask_token=A_,tokenize_chinese_chars=A_,strip_accents=A_,**A_,)
__UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase',A_ ) != do_lower_case
or normalizer_state.get('strip_accents',A_ ) != strip_accents
or normalizer_state.get('handle_chinese_chars',A_ ) != tokenize_chinese_chars
):
__UpperCamelCase = getattr(A_,normalizer_state.pop('type' ) )
__UpperCamelCase = do_lower_case
__UpperCamelCase = strip_accents
__UpperCamelCase = tokenize_chinese_chars
__UpperCamelCase = normalizer_class(**A_ )
__UpperCamelCase = do_lower_case
def snake_case_ ( self: Tuple,A_: List[str],A_: Tuple=None ):
'''simple docstring'''
__UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case_ ( self: Dict,A_: List[int],A_: Optional[List[int]] = None ):
'''simple docstring'''
__UpperCamelCase = [self.sep_token_id]
__UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case_ ( self: Any,A_: str,A_: Optional[str] = None ):
'''simple docstring'''
__UpperCamelCase = self._tokenizer.model.save(A_,name=A_ )
return tuple(A_ )
| 1 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__snake_case = 0
__snake_case = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__snake_case = tuple[int, int]
class __lowerCamelCase :
def __init__( self: str,A_: int,A_: int,A_: int,A_: int,A_: int,A_: Node | None,):
'''simple docstring'''
__UpperCamelCase = pos_x
__UpperCamelCase = pos_y
__UpperCamelCase = (pos_y, pos_x)
__UpperCamelCase = goal_x
__UpperCamelCase = goal_y
__UpperCamelCase = g_cost
__UpperCamelCase = parent
__UpperCamelCase = self.calculate_heuristic()
__UpperCamelCase = self.g_cost + self.h_cost
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.pos_x - self.goal_x
__UpperCamelCase = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(A_ ) + abs(A_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self: int,A_: Node ):
'''simple docstring'''
return self.f_cost < other.f_cost
class __lowerCamelCase :
def __init__( self: Any,A_: TPosition,A_: TPosition ):
'''simple docstring'''
__UpperCamelCase = Node(start[1],start[0],goal[1],goal[0],0,A_ )
__UpperCamelCase = Node(goal[1],goal[0],goal[1],goal[0],9_9999,A_ )
__UpperCamelCase = [self.start]
__UpperCamelCase = []
__UpperCamelCase = False
def snake_case_ ( self: Any ):
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
__UpperCamelCase = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(A_ )
self.closed_nodes.append(A_ )
__UpperCamelCase = self.get_successors(A_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(A_ )
else:
# retrieve the best current path
__UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(A_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(A_ )
else:
self.open_nodes.append(A_ )
return [self.start.pos]
def snake_case_ ( self: int,A_: Node ):
'''simple docstring'''
__UpperCamelCase = []
for action in delta:
__UpperCamelCase = parent.pos_x + action[1]
__UpperCamelCase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
A_,A_,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,A_,) )
return successors
def snake_case_ ( self: Any,A_: Node | None ):
'''simple docstring'''
__UpperCamelCase = node
__UpperCamelCase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__UpperCamelCase = current_node.parent
path.reverse()
return path
class __lowerCamelCase :
def __init__( self: List[Any],A_: TPosition,A_: TPosition ):
'''simple docstring'''
__UpperCamelCase = AStar(A_,A_ )
__UpperCamelCase = AStar(A_,A_ )
__UpperCamelCase = False
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
__UpperCamelCase = self.fwd_astar.open_nodes.pop(0 )
__UpperCamelCase = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
A_,A_ )
self.fwd_astar.closed_nodes.append(A_ )
self.bwd_astar.closed_nodes.append(A_ )
__UpperCamelCase = current_bwd_node
__UpperCamelCase = current_fwd_node
__UpperCamelCase = {
self.fwd_astar: self.fwd_astar.get_successors(A_ ),
self.bwd_astar: self.bwd_astar.get_successors(A_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(A_ )
else:
# retrieve the best current path
__UpperCamelCase = astar.open_nodes.pop(
astar.open_nodes.index(A_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(A_ )
else:
astar.open_nodes.append(A_ )
return [self.fwd_astar.start.pos]
def snake_case_ ( self: List[str],A_: Node,A_: Node ):
'''simple docstring'''
__UpperCamelCase = self.fwd_astar.retrace_path(A_ )
__UpperCamelCase = self.bwd_astar.retrace_path(A_ )
bwd_path.pop()
bwd_path.reverse()
__UpperCamelCase = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__snake_case = (0, 0)
__snake_case = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__snake_case = time.time()
__snake_case = AStar(init, goal)
__snake_case = a_star.search()
__snake_case = time.time() - start_time
print(f"""AStar execution time = {end_time:f} seconds""")
__snake_case = time.time()
__snake_case = BidirectionalAStar(init, goal)
__snake_case = time.time() - bd_start_time
print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
| 1 | 1 |
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
__snake_case = '''pt'''
elif is_tf_available():
__snake_case = '''tf'''
else:
__snake_case = '''jax'''
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = ByTaTokenizer
_lowercase = False
def snake_case_ ( self: Any ):
'''simple docstring'''
super().setUp()
__UpperCamelCase = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def snake_case_ ( self: int ):
'''simple docstring'''
return ByTaTokenizer.from_pretrained('google/byt5-small' )
def snake_case_ ( self: Optional[int],**A_: int ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname,**A_ )
def snake_case_ ( self: Any,A_: List[Any],A_: List[str]=False,A_: List[Any]=20,A_: List[Any]=5 ):
'''simple docstring'''
__UpperCamelCase = []
for i in range(len(A_ ) ):
try:
__UpperCamelCase = tokenizer.decode([i],clean_up_tokenization_spaces=A_ )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
__UpperCamelCase = list(filter(lambda A_ : re.match(r'^[ a-zA-Z]+$',t[1] ),A_ ) )
__UpperCamelCase = list(filter(lambda A_ : [t[0]] == tokenizer.encode(t[1],add_special_tokens=A_ ),A_ ) )
if max_length is not None and len(A_ ) > max_length:
__UpperCamelCase = toks[:max_length]
if min_length is not None and len(A_ ) < min_length and len(A_ ) > 0:
while len(A_ ) < min_length:
__UpperCamelCase = toks + toks
# toks_str = [t[1] for t in toks]
__UpperCamelCase = [t[0] for t in toks]
# Ensure consistency
__UpperCamelCase = tokenizer.decode(A_,clean_up_tokenization_spaces=A_ )
if " " not in output_txt and len(A_ ) > 1:
__UpperCamelCase = (
tokenizer.decode([toks_ids[0]],clean_up_tokenization_spaces=A_ )
+ ' '
+ tokenizer.decode(toks_ids[1:],clean_up_tokenization_spaces=A_ )
)
if with_prefix_space:
__UpperCamelCase = ' ' + output_txt
__UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ )
return output_txt, output_ids
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = self.ta_base_tokenizer
__UpperCamelCase = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] )
__UpperCamelCase = tokenizer(['hi', 'I went to the gym', ''] )
self.assertListEqual(batch_with_eos_added['input_ids'],batch_without_eos_added['input_ids'] )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.ta_base_tokenizer
__UpperCamelCase = 'Unicode €.'
__UpperCamelCase = tokenizer(A_ )
__UpperCamelCase = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded['input_ids'],A_ )
# decoding
__UpperCamelCase = tokenizer.decode(A_ )
self.assertEqual(A_,'Unicode €.</s>' )
__UpperCamelCase = tokenizer('e è é ê ë' )
__UpperCamelCase = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded['input_ids'],A_ )
# decoding
__UpperCamelCase = tokenizer.decode(A_ )
self.assertEqual(A_,'e è é ê ë</s>' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ),'e è é ê ë</s>' )
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = self.ta_base_tokenizer
__UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
__UpperCamelCase = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
__UpperCamelCase = tokenizer(A_,padding=A_,return_tensors=A_ )
self.assertIsInstance(A_,A_ )
if FRAMEWORK != "jax":
__UpperCamelCase = list(batch.input_ids.numpy()[0] )
else:
__UpperCamelCase = list(batch.input_ids.tolist()[0] )
self.assertListEqual(A_,A_ )
self.assertEqual((2, 37),batch.input_ids.shape )
self.assertEqual((2, 37),batch.attention_mask.shape )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.ta_base_tokenizer
__UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__UpperCamelCase = tokenizer(A_,padding=A_,return_tensors=A_ )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids',A_ )
self.assertIn('attention_mask',A_ )
self.assertNotIn('decoder_input_ids',A_ )
self.assertNotIn('decoder_attention_mask',A_ )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.ta_base_tokenizer
__UpperCamelCase = [
'Summary of the text.',
'Another summary.',
]
__UpperCamelCase = tokenizer(
text_target=A_,max_length=32,padding='max_length',truncation=A_,return_tensors=A_ )
self.assertEqual(32,targets['input_ids'].shape[1] )
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = self.ta_base_tokenizer
__UpperCamelCase = ['A long paragraph for summarization. </s>']
__UpperCamelCase = ['Summary of the text. </s>']
# fmt: off
__UpperCamelCase = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
__UpperCamelCase = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
__UpperCamelCase = tokenizer(A_,text_target=A_ )
self.assertEqual(A_,batch['input_ids'][0] )
self.assertEqual(A_,batch['labels'][0] )
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length,42 )
# Now let's start the test
__UpperCamelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCamelCase = tempfile.mkdtemp()
__UpperCamelCase = ' He is very happy, UNwant\u00E9d,running'
__UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ )
tokenizer.save_pretrained(A_ )
__UpperCamelCase = tokenizer.__class__.from_pretrained(A_ )
__UpperCamelCase = after_tokenizer.encode(A_,add_special_tokens=A_ )
self.assertListEqual(A_,A_ )
shutil.rmtree(A_ )
__UpperCamelCase = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCamelCase = tempfile.mkdtemp()
__UpperCamelCase = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
__UpperCamelCase = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
__UpperCamelCase = tokenizer.encode(A_,add_special_tokens=A_ )
tokenizer.save_pretrained(A_ )
__UpperCamelCase = tokenizer.__class__.from_pretrained(A_ )
__UpperCamelCase = after_tokenizer.encode(A_,add_special_tokens=A_ )
self.assertListEqual(A_,A_ )
self.assertIn('new_additional_special_token',after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length,42 )
__UpperCamelCase = tokenizer.__class__.from_pretrained(A_,model_max_length=43 )
self.assertEqual(tokenizer.model_max_length,43 )
shutil.rmtree(A_ )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(A_ )
with open(os.path.join(A_,'special_tokens_map.json' ),encoding='utf-8' ) as json_file:
__UpperCamelCase = json.load(A_ )
with open(os.path.join(A_,'tokenizer_config.json' ),encoding='utf-8' ) as json_file:
__UpperCamelCase = json.load(A_ )
__UpperCamelCase = [F'''<extra_id_{i}>''' for i in range(125 )]
__UpperCamelCase = added_tokens_extra_ids + [
'an_additional_special_token'
]
__UpperCamelCase = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(A_,'special_tokens_map.json' ),'w',encoding='utf-8' ) as outfile:
json.dump(A_,A_ )
with open(os.path.join(A_,'tokenizer_config.json' ),'w',encoding='utf-8' ) as outfile:
json.dump(A_,A_ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__UpperCamelCase = tokenizer_class.from_pretrained(
A_,)
self.assertIn(
'an_additional_special_token',tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
['an_additional_special_token'],tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ),)
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__UpperCamelCase = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token',lstrip=A_ )]
__UpperCamelCase = tokenizer_class.from_pretrained(
A_,additional_special_tokens=A_,)
self.assertIn('a_new_additional_special_token',tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'],tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ),)
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(A_ )
__UpperCamelCase = tokenizer_class.from_pretrained(A_ )
self.assertTrue(tokenizer.decode([255] ) == '' )
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
pass
def snake_case_ ( self: Dict ):
'''simple docstring'''
pass
def snake_case_ ( self: Any ):
'''simple docstring'''
pass
def snake_case_ ( self: Tuple ):
'''simple docstring'''
pass
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = self.get_tokenizers(fast=A_,do_lower_case=A_ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
__UpperCamelCase = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>']
__UpperCamelCase = tokenizer.convert_tokens_to_string(A_ )
self.assertIsInstance(A_,A_ )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
__UpperCamelCase = [
'bos_token',
'eos_token',
'unk_token',
'sep_token',
'pad_token',
'cls_token',
'mask_token',
]
__UpperCamelCase = 0
__UpperCamelCase = tokenizer.convert_ids_to_tokens(
A_,skip_special_tokens=A_ )
for attr in attributes_list:
setattr(A_,attr + '_id',A_ )
self.assertEqual(getattr(A_,A_ ),A_ )
self.assertEqual(getattr(A_,attr + '_id' ),A_ )
setattr(A_,attr + '_id',A_ )
self.assertEqual(getattr(A_,A_ ),A_ )
self.assertEqual(getattr(A_,attr + '_id' ),A_ )
setattr(A_,'additional_special_tokens_ids',[] )
self.assertListEqual(getattr(A_,'additional_special_tokens' ),[] )
self.assertListEqual(getattr(A_,'additional_special_tokens_ids' ),[] )
setattr(A_,'additional_special_tokens_ids',[token_id_to_test_setters] )
self.assertListEqual(getattr(A_,'additional_special_tokens' ),[token_to_test_setters] )
self.assertListEqual(getattr(A_,'additional_special_tokens_ids' ),[token_id_to_test_setters] )
| 1 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
__snake_case = get_tests_dir('''fixtures''')
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = mock.Mock()
__UpperCamelCase = 500
__UpperCamelCase = {}
__UpperCamelCase = HTTPError
__UpperCamelCase = {}
# Download this model to make sure it's in the cache.
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request',return_value=A_ ) as mock_head:
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# This check we did call the fake head request
mock_head.assert_called()
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' )
@is_staging_test
class __lowerCamelCase (unittest.TestCase ):
@classmethod
def snake_case_ ( cls: Tuple ):
'''simple docstring'''
__UpperCamelCase = TOKEN
HfFolder.save_token(A_ )
@classmethod
def snake_case_ ( cls: Tuple ):
'''simple docstring'''
try:
delete_repo(token=cls._token,repo_id='test-feature-extractor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token,repo_id='valid_org/test-feature-extractor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token,repo_id='test-dynamic-feature-extractor' )
except HTTPError:
pass
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('test-feature-extractor',use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
# Reset repo
delete_repo(token=self._token,repo_id='test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
A_,repo_id='test-feature-extractor',push_to_hub=A_,use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('valid_org/test-feature-extractor',use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
# Reset repo
delete_repo(token=self._token,repo_id='valid_org/test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
A_,repo_id='valid_org/test-feature-extractor-org',push_to_hub=A_,use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
def snake_case_ ( self: int ):
'''simple docstring'''
CustomFeatureExtractor.register_for_auto_class()
__UpperCamelCase = CustomFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('test-dynamic-feature-extractor',use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map,{'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'},)
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(
F'''{USER}/test-dynamic-feature-extractor''',trust_remote_code=A_ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__,'CustomFeatureExtractor' )
| 1 | 1 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def _A ( _lowercase ) -> List[str]:
"""simple docstring"""
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class __lowerCamelCase (nn.Module ):
def __init__( self: Union[str, Any],A_: nn.Module,A_: int ):
'''simple docstring'''
super().__init__()
__UpperCamelCase = module
__UpperCamelCase = nn.Sequential(
nn.Linear(module.in_features,A_,bias=A_ ),nn.Linear(A_,module.out_features,bias=A_ ),)
__UpperCamelCase = (2.0 / (5 * min(module.in_features,module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight,std=A_ )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def snake_case_ ( self: Optional[Any],A_: int,*A_: Union[str, Any],**A_: str ):
'''simple docstring'''
return self.module(A_,*A_,**A_ ) + self.adapter(A_ )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowerCamelCase (unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
_lowercase = """bigscience/bloom-1b7"""
# Constant values
_lowercase = 2.109659552692574
_lowercase = """Hello my name is"""
_lowercase = set()
EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" )
EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" )
EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" )
_lowercase = 10
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = AutoTokenizer.from_pretrained(self.model_name )
class __lowerCamelCase (_a ):
def snake_case_ ( self: int ):
'''simple docstring'''
super().setUp()
# Models and tokenizer
__UpperCamelCase = AutoModelForCausalLM.from_pretrained(
self.model_name,torch_dtype=torch.floataa,device_map='auto' )
__UpperCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name,load_in_abit=A_,device_map='auto' )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.model_abit.config
self.assertTrue(hasattr(A_,'quantization_config' ) )
__UpperCamelCase = config.to_dict()
__UpperCamelCase = config.to_diff_dict()
__UpperCamelCase = config.to_json_string()
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
__UpperCamelCase = self.model_fpaa.get_memory_footprint()
__UpperCamelCase = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit,self.EXPECTED_RELATIVE_DIFFERENCE )
__UpperCamelCase = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def snake_case_ ( self: str ):
'''simple docstring'''
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(A_,torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' )
__UpperCamelCase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ),max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0],skip_special_tokens=A_ ),self.EXPECTED_OUTPUTS )
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = BitsAndBytesConfig()
__UpperCamelCase = True
__UpperCamelCase = AutoModelForCausalLM.from_pretrained(
self.model_name,quantization_config=A_,device_map='auto' )
__UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' )
__UpperCamelCase = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0 ),max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0],skip_special_tokens=A_ ),self.EXPECTED_OUTPUTS )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
with self.assertRaises(A_ ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(A_ )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = BitsAndBytesConfig()
with self.assertRaises(A_ ):
__UpperCamelCase = AutoModelForCausalLM.from_pretrained(
self.model_name,quantization_config=A_,load_in_abit=A_,device_map='auto',bnb_abit_quant_type='nf4',)
def snake_case_ ( self: Tuple ):
'''simple docstring'''
with self.assertRaises(A_ ):
# Tries with `str`
self.model_abit.to('cpu' )
with self.assertRaises(A_ ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(A_ ):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0' ) )
with self.assertRaises(A_ ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(A_ ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
__UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' )
__UpperCamelCase = self.model_fpaa.to(torch.floataa )
__UpperCamelCase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ),max_new_tokens=10 )
# Check this does not throw an error
__UpperCamelCase = self.model_fpaa.to('cpu' )
# Check this does not throw an error
__UpperCamelCase = self.model_fpaa.half()
# Check this does not throw an error
__UpperCamelCase = self.model_fpaa.float()
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('t5-small',load_in_abit=A_,device_map='auto' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowerCamelCase (unittest.TestCase ):
@classmethod
def snake_case_ ( cls: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = 't5-small'
__UpperCamelCase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
__UpperCamelCase = AutoTokenizer.from_pretrained(cls.model_name )
__UpperCamelCase = 'Translate in German: Hello, my dog is cute'
def snake_case_ ( self: Dict ):
'''simple docstring'''
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self: List[str] ):
'''simple docstring'''
from transformers import TaForConditionalGeneration
__UpperCamelCase = TaForConditionalGeneration._keep_in_fpaa_modules
__UpperCamelCase = None
# test with `t5-small`
__UpperCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name,load_in_abit=A_,device_map='auto' )
__UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ).to(0 )
__UpperCamelCase = model.generate(**A_ )
# test with `flan-t5-small`
__UpperCamelCase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name,load_in_abit=A_,device_map='auto' )
__UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ).to(0 )
__UpperCamelCase = model.generate(**A_ )
__UpperCamelCase = modules
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
__UpperCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name,load_in_abit=A_,device_map='auto' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q,bnb.nn.Linearabit ) )
__UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ).to(0 )
__UpperCamelCase = model.generate(**A_ )
# test with `flan-t5-small`
__UpperCamelCase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name,load_in_abit=A_,device_map='auto' )
__UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ).to(0 )
__UpperCamelCase = model.generate(**A_ )
class __lowerCamelCase (_a ):
def snake_case_ ( self: Tuple ):
'''simple docstring'''
super().setUp()
# model_name
__UpperCamelCase = 'bigscience/bloom-560m'
__UpperCamelCase = 't5-small'
# Different types of model
__UpperCamelCase = AutoModel.from_pretrained(self.model_name,load_in_abit=A_,device_map='auto' )
# Sequence classification model
__UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(
self.model_name,load_in_abit=A_,device_map='auto' )
# CausalLM model
__UpperCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name,load_in_abit=A_,device_map='auto' )
# Seq2seq model
__UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name,load_in_abit=A_,device_map='auto' )
def snake_case_ ( self: Any ):
'''simple docstring'''
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self: str ):
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class __lowerCamelCase (_a ):
def snake_case_ ( self: Any ):
'''simple docstring'''
super().setUp()
def snake_case_ ( self: List[str] ):
'''simple docstring'''
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = pipeline(
'text-generation',model=self.model_name,model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa},max_new_tokens=self.MAX_NEW_TOKENS,)
# Real second forward pass
__UpperCamelCase = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['generated_text'],self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class __lowerCamelCase (_a ):
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
super().setUp()
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = AutoModelForCausalLM.from_pretrained(
self.model_name,load_in_abit=A_,device_map='balanced' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ),{0, 1} )
# Check that inference pass works on the model
__UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' )
# Second real batch
__UpperCamelCase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ),max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0],skip_special_tokens=A_ ),self.EXPECTED_OUTPUTS )
class __lowerCamelCase (_a ):
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = 'facebook/opt-350m'
super().setUp()
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ):
return
# Step 1: freeze all parameters
__UpperCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name,load_in_abit=A_ )
self.assertEqual(set(model.hf_device_map.values() ),{torch.cuda.current_device()} )
for param in model.parameters():
__UpperCamelCase = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
__UpperCamelCase = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(A_ ) ):
__UpperCamelCase = LoRALayer(module.q_proj,rank=16 )
__UpperCamelCase = LoRALayer(module.k_proj,rank=16 )
__UpperCamelCase = LoRALayer(module.v_proj,rank=16 )
# Step 3: dummy batch
__UpperCamelCase = self.tokenizer('Test batch ',return_tensors='pt' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
__UpperCamelCase = model.forward(**A_ )
out.logits.norm().backward()
for module in model.modules():
if isinstance(A_,A_ ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(A_,nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class __lowerCamelCase (_a ):
_lowercase = """gpt2-xl"""
_lowercase = 3.3191854854152187
| 1 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__snake_case = 1_6
__snake_case = 3_2
def _A ( _lowercase , _lowercase = 16 , _lowercase = "bert-base-cased" ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase )
__UpperCamelCase = load_dataset('glue' , 'mrpc' )
def tokenize_function(_lowercase ):
# max_length=None => use the model max length (it's actually the default)
__UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowercase , max_length=_lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCamelCase = datasets.map(
_lowercase , batched=_lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(_lowercase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(_lowercase , padding='max_length' , max_length=1_28 , return_tensors='pt' )
return tokenizer.pad(_lowercase , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
__UpperCamelCase = DataLoader(
tokenized_datasets['train'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
__UpperCamelCase = DataLoader(
tokenized_datasets['validation'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
return train_dataloader, eval_dataloader
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__UpperCamelCase = config['lr']
__UpperCamelCase = int(config['num_epochs'] )
__UpperCamelCase = int(config['seed'] )
__UpperCamelCase = int(config['batch_size'] )
__UpperCamelCase = args.model_name_or_path
set_seed(_lowercase )
__UpperCamelCase, __UpperCamelCase = get_dataloaders(_lowercase , _lowercase , _lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase )
# Instantiate optimizer
__UpperCamelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__UpperCamelCase = optimizer_cls(params=model.parameters() , lr=_lowercase )
if accelerator.state.deepspeed_plugin is not None:
__UpperCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
__UpperCamelCase = 1
__UpperCamelCase = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__UpperCamelCase = get_linear_schedule_with_warmup(
optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , )
else:
__UpperCamelCase = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare(
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
# We need to keep track of how many total steps we have iterated over
__UpperCamelCase = 0
# We also need to keep track of the stating epoch so files are named properly
__UpperCamelCase = 0
# Now we train the model
__UpperCamelCase = evaluate.load('glue' , 'mrpc' )
__UpperCamelCase = 0
__UpperCamelCase = {}
for epoch in range(_lowercase , _lowercase ):
model.train()
for step, batch in enumerate(_lowercase ):
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.loss
__UpperCamelCase = loss / gradient_accumulation_steps
accelerator.backward(_lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
__UpperCamelCase = 0
for step, batch in enumerate(_lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__UpperCamelCase, __UpperCamelCase = accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(_lowercase ) - 1:
__UpperCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__UpperCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=_lowercase , references=_lowercase , )
__UpperCamelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , _lowercase )
__UpperCamelCase = eval_metric['accuracy']
if best_performance < eval_metric["accuracy"]:
__UpperCamelCase = eval_metric['accuracy']
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'''
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f:
json.dump(_lowercase , _lowercase )
def _A ( ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path' , type=_lowercase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowercase , )
parser.add_argument(
'--output_dir' , type=_lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , )
parser.add_argument(
'--performance_lower_bound' , type=_lowercase , default=_lowercase , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , )
parser.add_argument(
'--num_epochs' , type=_lowercase , default=3 , help='Number of train epochs.' , )
__UpperCamelCase = parser.parse_args()
__UpperCamelCase = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(_lowercase , _lowercase )
if __name__ == "__main__":
main()
| 1 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__snake_case = {
'''configuration_groupvit''': [
'''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''GroupViTConfig''',
'''GroupViTOnnxConfig''',
'''GroupViTTextConfig''',
'''GroupViTVisionConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GroupViTModel''',
'''GroupViTPreTrainedModel''',
'''GroupViTTextModel''',
'''GroupViTVisionModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFGroupViTModel''',
'''TFGroupViTPreTrainedModel''',
'''TFGroupViTTextModel''',
'''TFGroupViTVisionModel''',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class __lowerCamelCase (_a ):
@slow
@require_torch
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny','prajjwal1/bert-tiny' )
__UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' )
__UpperCamelCase = bertabert.config.encoder.vocab_size
__UpperCamelCase = tokenizer.sep_token_id
__UpperCamelCase = tokenizer.cls_token_id
__UpperCamelCase = 128
__UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='train[:1%]' )
__UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='validation[:1%]' )
__UpperCamelCase = train_dataset.select(range(32 ) )
__UpperCamelCase = val_dataset.select(range(16 ) )
__UpperCamelCase = 4
def _map_to_encoder_decoder_inputs(A_: Dict ):
# Tokenizer will automatically set [BOS] <text> [EOS]
__UpperCamelCase = tokenizer(batch['article'],padding='max_length',truncation=A_,max_length=512 )
__UpperCamelCase = tokenizer(batch['highlights'],padding='max_length',truncation=A_,max_length=128 )
__UpperCamelCase = inputs.input_ids
__UpperCamelCase = inputs.attention_mask
__UpperCamelCase = outputs.input_ids
__UpperCamelCase = outputs.input_ids.copy()
__UpperCamelCase = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels']
]
__UpperCamelCase = outputs.attention_mask
assert all(len(A_ ) == 512 for x in inputs.input_ids )
assert all(len(A_ ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(A_: str ):
__UpperCamelCase = pred.label_ids
__UpperCamelCase = pred.predictions
# all unnecessary tokens are removed
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A_ ) )] ) / len(A_ )
return {"accuracy": accuracy}
# map train dataset
__UpperCamelCase = train_dataset.map(
_map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],)
train_dataset.set_format(
type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],)
# same for validation dataset
__UpperCamelCase = val_dataset.map(
_map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],)
val_dataset.set_format(
type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],)
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = SeqaSeqTrainingArguments(
output_dir=A_,per_device_train_batch_size=A_,per_device_eval_batch_size=A_,predict_with_generate=A_,evaluation_strategy='steps',do_train=A_,do_eval=A_,warmup_steps=0,eval_steps=2,logging_steps=2,)
# instantiate trainer
__UpperCamelCase = SeqaSeqTrainer(
model=A_,args=A_,compute_metrics=_compute_metrics,train_dataset=A_,eval_dataset=A_,tokenizer=A_,)
# start training
trainer.train()
| 1 | 1 |
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from torch import nn
from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel
from transformers.utils import ModelOutput
@dataclass
class __lowerCamelCase (_a ):
_lowercase = None
_lowercase = None
_lowercase = None
_lowercase = None
class __lowerCamelCase (_a ):
def __init__( self: Optional[Any],A_: str=1,A_: int=0,A_: Tuple=2,A_: Optional[int]=512,A_: Tuple="cls",A_: Any=False,A_: int=True,**A_: Optional[Any],):
'''simple docstring'''
super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ )
__UpperCamelCase = project_dim
__UpperCamelCase = pooler_fn
__UpperCamelCase = learn_encoder
__UpperCamelCase = use_attention_mask
class __lowerCamelCase (_a ):
_lowercase = [R"""pooler""", R"""logit_scale"""]
_lowercase = [R"""position_ids""", R"""predictions.decoder.bias"""]
_lowercase = """roberta"""
_lowercase = RobertaSeriesConfig
def __init__( self: int,A_: List[str] ):
'''simple docstring'''
super().__init__(A_ )
__UpperCamelCase = XLMRobertaModel(A_ )
__UpperCamelCase = nn.Linear(config.hidden_size,config.project_dim )
__UpperCamelCase = getattr(A_,'has_pre_transformation',A_ )
if self.has_pre_transformation:
__UpperCamelCase = nn.Linear(config.hidden_size,config.project_dim )
__UpperCamelCase = nn.LayerNorm(config.hidden_size,eps=config.layer_norm_eps )
self.post_init()
def snake_case_ ( self: List[Any],A_: Optional[torch.Tensor] = None,A_: Optional[torch.Tensor] = None,A_: Optional[torch.Tensor] = None,A_: Optional[torch.Tensor] = None,A_: Optional[torch.Tensor] = None,A_: Optional[torch.Tensor] = None,A_: Optional[torch.Tensor] = None,A_: Optional[torch.Tensor] = None,A_: Optional[bool] = None,A_: Optional[bool] = None,A_: Optional[bool] = None,):
'''simple docstring'''
__UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
__UpperCamelCase = self.base_model(
input_ids=A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,encoder_hidden_states=A_,encoder_attention_mask=A_,output_attentions=A_,output_hidden_states=True if self.has_pre_transformation else output_hidden_states,return_dict=A_,)
if self.has_pre_transformation:
__UpperCamelCase = outputs['hidden_states'][-2]
__UpperCamelCase = self.pre_LN(A_ )
__UpperCamelCase = self.transformation_pre(A_ )
return TransformationModelOutput(
projection_state=A_,last_hidden_state=outputs.last_hidden_state,hidden_states=outputs.hidden_states,attentions=outputs.attentions,)
else:
__UpperCamelCase = self.transformation(outputs.last_hidden_state )
return TransformationModelOutput(
projection_state=A_,last_hidden_state=outputs.last_hidden_state,hidden_states=outputs.hidden_states,attentions=outputs.attentions,)
| 1 |
def _A ( _lowercase = 1_00 ) -> int:
"""simple docstring"""
__UpperCamelCase = 0
__UpperCamelCase = 0
for i in range(1 , n + 1 ):
sum_of_squares += i**2
sum_of_ints += i
return sum_of_ints**2 - sum_of_squares
if __name__ == "__main__":
print(f"""{solution() = }""")
| 1 | 1 |
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def _A ( _lowercase ) -> Tuple:
"""simple docstring"""
monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set() )
@pytest.fixture
def _A ( _lowercase ) -> int:
"""simple docstring"""
class __lowerCamelCase :
def __init__( self: Optional[Any],A_: Tuple ):
'''simple docstring'''
__UpperCamelCase = metric_id
class __lowerCamelCase :
_lowercase = [MetricMock(_a ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]]
def snake_case_ ( self: Any ):
'''simple docstring'''
return self._metrics
monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock() )
@pytest.mark.parametrize(
'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))] )
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str:
"""simple docstring"""
if "tmp_path" in args:
__UpperCamelCase = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args )
with pytest.warns(_lowercase , match='https://huggingface.co/docs/evaluate' ):
func(*_lowercase )
| 1 |
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def _A ( _lowercase , _lowercase=0 ) -> Dict:
"""simple docstring"""
return sorted(_lowercase , key=lambda _lowercase : x[column] )
def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> List[Any]:
"""simple docstring"""
for i in range(points_counts - 1 ):
for j in range(i + 1 , _lowercase ):
__UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCamelCase = current_dis
return min_dis
def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> Tuple:
"""simple docstring"""
for i in range(min(6 , points_counts - 1 ) , _lowercase ):
for j in range(max(0 , i - 6 ) , _lowercase ):
__UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCamelCase = current_dis
return min_dis
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
"""simple docstring"""
if points_counts <= 3:
return dis_between_closest_pair(_lowercase , _lowercase )
# recursion
__UpperCamelCase = points_counts // 2
__UpperCamelCase = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[:mid] , _lowercase )
__UpperCamelCase = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[mid:] , points_counts - mid )
__UpperCamelCase = min(_lowercase , _lowercase )
__UpperCamelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(_lowercase )
__UpperCamelCase = dis_between_closest_in_strip(
_lowercase , len(_lowercase ) , _lowercase )
return min(_lowercase , _lowercase )
def _A ( _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = column_based_sort(_lowercase , column=0 )
__UpperCamelCase = column_based_sort(_lowercase , column=1 )
return (
closest_pair_of_points_sqr(
_lowercase , _lowercase , _lowercase )
) ** 0.5
if __name__ == "__main__":
__snake_case = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)]
print('''Distance:''', closest_pair_of_points(points, len(points)))
| 1 | 1 |
from __future__ import annotations
from collections import namedtuple
def _A ( _lowercase , _lowercase , _lowercase ) -> tuple:
"""simple docstring"""
__UpperCamelCase = namedtuple('result' , 'name value' )
if (voltage, current, power).count(0 ) != 1:
raise ValueError('Only one argument must be 0' )
elif power < 0:
raise ValueError(
'Power cannot be negative in any electrical/electronics system' )
elif voltage == 0:
return result('voltage' , power / current )
elif current == 0:
return result('current' , power / voltage )
elif power == 0:
return result('power' , float(round(abs(voltage * current ) , 2 ) ) )
else:
raise ValueError('Exactly one argument must be 0' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''',
'''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''',
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''',
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''',
'''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'''
),
'''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class __lowerCamelCase (_a ):
_lowercase = """bert"""
def __init__( self: Any,A_: Dict=3_0522,A_: Optional[Any]=768,A_: Union[str, Any]=12,A_: List[Any]=12,A_: Optional[int]=3072,A_: Union[str, Any]="gelu",A_: List[str]=0.1,A_: Dict=0.1,A_: Optional[int]=512,A_: Optional[Any]=2,A_: Union[str, Any]=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=0,A_: List[Any]="absolute",A_: str=True,A_: Union[str, Any]=None,**A_: int,):
'''simple docstring'''
super().__init__(pad_token_id=A_,**A_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = use_cache
__UpperCamelCase = classifier_dropout
class __lowerCamelCase (_a ):
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 1 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase (_a ):
_lowercase = ["""pixel_values"""]
def __init__( self: Tuple,A_: bool = True,A_: Optional[Dict[str, int]] = None,A_: PILImageResampling = PILImageResampling.BILINEAR,A_: bool = True,A_: Dict[str, int] = None,A_: bool = True,A_: Union[int, float] = 1 / 255,A_: bool = True,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,**A_: List[str],):
'''simple docstring'''
super().__init__(**A_ )
__UpperCamelCase = size if size is not None else {'shortest_edge': 256}
__UpperCamelCase = get_size_dict(A_,default_to_square=A_ )
__UpperCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224}
__UpperCamelCase = get_size_dict(A_ )
__UpperCamelCase = do_resize
__UpperCamelCase = size
__UpperCamelCase = resample
__UpperCamelCase = do_center_crop
__UpperCamelCase = crop_size
__UpperCamelCase = do_rescale
__UpperCamelCase = rescale_factor
__UpperCamelCase = do_normalize
__UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def snake_case_ ( self: Any,A_: np.ndarray,A_: Dict[str, int],A_: PILImageResampling = PILImageResampling.BICUBIC,A_: Optional[Union[str, ChannelDimension]] = None,**A_: Union[str, Any],):
'''simple docstring'''
__UpperCamelCase = get_size_dict(A_,default_to_square=A_ )
if "shortest_edge" not in size:
raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
__UpperCamelCase = get_resize_output_image_size(A_,size=size['shortest_edge'],default_to_square=A_ )
return resize(A_,size=A_,resample=A_,data_format=A_,**A_ )
def snake_case_ ( self: int,A_: np.ndarray,A_: Dict[str, int],A_: Optional[Union[str, ChannelDimension]] = None,**A_: Optional[int],):
'''simple docstring'''
__UpperCamelCase = get_size_dict(A_ )
return center_crop(A_,size=(size['height'], size['width']),data_format=A_,**A_ )
def snake_case_ ( self: Any,A_: np.ndarray,A_: float,A_: Optional[Union[str, ChannelDimension]] = None,**A_: Optional[int] ):
'''simple docstring'''
return rescale(A_,scale=A_,data_format=A_,**A_ )
def snake_case_ ( self: Tuple,A_: np.ndarray,A_: Union[float, List[float]],A_: Union[float, List[float]],A_: Optional[Union[str, ChannelDimension]] = None,**A_: Optional[int],):
'''simple docstring'''
return normalize(A_,mean=A_,std=A_,data_format=A_,**A_ )
def snake_case_ ( self: Any,A_: ImageInput,A_: Optional[bool] = None,A_: Dict[str, int] = None,A_: PILImageResampling = None,A_: bool = None,A_: Dict[str, int] = None,A_: Optional[bool] = None,A_: Optional[float] = None,A_: Optional[bool] = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[str, TensorType]] = None,A_: Union[str, ChannelDimension] = ChannelDimension.FIRST,**A_: Union[str, Any],):
'''simple docstring'''
__UpperCamelCase = do_resize if do_resize is not None else self.do_resize
__UpperCamelCase = size if size is not None else self.size
__UpperCamelCase = get_size_dict(A_,default_to_square=A_ )
__UpperCamelCase = resample if resample is not None else self.resample
__UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCamelCase = crop_size if crop_size is not None else self.crop_size
__UpperCamelCase = get_size_dict(A_ )
__UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
__UpperCamelCase = image_mean if image_mean is not None else self.image_mean
__UpperCamelCase = image_std if image_std is not None else self.image_std
__UpperCamelCase = make_list_of_images(A_ )
if not valid_images(A_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
__UpperCamelCase = [to_numpy_array(A_ ) for image in images]
if do_resize:
__UpperCamelCase = [self.resize(image=A_,size=A_,resample=A_ ) for image in images]
if do_center_crop:
__UpperCamelCase = [self.center_crop(image=A_,size=A_ ) for image in images]
if do_rescale:
__UpperCamelCase = [self.rescale(image=A_,scale=A_ ) for image in images]
if do_normalize:
__UpperCamelCase = [self.normalize(image=A_,mean=A_,std=A_ ) for image in images]
__UpperCamelCase = [to_channel_dimension_format(A_,A_ ) for image in images]
__UpperCamelCase = {'pixel_values': images}
return BatchFeature(data=A_,tensor_type=A_ )
| 1 |
def _A ( _lowercase ) -> int:
"""simple docstring"""
assert column_title.isupper()
__UpperCamelCase = 0
__UpperCamelCase = len(_lowercase ) - 1
__UpperCamelCase = 0
while index >= 0:
__UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , _lowercase )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
from __future__ import annotations
def _A ( _lowercase ) -> float:
"""simple docstring"""
if not nums:
raise ValueError('List is empty' )
return sum(_lowercase ) / len(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def _A ( ) -> int:
"""simple docstring"""
__UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
__UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('RGB' )
return image
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = []
# fmt: off
# vision encoder
rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') )
rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') )
rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') )
rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') )
rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') )
rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') )
# QFormer
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') )
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') )
# fmt: on
return rename_keys
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = dct.pop(_lowercase )
__UpperCamelCase = val
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
__UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' )
__UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' )
# next, set bias in the state dict
__UpperCamelCase = torch.cat((q_bias, torch.zeros_like(_lowercase , requires_grad=_lowercase ), v_bias) )
__UpperCamelCase = qkv_bias
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = 3_64 if 'coco' in model_name else 2_24
__UpperCamelCase = BlipaVisionConfig(image_size=_lowercase ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
__UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_lowercase ).to_dict()
elif "opt-6.7b" in model_name:
__UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_lowercase ).to_dict()
elif "t5-xl" in model_name:
__UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
__UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
__UpperCamelCase = BlipaConfig(vision_config=_lowercase , text_config=_lowercase )
return config, image_size
@torch.no_grad()
def _A ( _lowercase , _lowercase=None , _lowercase=False ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = (
AutoTokenizer.from_pretrained('facebook/opt-2.7b' )
if 'opt' in model_name
else AutoTokenizer.from_pretrained('google/flan-t5-xl' )
)
__UpperCamelCase = tokenizer('\n' , add_special_tokens=_lowercase ).input_ids[0]
__UpperCamelCase, __UpperCamelCase = get_blipa_config(_lowercase , eos_token_id=_lowercase )
__UpperCamelCase = BlipaForConditionalGeneration(_lowercase ).eval()
__UpperCamelCase = {
'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'),
'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'),
'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'),
'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'),
'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'),
'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'),
'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'),
}
__UpperCamelCase, __UpperCamelCase = model_name_to_original[model_name]
# load original model
print('Loading original model...' )
__UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu'
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = load_model_and_preprocess(
name=_lowercase , model_type=_lowercase , is_eval=_lowercase , device=_lowercase )
original_model.eval()
print('Done!' )
# update state dict keys
__UpperCamelCase = original_model.state_dict()
__UpperCamelCase = create_rename_keys(_lowercase )
for src, dest in rename_keys:
rename_key(_lowercase , _lowercase , _lowercase )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
__UpperCamelCase = state_dict.pop(_lowercase )
if key.startswith('Qformer.bert' ):
__UpperCamelCase = key.replace('Qformer.bert' , 'qformer' )
if "attention.self" in key:
__UpperCamelCase = key.replace('self' , 'attention' )
if "opt_proj" in key:
__UpperCamelCase = key.replace('opt_proj' , 'language_projection' )
if "t5_proj" in key:
__UpperCamelCase = key.replace('t5_proj' , 'language_projection' )
if key.startswith('opt' ):
__UpperCamelCase = key.replace('opt' , 'language' )
if key.startswith('t5' ):
__UpperCamelCase = key.replace('t5' , 'language' )
__UpperCamelCase = val
# read in qv biases
read_in_q_v_bias(_lowercase , _lowercase )
__UpperCamelCase, __UpperCamelCase = hf_model.load_state_dict(_lowercase , strict=_lowercase )
assert len(_lowercase ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
__UpperCamelCase = load_demo_image()
__UpperCamelCase = vis_processors['eval'](_lowercase ).unsqueeze(0 ).to(_lowercase )
__UpperCamelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_lowercase )
# create processor
__UpperCamelCase = BlipImageProcessor(
size={'height': image_size, 'width': image_size} , image_mean=_lowercase , image_std=_lowercase )
__UpperCamelCase = BlipaProcessor(image_processor=_lowercase , tokenizer=_lowercase )
__UpperCamelCase = processor(images=_lowercase , return_tensors='pt' ).pixel_values.to(_lowercase )
# make sure processor creates exact same pixel values
assert torch.allclose(_lowercase , _lowercase )
original_model.to(_lowercase )
hf_model.to(_lowercase )
with torch.no_grad():
if "opt" in model_name:
__UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits
__UpperCamelCase = hf_model(_lowercase , _lowercase ).logits
else:
__UpperCamelCase = original_model(
{'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits
__UpperCamelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 )
__UpperCamelCase = hf_model(_lowercase , _lowercase , labels=_lowercase ).logits
assert original_logits.shape == logits.shape
print('First values of original logits:' , original_logits[0, :3, :3] )
print('First values of HF logits:' , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
__UpperCamelCase = torch.tensor(
[[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=_lowercase )
assert torch.allclose(logits[0, :3, :3] , _lowercase , atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
__UpperCamelCase = torch.tensor(
[[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=_lowercase )
else:
# cast to same type
__UpperCamelCase = logits.dtype
assert torch.allclose(original_logits.to(_lowercase ) , _lowercase , atol=1e-2 )
print('Looks ok!' )
print('Generating a caption...' )
__UpperCamelCase = ''
__UpperCamelCase = tokenizer(_lowercase , return_tensors='pt' ).input_ids.to(_lowercase )
__UpperCamelCase = original_model.generate({'image': original_pixel_values} )
__UpperCamelCase = hf_model.generate(
_lowercase , _lowercase , do_sample=_lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print('Original generation:' , _lowercase )
__UpperCamelCase = input_ids.shape[1]
__UpperCamelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowercase )
__UpperCamelCase = [text.strip() for text in output_text]
print('HF generation:' , _lowercase )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(_lowercase )
hf_model.save_pretrained(_lowercase )
if push_to_hub:
processor.push_to_hub(f'''nielsr/{model_name}''' )
hf_model.push_to_hub(f'''nielsr/{model_name}''' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
__snake_case = [
'''blip2-opt-2.7b''',
'''blip2-opt-6.7b''',
'''blip2-opt-2.7b-coco''',
'''blip2-opt-6.7b-coco''',
'''blip2-flan-t5-xl''',
'''blip2-flan-t5-xl-coco''',
'''blip2-flan-t5-xxl''',
]
parser.add_argument(
'''--model_name''',
default='''blip2-opt-2.7b''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
__snake_case = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 1 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {
'''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''],
'''tokenization_convbert''': ['''ConvBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ConvBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ConvBertForMaskedLM''',
'''ConvBertForMultipleChoice''',
'''ConvBertForQuestionAnswering''',
'''ConvBertForSequenceClassification''',
'''ConvBertForTokenClassification''',
'''ConvBertLayer''',
'''ConvBertModel''',
'''ConvBertPreTrainedModel''',
'''load_tf_weights_in_convbert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFConvBertForMaskedLM''',
'''TFConvBertForMultipleChoice''',
'''TFConvBertForQuestionAnswering''',
'''TFConvBertForSequenceClassification''',
'''TFConvBertForTokenClassification''',
'''TFConvBertLayer''',
'''TFConvBertModel''',
'''TFConvBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__snake_case = logging.getLogger(__name__)
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
_lowercase = field(
default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
_lowercase = field(default=_a , metadata={"""help""": """Set this flag to use fast tokenization."""} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
_lowercase = field(
default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} )
_lowercase = field(
default=_a , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , )
_lowercase = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
_lowercase = field(
default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def _A ( ) -> str:
"""simple docstring"""
__UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
' --overwrite_output_dir to overcome.' )
__UpperCamelCase = import_module('tasks' )
try:
__UpperCamelCase = getattr(_lowercase , model_args.task_type )
__UpperCamelCase = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , _lowercase )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
__UpperCamelCase = token_classification_task.get_labels(data_args.labels )
__UpperCamelCase = dict(enumerate(_lowercase ) )
__UpperCamelCase = len(_lowercase )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , idalabel=_lowercase , labelaid={label: i for i, label in enumerate(_lowercase )} , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
__UpperCamelCase = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , )
# Get datasets
__UpperCamelCase = (
TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__UpperCamelCase = (
TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(_lowercase , _lowercase ) -> Tuple[List[int], List[int]]:
__UpperCamelCase = np.argmax(_lowercase , axis=2 )
__UpperCamelCase, __UpperCamelCase = preds.shape
__UpperCamelCase = [[] for _ in range(_lowercase )]
__UpperCamelCase = [[] for _ in range(_lowercase )]
for i in range(_lowercase ):
for j in range(_lowercase ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(_lowercase ) -> Dict:
__UpperCamelCase, __UpperCamelCase = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(_lowercase , _lowercase ),
"precision": precision_score(_lowercase , _lowercase ),
"recall": recall_score(_lowercase , _lowercase ),
"f1": fa_score(_lowercase , _lowercase ),
}
# Data collator
__UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__UpperCamelCase = Trainer(
model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCamelCase = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__UpperCamelCase = trainer.evaluate()
__UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
results.update(_lowercase )
# Predict
if training_args.do_predict:
__UpperCamelCase = TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = trainer.predict(_lowercase )
__UpperCamelCase, __UpperCamelCase = align_predictions(_lowercase , _lowercase )
__UpperCamelCase = os.path.join(training_args.output_dir , 'test_results.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
for key, value in metrics.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
# Save predictions
__UpperCamelCase = os.path.join(training_args.output_dir , 'test_predictions.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f:
token_classification_task.write_predictions_to_file(_lowercase , _lowercase , _lowercase )
return results
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 1 | 1 |
import math
def _A ( _lowercase , _lowercase ) -> float:
"""simple docstring"""
return math.pow(_lowercase , 2 ) - a
def _A ( _lowercase ) -> float:
"""simple docstring"""
return 2 * x
def _A ( _lowercase ) -> float:
"""simple docstring"""
__UpperCamelCase = 2.0
while start <= a:
__UpperCamelCase = math.pow(_lowercase , 2 )
return start
def _A ( _lowercase , _lowercase = 99_99 , _lowercase = 0.00_00_00_00_00_00_01 ) -> float:
"""simple docstring"""
if a < 0:
raise ValueError('math domain error' )
__UpperCamelCase = get_initial_point(_lowercase )
for _ in range(_lowercase ):
__UpperCamelCase = value
__UpperCamelCase = value - fx(_lowercase , _lowercase ) / fx_derivative(_lowercase )
if abs(prev_value - value ) < tolerance:
return value
return value
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 |
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def _A ( *_lowercase ) -> Tuple:
"""simple docstring"""
with open(_lowercase , 'r' ) as fh:
fcntl.flock(_lowercase , fcntl.LOCK_EX )
try:
print(*_lowercase )
finally:
fcntl.flock(_lowercase , fcntl.LOCK_UN )
__snake_case = int(os.environ['''LOCAL_RANK'''])
torch.cuda.set_device(local_rank)
__snake_case = torch.device('''cuda''', local_rank)
__snake_case = socket.gethostname()
__snake_case = f"""[{hostname}-{local_rank}]"""
try:
# test distributed
dist.init_process_group('''nccl''')
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
__snake_case = dist.get_rank()
__snake_case = dist.get_world_size()
printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""")
dist.barrier()
if rank == 0:
printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""")
except Exception:
printflock(f"""{gpu} is broken""")
raise
| 1 | 1 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
__snake_case = get_tests_dir('''fixtures''')
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = mock.Mock()
__UpperCamelCase = 500
__UpperCamelCase = {}
__UpperCamelCase = HTTPError
__UpperCamelCase = {}
# Download this model to make sure it's in the cache.
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request',return_value=A_ ) as mock_head:
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# This check we did call the fake head request
mock_head.assert_called()
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' )
@is_staging_test
class __lowerCamelCase (unittest.TestCase ):
@classmethod
def snake_case_ ( cls: Tuple ):
'''simple docstring'''
__UpperCamelCase = TOKEN
HfFolder.save_token(A_ )
@classmethod
def snake_case_ ( cls: Tuple ):
'''simple docstring'''
try:
delete_repo(token=cls._token,repo_id='test-feature-extractor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token,repo_id='valid_org/test-feature-extractor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token,repo_id='test-dynamic-feature-extractor' )
except HTTPError:
pass
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('test-feature-extractor',use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
# Reset repo
delete_repo(token=self._token,repo_id='test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
A_,repo_id='test-feature-extractor',push_to_hub=A_,use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('valid_org/test-feature-extractor',use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
# Reset repo
delete_repo(token=self._token,repo_id='valid_org/test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
A_,repo_id='valid_org/test-feature-extractor-org',push_to_hub=A_,use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
def snake_case_ ( self: int ):
'''simple docstring'''
CustomFeatureExtractor.register_for_auto_class()
__UpperCamelCase = CustomFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('test-dynamic-feature-extractor',use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map,{'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'},)
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(
F'''{USER}/test-dynamic-feature-extractor''',trust_remote_code=A_ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__,'CustomFeatureExtractor' )
| 1 |
import pytest
import datasets
# Import fixture modules as plugins
__snake_case = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec''']
def _A ( _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
for item in items:
if any(marker in item.keywords for marker in ['integration', 'unit'] ):
continue
item.add_marker(pytest.mark.unit )
def _A ( _lowercase ) -> str:
"""simple docstring"""
config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' )
@pytest.fixture(autouse=_lowercase )
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = tmp_path_factory.getbasetemp() / 'cache'
__UpperCamelCase = test_hf_cache_home / 'datasets'
__UpperCamelCase = test_hf_cache_home / 'metrics'
__UpperCamelCase = test_hf_cache_home / 'modules'
monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(_lowercase ) )
monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(_lowercase ) )
monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(_lowercase ) )
__UpperCamelCase = test_hf_datasets_cache / 'downloads'
monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(_lowercase ) )
__UpperCamelCase = test_hf_datasets_cache / 'downloads' / 'extracted'
monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_lowercase ) )
@pytest.fixture(autouse=_lowercase , scope='session' )
def _A ( ) -> Dict:
"""simple docstring"""
datasets.disable_progress_bar()
@pytest.fixture(autouse=_lowercase )
def _A ( _lowercase ) -> Tuple:
"""simple docstring"""
monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , _lowercase )
@pytest.fixture
def _A ( _lowercase ) -> Any:
"""simple docstring"""
monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , _lowercase )
| 1 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case = {
'''configuration_time_series_transformer''': [
'''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''TimeSeriesTransformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TimeSeriesTransformerForPrediction''',
'''TimeSeriesTransformerModel''',
'''TimeSeriesTransformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 |
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNetaDConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = VideoToVideoSDPipeline
_lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""}
_lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""}
_lowercase = PipelineTesterMixin.required_optional_params - {"""latents"""}
_lowercase = False
# No `output_type`.
_lowercase = frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""return_dict""",
"""callback""",
"""callback_steps""",
] )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'),up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'),cross_attention_dim=32,attention_head_dim=4,)
__UpperCamelCase = DDIMScheduler(
beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,beta_schedule='scaled_linear',clip_sample=A_,set_alpha_to_one=A_,)
torch.manual_seed(0 )
__UpperCamelCase = AutoencoderKL(
block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=128,)
torch.manual_seed(0 )
__UpperCamelCase = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act='gelu',projection_dim=512,)
__UpperCamelCase = CLIPTextModel(A_ )
__UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
__UpperCamelCase = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
}
return components
def snake_case_ ( self: Union[str, Any],A_: Any,A_: Any=0 ):
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, 3, 3, 32, 32),rng=random.Random(A_ ) ).to(A_ )
if str(A_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(A_ )
else:
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'video': video,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'pt',
}
return inputs
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = VideoToVideoSDPipeline(**A_ )
__UpperCamelCase = sd_pipe.to(A_ )
sd_pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = self.get_dummy_inputs(A_ )
__UpperCamelCase = 'np'
__UpperCamelCase = sd_pipe(**A_ ).frames
__UpperCamelCase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (32, 32, 3)
__UpperCamelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',)
def snake_case_ ( self: Any ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_,expected_max_diff=5E-3 )
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def snake_case_ ( self: str ):
'''simple docstring'''
pass
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' )
def snake_case_ ( self: int ):
'''simple docstring'''
pass
def snake_case_ ( self: Any ):
'''simple docstring'''
return super().test_progress_bar()
@slow
@skip_mps
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL',torch_dtype=torch.floataa )
pipe.enable_model_cpu_offload()
# 10 frames
__UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
__UpperCamelCase = torch.randn((1, 10, 3, 1024, 576),generator=A_ )
__UpperCamelCase = video.to('cuda' )
__UpperCamelCase = 'Spiderman is surfing'
__UpperCamelCase = pipe(A_,video=A_,generator=A_,num_inference_steps=3,output_type='pt' ).frames
__UpperCamelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] )
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
| 1 | 1 |
def _A ( _lowercase , _lowercase , _lowercase ) -> float:
"""simple docstring"""
__UpperCamelCase = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
# formula for sum of series
return total
def _A ( ) -> Union[str, Any]:
"""simple docstring"""
print(sum_of_series(1 , 1 , 10 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument(
'''--txt2img_unclip''',
default='''kakaobrain/karlo-v1-alpha''',
type=str,
required=False,
help='''The pretrained txt2img unclip.''',
)
__snake_case = parser.parse_args()
__snake_case = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
__snake_case = CLIPImageProcessor()
__snake_case = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''')
__snake_case = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 1 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__snake_case = {
'''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''],
'''tokenization_perceiver''': ['''PerceiverTokenizer'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''PerceiverFeatureExtractor''']
__snake_case = ['''PerceiverImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PerceiverForImageClassificationConvProcessing''',
'''PerceiverForImageClassificationFourier''',
'''PerceiverForImageClassificationLearned''',
'''PerceiverForMaskedLM''',
'''PerceiverForMultimodalAutoencoding''',
'''PerceiverForOpticalFlow''',
'''PerceiverForSequenceClassification''',
'''PerceiverLayer''',
'''PerceiverModel''',
'''PerceiverPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case = {
'''configuration_autoformer''': [
'''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''AutoformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''AutoformerForPrediction''',
'''AutoformerModel''',
'''AutoformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 | 1 |
def _A ( _lowercase ) -> int:
"""simple docstring"""
if not isinstance(_lowercase , _lowercase ):
raise TypeError('only integers accepted as input' )
else:
__UpperCamelCase = str(abs(_lowercase ) )
__UpperCamelCase = [list(_lowercase ) for char in range(len(_lowercase ) )]
for index in range(len(_lowercase ) ):
num_transpositions[index].pop(_lowercase )
return max(
int(''.join(list(_lowercase ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__('''doctest''').testmod()
| 1 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
__snake_case = '''src/diffusers'''
# Matches is_xxx_available()
__snake_case = re.compile(r'''is\_([a-z_]*)_available\(\)''')
# Matches from xxx import bla
__snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
__snake_case = '''
{0} = None
'''
__snake_case = '''
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
'''
__snake_case = '''
def {0}(*args, **kwargs):
requires_backends({0}, {1})
'''
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = _re_backend.findall(_lowercase )
if len(_lowercase ) == 0:
return None
return "_and_".join(_lowercase )
def _A ( ) -> Tuple:
"""simple docstring"""
with open(os.path.join(_lowercase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
__UpperCamelCase = f.readlines()
# Get to the point we do the actual imports for type checking
__UpperCamelCase = 0
__UpperCamelCase = {}
# Go through the end of the file
while line_index < len(_lowercase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
__UpperCamelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('else:' ):
line_index += 1
line_index += 1
__UpperCamelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(_lowercase ) and len(lines[line_index] ) > 1:
__UpperCamelCase = lines[line_index]
__UpperCamelCase = _re_single_line_import.search(_lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(_lowercase ) > 0:
__UpperCamelCase = objects
else:
line_index += 1
return backend_specific_objects
def _A ( _lowercase , _lowercase ) -> Union[str, Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(_lowercase )
elif name.islower():
return DUMMY_FUNCTION.format(_lowercase , _lowercase )
else:
return DUMMY_CLASS.format(_lowercase , _lowercase )
def _A ( _lowercase=None ) -> Optional[Any]:
"""simple docstring"""
if backend_specific_objects is None:
__UpperCamelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
__UpperCamelCase = {}
for backend, objects in backend_specific_objects.items():
__UpperCamelCase = '[' + ', '.join(f'''"{b}"''' for b in backend.split('_and_' ) ) + ']'
__UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n'
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(_lowercase , _lowercase ) for o in objects] )
__UpperCamelCase = dummy_file
return dummy_files
def _A ( _lowercase=False ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
__UpperCamelCase = {'torch': 'pt'}
# Locate actual dummy modules and read their content.
__UpperCamelCase = os.path.join(_lowercase , 'utils' )
__UpperCamelCase = {
backend: os.path.join(_lowercase , f'''dummy_{short_names.get(_lowercase , _lowercase )}_objects.py''' )
for backend in dummy_files.keys()
}
__UpperCamelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(_lowercase ):
with open(_lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f:
__UpperCamelCase = f.read()
else:
__UpperCamelCase = ''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f'''Updating diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py as the main '''
'__init__ has new objects.' )
with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'The main __init__ has objects that are not present in '
f'''diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py. Run `make fix-copies` '''
'to fix this.' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
__snake_case = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 1 | 1 |
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.utils.data import DistributedSampler, RandomSampler
from transformers import PreTrainedModel, Trainer, logging
from transformers.integrations import is_fairscale_available
from transformers.models.fsmt.configuration_fsmt import FSMTConfig
from transformers.optimization import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.trainer_pt_utils import get_tpu_sampler
from transformers.training_args import ParallelMode
from transformers.utils import is_torch_tpu_available
if is_fairscale_available():
from fairscale.optim import OSS
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''linear''': get_linear_schedule_with_warmup,
'''cosine''': get_cosine_schedule_with_warmup,
'''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup,
'''polynomial''': get_polynomial_decay_schedule_with_warmup,
'''constant''': get_constant_schedule,
'''constant_w_warmup''': get_constant_schedule_with_warmup,
}
class __lowerCamelCase (_a ):
def __init__( self: Any,A_: List[str]=None,A_: Optional[Any]=None,*A_: Tuple,**A_: Optional[int] ):
'''simple docstring'''
super().__init__(*A_,**A_ )
if config is None:
assert isinstance(self.model,A_ ), (
"If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is"
F''' {self.model.__class__}'''
)
__UpperCamelCase = self.model.config
else:
__UpperCamelCase = config
__UpperCamelCase = data_args
__UpperCamelCase = self.config.tgt_vocab_size if isinstance(self.config,A_ ) else self.config.vocab_size
if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss):
assert self.config.pad_token_id is not None, (
"Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss"
" calculation or doing label smoothing."
)
if self.config.pad_token_id is None and self.config.eos_token_id is not None:
logger.warning(
F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for'''
' padding..' )
if self.args.label_smoothing == 0:
__UpperCamelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id )
else:
# dynamically import label_smoothed_nll_loss
from utils import label_smoothed_nll_loss
__UpperCamelCase = label_smoothed_nll_loss
def snake_case_ ( self: Dict,A_: int ):
'''simple docstring'''
if self.optimizer is None:
__UpperCamelCase = ['bias', 'LayerNorm.weight']
__UpperCamelCase = [
{
'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )],
'weight_decay': self.args.weight_decay,
},
{
'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )],
'weight_decay': 0.0,
},
]
__UpperCamelCase = Adafactor if self.args.adafactor else AdamW
if self.args.adafactor:
__UpperCamelCase = Adafactor
__UpperCamelCase = {'scale_parameter': False, 'relative_step': False}
else:
__UpperCamelCase = AdamW
__UpperCamelCase = {
'betas': (self.args.adam_betaa, self.args.adam_betaa),
'eps': self.args.adam_epsilon,
}
__UpperCamelCase = self.args.learning_rate
if self.sharded_ddp:
__UpperCamelCase = OSS(
params=A_,optim=A_,**A_,)
else:
__UpperCamelCase = optimizer_cls(A_,**A_ )
if self.lr_scheduler is None:
__UpperCamelCase = self._get_lr_scheduler(A_ )
else: # ignoring --lr_scheduler
logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' )
def snake_case_ ( self: Any,A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = arg_to_scheduler[self.args.lr_scheduler]
if self.args.lr_scheduler == "constant":
__UpperCamelCase = schedule_func(self.optimizer )
elif self.args.lr_scheduler == "constant_w_warmup":
__UpperCamelCase = schedule_func(self.optimizer,num_warmup_steps=self.args.warmup_steps )
else:
__UpperCamelCase = schedule_func(
self.optimizer,num_warmup_steps=self.args.warmup_steps,num_training_steps=A_ )
return scheduler
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
if isinstance(self.train_dataset,torch.utils.data.IterableDataset ):
return None
elif is_torch_tpu_available():
return get_tpu_sampler(self.train_dataset )
else:
if self.args.sortish_sampler:
self.train_dataset.make_sortish_sampler(
self.args.per_device_train_batch_size,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED),)
return (
RandomSampler(self.train_dataset )
if self.args.local_rank == -1
else DistributedSampler(self.train_dataset )
)
def snake_case_ ( self: Optional[int],A_: Any,A_: Optional[Any],A_: Any ):
'''simple docstring'''
if self.args.label_smoothing == 0:
if self.data_args is not None and self.data_args.ignore_pad_token_for_loss:
# force training to ignore pad token
__UpperCamelCase = model(**A_,use_cache=A_ )[0]
__UpperCamelCase = self.loss_fn(logits.view(-1,logits.shape[-1] ),labels.view(-1 ) )
else:
# compute usual loss via models
__UpperCamelCase, __UpperCamelCase = model(**A_,labels=A_,use_cache=A_ )[:2]
else:
# compute label smoothed loss
__UpperCamelCase = model(**A_,use_cache=A_ )[0]
__UpperCamelCase = torch.nn.functional.log_softmax(A_,dim=-1 )
__UpperCamelCase, __UpperCamelCase = self.loss_fn(A_,A_,self.args.label_smoothing,ignore_index=self.config.pad_token_id )
return loss, logits
def snake_case_ ( self: Tuple,A_: List[Any],A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase = inputs.pop('labels' )
__UpperCamelCase, __UpperCamelCase = self._compute_loss(A_,A_,A_ )
return loss
def snake_case_ ( self: Optional[int],A_: nn.Module,A_: Dict[str, Union[torch.Tensor, Any]],A_: bool,A_: Optional[List[str]] = None,):
'''simple docstring'''
__UpperCamelCase = self._prepare_inputs(A_ )
__UpperCamelCase = {
'max_length': self.data_args.val_max_target_length
if self.data_args is not None
else self.config.max_length,
'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams,
}
if self.args.predict_with_generate and not self.args.prediction_loss_only:
__UpperCamelCase = self.model.generate(
inputs['input_ids'],attention_mask=inputs['attention_mask'],**A_,)
# in case the batch is shorter than max length, the output should be padded
if generated_tokens.shape[-1] < gen_kwargs["max_length"]:
__UpperCamelCase = self._pad_tensors_to_max_len(A_,gen_kwargs['max_length'] )
__UpperCamelCase = inputs.pop('labels' )
with torch.no_grad():
# compute loss on predict data
__UpperCamelCase, __UpperCamelCase = self._compute_loss(A_,A_,A_ )
__UpperCamelCase = loss.mean().detach()
if self.args.prediction_loss_only:
return (loss, None, None)
__UpperCamelCase = generated_tokens if self.args.predict_with_generate else logits
if labels.shape[-1] < gen_kwargs["max_length"]:
__UpperCamelCase = self._pad_tensors_to_max_len(A_,gen_kwargs['max_length'] )
return (loss, logits, labels)
def snake_case_ ( self: List[Any],A_: Tuple,A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id
if pad_token_id is None:
raise ValueError(
'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be'
F''' padded to `max_length`={max_length}''' )
__UpperCamelCase = pad_token_id * torch.ones(
(tensor.shape[0], max_length),dtype=tensor.dtype,device=tensor.device )
__UpperCamelCase = tensor
return padded_tensor
| 1 |
import string
def _A ( _lowercase ) -> None:
"""simple docstring"""
for key in range(len(string.ascii_uppercase ) ):
__UpperCamelCase = ''
for symbol in message:
if symbol in string.ascii_uppercase:
__UpperCamelCase = string.ascii_uppercase.find(_lowercase )
__UpperCamelCase = num - key
if num < 0:
__UpperCamelCase = num + len(string.ascii_uppercase )
__UpperCamelCase = translated + string.ascii_uppercase[num]
else:
__UpperCamelCase = translated + symbol
print(f'''Decryption using Key #{key}: {translated}''' )
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = input('Encrypted message: ' )
__UpperCamelCase = message.upper()
decrypt(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 1 | 1 |
import argparse
import os
import re
import numpy as np
import PIL
import torch
from timm import create_model
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
from accelerate import Accelerator
def _A ( _lowercase ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = fname.split(os.path.sep )[-1]
return re.search(r'^(.*)_\d+\.jpg$' , _lowercase ).groups()[0]
class __lowerCamelCase (_a ):
def __init__( self: Optional[int],A_: Tuple,A_: Optional[Any]=None,A_: Dict=None ):
'''simple docstring'''
__UpperCamelCase = file_names
__UpperCamelCase = image_transform
__UpperCamelCase = label_to_id
def __len__( self: Any ):
'''simple docstring'''
return len(self.file_names )
def __getitem__( self: Dict,A_: Dict ):
'''simple docstring'''
__UpperCamelCase = self.file_names[idx]
__UpperCamelCase = PIL.Image.open(A_ )
__UpperCamelCase = raw_image.convert('RGB' )
if self.image_transform is not None:
__UpperCamelCase = self.image_transform(A_ )
__UpperCamelCase = extract_label(A_ )
if self.label_to_id is not None:
__UpperCamelCase = self.label_to_id[label]
return {"image": image, "label": label}
def _A ( _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
if args.with_tracking:
__UpperCamelCase = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir )
else:
__UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__UpperCamelCase = config['lr']
__UpperCamelCase = int(config['num_epochs'] )
__UpperCamelCase = int(config['seed'] )
__UpperCamelCase = int(config['batch_size'] )
__UpperCamelCase = config['image_size']
if not isinstance(_lowercase , (list, tuple) ):
__UpperCamelCase = (image_size, image_size)
# Parse out whether we are saving every epoch or after a certain number of batches
if hasattr(args.checkpointing_steps , 'isdigit' ):
if args.checkpointing_steps == "epoch":
__UpperCamelCase = args.checkpointing_steps
elif args.checkpointing_steps.isdigit():
__UpperCamelCase = int(args.checkpointing_steps )
else:
raise ValueError(
f'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' )
else:
__UpperCamelCase = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
__UpperCamelCase = os.path.split(_lowercase )[-1].split('.' )[0]
accelerator.init_trackers(_lowercase , _lowercase )
# Grab all the image filenames
__UpperCamelCase = [os.path.join(args.data_dir , _lowercase ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )]
# Build the label correspondences
__UpperCamelCase = [extract_label(_lowercase ) for fname in file_names]
__UpperCamelCase = list(set(_lowercase ) )
id_to_label.sort()
__UpperCamelCase = {lbl: i for i, lbl in enumerate(_lowercase )}
# Set the seed before splitting the data.
np.random.seed(_lowercase )
torch.manual_seed(_lowercase )
torch.cuda.manual_seed_all(_lowercase )
# Split our filenames between train and validation
__UpperCamelCase = np.random.permutation(len(_lowercase ) )
__UpperCamelCase = int(0.8 * len(_lowercase ) )
__UpperCamelCase = random_perm[:cut]
__UpperCamelCase = random_perm[cut:]
# For training we use a simple RandomResizedCrop
__UpperCamelCase = Compose([RandomResizedCrop(_lowercase , scale=(0.5, 1.0) ), ToTensor()] )
__UpperCamelCase = PetsDataset(
[file_names[i] for i in train_split] , image_transform=_lowercase , label_to_id=_lowercase )
# For evaluation, we use a deterministic Resize
__UpperCamelCase = Compose([Resize(_lowercase ), ToTensor()] )
__UpperCamelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=_lowercase , label_to_id=_lowercase )
# Instantiate dataloaders.
__UpperCamelCase = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 )
__UpperCamelCase = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__UpperCamelCase = create_model('resnet50d' , pretrained=_lowercase , num_classes=len(_lowercase ) )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__UpperCamelCase = model.to(accelerator.device )
# Freezing the base model
for param in model.parameters():
__UpperCamelCase = False
for param in model.get_classifier().parameters():
__UpperCamelCase = True
# We normalize the batches of images to be a bit faster.
__UpperCamelCase = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device )
__UpperCamelCase = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device )
# Instantiate optimizer
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 )
# Instantiate learning rate scheduler
__UpperCamelCase = OneCycleLR(optimizer=_lowercase , max_lr=_lowercase , epochs=_lowercase , steps_per_epoch=len(_lowercase ) )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare(
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
# We need to keep track of how many total steps we have iterated over
__UpperCamelCase = 0
# We also need to keep track of the starting epoch so files are named properly
__UpperCamelCase = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f'''Resumed from checkpoint: {args.resume_from_checkpoint}''' )
accelerator.load_state(args.resume_from_checkpoint )
__UpperCamelCase = os.path.basename(args.resume_from_checkpoint )
else:
# Get the most recent checkpoint
__UpperCamelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()]
dirs.sort(key=os.path.getctime )
__UpperCamelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
__UpperCamelCase = os.path.splitext(_lowercase )[0]
if "epoch" in training_difference:
__UpperCamelCase = int(training_difference.replace('epoch_' , '' ) ) + 1
__UpperCamelCase = None
else:
__UpperCamelCase = int(training_difference.replace('step_' , '' ) )
__UpperCamelCase = resume_step // len(_lowercase )
resume_step -= starting_epoch * len(_lowercase )
# Now we train the model
for epoch in range(_lowercase , _lowercase ):
model.train()
if args.with_tracking:
__UpperCamelCase = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
__UpperCamelCase = accelerator.skip_first_batches(_lowercase , _lowercase )
overall_step += resume_step
else:
# After the first iteration though, we need to go back to the original dataloader
__UpperCamelCase = train_dataloader
for batch in active_dataloader:
# We could avoid this line since we set the accelerator with `device_placement=True`.
__UpperCamelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
__UpperCamelCase = (batch['image'] - mean) / std
__UpperCamelCase = model(_lowercase )
__UpperCamelCase = torch.nn.functional.cross_entropy(_lowercase , batch['label'] )
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(_lowercase )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
if isinstance(_lowercase , _lowercase ):
__UpperCamelCase = f'''step_{overall_step}'''
if overall_step % checkpointing_steps == 0:
if args.output_dir is not None:
__UpperCamelCase = os.path.join(args.output_dir , _lowercase )
accelerator.save_state(_lowercase )
model.eval()
__UpperCamelCase = 0
__UpperCamelCase = 0
for step, batch in enumerate(_lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
__UpperCamelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
__UpperCamelCase = (batch['image'] - mean) / std
with torch.no_grad():
__UpperCamelCase = model(_lowercase )
__UpperCamelCase = outputs.argmax(dim=-1 )
__UpperCamelCase, __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['label']) )
__UpperCamelCase = predictions == references
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
__UpperCamelCase = accurate.item() / num_elems
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}: {1_00 * eval_metric:.2f}''' )
if args.with_tracking:
accelerator.log(
{
'accuracy': 1_00 * eval_metric,
'train_loss': total_loss.item() / len(_lowercase ),
'epoch': epoch,
} , step=_lowercase , )
if checkpointing_steps == "epoch":
__UpperCamelCase = f'''epoch_{epoch}'''
if args.output_dir is not None:
__UpperCamelCase = os.path.join(args.output_dir , _lowercase )
accelerator.save_state(_lowercase )
if args.with_tracking:
accelerator.end_training()
def _A ( ) -> Dict:
"""simple docstring"""
__UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument('--data_dir' , required=_lowercase , help='The data folder on disk.' )
parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' )
parser.add_argument(
'--mixed_precision' , type=_lowercase , default=_lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.' , )
parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' )
parser.add_argument(
'--checkpointing_steps' , type=_lowercase , default=_lowercase , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , )
parser.add_argument(
'--output_dir' , type=_lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , )
parser.add_argument(
'--resume_from_checkpoint' , type=_lowercase , default=_lowercase , help='If the training should continue from a checkpoint folder.' , )
parser.add_argument(
'--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , )
parser.add_argument(
'--project_dir' , type=_lowercase , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , )
__UpperCamelCase = parser.parse_args()
__UpperCamelCase = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 2_24}
training_function(_lowercase , _lowercase )
if __name__ == "__main__":
main()
| 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = KandinskyInpaintPipeline
_lowercase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
_lowercase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
_lowercase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
_lowercase = False
@property
def snake_case_ ( self: int ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: Tuple ):
'''simple docstring'''
return self.time_input_dim
@property
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
return 100
@property
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' )
return tokenizer
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = MCLIPConfig(
numDims=self.cross_attention_dim,transformerDimensions=self.text_embedder_hidden_size,hidden_size=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_hidden_layers=5,vocab_size=1005,)
__UpperCamelCase = MultilingualCLIP(A_ )
__UpperCamelCase = text_encoder.eval()
return text_encoder
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'text_image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'text_image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
__UpperCamelCase = UNetaDConditionModel(**A_ )
return model
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def snake_case_ ( self: str ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = VQModel(**self.dummy_movq_kwargs )
return model
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = self.dummy_tokenizer
__UpperCamelCase = self.dummy_unet
__UpperCamelCase = self.dummy_movq
__UpperCamelCase = DDIMScheduler(
num_train_timesteps=1000,beta_schedule='linear',beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,clip_sample=A_,set_alpha_to_one=A_,steps_offset=1,prediction_type='epsilon',thresholding=A_,)
__UpperCamelCase = {
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def snake_case_ ( self: Tuple,A_: Optional[int],A_: Dict=0 ):
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(A_ ) ).to(A_ )
__UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(seed + 1 ) ).to(A_ )
# create init_image
__UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ )
__UpperCamelCase = image.cpu().permute(0,2,3,1 )[0]
__UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) )
# create mask
__UpperCamelCase = np.ones((64, 64),dtype=np.floataa )
__UpperCamelCase = 0
if str(A_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(A_ )
else:
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCamelCase = {
'prompt': 'horse',
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = 'cpu'
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = self.pipeline_class(**A_ )
__UpperCamelCase = pipe.to(A_ )
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) )
__UpperCamelCase = output.images
__UpperCamelCase = pipe(
**self.get_dummy_inputs(A_ ),return_dict=A_,)[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
print(F'''image.shape {image.shape}''' )
assert image.shape == (1, 64, 64, 3)
__UpperCamelCase = np.array(
[0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Tuple ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' )
__UpperCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
__UpperCamelCase = np.ones((768, 768),dtype=np.floataa )
__UpperCamelCase = 0
__UpperCamelCase = 'a hat'
__UpperCamelCase = KandinskyPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-prior',torch_dtype=torch.floataa )
pipe_prior.to(A_ )
__UpperCamelCase = KandinskyInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-inpaint',torch_dtype=torch.floataa )
__UpperCamelCase = pipeline.to(A_ )
pipeline.set_progress_bar_config(disable=A_ )
__UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
__UpperCamelCase, __UpperCamelCase = pipe_prior(
A_,generator=A_,num_inference_steps=5,negative_prompt='',).to_tuple()
__UpperCamelCase = pipeline(
A_,image=A_,mask_image=A_,image_embeds=A_,negative_image_embeds=A_,generator=A_,num_inference_steps=100,height=768,width=768,output_type='np',)
__UpperCamelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(A_,A_ )
| 1 | 1 |
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
while b:
__UpperCamelCase, __UpperCamelCase = b, a % b
return a
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return a if b == 0 else euclidean_gcd_recursive(_lowercase , a % b )
def _A ( ) -> List[Any]:
"""simple docstring"""
print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' )
print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' )
print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' )
print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' )
print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' )
print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' )
print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' )
print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' )
print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' )
print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' )
if __name__ == "__main__":
main()
| 1 |
from typing import Any
class __lowerCamelCase :
def __init__( self: int,A_: Any ):
'''simple docstring'''
__UpperCamelCase = data
__UpperCamelCase = None
def __repr__( self: Any ):
'''simple docstring'''
return F'''Node({self.data})'''
class __lowerCamelCase :
def __init__( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = None
def __iter__( self: int ):
'''simple docstring'''
__UpperCamelCase = self.head
while node:
yield node.data
__UpperCamelCase = node.next
def __len__( self: List[str] ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self: Any ):
'''simple docstring'''
return "->".join([str(A_ ) for item in self] )
def __getitem__( self: int,A_: int ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self: int,A_: int,A_: Any ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
__UpperCamelCase = self.head
for _ in range(A_ ):
__UpperCamelCase = current.next
__UpperCamelCase = data
def snake_case_ ( self: Union[str, Any],A_: Any ):
'''simple docstring'''
self.insert_nth(len(self ),A_ )
def snake_case_ ( self: List[Any],A_: Any ):
'''simple docstring'''
self.insert_nth(0,A_ )
def snake_case_ ( self: Optional[Any],A_: int,A_: Any ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
__UpperCamelCase = Node(A_ )
if self.head is None:
__UpperCamelCase = new_node
elif index == 0:
__UpperCamelCase = self.head # link new_node to head
__UpperCamelCase = new_node
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = new_node
def snake_case_ ( self: str ): # print every node data
'''simple docstring'''
print(self )
def snake_case_ ( self: int ):
'''simple docstring'''
return self.delete_nth(0 )
def snake_case_ ( self: str ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def snake_case_ ( self: Any,A_: int = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
__UpperCamelCase = self.head # default first node
if index == 0:
__UpperCamelCase = self.head.next
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next.next
return delete_node.data
def snake_case_ ( self: Any ):
'''simple docstring'''
return self.head is None
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = self.head
while current:
# Store the current node's next node.
__UpperCamelCase = current.next
# Make the current node's next point backwards
__UpperCamelCase = prev
# Make the previous node be the current node
__UpperCamelCase = current
# Make the current node the next node (to progress iteration)
__UpperCamelCase = next_node
# Return prev in order to put the head at the end
__UpperCamelCase = prev
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(_lowercase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(_lowercase ) == i
linked_list.insert_nth(_lowercase , i + 1 )
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(_lowercase ) == 9
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
__UpperCamelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) )
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = [
-9,
1_00,
Node(77_34_51_12 ),
'dlrow olleH',
7,
55_55,
0,
-1_92.5_55_55,
'Hello, world!',
77.9,
Node(10 ),
None,
None,
12.20,
]
__UpperCamelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(_lowercase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
__UpperCamelCase = linked_list.delete_head()
assert result == -9
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
__UpperCamelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
__UpperCamelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(_lowercase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(_lowercase )
assert (
str(_lowercase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(_lowercase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def _A ( ) -> List[str]:
"""simple docstring"""
from doctest import testmod
testmod()
__UpperCamelCase = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(_lowercase )
print('\nReading/changing Node data using indexing:' )
print(f'''Element at Position 1: {linked_list[1]}''' )
__UpperCamelCase = input('Enter New Value: ' ).strip()
print('New list:' )
print(_lowercase )
print(f'''length of linked_list is : {len(_lowercase )}''' )
if __name__ == "__main__":
main()
| 1 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase (_a ):
_lowercase = ["""pixel_values"""]
def __init__( self: str,A_: bool = True,A_: Dict[str, int] = None,A_: PILImageResampling = PIL.Image.BICUBIC,A_: bool = True,A_: Dict[str, int] = None,A_: Union[int, float] = 1 / 255,A_: bool = True,A_: bool = True,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,**A_: int,):
'''simple docstring'''
super().__init__(**A_ )
__UpperCamelCase = size if size is not None else {'height': 256, 'width': 256}
__UpperCamelCase = get_size_dict(A_ )
__UpperCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224}
__UpperCamelCase = get_size_dict(A_,param_name='crop_size' )
__UpperCamelCase = do_resize
__UpperCamelCase = size
__UpperCamelCase = resample
__UpperCamelCase = do_center_crop
__UpperCamelCase = crop_size
__UpperCamelCase = do_rescale
__UpperCamelCase = rescale_factor
__UpperCamelCase = do_normalize
__UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def snake_case_ ( self: Tuple,A_: np.ndarray,A_: Dict[str, int],A_: PILImageResampling = PIL.Image.BICUBIC,A_: Optional[Union[str, ChannelDimension]] = None,**A_: Union[str, Any],):
'''simple docstring'''
__UpperCamelCase = get_size_dict(A_ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return resize(
A_,size=(size['height'], size['width']),resample=A_,data_format=A_,**A_ )
def snake_case_ ( self: List[str],A_: np.ndarray,A_: Dict[str, int],A_: Optional[Union[str, ChannelDimension]] = None,**A_: Union[str, Any],):
'''simple docstring'''
__UpperCamelCase = get_size_dict(A_ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return center_crop(A_,size=(size['height'], size['width']),data_format=A_,**A_ )
def snake_case_ ( self: Optional[int],A_: np.ndarray,A_: Union[int, float],A_: Optional[Union[str, ChannelDimension]] = None,**A_: Union[str, Any],):
'''simple docstring'''
return rescale(A_,scale=A_,data_format=A_,**A_ )
def snake_case_ ( self: List[str],A_: np.ndarray,A_: Union[float, List[float]],A_: Union[float, List[float]],A_: Optional[Union[str, ChannelDimension]] = None,**A_: List[Any],):
'''simple docstring'''
return normalize(A_,mean=A_,std=A_,data_format=A_,**A_ )
def snake_case_ ( self: Tuple,A_: ImageInput,A_: bool = None,A_: Dict[str, int] = None,A_: Any=None,A_: bool = None,A_: Dict[str, int] = None,A_: bool = None,A_: float = None,A_: bool = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[str, TensorType]] = None,A_: ChannelDimension = ChannelDimension.FIRST,**A_: List[str],):
'''simple docstring'''
__UpperCamelCase = do_resize if do_resize is not None else self.do_resize
__UpperCamelCase = resample if resample is not None else self.resample
__UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
__UpperCamelCase = image_mean if image_mean is not None else self.image_mean
__UpperCamelCase = image_std if image_std is not None else self.image_std
__UpperCamelCase = size if size is not None else self.size
__UpperCamelCase = get_size_dict(A_ )
__UpperCamelCase = crop_size if crop_size is not None else self.crop_size
__UpperCamelCase = get_size_dict(A_,param_name='crop_size' )
__UpperCamelCase = make_list_of_images(A_ )
if not valid_images(A_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
__UpperCamelCase = [to_numpy_array(A_ ) for image in images]
if do_resize:
__UpperCamelCase = [self.resize(image=A_,size=A_,resample=A_ ) for image in images]
if do_center_crop:
__UpperCamelCase = [self.center_crop(image=A_,size=A_ ) for image in images]
if do_rescale:
__UpperCamelCase = [self.rescale(image=A_,scale=A_ ) for image in images]
if do_normalize:
__UpperCamelCase = [self.normalize(image=A_,mean=A_,std=A_ ) for image in images]
__UpperCamelCase = [to_channel_dimension_format(A_,A_ ) for image in images]
__UpperCamelCase = {'pixel_values': images}
return BatchFeature(data=A_,tensor_type=A_ )
| 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__snake_case = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''UniSpeechForCTC''',
'''UniSpeechForPreTraining''',
'''UniSpeechForSequenceClassification''',
'''UniSpeechModel''',
'''UniSpeechPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 | 1 |
from random import randint, random
def _A ( _lowercase , _lowercase , _lowercase , _lowercase = False , _lowercase = False , _lowercase = 5 , ) -> list:
"""simple docstring"""
__UpperCamelCase = [[-1] * number_of_cells] # Create a highway without any car
__UpperCamelCase = 0
__UpperCamelCase = max(_lowercase , 0 )
while i < number_of_cells:
__UpperCamelCase = (
randint(0 , _lowercase ) if random_speed else initial_speed
) # Place the cars
i += (
randint(1 , max_speed * 2 ) if random_frequency else frequency
) # Arbitrary number, may need tuning
return highway
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = 0
__UpperCamelCase = highway_now[car_index + 1 :]
for cell in range(len(_lowercase ) ): # May need a better name for this
if cells[cell] != -1: # If the cell is not empty then
return distance # we have the distance we wanted
distance += 1
# Here if the car is near the end of the highway
return distance + get_distance(_lowercase , -1 )
def _A ( _lowercase , _lowercase , _lowercase ) -> list:
"""simple docstring"""
__UpperCamelCase = len(_lowercase )
# Beforce calculations, the highway is empty
__UpperCamelCase = [-1] * number_of_cells
for car_index in range(_lowercase ):
if highway_now[car_index] != -1:
# Add 1 to the current speed of the car and cap the speed
__UpperCamelCase = min(highway_now[car_index] + 1 , _lowercase )
# Number of empty cell before the next car
__UpperCamelCase = get_distance(_lowercase , _lowercase ) - 1
# We can't have the car causing an accident
__UpperCamelCase = min(next_highway[car_index] , _lowercase )
if random() < probability:
# Randomly, a driver will slow down
__UpperCamelCase = max(next_highway[car_index] - 1 , 0 )
return next_highway
def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> list:
"""simple docstring"""
__UpperCamelCase = len(highway[0] )
for i in range(_lowercase ):
__UpperCamelCase = update(highway[i] , _lowercase , _lowercase )
__UpperCamelCase = [-1] * number_of_cells
for car_index in range(_lowercase ):
__UpperCamelCase = next_speeds_calculated[car_index]
if speed != -1:
# Change the position based on the speed (with % to create the loop)
__UpperCamelCase = (car_index + speed) % number_of_cells
# Commit the change of position
__UpperCamelCase = speed
highway.append(_lowercase )
return highway
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
__snake_case = {
'''a''': '''AAAAA''',
'''b''': '''AAAAB''',
'''c''': '''AAABA''',
'''d''': '''AAABB''',
'''e''': '''AABAA''',
'''f''': '''AABAB''',
'''g''': '''AABBA''',
'''h''': '''AABBB''',
'''i''': '''ABAAA''',
'''j''': '''BBBAA''',
'''k''': '''ABAAB''',
'''l''': '''ABABA''',
'''m''': '''ABABB''',
'''n''': '''ABBAA''',
'''o''': '''ABBAB''',
'''p''': '''ABBBA''',
'''q''': '''ABBBB''',
'''r''': '''BAAAA''',
'''s''': '''BAAAB''',
'''t''': '''BAABA''',
'''u''': '''BAABB''',
'''v''': '''BBBAB''',
'''w''': '''BABAA''',
'''x''': '''BABAB''',
'''y''': '''BABBA''',
'''z''': '''BABBB''',
''' ''': ''' ''',
}
__snake_case = {value: key for key, value in encode_dict.items()}
def _A ( _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = ''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('encode() accepts only letters of the alphabet and spaces' )
return encoded
def _A ( _lowercase ) -> str:
"""simple docstring"""
if set(_lowercase ) - {"A", "B", " "} != set():
raise Exception('decode() accepts only \'A\', \'B\' and spaces' )
__UpperCamelCase = ''
for word in coded.split():
while len(_lowercase ) != 0:
decoded += decode_dict[word[:5]]
__UpperCamelCase = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
from __future__ import annotations
from functools import lru_cache
from math import ceil
__snake_case = 1_0_0
__snake_case = set(range(3, NUM_PRIMES, 2))
primes.add(2)
__snake_case = 42
for prime in range(3, ceil(NUM_PRIMES**0.5), 2):
if prime not in primes:
continue
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
@lru_cache(maxsize=1_00 )
def _A ( _lowercase ) -> set[int]:
"""simple docstring"""
if number_to_partition < 0:
return set()
elif number_to_partition == 0:
return {1}
__UpperCamelCase = set()
__UpperCamelCase = 42
__UpperCamelCase = 42
for prime in primes:
if prime > number_to_partition:
continue
for sub in partition(number_to_partition - prime ):
ret.add(sub * prime )
return ret
def _A ( _lowercase = 50_00 ) -> int | None:
"""simple docstring"""
for number_to_partition in range(1 , _lowercase ):
if len(partition(_lowercase ) ) > number_unique_partitions:
return number_to_partition
return None
if __name__ == "__main__":
print(f"""{solution() = }""")
| 1 |
from collections.abc import Generator
from math import sin
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
if len(_lowercase ) != 32:
raise ValueError('Input must be of length 32' )
__UpperCamelCase = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
__UpperCamelCase = format(_lowercase , '08x' )[-8:]
__UpperCamelCase = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = B''
for char in message:
bit_string += format(_lowercase , '08b' ).encode('utf-8' )
__UpperCamelCase = format(len(_lowercase ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(_lowercase ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def _A ( _lowercase ) -> Generator[list[int], None, None]:
"""simple docstring"""
if len(_lowercase ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(_lowercase ) , 5_12 ):
__UpperCamelCase = bit_string[pos : pos + 5_12]
__UpperCamelCase = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def _A ( _lowercase ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
__UpperCamelCase = format(_lowercase , '032b' )
__UpperCamelCase = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(_lowercase , 2 )
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return (a + b) % 2**32
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = preprocess(_lowercase )
__UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__UpperCamelCase = 0X67_45_23_01
__UpperCamelCase = 0Xef_cd_ab_89
__UpperCamelCase = 0X98_ba_dc_fe
__UpperCamelCase = 0X10_32_54_76
__UpperCamelCase = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(_lowercase ):
__UpperCamelCase = aa
__UpperCamelCase = ba
__UpperCamelCase = ca
__UpperCamelCase = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__UpperCamelCase = d ^ (b & (c ^ d))
__UpperCamelCase = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__UpperCamelCase = c ^ (d & (b ^ c))
__UpperCamelCase = (5 * i + 1) % 16
elif i <= 47:
__UpperCamelCase = b ^ c ^ d
__UpperCamelCase = (3 * i + 5) % 16
else:
__UpperCamelCase = c ^ (b | not_aa(_lowercase ))
__UpperCamelCase = (7 * i) % 16
__UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32
__UpperCamelCase = d
__UpperCamelCase = c
__UpperCamelCase = b
__UpperCamelCase = sum_aa(_lowercase , left_rotate_aa(_lowercase , shift_amounts[i] ) )
# Add hashed chunk to running total
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 | 1 |
import collections
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = '''▁'''
__snake_case = {'''vocab_file''': '''prophetnet.tokenizer'''}
__snake_case = {
'''vocab_file''': {
'''microsoft/xprophetnet-large-wiki100-cased''': (
'''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer'''
),
}
}
__snake_case = {
'''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False},
}
__snake_case = {
'''microsoft/xprophetnet-large-wiki100-cased''': 5_1_2,
}
def _A ( _lowercase ) -> Optional[Any]:
"""simple docstring"""
__UpperCamelCase = collections.OrderedDict()
with open(_lowercase , 'r' , encoding='utf-8' ) as reader:
__UpperCamelCase = reader.readlines()
for index, token in enumerate(_lowercase ):
__UpperCamelCase = token.rstrip('\n' )
__UpperCamelCase = index
return vocab
class __lowerCamelCase (_a ):
_lowercase = VOCAB_FILES_NAMES
_lowercase = PRETRAINED_VOCAB_FILES_MAP
_lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase = ["""input_ids""", """attention_mask"""]
def __init__( self: str,A_: int,A_: str="[SEP]",A_: List[Any]="[SEP]",A_: str="[SEP]",A_: Any="[UNK]",A_: Optional[int]="[PAD]",A_: List[str]="[CLS]",A_: Dict="[MASK]",A_: Optional[Dict[str, Any]] = None,**A_: str,):
'''simple docstring'''
__UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=A_,eos_token=A_,sep_token=A_,unk_token=A_,pad_token=A_,cls_token=A_,mask_token=A_,sp_model_kwargs=self.sp_model_kwargs,**A_,)
try:
import sentencepiece as spm
except ImportError:
logger.warning(
'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece'
' pip install sentencepiece' )
raise
__UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(A_ ) )
__UpperCamelCase = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# put special tokens and [unused] tokens into the vocab
__UpperCamelCase = {'[PAD]': 0, '[CLS]': 1, '[SEP]': 2, '[UNK]': 3, '[MASK]': 4}
for i in range(10 ):
__UpperCamelCase = F'''[unused{i}]'''
__UpperCamelCase = 5 + i
# The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab
__UpperCamelCase = 12
__UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
for k in self.fairseq_tokens_to_ids.keys():
self.unique_no_split_tokens.append(A_ )
def __getstate__( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = self.__dict__.copy()
__UpperCamelCase = None
return state
def __setstate__( self: List[Any],A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase = d
try:
import sentencepiece as spm
except ImportError:
logger.warning(
'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece'
' pip install sentencepiece' )
raise
# for backward compatibility
if not hasattr(self,'sp_model_kwargs' ):
__UpperCamelCase = {}
__UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def snake_case_ ( self: Any,A_: List[int],A_: Optional[List[int]] = None,A_: bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A_,token_ids_a=A_,already_has_special_tokens=A_ )
if token_ids_a is None:
return ([0] * len(A_ )) + [1]
return ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1]
def snake_case_ ( self: Optional[int],A_: List[int],A_: Optional[List[int]] = None ):
'''simple docstring'''
__UpperCamelCase = [self.sep_token_id]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0]
return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return len(self.sp_model ) + self.fairseq_offset
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def snake_case_ ( self: List[Any],A_: str ):
'''simple docstring'''
return self.sp_model.encode(A_,out_type=A_ )
def snake_case_ ( self: Any,A_: Optional[int] ):
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__UpperCamelCase = self.sp_model.PieceToId(A_ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def snake_case_ ( self: str,A_: int ):
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def snake_case_ ( self: Tuple,A_: int ):
'''simple docstring'''
__UpperCamelCase = ''.join(A_ ).replace(A_,' ' ).strip()
return out_string
def snake_case_ ( self: Optional[int],A_: str,A_: Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(A_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
__UpperCamelCase = os.path.join(
A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file,A_ )
elif not os.path.isfile(self.vocab_file ):
with open(A_,'wb' ) as fi:
__UpperCamelCase = self.sp_model.serialized_model_proto()
fi.write(A_ )
return (out_vocab_file,)
def snake_case_ ( self: Tuple,A_: List[int],A_: Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.sep_token_id]
__UpperCamelCase = [self.sep_token_id]
return token_ids_a + sep + token_ids_a + sep
| 1 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__snake_case = 0
__snake_case = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__snake_case = tuple[int, int]
class __lowerCamelCase :
def __init__( self: str,A_: int,A_: int,A_: int,A_: int,A_: int,A_: Node | None,):
'''simple docstring'''
__UpperCamelCase = pos_x
__UpperCamelCase = pos_y
__UpperCamelCase = (pos_y, pos_x)
__UpperCamelCase = goal_x
__UpperCamelCase = goal_y
__UpperCamelCase = g_cost
__UpperCamelCase = parent
__UpperCamelCase = self.calculate_heuristic()
__UpperCamelCase = self.g_cost + self.h_cost
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.pos_x - self.goal_x
__UpperCamelCase = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(A_ ) + abs(A_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self: int,A_: Node ):
'''simple docstring'''
return self.f_cost < other.f_cost
class __lowerCamelCase :
def __init__( self: Any,A_: TPosition,A_: TPosition ):
'''simple docstring'''
__UpperCamelCase = Node(start[1],start[0],goal[1],goal[0],0,A_ )
__UpperCamelCase = Node(goal[1],goal[0],goal[1],goal[0],9_9999,A_ )
__UpperCamelCase = [self.start]
__UpperCamelCase = []
__UpperCamelCase = False
def snake_case_ ( self: Any ):
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
__UpperCamelCase = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(A_ )
self.closed_nodes.append(A_ )
__UpperCamelCase = self.get_successors(A_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(A_ )
else:
# retrieve the best current path
__UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(A_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(A_ )
else:
self.open_nodes.append(A_ )
return [self.start.pos]
def snake_case_ ( self: int,A_: Node ):
'''simple docstring'''
__UpperCamelCase = []
for action in delta:
__UpperCamelCase = parent.pos_x + action[1]
__UpperCamelCase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
A_,A_,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,A_,) )
return successors
def snake_case_ ( self: Any,A_: Node | None ):
'''simple docstring'''
__UpperCamelCase = node
__UpperCamelCase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__UpperCamelCase = current_node.parent
path.reverse()
return path
class __lowerCamelCase :
def __init__( self: List[Any],A_: TPosition,A_: TPosition ):
'''simple docstring'''
__UpperCamelCase = AStar(A_,A_ )
__UpperCamelCase = AStar(A_,A_ )
__UpperCamelCase = False
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
__UpperCamelCase = self.fwd_astar.open_nodes.pop(0 )
__UpperCamelCase = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
A_,A_ )
self.fwd_astar.closed_nodes.append(A_ )
self.bwd_astar.closed_nodes.append(A_ )
__UpperCamelCase = current_bwd_node
__UpperCamelCase = current_fwd_node
__UpperCamelCase = {
self.fwd_astar: self.fwd_astar.get_successors(A_ ),
self.bwd_astar: self.bwd_astar.get_successors(A_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(A_ )
else:
# retrieve the best current path
__UpperCamelCase = astar.open_nodes.pop(
astar.open_nodes.index(A_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(A_ )
else:
astar.open_nodes.append(A_ )
return [self.fwd_astar.start.pos]
def snake_case_ ( self: List[str],A_: Node,A_: Node ):
'''simple docstring'''
__UpperCamelCase = self.fwd_astar.retrace_path(A_ )
__UpperCamelCase = self.bwd_astar.retrace_path(A_ )
bwd_path.pop()
bwd_path.reverse()
__UpperCamelCase = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__snake_case = (0, 0)
__snake_case = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__snake_case = time.time()
__snake_case = AStar(init, goal)
__snake_case = a_star.search()
__snake_case = time.time() - start_time
print(f"""AStar execution time = {end_time:f} seconds""")
__snake_case = time.time()
__snake_case = BidirectionalAStar(init, goal)
__snake_case = time.time() - bd_start_time
print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
| 1 | 1 |
import warnings
from ...utils import is_sklearn_available, requires_backends
if is_sklearn_available():
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
__snake_case = (
'''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate '''
'''library. You can have a look at this example script for pointers: '''
'''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py'''
)
def _A ( _lowercase , _lowercase ) -> str:
"""simple docstring"""
warnings.warn(_lowercase , _lowercase )
requires_backends(_lowercase , 'sklearn' )
return (preds == labels).mean()
def _A ( _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
warnings.warn(_lowercase , _lowercase )
requires_backends(_lowercase , 'sklearn' )
__UpperCamelCase = simple_accuracy(_lowercase , _lowercase )
__UpperCamelCase = fa_score(y_true=_lowercase , y_pred=_lowercase )
return {
"acc": acc,
"f1": fa,
"acc_and_f1": (acc + fa) / 2,
}
def _A ( _lowercase , _lowercase ) -> List[str]:
"""simple docstring"""
warnings.warn(_lowercase , _lowercase )
requires_backends(_lowercase , 'sklearn' )
__UpperCamelCase = pearsonr(_lowercase , _lowercase )[0]
__UpperCamelCase = spearmanr(_lowercase , _lowercase )[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def _A ( _lowercase , _lowercase , _lowercase ) -> Dict:
"""simple docstring"""
warnings.warn(_lowercase , _lowercase )
requires_backends(_lowercase , 'sklearn' )
assert len(_lowercase ) == len(_lowercase ), f'''Predictions and labels have mismatched lengths {len(_lowercase )} and {len(_lowercase )}'''
if task_name == "cola":
return {"mcc": matthews_corrcoef(_lowercase , _lowercase )}
elif task_name == "sst-2":
return {"acc": simple_accuracy(_lowercase , _lowercase )}
elif task_name == "mrpc":
return acc_and_fa(_lowercase , _lowercase )
elif task_name == "sts-b":
return pearson_and_spearman(_lowercase , _lowercase )
elif task_name == "qqp":
return acc_and_fa(_lowercase , _lowercase )
elif task_name == "mnli":
return {"mnli/acc": simple_accuracy(_lowercase , _lowercase )}
elif task_name == "mnli-mm":
return {"mnli-mm/acc": simple_accuracy(_lowercase , _lowercase )}
elif task_name == "qnli":
return {"acc": simple_accuracy(_lowercase , _lowercase )}
elif task_name == "rte":
return {"acc": simple_accuracy(_lowercase , _lowercase )}
elif task_name == "wnli":
return {"acc": simple_accuracy(_lowercase , _lowercase )}
elif task_name == "hans":
return {"acc": simple_accuracy(_lowercase , _lowercase )}
else:
raise KeyError(_lowercase )
def _A ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]:
"""simple docstring"""
warnings.warn(_lowercase , _lowercase )
requires_backends(_lowercase , 'sklearn' )
if len(_lowercase ) != len(_lowercase ):
raise ValueError(f'''Predictions and labels have mismatched lengths {len(_lowercase )} and {len(_lowercase )}''' )
if task_name == "xnli":
return {"acc": simple_accuracy(_lowercase , _lowercase )}
else:
raise KeyError(_lowercase )
| 1 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
__snake_case = get_tests_dir('''fixtures''')
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = mock.Mock()
__UpperCamelCase = 500
__UpperCamelCase = {}
__UpperCamelCase = HTTPError
__UpperCamelCase = {}
# Download this model to make sure it's in the cache.
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request',return_value=A_ ) as mock_head:
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# This check we did call the fake head request
mock_head.assert_called()
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' )
@is_staging_test
class __lowerCamelCase (unittest.TestCase ):
@classmethod
def snake_case_ ( cls: Tuple ):
'''simple docstring'''
__UpperCamelCase = TOKEN
HfFolder.save_token(A_ )
@classmethod
def snake_case_ ( cls: Tuple ):
'''simple docstring'''
try:
delete_repo(token=cls._token,repo_id='test-feature-extractor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token,repo_id='valid_org/test-feature-extractor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token,repo_id='test-dynamic-feature-extractor' )
except HTTPError:
pass
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('test-feature-extractor',use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
# Reset repo
delete_repo(token=self._token,repo_id='test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
A_,repo_id='test-feature-extractor',push_to_hub=A_,use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('valid_org/test-feature-extractor',use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
# Reset repo
delete_repo(token=self._token,repo_id='valid_org/test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
A_,repo_id='valid_org/test-feature-extractor-org',push_to_hub=A_,use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
def snake_case_ ( self: int ):
'''simple docstring'''
CustomFeatureExtractor.register_for_auto_class()
__UpperCamelCase = CustomFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('test-dynamic-feature-extractor',use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map,{'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'},)
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(
F'''{USER}/test-dynamic-feature-extractor''',trust_remote_code=A_ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__,'CustomFeatureExtractor' )
| 1 | 1 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case = {
'''configuration_autoformer''': [
'''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''AutoformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''AutoformerForPrediction''',
'''AutoformerModel''',
'''AutoformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__snake_case = 1_6
__snake_case = 3_2
def _A ( _lowercase , _lowercase = 16 , _lowercase = "bert-base-cased" ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase )
__UpperCamelCase = load_dataset('glue' , 'mrpc' )
def tokenize_function(_lowercase ):
# max_length=None => use the model max length (it's actually the default)
__UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowercase , max_length=_lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCamelCase = datasets.map(
_lowercase , batched=_lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(_lowercase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(_lowercase , padding='max_length' , max_length=1_28 , return_tensors='pt' )
return tokenizer.pad(_lowercase , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
__UpperCamelCase = DataLoader(
tokenized_datasets['train'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
__UpperCamelCase = DataLoader(
tokenized_datasets['validation'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
return train_dataloader, eval_dataloader
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__UpperCamelCase = config['lr']
__UpperCamelCase = int(config['num_epochs'] )
__UpperCamelCase = int(config['seed'] )
__UpperCamelCase = int(config['batch_size'] )
__UpperCamelCase = args.model_name_or_path
set_seed(_lowercase )
__UpperCamelCase, __UpperCamelCase = get_dataloaders(_lowercase , _lowercase , _lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase )
# Instantiate optimizer
__UpperCamelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__UpperCamelCase = optimizer_cls(params=model.parameters() , lr=_lowercase )
if accelerator.state.deepspeed_plugin is not None:
__UpperCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
__UpperCamelCase = 1
__UpperCamelCase = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__UpperCamelCase = get_linear_schedule_with_warmup(
optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , )
else:
__UpperCamelCase = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare(
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
# We need to keep track of how many total steps we have iterated over
__UpperCamelCase = 0
# We also need to keep track of the stating epoch so files are named properly
__UpperCamelCase = 0
# Now we train the model
__UpperCamelCase = evaluate.load('glue' , 'mrpc' )
__UpperCamelCase = 0
__UpperCamelCase = {}
for epoch in range(_lowercase , _lowercase ):
model.train()
for step, batch in enumerate(_lowercase ):
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.loss
__UpperCamelCase = loss / gradient_accumulation_steps
accelerator.backward(_lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
__UpperCamelCase = 0
for step, batch in enumerate(_lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__UpperCamelCase, __UpperCamelCase = accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(_lowercase ) - 1:
__UpperCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__UpperCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=_lowercase , references=_lowercase , )
__UpperCamelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , _lowercase )
__UpperCamelCase = eval_metric['accuracy']
if best_performance < eval_metric["accuracy"]:
__UpperCamelCase = eval_metric['accuracy']
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'''
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f:
json.dump(_lowercase , _lowercase )
def _A ( ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path' , type=_lowercase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowercase , )
parser.add_argument(
'--output_dir' , type=_lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , )
parser.add_argument(
'--performance_lower_bound' , type=_lowercase , default=_lowercase , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , )
parser.add_argument(
'--num_epochs' , type=_lowercase , default=3 , help='Number of train epochs.' , )
__UpperCamelCase = parser.parse_args()
__UpperCamelCase = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(_lowercase , _lowercase )
if __name__ == "__main__":
main()
| 1 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase (_a ):
_lowercase = ["""pixel_values"""]
def __init__( self: Union[str, Any],A_: bool = True,A_: Dict[str, int] = None,A_: PILImageResampling = PILImageResampling.BICUBIC,A_: bool = True,A_: Union[int, float] = 1 / 255,A_: bool = True,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,A_: bool = True,**A_: List[str],):
'''simple docstring'''
super().__init__(**A_ )
__UpperCamelCase = size if size is not None else {'height': 384, 'width': 384}
__UpperCamelCase = get_size_dict(A_,default_to_square=A_ )
__UpperCamelCase = do_resize
__UpperCamelCase = size
__UpperCamelCase = resample
__UpperCamelCase = do_rescale
__UpperCamelCase = rescale_factor
__UpperCamelCase = do_normalize
__UpperCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__UpperCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD
__UpperCamelCase = do_convert_rgb
def snake_case_ ( self: Union[str, Any],A_: np.ndarray,A_: Dict[str, int],A_: PILImageResampling = PILImageResampling.BICUBIC,A_: Optional[Union[str, ChannelDimension]] = None,**A_: Union[str, Any],):
'''simple docstring'''
__UpperCamelCase = get_size_dict(A_,default_to_square=A_ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' )
__UpperCamelCase = (size['height'], size['width'])
return resize(A_,size=A_,resample=A_,data_format=A_,**A_ )
def snake_case_ ( self: Optional[Any],A_: np.ndarray,A_: Union[int, float],A_: Optional[Union[str, ChannelDimension]] = None,**A_: Union[str, Any],):
'''simple docstring'''
return rescale(A_,scale=A_,data_format=A_,**A_ )
def snake_case_ ( self: Tuple,A_: np.ndarray,A_: Union[float, List[float]],A_: Union[float, List[float]],A_: Optional[Union[str, ChannelDimension]] = None,**A_: Dict,):
'''simple docstring'''
return normalize(A_,mean=A_,std=A_,data_format=A_,**A_ )
def snake_case_ ( self: Optional[Any],A_: ImageInput,A_: Optional[bool] = None,A_: Optional[Dict[str, int]] = None,A_: PILImageResampling = None,A_: Optional[bool] = None,A_: Optional[float] = None,A_: Optional[bool] = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[str, TensorType]] = None,A_: bool = None,A_: ChannelDimension = ChannelDimension.FIRST,**A_: Tuple,):
'''simple docstring'''
__UpperCamelCase = do_resize if do_resize is not None else self.do_resize
__UpperCamelCase = resample if resample is not None else self.resample
__UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
__UpperCamelCase = image_mean if image_mean is not None else self.image_mean
__UpperCamelCase = image_std if image_std is not None else self.image_std
__UpperCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__UpperCamelCase = size if size is not None else self.size
__UpperCamelCase = get_size_dict(A_,default_to_square=A_ )
__UpperCamelCase = make_list_of_images(A_ )
if not valid_images(A_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__UpperCamelCase = [convert_to_rgb(A_ ) for image in images]
# All transformations expect numpy arrays.
__UpperCamelCase = [to_numpy_array(A_ ) for image in images]
if do_resize:
__UpperCamelCase = [self.resize(image=A_,size=A_,resample=A_ ) for image in images]
if do_rescale:
__UpperCamelCase = [self.rescale(image=A_,scale=A_ ) for image in images]
if do_normalize:
__UpperCamelCase = [self.normalize(image=A_,mean=A_,std=A_ ) for image in images]
__UpperCamelCase = [to_channel_dimension_format(A_,A_ ) for image in images]
__UpperCamelCase = BatchFeature(data={'pixel_values': images},tensor_type=A_ )
return encoded_outputs
| 1 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class __lowerCamelCase (_a ):
@slow
@require_torch
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny','prajjwal1/bert-tiny' )
__UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' )
__UpperCamelCase = bertabert.config.encoder.vocab_size
__UpperCamelCase = tokenizer.sep_token_id
__UpperCamelCase = tokenizer.cls_token_id
__UpperCamelCase = 128
__UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='train[:1%]' )
__UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='validation[:1%]' )
__UpperCamelCase = train_dataset.select(range(32 ) )
__UpperCamelCase = val_dataset.select(range(16 ) )
__UpperCamelCase = 4
def _map_to_encoder_decoder_inputs(A_: Dict ):
# Tokenizer will automatically set [BOS] <text> [EOS]
__UpperCamelCase = tokenizer(batch['article'],padding='max_length',truncation=A_,max_length=512 )
__UpperCamelCase = tokenizer(batch['highlights'],padding='max_length',truncation=A_,max_length=128 )
__UpperCamelCase = inputs.input_ids
__UpperCamelCase = inputs.attention_mask
__UpperCamelCase = outputs.input_ids
__UpperCamelCase = outputs.input_ids.copy()
__UpperCamelCase = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels']
]
__UpperCamelCase = outputs.attention_mask
assert all(len(A_ ) == 512 for x in inputs.input_ids )
assert all(len(A_ ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(A_: str ):
__UpperCamelCase = pred.label_ids
__UpperCamelCase = pred.predictions
# all unnecessary tokens are removed
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A_ ) )] ) / len(A_ )
return {"accuracy": accuracy}
# map train dataset
__UpperCamelCase = train_dataset.map(
_map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],)
train_dataset.set_format(
type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],)
# same for validation dataset
__UpperCamelCase = val_dataset.map(
_map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],)
val_dataset.set_format(
type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],)
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = SeqaSeqTrainingArguments(
output_dir=A_,per_device_train_batch_size=A_,per_device_eval_batch_size=A_,predict_with_generate=A_,evaluation_strategy='steps',do_train=A_,do_eval=A_,warmup_steps=0,eval_steps=2,logging_steps=2,)
# instantiate trainer
__UpperCamelCase = SeqaSeqTrainer(
model=A_,args=A_,compute_metrics=_compute_metrics,train_dataset=A_,eval_dataset=A_,tokenizer=A_,)
# start training
trainer.train()
| 1 | 1 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''',
}
class __lowerCamelCase (_a ):
_lowercase = """blip_2_vision_model"""
def __init__( self: Optional[int],A_: str=1408,A_: Union[str, Any]=6144,A_: Tuple=39,A_: Optional[int]=16,A_: List[str]=224,A_: Optional[Any]=14,A_: Union[str, Any]="gelu",A_: List[Any]=0.0_0_0_0_1,A_: List[Any]=0.0,A_: List[Any]=1E-10,A_: Optional[int]=True,**A_: Union[str, Any],):
'''simple docstring'''
super().__init__(**A_ )
__UpperCamelCase = hidden_size
__UpperCamelCase = intermediate_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = patch_size
__UpperCamelCase = image_size
__UpperCamelCase = initializer_range
__UpperCamelCase = attention_dropout
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = hidden_act
__UpperCamelCase = qkv_bias
@classmethod
def snake_case_ ( cls: Tuple,A_: Union[str, os.PathLike],**A_: Tuple ):
'''simple docstring'''
cls._set_token_in_kwargs(A_ )
__UpperCamelCase, __UpperCamelCase = cls.get_config_dict(A_,**A_ )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
__UpperCamelCase = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(A_,**A_ )
class __lowerCamelCase (_a ):
_lowercase = """blip_2_qformer"""
def __init__( self: Optional[Any],A_: Optional[int]=3_0522,A_: List[Any]=768,A_: Any=12,A_: Dict=12,A_: int=3072,A_: Dict="gelu",A_: Union[str, Any]=0.1,A_: Any=0.1,A_: Any=512,A_: Dict=0.0_2,A_: str=1E-12,A_: List[Any]=0,A_: Optional[int]="absolute",A_: List[str]=2,A_: Optional[Any]=1408,**A_: Optional[Any],):
'''simple docstring'''
super().__init__(pad_token_id=A_,**A_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = cross_attention_frequency
__UpperCamelCase = encoder_hidden_size
@classmethod
def snake_case_ ( cls: int,A_: Union[str, os.PathLike],**A_: int ):
'''simple docstring'''
cls._set_token_in_kwargs(A_ )
__UpperCamelCase, __UpperCamelCase = cls.get_config_dict(A_,**A_ )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
__UpperCamelCase = config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls,'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(A_,**A_ )
class __lowerCamelCase (_a ):
_lowercase = """blip-2"""
_lowercase = True
def __init__( self: Union[str, Any],A_: Optional[int]=None,A_: List[str]=None,A_: Optional[Any]=None,A_: List[str]=32,**A_: Optional[Any] ):
'''simple docstring'''
super().__init__(**A_ )
if vision_config is None:
__UpperCamelCase = {}
logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' )
if qformer_config is None:
__UpperCamelCase = {}
logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' )
if text_config is None:
__UpperCamelCase = {}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
__UpperCamelCase = BlipaVisionConfig(**A_ )
__UpperCamelCase = BlipaQFormerConfig(**A_ )
__UpperCamelCase = text_config['model_type'] if 'model_type' in text_config else 'opt'
__UpperCamelCase = CONFIG_MAPPING[text_model_type](**A_ )
__UpperCamelCase = self.text_config.tie_word_embeddings
__UpperCamelCase = self.text_config.is_encoder_decoder
__UpperCamelCase = num_query_tokens
__UpperCamelCase = self.vision_config.hidden_size
__UpperCamelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
__UpperCamelCase = 1.0
__UpperCamelCase = 0.0_2
@classmethod
def snake_case_ ( cls: List[Any],A_: BlipaVisionConfig,A_: BlipaQFormerConfig,A_: PretrainedConfig,**A_: Optional[int],):
'''simple docstring'''
return cls(
vision_config=vision_config.to_dict(),qformer_config=qformer_config.to_dict(),text_config=text_config.to_dict(),**A_,)
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = copy.deepcopy(self.__dict__ )
__UpperCamelCase = self.vision_config.to_dict()
__UpperCamelCase = self.qformer_config.to_dict()
__UpperCamelCase = self.text_config.to_dict()
__UpperCamelCase = self.__class__.model_type
return output
| 1 |
def _A ( _lowercase = 1_00 ) -> int:
"""simple docstring"""
__UpperCamelCase = 0
__UpperCamelCase = 0
for i in range(1 , n + 1 ):
sum_of_squares += i**2
sum_of_ints += i
return sum_of_ints**2 - sum_of_squares
if __name__ == "__main__":
print(f"""{solution() = }""")
| 1 | 1 |
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = prime_factors(_lowercase )
if is_square_free(_lowercase ):
return -1 if len(_lowercase ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def _A ( _lowercase , _lowercase=0 ) -> Dict:
"""simple docstring"""
return sorted(_lowercase , key=lambda _lowercase : x[column] )
def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> List[Any]:
"""simple docstring"""
for i in range(points_counts - 1 ):
for j in range(i + 1 , _lowercase ):
__UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCamelCase = current_dis
return min_dis
def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> Tuple:
"""simple docstring"""
for i in range(min(6 , points_counts - 1 ) , _lowercase ):
for j in range(max(0 , i - 6 ) , _lowercase ):
__UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCamelCase = current_dis
return min_dis
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
"""simple docstring"""
if points_counts <= 3:
return dis_between_closest_pair(_lowercase , _lowercase )
# recursion
__UpperCamelCase = points_counts // 2
__UpperCamelCase = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[:mid] , _lowercase )
__UpperCamelCase = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[mid:] , points_counts - mid )
__UpperCamelCase = min(_lowercase , _lowercase )
__UpperCamelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(_lowercase )
__UpperCamelCase = dis_between_closest_in_strip(
_lowercase , len(_lowercase ) , _lowercase )
return min(_lowercase , _lowercase )
def _A ( _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = column_based_sort(_lowercase , column=0 )
__UpperCamelCase = column_based_sort(_lowercase , column=1 )
return (
closest_pair_of_points_sqr(
_lowercase , _lowercase , _lowercase )
) ** 0.5
if __name__ == "__main__":
__snake_case = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)]
print('''Distance:''', closest_pair_of_points(points, len(points)))
| 1 | 1 |
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
__snake_case = logging.get_logger(__name__)
def _A ( _lowercase ) -> List[int]:
"""simple docstring"""
if isinstance(_lowercase , np.ndarray ):
return list(tensor.shape )
__UpperCamelCase = tf.shape(_lowercase )
if tensor.shape == tf.TensorShape(_lowercase ):
return dynamic
__UpperCamelCase = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(_lowercase )]
def _A ( _lowercase , _lowercase = None , _lowercase = None ) -> tf.Tensor:
"""simple docstring"""
return tf.nn.softmax(logits=logits + 1e-9 , axis=_lowercase , name=_lowercase )
def _A ( _lowercase , _lowercase , _lowercase , _lowercase=1e-5 , _lowercase=-1 ) -> str:
"""simple docstring"""
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_lowercase , _lowercase ):
raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' )
# Get mean and variance on the axis to be normalized
__UpperCamelCase, __UpperCamelCase = tf.nn.moments(_lowercase , axes=[axis] , keepdims=_lowercase )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
__UpperCamelCase = [1] * inputs.shape.rank
__UpperCamelCase = shape_list(_lowercase )[axis]
__UpperCamelCase = tf.reshape(_lowercase , _lowercase )
__UpperCamelCase = tf.reshape(_lowercase , _lowercase )
# Compute layer normalization using the batch_normalization
# function.
__UpperCamelCase = tf.nn.batch_normalization(
_lowercase , _lowercase , _lowercase , offset=_lowercase , scale=_lowercase , variance_epsilon=_lowercase , )
return outputs
def _A ( _lowercase , _lowercase=0 , _lowercase=-1 ) -> Tuple:
"""simple docstring"""
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
__UpperCamelCase = tf.shape(_lowercase )
__UpperCamelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
__UpperCamelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(_lowercase , _lowercase )
def _A ( _lowercase ) -> tf.Tensor:
"""simple docstring"""
if not isinstance(_lowercase , tf.Tensor ):
__UpperCamelCase = tf.convert_to_tensor(_lowercase ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
__UpperCamelCase = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
__UpperCamelCase = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
__UpperCamelCase = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def _A ( _lowercase , _lowercase , _lowercase = "input_ids" ) -> None:
"""simple docstring"""
tf.debugging.assert_less(
_lowercase , tf.cast(_lowercase , dtype=tensor.dtype ) , message=(
f'''The maximum value of {tensor_name} ({tf.math.reduce_max(_lowercase )}) must be smaller than the embedding '''
f'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = 6_45_12
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
__UpperCamelCase = [x for x in data if len(_lowercase ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'The following attributes cannot be saved to HDF5 file because '
f'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
f'''bytes: {bad_attributes}''' )
__UpperCamelCase = np.asarray(_lowercase )
__UpperCamelCase = 1
__UpperCamelCase = np.array_split(_lowercase , _lowercase )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
__UpperCamelCase = np.array_split(_lowercase , _lowercase )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(_lowercase ):
__UpperCamelCase = chunk_data
else:
__UpperCamelCase = data
def _A ( _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
if name in group.attrs:
__UpperCamelCase = [n.decode('utf8' ) if hasattr(_lowercase , 'decode' ) else n for n in group.attrs[name]]
else:
__UpperCamelCase = []
__UpperCamelCase = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('utf8' ) if hasattr(_lowercase , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] )
chunk_id += 1
return data
def _A ( _lowercase ) -> Tuple:
"""simple docstring"""
def _expand_single_ad_tensor(_lowercase ):
if isinstance(_lowercase , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(_lowercase , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , _lowercase )
| 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''',
'''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''',
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''',
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''',
'''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'''
),
'''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class __lowerCamelCase (_a ):
_lowercase = """bert"""
def __init__( self: Any,A_: Dict=3_0522,A_: Optional[Any]=768,A_: Union[str, Any]=12,A_: List[Any]=12,A_: Optional[int]=3072,A_: Union[str, Any]="gelu",A_: List[str]=0.1,A_: Dict=0.1,A_: Optional[int]=512,A_: Optional[Any]=2,A_: Union[str, Any]=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=0,A_: List[Any]="absolute",A_: str=True,A_: Union[str, Any]=None,**A_: int,):
'''simple docstring'''
super().__init__(pad_token_id=A_,**A_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = use_cache
__UpperCamelCase = classifier_dropout
class __lowerCamelCase (_a ):
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 1 | 1 |
import math
import sys
def _A ( _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = ''
try:
with open(_lowercase , 'rb' ) as binary_file:
__UpperCamelCase = binary_file.read()
for dat in data:
__UpperCamelCase = f'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print('File not accessible' )
sys.exit()
def _A ( _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = {'0': '0', '1': '1'}
__UpperCamelCase, __UpperCamelCase = '', ''
__UpperCamelCase = len(_lowercase )
for i in range(len(_lowercase ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
__UpperCamelCase = lexicon[curr_string]
result += last_match_id
__UpperCamelCase = last_match_id + '0'
if math.loga(_lowercase ).is_integer():
__UpperCamelCase = {}
for curr_key in list(_lowercase ):
__UpperCamelCase = lexicon.pop(_lowercase )
__UpperCamelCase = new_lex
__UpperCamelCase = last_match_id + '1'
index += 1
__UpperCamelCase = ''
return result
def _A ( _lowercase , _lowercase ) -> None:
"""simple docstring"""
__UpperCamelCase = 8
try:
with open(_lowercase , 'wb' ) as opened_file:
__UpperCamelCase = [
to_write[i : i + byte_length]
for i in range(0 , len(_lowercase ) , _lowercase )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('10000000' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(_lowercase , 2 ).to_bytes(1 , byteorder='big' ) )
except OSError:
print('File not accessible' )
sys.exit()
def _A ( _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
__UpperCamelCase = data_bits[counter:]
__UpperCamelCase = data_bits[counter + 1 :]
return data_bits
def _A ( _lowercase , _lowercase ) -> None:
"""simple docstring"""
__UpperCamelCase = read_file_binary(_lowercase )
__UpperCamelCase = remove_prefix(_lowercase )
__UpperCamelCase = decompress_data(_lowercase )
write_file_binary(_lowercase , _lowercase )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 1 |
def _A ( _lowercase ) -> int:
"""simple docstring"""
assert column_title.isupper()
__UpperCamelCase = 0
__UpperCamelCase = len(_lowercase ) - 1
__UpperCamelCase = 0
while index >= 0:
__UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , _lowercase )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = len(_lowercase )
__UpperCamelCase = len(matrix[0] )
__UpperCamelCase = min(_lowercase , _lowercase )
for row in range(_lowercase ):
# Check if diagonal element is not zero
if matrix[row][row] != 0:
# Eliminate all the elements below the diagonal
for col in range(row + 1 , _lowercase ):
__UpperCamelCase = matrix[col][row] / matrix[row][row]
for i in range(_lowercase , _lowercase ):
matrix[col][i] -= multiplier * matrix[row][i]
else:
# Find a non-zero diagonal element to swap rows
__UpperCamelCase = True
for i in range(row + 1 , _lowercase ):
if matrix[i][row] != 0:
__UpperCamelCase, __UpperCamelCase = matrix[i], matrix[row]
__UpperCamelCase = False
break
if reduce:
rank -= 1
for i in range(_lowercase ):
__UpperCamelCase = matrix[i][rank]
# Reduce the row pointer by one to stay on the same row
row -= 1
return rank
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def _A ( ) -> int:
"""simple docstring"""
__UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
__UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('RGB' )
return image
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = []
# fmt: off
# vision encoder
rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') )
rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') )
rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') )
rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') )
rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') )
rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') )
# QFormer
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') )
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') )
# fmt: on
return rename_keys
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = dct.pop(_lowercase )
__UpperCamelCase = val
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
__UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' )
__UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' )
# next, set bias in the state dict
__UpperCamelCase = torch.cat((q_bias, torch.zeros_like(_lowercase , requires_grad=_lowercase ), v_bias) )
__UpperCamelCase = qkv_bias
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = 3_64 if 'coco' in model_name else 2_24
__UpperCamelCase = BlipaVisionConfig(image_size=_lowercase ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
__UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_lowercase ).to_dict()
elif "opt-6.7b" in model_name:
__UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_lowercase ).to_dict()
elif "t5-xl" in model_name:
__UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
__UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
__UpperCamelCase = BlipaConfig(vision_config=_lowercase , text_config=_lowercase )
return config, image_size
@torch.no_grad()
def _A ( _lowercase , _lowercase=None , _lowercase=False ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = (
AutoTokenizer.from_pretrained('facebook/opt-2.7b' )
if 'opt' in model_name
else AutoTokenizer.from_pretrained('google/flan-t5-xl' )
)
__UpperCamelCase = tokenizer('\n' , add_special_tokens=_lowercase ).input_ids[0]
__UpperCamelCase, __UpperCamelCase = get_blipa_config(_lowercase , eos_token_id=_lowercase )
__UpperCamelCase = BlipaForConditionalGeneration(_lowercase ).eval()
__UpperCamelCase = {
'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'),
'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'),
'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'),
'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'),
'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'),
'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'),
'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'),
}
__UpperCamelCase, __UpperCamelCase = model_name_to_original[model_name]
# load original model
print('Loading original model...' )
__UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu'
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = load_model_and_preprocess(
name=_lowercase , model_type=_lowercase , is_eval=_lowercase , device=_lowercase )
original_model.eval()
print('Done!' )
# update state dict keys
__UpperCamelCase = original_model.state_dict()
__UpperCamelCase = create_rename_keys(_lowercase )
for src, dest in rename_keys:
rename_key(_lowercase , _lowercase , _lowercase )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
__UpperCamelCase = state_dict.pop(_lowercase )
if key.startswith('Qformer.bert' ):
__UpperCamelCase = key.replace('Qformer.bert' , 'qformer' )
if "attention.self" in key:
__UpperCamelCase = key.replace('self' , 'attention' )
if "opt_proj" in key:
__UpperCamelCase = key.replace('opt_proj' , 'language_projection' )
if "t5_proj" in key:
__UpperCamelCase = key.replace('t5_proj' , 'language_projection' )
if key.startswith('opt' ):
__UpperCamelCase = key.replace('opt' , 'language' )
if key.startswith('t5' ):
__UpperCamelCase = key.replace('t5' , 'language' )
__UpperCamelCase = val
# read in qv biases
read_in_q_v_bias(_lowercase , _lowercase )
__UpperCamelCase, __UpperCamelCase = hf_model.load_state_dict(_lowercase , strict=_lowercase )
assert len(_lowercase ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
__UpperCamelCase = load_demo_image()
__UpperCamelCase = vis_processors['eval'](_lowercase ).unsqueeze(0 ).to(_lowercase )
__UpperCamelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_lowercase )
# create processor
__UpperCamelCase = BlipImageProcessor(
size={'height': image_size, 'width': image_size} , image_mean=_lowercase , image_std=_lowercase )
__UpperCamelCase = BlipaProcessor(image_processor=_lowercase , tokenizer=_lowercase )
__UpperCamelCase = processor(images=_lowercase , return_tensors='pt' ).pixel_values.to(_lowercase )
# make sure processor creates exact same pixel values
assert torch.allclose(_lowercase , _lowercase )
original_model.to(_lowercase )
hf_model.to(_lowercase )
with torch.no_grad():
if "opt" in model_name:
__UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits
__UpperCamelCase = hf_model(_lowercase , _lowercase ).logits
else:
__UpperCamelCase = original_model(
{'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits
__UpperCamelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 )
__UpperCamelCase = hf_model(_lowercase , _lowercase , labels=_lowercase ).logits
assert original_logits.shape == logits.shape
print('First values of original logits:' , original_logits[0, :3, :3] )
print('First values of HF logits:' , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
__UpperCamelCase = torch.tensor(
[[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=_lowercase )
assert torch.allclose(logits[0, :3, :3] , _lowercase , atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
__UpperCamelCase = torch.tensor(
[[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=_lowercase )
else:
# cast to same type
__UpperCamelCase = logits.dtype
assert torch.allclose(original_logits.to(_lowercase ) , _lowercase , atol=1e-2 )
print('Looks ok!' )
print('Generating a caption...' )
__UpperCamelCase = ''
__UpperCamelCase = tokenizer(_lowercase , return_tensors='pt' ).input_ids.to(_lowercase )
__UpperCamelCase = original_model.generate({'image': original_pixel_values} )
__UpperCamelCase = hf_model.generate(
_lowercase , _lowercase , do_sample=_lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print('Original generation:' , _lowercase )
__UpperCamelCase = input_ids.shape[1]
__UpperCamelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowercase )
__UpperCamelCase = [text.strip() for text in output_text]
print('HF generation:' , _lowercase )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(_lowercase )
hf_model.save_pretrained(_lowercase )
if push_to_hub:
processor.push_to_hub(f'''nielsr/{model_name}''' )
hf_model.push_to_hub(f'''nielsr/{model_name}''' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
__snake_case = [
'''blip2-opt-2.7b''',
'''blip2-opt-6.7b''',
'''blip2-opt-2.7b-coco''',
'''blip2-opt-6.7b-coco''',
'''blip2-flan-t5-xl''',
'''blip2-flan-t5-xl-coco''',
'''blip2-flan-t5-xxl''',
]
parser.add_argument(
'''--model_name''',
default='''blip2-opt-2.7b''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
__snake_case = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 1 | 1 |
import datetime
import platform
import subprocess
from typing import Optional, Tuple, Union
import numpy as np
def _A ( _lowercase , _lowercase ) -> np.array:
"""simple docstring"""
__UpperCamelCase = f'''{sampling_rate}'''
__UpperCamelCase = '1'
__UpperCamelCase = 'f32le'
__UpperCamelCase = [
'ffmpeg',
'-i',
'pipe:0',
'-ac',
ac,
'-ar',
ar,
'-f',
format_for_conversion,
'-hide_banner',
'-loglevel',
'quiet',
'pipe:1',
]
try:
with subprocess.Popen(_lowercase , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process:
__UpperCamelCase = ffmpeg_process.communicate(_lowercase )
except FileNotFoundError as error:
raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error
__UpperCamelCase = output_stream[0]
__UpperCamelCase = np.frombuffer(_lowercase , np.floataa )
if audio.shape[0] == 0:
raise ValueError('Malformed soundfile' )
return audio
def _A ( _lowercase , _lowercase , _lowercase = "f32le" , ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = f'''{sampling_rate}'''
__UpperCamelCase = '1'
if format_for_conversion == "s16le":
__UpperCamelCase = 2
elif format_for_conversion == "f32le":
__UpperCamelCase = 4
else:
raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' )
__UpperCamelCase = platform.system()
if system == "Linux":
__UpperCamelCase = 'alsa'
__UpperCamelCase = 'default'
elif system == "Darwin":
__UpperCamelCase = 'avfoundation'
__UpperCamelCase = ':0'
elif system == "Windows":
__UpperCamelCase = 'dshow'
__UpperCamelCase = 'default'
__UpperCamelCase = [
'ffmpeg',
'-f',
format_,
'-i',
input_,
'-ac',
ac,
'-ar',
ar,
'-f',
format_for_conversion,
'-fflags',
'nobuffer',
'-hide_banner',
'-loglevel',
'quiet',
'pipe:1',
]
__UpperCamelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
__UpperCamelCase = _ffmpeg_stream(_lowercase , _lowercase )
for item in iterator:
yield item
def _A ( _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = "f32le" , ) -> Tuple:
"""simple docstring"""
if stream_chunk_s is not None:
__UpperCamelCase = stream_chunk_s
else:
__UpperCamelCase = chunk_length_s
__UpperCamelCase = ffmpeg_microphone(_lowercase , _lowercase , format_for_conversion=_lowercase )
if format_for_conversion == "s16le":
__UpperCamelCase = np.intaa
__UpperCamelCase = 2
elif format_for_conversion == "f32le":
__UpperCamelCase = np.floataa
__UpperCamelCase = 4
else:
raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' )
if stride_length_s is None:
__UpperCamelCase = chunk_length_s / 6
__UpperCamelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
if isinstance(_lowercase , (int, float) ):
__UpperCamelCase = [stride_length_s, stride_length_s]
__UpperCamelCase = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample
__UpperCamelCase = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample
__UpperCamelCase = datetime.datetime.now()
__UpperCamelCase = datetime.timedelta(seconds=_lowercase )
for item in chunk_bytes_iter(_lowercase , _lowercase , stride=(stride_left, stride_right) , stream=_lowercase ):
# Put everything back in numpy scale
__UpperCamelCase = np.frombuffer(item['raw'] , dtype=_lowercase )
__UpperCamelCase = (
item['stride'][0] // size_of_sample,
item['stride'][1] // size_of_sample,
)
__UpperCamelCase = sampling_rate
audio_time += delta
if datetime.datetime.now() > audio_time + 10 * delta:
# We're late !! SKIP
continue
yield item
def _A ( _lowercase , _lowercase , _lowercase , _lowercase = False ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = B''
__UpperCamelCase, __UpperCamelCase = stride
if stride_left + stride_right >= chunk_len:
raise ValueError(
f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' )
__UpperCamelCase = 0
for raw in iterator:
acc += raw
if stream and len(_lowercase ) < chunk_len:
__UpperCamelCase = (_stride_left, 0)
yield {"raw": acc[:chunk_len], "stride": stride, "partial": True}
else:
while len(_lowercase ) >= chunk_len:
# We are flushing the accumulator
__UpperCamelCase = (_stride_left, stride_right)
__UpperCamelCase = {'raw': acc[:chunk_len], 'stride': stride}
if stream:
__UpperCamelCase = False
yield item
__UpperCamelCase = stride_left
__UpperCamelCase = acc[chunk_len - stride_left - stride_right :]
# Last chunk
if len(_lowercase ) > stride_left:
__UpperCamelCase = {'raw': acc, 'stride': (_stride_left, 0)}
if stream:
__UpperCamelCase = False
yield item
def _A ( _lowercase , _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = 2**24 # 16Mo
try:
with subprocess.Popen(_lowercase , stdout=subprocess.PIPE , bufsize=_lowercase ) as ffmpeg_process:
while True:
__UpperCamelCase = ffmpeg_process.stdout.read(_lowercase )
if raw == b"":
break
yield raw
except FileNotFoundError as error:
raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
| 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__snake_case = logging.getLogger(__name__)
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
_lowercase = field(
default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
_lowercase = field(default=_a , metadata={"""help""": """Set this flag to use fast tokenization."""} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
_lowercase = field(
default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} )
_lowercase = field(
default=_a , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , )
_lowercase = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
_lowercase = field(
default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def _A ( ) -> str:
"""simple docstring"""
__UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
' --overwrite_output_dir to overcome.' )
__UpperCamelCase = import_module('tasks' )
try:
__UpperCamelCase = getattr(_lowercase , model_args.task_type )
__UpperCamelCase = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , _lowercase )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
__UpperCamelCase = token_classification_task.get_labels(data_args.labels )
__UpperCamelCase = dict(enumerate(_lowercase ) )
__UpperCamelCase = len(_lowercase )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , idalabel=_lowercase , labelaid={label: i for i, label in enumerate(_lowercase )} , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
__UpperCamelCase = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , )
# Get datasets
__UpperCamelCase = (
TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__UpperCamelCase = (
TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(_lowercase , _lowercase ) -> Tuple[List[int], List[int]]:
__UpperCamelCase = np.argmax(_lowercase , axis=2 )
__UpperCamelCase, __UpperCamelCase = preds.shape
__UpperCamelCase = [[] for _ in range(_lowercase )]
__UpperCamelCase = [[] for _ in range(_lowercase )]
for i in range(_lowercase ):
for j in range(_lowercase ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(_lowercase ) -> Dict:
__UpperCamelCase, __UpperCamelCase = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(_lowercase , _lowercase ),
"precision": precision_score(_lowercase , _lowercase ),
"recall": recall_score(_lowercase , _lowercase ),
"f1": fa_score(_lowercase , _lowercase ),
}
# Data collator
__UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__UpperCamelCase = Trainer(
model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCamelCase = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__UpperCamelCase = trainer.evaluate()
__UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
results.update(_lowercase )
# Predict
if training_args.do_predict:
__UpperCamelCase = TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = trainer.predict(_lowercase )
__UpperCamelCase, __UpperCamelCase = align_predictions(_lowercase , _lowercase )
__UpperCamelCase = os.path.join(training_args.output_dir , 'test_results.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
for key, value in metrics.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
# Save predictions
__UpperCamelCase = os.path.join(training_args.output_dir , 'test_predictions.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f:
token_classification_task.write_predictions_to_file(_lowercase , _lowercase , _lowercase )
return results
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 1 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_torch_available,
is_vision_available,
)
__snake_case = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''BeitFeatureExtractor''']
__snake_case = ['''BeitImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BeitForImageClassification''',
'''BeitForMaskedImageModeling''',
'''BeitForSemanticSegmentation''',
'''BeitModel''',
'''BeitPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''FlaxBeitForImageClassification''',
'''FlaxBeitForMaskedImageModeling''',
'''FlaxBeitModel''',
'''FlaxBeitPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_beit import BeitFeatureExtractor
from .image_processing_beit import BeitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_beit import (
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
BeitPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_beit import (
FlaxBeitForImageClassification,
FlaxBeitForMaskedImageModeling,
FlaxBeitModel,
FlaxBeitPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 |
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def _A ( *_lowercase ) -> Tuple:
"""simple docstring"""
with open(_lowercase , 'r' ) as fh:
fcntl.flock(_lowercase , fcntl.LOCK_EX )
try:
print(*_lowercase )
finally:
fcntl.flock(_lowercase , fcntl.LOCK_UN )
__snake_case = int(os.environ['''LOCAL_RANK'''])
torch.cuda.set_device(local_rank)
__snake_case = torch.device('''cuda''', local_rank)
__snake_case = socket.gethostname()
__snake_case = f"""[{hostname}-{local_rank}]"""
try:
# test distributed
dist.init_process_group('''nccl''')
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
__snake_case = dist.get_rank()
__snake_case = dist.get_world_size()
printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""")
dist.barrier()
if rank == 0:
printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""")
except Exception:
printflock(f"""{gpu} is broken""")
raise
| 1 | 1 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase (_a ):
_lowercase = ["""pixel_values"""]
def __init__( self: Any,A_: bool = True,A_: Union[int, float] = 1 / 255,A_: bool = True,A_: int = 8,**A_: Optional[Any],):
'''simple docstring'''
super().__init__(**A_ )
__UpperCamelCase = do_rescale
__UpperCamelCase = rescale_factor
__UpperCamelCase = do_pad
__UpperCamelCase = pad_size
def snake_case_ ( self: Any,A_: np.ndarray,A_: float,A_: Optional[Union[str, ChannelDimension]] = None,**A_: Tuple ):
'''simple docstring'''
return rescale(A_,scale=A_,data_format=A_,**A_ )
def snake_case_ ( self: int,A_: np.ndarray,A_: int,A_: Optional[Union[str, ChannelDimension]] = None ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = get_image_size(A_ )
__UpperCamelCase = (old_height // size + 1) * size - old_height
__UpperCamelCase = (old_width // size + 1) * size - old_width
return pad(A_,((0, pad_height), (0, pad_width)),mode='symmetric',data_format=A_ )
def snake_case_ ( self: Optional[int],A_: ImageInput,A_: Optional[bool] = None,A_: Optional[float] = None,A_: Optional[bool] = None,A_: Optional[int] = None,A_: Optional[Union[str, TensorType]] = None,A_: Union[str, ChannelDimension] = ChannelDimension.FIRST,**A_: List[str],):
'''simple docstring'''
__UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCamelCase = do_pad if do_pad is not None else self.do_pad
__UpperCamelCase = pad_size if pad_size is not None else self.pad_size
__UpperCamelCase = make_list_of_images(A_ )
if not valid_images(A_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
# All transformations expect numpy arrays.
__UpperCamelCase = [to_numpy_array(A_ ) for image in images]
if do_rescale:
__UpperCamelCase = [self.rescale(image=A_,scale=A_ ) for image in images]
if do_pad:
__UpperCamelCase = [self.pad(A_,size=A_ ) for image in images]
__UpperCamelCase = [to_channel_dimension_format(A_,A_ ) for image in images]
__UpperCamelCase = {'pixel_values': images}
return BatchFeature(data=A_,tensor_type=A_ )
| 1 |
import pytest
import datasets
# Import fixture modules as plugins
__snake_case = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec''']
def _A ( _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
for item in items:
if any(marker in item.keywords for marker in ['integration', 'unit'] ):
continue
item.add_marker(pytest.mark.unit )
def _A ( _lowercase ) -> str:
"""simple docstring"""
config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' )
@pytest.fixture(autouse=_lowercase )
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = tmp_path_factory.getbasetemp() / 'cache'
__UpperCamelCase = test_hf_cache_home / 'datasets'
__UpperCamelCase = test_hf_cache_home / 'metrics'
__UpperCamelCase = test_hf_cache_home / 'modules'
monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(_lowercase ) )
monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(_lowercase ) )
monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(_lowercase ) )
__UpperCamelCase = test_hf_datasets_cache / 'downloads'
monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(_lowercase ) )
__UpperCamelCase = test_hf_datasets_cache / 'downloads' / 'extracted'
monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_lowercase ) )
@pytest.fixture(autouse=_lowercase , scope='session' )
def _A ( ) -> Dict:
"""simple docstring"""
datasets.disable_progress_bar()
@pytest.fixture(autouse=_lowercase )
def _A ( _lowercase ) -> Tuple:
"""simple docstring"""
monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , _lowercase )
@pytest.fixture
def _A ( _lowercase ) -> Any:
"""simple docstring"""
monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , _lowercase )
| 1 | 1 |
import baseaa
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
return baseaa.aaaencode(string.encode('utf-8' ) )
def _A ( _lowercase ) -> str:
"""simple docstring"""
return baseaa.aaadecode(_lowercase ).decode('utf-8' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNetaDConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = VideoToVideoSDPipeline
_lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""}
_lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""}
_lowercase = PipelineTesterMixin.required_optional_params - {"""latents"""}
_lowercase = False
# No `output_type`.
_lowercase = frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""return_dict""",
"""callback""",
"""callback_steps""",
] )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'),up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'),cross_attention_dim=32,attention_head_dim=4,)
__UpperCamelCase = DDIMScheduler(
beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,beta_schedule='scaled_linear',clip_sample=A_,set_alpha_to_one=A_,)
torch.manual_seed(0 )
__UpperCamelCase = AutoencoderKL(
block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=128,)
torch.manual_seed(0 )
__UpperCamelCase = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act='gelu',projection_dim=512,)
__UpperCamelCase = CLIPTextModel(A_ )
__UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
__UpperCamelCase = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
}
return components
def snake_case_ ( self: Union[str, Any],A_: Any,A_: Any=0 ):
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, 3, 3, 32, 32),rng=random.Random(A_ ) ).to(A_ )
if str(A_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(A_ )
else:
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'video': video,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'pt',
}
return inputs
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = VideoToVideoSDPipeline(**A_ )
__UpperCamelCase = sd_pipe.to(A_ )
sd_pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = self.get_dummy_inputs(A_ )
__UpperCamelCase = 'np'
__UpperCamelCase = sd_pipe(**A_ ).frames
__UpperCamelCase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (32, 32, 3)
__UpperCamelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',)
def snake_case_ ( self: Any ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_,expected_max_diff=5E-3 )
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def snake_case_ ( self: str ):
'''simple docstring'''
pass
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' )
def snake_case_ ( self: int ):
'''simple docstring'''
pass
def snake_case_ ( self: Any ):
'''simple docstring'''
return super().test_progress_bar()
@slow
@skip_mps
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL',torch_dtype=torch.floataa )
pipe.enable_model_cpu_offload()
# 10 frames
__UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
__UpperCamelCase = torch.randn((1, 10, 3, 1024, 576),generator=A_ )
__UpperCamelCase = video.to('cuda' )
__UpperCamelCase = 'Spiderman is surfing'
__UpperCamelCase = pipe(A_,video=A_,generator=A_,num_inference_steps=3,output_type='pt' ).frames
__UpperCamelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] )
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
| 1 | 1 |
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
__snake_case = {
'''169M''': 1_2,
'''430M''': 2_4,
'''1B5''': 2_4,
'''3B''': 3_2,
'''7B''': 3_2,
'''14B''': 4_0,
}
__snake_case = {
'''169M''': 7_6_8,
'''430M''': 1_0_2_4,
'''1B5''': 2_0_4_8,
'''3B''': 2_5_6_0,
'''7B''': 4_0_9_6,
'''14B''': 5_1_2_0,
}
def _A ( _lowercase ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = list(state_dict.keys() )
for name in state_dict_keys:
__UpperCamelCase = state_dict.pop(_lowercase )
# emb -> embedding
if name.startswith('emb.' ):
__UpperCamelCase = name.replace('emb.' , 'embeddings.' )
# ln_0 -> pre_ln (only present at block 0)
if name.startswith('blocks.0.ln0' ):
__UpperCamelCase = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' )
# att -> attention
__UpperCamelCase = re.sub(r'blocks\.(\d+)\.att' , r'blocks.\1.attention' , _lowercase )
# ffn -> feed_forward
__UpperCamelCase = re.sub(r'blocks\.(\d+)\.ffn' , r'blocks.\1.feed_forward' , _lowercase )
# time_mix_k -> time_mix_key and reshape
if name.endswith('.time_mix_k' ):
__UpperCamelCase = name.replace('.time_mix_k' , '.time_mix_key' )
# time_mix_v -> time_mix_value and reshape
if name.endswith('.time_mix_v' ):
__UpperCamelCase = name.replace('.time_mix_v' , '.time_mix_value' )
# time_mix_r -> time_mix_key and reshape
if name.endswith('.time_mix_r' ):
__UpperCamelCase = name.replace('.time_mix_r' , '.time_mix_receptance' )
if name != "head.weight":
__UpperCamelCase = 'rwkv.' + name
__UpperCamelCase = weight
return state_dict
def _A ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=False , _lowercase=None ) -> Any:
"""simple docstring"""
if tokenizer_file is None:
print('No `--tokenizer_file` provided, we will use the default tokenizer.' )
__UpperCamelCase = 5_02_77
__UpperCamelCase = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' )
else:
__UpperCamelCase = PreTrainedTokenizerFast(tokenizer_file=_lowercase )
__UpperCamelCase = len(_lowercase )
tokenizer.save_pretrained(_lowercase )
# 2. Build the config
__UpperCamelCase = list(NUM_HIDDEN_LAYERS_MAPPING.keys() )
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
__UpperCamelCase = candidate
break
if size is None:
raise ValueError('Could not infer the size, please provide it with the `--size` argument.' )
if size not in possible_sizes:
raise ValueError(f'''`size` should be one of {possible_sizes}, got {size}.''' )
__UpperCamelCase = RwkvConfig(
vocab_size=_lowercase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(_lowercase )
# 3. Download model file then convert state_dict
__UpperCamelCase = hf_hub_download(_lowercase , _lowercase )
__UpperCamelCase = torch.load(_lowercase , map_location='cpu' )
__UpperCamelCase = convert_state_dict(_lowercase )
# 4. Split in shards and save
__UpperCamelCase, __UpperCamelCase = shard_checkpoint(_lowercase )
for shard_file, shard in shards.items():
torch.save(_lowercase , os.path.join(_lowercase , _lowercase ) )
if index is not None:
__UpperCamelCase = os.path.join(_lowercase , _lowercase )
# Save the index as well
with open(_lowercase , 'w' , encoding='utf-8' ) as f:
__UpperCamelCase = json.dumps(_lowercase , indent=2 , sort_keys=_lowercase ) + '\n'
f.write(_lowercase )
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' )
__UpperCamelCase = list(shards.keys() )
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
__UpperCamelCase = torch.load(os.path.join(_lowercase , _lowercase ) )
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_lowercase , _lowercase ) )
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError('Please provide a `model_name` to push the model to the Hub.' )
__UpperCamelCase = AutoModelForCausalLM.from_pretrained(_lowercase )
model.push_to_hub(_lowercase , max_shard_size='2GB' )
tokenizer.push_to_hub(_lowercase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.'''
)
parser.add_argument(
'''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.'''
)
parser.add_argument(
'''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.'''
)
parser.add_argument(
'''--tokenizer_file''',
default=None,
type=str,
help='''Path to the tokenizer file to use (if not provided, only the model is converted).''',
)
parser.add_argument(
'''--size''',
default=None,
type=str,
help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Push to the Hub the converted model.''',
)
parser.add_argument(
'''--model_name''',
default=None,
type=str,
help='''Name of the pushed model on the Hub, including the username / organization.''',
)
__snake_case = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 1 |
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument(
'''--txt2img_unclip''',
default='''kakaobrain/karlo-v1-alpha''',
type=str,
required=False,
help='''The pretrained txt2img unclip.''',
)
__snake_case = parser.parse_args()
__snake_case = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
__snake_case = CLIPImageProcessor()
__snake_case = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''')
__snake_case = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 1 | 1 |
class __lowerCamelCase :
def __init__( self: Union[str, Any],A_: Tuple ):
'''simple docstring'''
__UpperCamelCase = val
__UpperCamelCase = None
__UpperCamelCase = None
def snake_case_ ( self: Any,A_: List[Any] ):
'''simple docstring'''
if self.val:
if val < self.val:
if self.left is None:
__UpperCamelCase = Node(A_ )
else:
self.left.insert(A_ )
elif val > self.val:
if self.right is None:
__UpperCamelCase = Node(A_ )
else:
self.right.insert(A_ )
else:
__UpperCamelCase = val
def _A ( _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
if root:
inorder(root.left , _lowercase )
res.append(root.val )
inorder(root.right , _lowercase )
def _A ( _lowercase ) -> Optional[int]:
"""simple docstring"""
if len(_lowercase ) == 0:
return arr
__UpperCamelCase = Node(arr[0] )
for i in range(1 , len(_lowercase ) ):
root.insert(arr[i] )
# Traverse BST in order.
__UpperCamelCase = []
inorder(_lowercase , _lowercase )
return res
if __name__ == "__main__":
print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
| 1 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case = {
'''configuration_autoformer''': [
'''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''AutoformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''AutoformerForPrediction''',
'''AutoformerModel''',
'''AutoformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 | 1 |
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
__snake_case = [
'''cross_validation.py''',
'''gradient_accumulation.py''',
'''local_sgd.py''',
'''multi_process_metrics.py''',
'''memory.py''',
'''automatic_gradient_accumulation.py''',
'''fsdp_with_peak_mem_tracking.py''',
'''deepspeed_with_config_support.py''',
'''megatron_lm_gpt_pretraining.py''',
]
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: List[str],A_: str,A_: bool,A_: str = None,A_: list = None ):
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = os.path.abspath(os.path.join('examples','by_feature' ) )
__UpperCamelCase = os.path.abspath('examples' )
for item in os.listdir(A_ ):
if item not in EXCLUDE_EXAMPLES:
__UpperCamelCase = os.path.join(A_,A_ )
if os.path.isfile(A_ ) and ".py" in item_path:
with self.subTest(
tested_script=A_,feature_script=A_,tested_section='main()' if parser_only else 'training_function()',):
__UpperCamelCase = compare_against_test(
os.path.join(A_,A_ ),A_,A_,A_ )
__UpperCamelCase = '\n'.join(A_ )
if special_strings is not None:
for string in special_strings:
__UpperCamelCase = diff.replace(A_,'' )
self.assertEqual(A_,'' )
def snake_case_ ( self: int ):
'''simple docstring'''
self.one_complete_example('complete_nlp_example.py',A_ )
self.one_complete_example('complete_nlp_example.py',A_ )
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = os.path.abspath(os.path.join('examples','cv_example.py' ) )
__UpperCamelCase = [
' ' * 16 + '{\n\n',
' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n',
' ' * 20 + '"f1": eval_metric["f1"],\n\n',
' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n',
' ' * 20 + '"epoch": epoch,\n\n',
' ' * 16 + '},\n\n',
' ' * 16 + 'step=epoch,\n',
' ' * 12,
' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n',
]
self.one_complete_example('complete_cv_example.py',A_,A_,A_ )
self.one_complete_example('complete_cv_example.py',A_,A_,A_ )
@mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} )
class __lowerCamelCase (_a ):
_lowercase = False
@classmethod
def snake_case_ ( cls: int ):
'''simple docstring'''
super().setUpClass()
__UpperCamelCase = tempfile.mkdtemp()
__UpperCamelCase = os.path.join(cls._tmpdir,'default_config.yml' )
write_basic_config(save_location=cls.configPath )
__UpperCamelCase = ['accelerate', 'launch', '--config_file', cls.configPath]
@classmethod
def snake_case_ ( cls: Optional[Any] ):
'''simple docstring'''
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = F'''
examples/by_feature/checkpointing.py
--checkpointing_steps epoch
--output_dir {self.tmpdir}
'''.split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir,'epoch_0' ) ) )
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = F'''
examples/by_feature/checkpointing.py
--checkpointing_steps 1
--output_dir {self.tmpdir}
'''.split()
__UpperCamelCase = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir,'step_2' ) ) )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = F'''
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir,'epoch_0' )}
'''.split()
__UpperCamelCase = run_command(self._launch_args + testargs,return_stdout=A_ )
self.assertNotIn('epoch 0:',A_ )
self.assertIn('epoch 1:',A_ )
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = F'''
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir,'step_2' )}
'''.split()
__UpperCamelCase = run_command(self._launch_args + testargs,return_stdout=A_ )
if torch.cuda.is_available():
__UpperCamelCase = torch.cuda.device_count()
else:
__UpperCamelCase = 1
if num_processes > 1:
self.assertNotIn('epoch 0:',A_ )
self.assertIn('epoch 1:',A_ )
else:
self.assertIn('epoch 0:',A_ )
self.assertIn('epoch 1:',A_ )
@slow
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split()
with mock.patch.dict(os.environ,{'TESTING_MOCKED_DATALOADERS': '0'} ):
__UpperCamelCase = run_command(self._launch_args + testargs,return_stdout=A_ )
__UpperCamelCase = re.findall('({.+})',A_ )
__UpperCamelCase = [r for r in results if 'accuracy' in r][-1]
__UpperCamelCase = ast.literal_eval(A_ )
self.assertGreaterEqual(results['accuracy'],0.7_5 )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = ['examples/by_feature/multi_process_metrics.py']
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ,{'WANDB_MODE': 'offline'} )
def snake_case_ ( self: Dict ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
__UpperCamelCase = F'''
examples/by_feature/tracking.py
--with_tracking
--project_dir {tmpdir}
'''.split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(A_,'tracking' ) ) )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = ['examples/by_feature/gradient_accumulation.py']
run_command(self._launch_args + testargs )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = ['examples/by_feature/local_sgd.py']
run_command(self._launch_args + testargs )
| 1 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
__snake_case = '''src/diffusers'''
# Matches is_xxx_available()
__snake_case = re.compile(r'''is\_([a-z_]*)_available\(\)''')
# Matches from xxx import bla
__snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
__snake_case = '''
{0} = None
'''
__snake_case = '''
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
'''
__snake_case = '''
def {0}(*args, **kwargs):
requires_backends({0}, {1})
'''
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = _re_backend.findall(_lowercase )
if len(_lowercase ) == 0:
return None
return "_and_".join(_lowercase )
def _A ( ) -> Tuple:
"""simple docstring"""
with open(os.path.join(_lowercase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
__UpperCamelCase = f.readlines()
# Get to the point we do the actual imports for type checking
__UpperCamelCase = 0
__UpperCamelCase = {}
# Go through the end of the file
while line_index < len(_lowercase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
__UpperCamelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('else:' ):
line_index += 1
line_index += 1
__UpperCamelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(_lowercase ) and len(lines[line_index] ) > 1:
__UpperCamelCase = lines[line_index]
__UpperCamelCase = _re_single_line_import.search(_lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(_lowercase ) > 0:
__UpperCamelCase = objects
else:
line_index += 1
return backend_specific_objects
def _A ( _lowercase , _lowercase ) -> Union[str, Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(_lowercase )
elif name.islower():
return DUMMY_FUNCTION.format(_lowercase , _lowercase )
else:
return DUMMY_CLASS.format(_lowercase , _lowercase )
def _A ( _lowercase=None ) -> Optional[Any]:
"""simple docstring"""
if backend_specific_objects is None:
__UpperCamelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
__UpperCamelCase = {}
for backend, objects in backend_specific_objects.items():
__UpperCamelCase = '[' + ', '.join(f'''"{b}"''' for b in backend.split('_and_' ) ) + ']'
__UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n'
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(_lowercase , _lowercase ) for o in objects] )
__UpperCamelCase = dummy_file
return dummy_files
def _A ( _lowercase=False ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
__UpperCamelCase = {'torch': 'pt'}
# Locate actual dummy modules and read their content.
__UpperCamelCase = os.path.join(_lowercase , 'utils' )
__UpperCamelCase = {
backend: os.path.join(_lowercase , f'''dummy_{short_names.get(_lowercase , _lowercase )}_objects.py''' )
for backend in dummy_files.keys()
}
__UpperCamelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(_lowercase ):
with open(_lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f:
__UpperCamelCase = f.read()
else:
__UpperCamelCase = ''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f'''Updating diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py as the main '''
'__init__ has new objects.' )
with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'The main __init__ has objects that are not present in '
f'''diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py. Run `make fix-copies` '''
'to fix this.' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
__snake_case = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 1 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''',
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class __lowerCamelCase (_a ):
_lowercase = """levit"""
def __init__( self: List[str],A_: Dict=224,A_: Dict=3,A_: Any=3,A_: Any=2,A_: Any=1,A_: Dict=16,A_: str=[128, 256, 384],A_: Any=[4, 8, 12],A_: List[str]=[4, 4, 4],A_: List[Any]=[16, 16, 16],A_: Union[str, Any]=0,A_: Optional[Any]=[2, 2, 2],A_: Union[str, Any]=[2, 2, 2],A_: str=0.0_2,**A_: Any,):
'''simple docstring'''
super().__init__(**A_ )
__UpperCamelCase = image_size
__UpperCamelCase = num_channels
__UpperCamelCase = kernel_size
__UpperCamelCase = stride
__UpperCamelCase = padding
__UpperCamelCase = hidden_sizes
__UpperCamelCase = num_attention_heads
__UpperCamelCase = depths
__UpperCamelCase = key_dim
__UpperCamelCase = drop_path_rate
__UpperCamelCase = patch_size
__UpperCamelCase = attention_ratio
__UpperCamelCase = mlp_ratio
__UpperCamelCase = initializer_range
__UpperCamelCase = [
['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class __lowerCamelCase (_a ):
_lowercase = version.parse("""1.11""" )
@property
def snake_case_ ( self: int ):
'''simple docstring'''
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
return 1E-4
| 1 |
import string
def _A ( _lowercase ) -> None:
"""simple docstring"""
for key in range(len(string.ascii_uppercase ) ):
__UpperCamelCase = ''
for symbol in message:
if symbol in string.ascii_uppercase:
__UpperCamelCase = string.ascii_uppercase.find(_lowercase )
__UpperCamelCase = num - key
if num < 0:
__UpperCamelCase = num + len(string.ascii_uppercase )
__UpperCamelCase = translated + string.ascii_uppercase[num]
else:
__UpperCamelCase = translated + symbol
print(f'''Decryption using Key #{key}: {translated}''' )
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = input('Encrypted message: ' )
__UpperCamelCase = message.upper()
decrypt(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 1 | 1 |
import random
import unittest
import numpy as np
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionImgaImgPipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline"""
def snake_case_ ( self: int,A_: Tuple=0 ):
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, 3, 128, 128),rng=random.Random(A_ ) )
__UpperCamelCase = np.random.RandomState(A_ )
__UpperCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 3,
'strength': 0.7_5,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint,provider='CPUExecutionProvider' )
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = self.get_dummy_inputs()
__UpperCamelCase = pipe(**A_ ).images
__UpperCamelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 128, 128, 3)
__UpperCamelCase = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint,provider='CPUExecutionProvider' )
__UpperCamelCase = PNDMScheduler.from_config(pipe.scheduler.config,skip_prk_steps=A_ )
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = self.get_dummy_inputs()
__UpperCamelCase = pipe(**A_ ).images
__UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__UpperCamelCase = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint,provider='CPUExecutionProvider' )
__UpperCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=A_ )
# warmup pass to apply optimizations
__UpperCamelCase = pipe(**self.get_dummy_inputs() )
__UpperCamelCase = self.get_dummy_inputs()
__UpperCamelCase = pipe(**A_ ).images
__UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__UpperCamelCase = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint,provider='CPUExecutionProvider' )
__UpperCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = self.get_dummy_inputs()
__UpperCamelCase = pipe(**A_ ).images
__UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__UpperCamelCase = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint,provider='CPUExecutionProvider' )
__UpperCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = self.get_dummy_inputs()
__UpperCamelCase = pipe(**A_ ).images
__UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__UpperCamelCase = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint,provider='CPUExecutionProvider' )
__UpperCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = self.get_dummy_inputs()
__UpperCamelCase = pipe(**A_ ).images
__UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__UpperCamelCase = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class __lowerCamelCase (unittest.TestCase ):
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = ort.SessionOptions()
__UpperCamelCase = False
return options
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
__UpperCamelCase = init_image.resize((768, 512) )
# using the PNDM scheduler by default
__UpperCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4',revision='onnx',safety_checker=A_,feature_extractor=A_,provider=self.gpu_provider,sess_options=self.gpu_options,)
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = 'A fantasy landscape, trending on artstation'
__UpperCamelCase = np.random.RandomState(0 )
__UpperCamelCase = pipe(
prompt=A_,image=A_,strength=0.7_5,guidance_scale=7.5,num_inference_steps=10,generator=A_,output_type='np',)
__UpperCamelCase = output.images
__UpperCamelCase = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
__UpperCamelCase = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
__UpperCamelCase = init_image.resize((768, 512) )
__UpperCamelCase = LMSDiscreteScheduler.from_pretrained(
'runwayml/stable-diffusion-v1-5',subfolder='scheduler',revision='onnx' )
__UpperCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5',revision='onnx',scheduler=A_,safety_checker=A_,feature_extractor=A_,provider=self.gpu_provider,sess_options=self.gpu_options,)
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = 'A fantasy landscape, trending on artstation'
__UpperCamelCase = np.random.RandomState(0 )
__UpperCamelCase = pipe(
prompt=A_,image=A_,strength=0.7_5,guidance_scale=7.5,num_inference_steps=20,generator=A_,output_type='np',)
__UpperCamelCase = output.images
__UpperCamelCase = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
__UpperCamelCase = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = KandinskyInpaintPipeline
_lowercase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
_lowercase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
_lowercase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
_lowercase = False
@property
def snake_case_ ( self: int ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: Tuple ):
'''simple docstring'''
return self.time_input_dim
@property
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
return 100
@property
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' )
return tokenizer
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = MCLIPConfig(
numDims=self.cross_attention_dim,transformerDimensions=self.text_embedder_hidden_size,hidden_size=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_hidden_layers=5,vocab_size=1005,)
__UpperCamelCase = MultilingualCLIP(A_ )
__UpperCamelCase = text_encoder.eval()
return text_encoder
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'text_image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'text_image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
__UpperCamelCase = UNetaDConditionModel(**A_ )
return model
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def snake_case_ ( self: str ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = VQModel(**self.dummy_movq_kwargs )
return model
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = self.dummy_tokenizer
__UpperCamelCase = self.dummy_unet
__UpperCamelCase = self.dummy_movq
__UpperCamelCase = DDIMScheduler(
num_train_timesteps=1000,beta_schedule='linear',beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,clip_sample=A_,set_alpha_to_one=A_,steps_offset=1,prediction_type='epsilon',thresholding=A_,)
__UpperCamelCase = {
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def snake_case_ ( self: Tuple,A_: Optional[int],A_: Dict=0 ):
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(A_ ) ).to(A_ )
__UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(seed + 1 ) ).to(A_ )
# create init_image
__UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ )
__UpperCamelCase = image.cpu().permute(0,2,3,1 )[0]
__UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) )
# create mask
__UpperCamelCase = np.ones((64, 64),dtype=np.floataa )
__UpperCamelCase = 0
if str(A_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(A_ )
else:
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCamelCase = {
'prompt': 'horse',
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = 'cpu'
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = self.pipeline_class(**A_ )
__UpperCamelCase = pipe.to(A_ )
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) )
__UpperCamelCase = output.images
__UpperCamelCase = pipe(
**self.get_dummy_inputs(A_ ),return_dict=A_,)[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
print(F'''image.shape {image.shape}''' )
assert image.shape == (1, 64, 64, 3)
__UpperCamelCase = np.array(
[0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Tuple ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' )
__UpperCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
__UpperCamelCase = np.ones((768, 768),dtype=np.floataa )
__UpperCamelCase = 0
__UpperCamelCase = 'a hat'
__UpperCamelCase = KandinskyPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-prior',torch_dtype=torch.floataa )
pipe_prior.to(A_ )
__UpperCamelCase = KandinskyInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-inpaint',torch_dtype=torch.floataa )
__UpperCamelCase = pipeline.to(A_ )
pipeline.set_progress_bar_config(disable=A_ )
__UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
__UpperCamelCase, __UpperCamelCase = pipe_prior(
A_,generator=A_,num_inference_steps=5,negative_prompt='',).to_tuple()
__UpperCamelCase = pipeline(
A_,image=A_,mask_image=A_,image_embeds=A_,negative_image_embeds=A_,generator=A_,num_inference_steps=100,height=768,width=768,output_type='np',)
__UpperCamelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(A_,A_ )
| 1 | 1 |
from __future__ import annotations
def _A ( _lowercase , _lowercase , _lowercase ) -> int | float:
"""simple docstring"""
if len(_lowercase ) == 0:
raise ValueError('find_max() arg is an empty sequence' )
if (
left >= len(_lowercase )
or left < -len(_lowercase )
or right >= len(_lowercase )
or right < -len(_lowercase )
):
raise IndexError('list index out of range' )
if left == right:
return nums[left]
__UpperCamelCase = (left + right) >> 1 # the middle
__UpperCamelCase = find_max(_lowercase , _lowercase , _lowercase ) # find max in range[left, mid]
__UpperCamelCase = find_max(_lowercase , mid + 1 , _lowercase ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 1 |
from typing import Any
class __lowerCamelCase :
def __init__( self: int,A_: Any ):
'''simple docstring'''
__UpperCamelCase = data
__UpperCamelCase = None
def __repr__( self: Any ):
'''simple docstring'''
return F'''Node({self.data})'''
class __lowerCamelCase :
def __init__( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = None
def __iter__( self: int ):
'''simple docstring'''
__UpperCamelCase = self.head
while node:
yield node.data
__UpperCamelCase = node.next
def __len__( self: List[str] ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self: Any ):
'''simple docstring'''
return "->".join([str(A_ ) for item in self] )
def __getitem__( self: int,A_: int ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self: int,A_: int,A_: Any ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
__UpperCamelCase = self.head
for _ in range(A_ ):
__UpperCamelCase = current.next
__UpperCamelCase = data
def snake_case_ ( self: Union[str, Any],A_: Any ):
'''simple docstring'''
self.insert_nth(len(self ),A_ )
def snake_case_ ( self: List[Any],A_: Any ):
'''simple docstring'''
self.insert_nth(0,A_ )
def snake_case_ ( self: Optional[Any],A_: int,A_: Any ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
__UpperCamelCase = Node(A_ )
if self.head is None:
__UpperCamelCase = new_node
elif index == 0:
__UpperCamelCase = self.head # link new_node to head
__UpperCamelCase = new_node
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = new_node
def snake_case_ ( self: str ): # print every node data
'''simple docstring'''
print(self )
def snake_case_ ( self: int ):
'''simple docstring'''
return self.delete_nth(0 )
def snake_case_ ( self: str ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def snake_case_ ( self: Any,A_: int = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
__UpperCamelCase = self.head # default first node
if index == 0:
__UpperCamelCase = self.head.next
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next.next
return delete_node.data
def snake_case_ ( self: Any ):
'''simple docstring'''
return self.head is None
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = self.head
while current:
# Store the current node's next node.
__UpperCamelCase = current.next
# Make the current node's next point backwards
__UpperCamelCase = prev
# Make the previous node be the current node
__UpperCamelCase = current
# Make the current node the next node (to progress iteration)
__UpperCamelCase = next_node
# Return prev in order to put the head at the end
__UpperCamelCase = prev
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(_lowercase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(_lowercase ) == i
linked_list.insert_nth(_lowercase , i + 1 )
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(_lowercase ) == 9
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
__UpperCamelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) )
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = [
-9,
1_00,
Node(77_34_51_12 ),
'dlrow olleH',
7,
55_55,
0,
-1_92.5_55_55,
'Hello, world!',
77.9,
Node(10 ),
None,
None,
12.20,
]
__UpperCamelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(_lowercase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
__UpperCamelCase = linked_list.delete_head()
assert result == -9
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
__UpperCamelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
__UpperCamelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(_lowercase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(_lowercase )
assert (
str(_lowercase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(_lowercase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def _A ( ) -> List[str]:
"""simple docstring"""
from doctest import testmod
testmod()
__UpperCamelCase = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(_lowercase )
print('\nReading/changing Node data using indexing:' )
print(f'''Element at Position 1: {linked_list[1]}''' )
__UpperCamelCase = input('Enter New Value: ' ).strip()
print('New list:' )
print(_lowercase )
print(f'''length of linked_list is : {len(_lowercase )}''' )
if __name__ == "__main__":
main()
| 1 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''',
'''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''',
'''xlm-roberta-large-finetuned-conll02-dutch''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll02-spanish''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-english''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-german''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json'''
),
}
class __lowerCamelCase (_a ):
_lowercase = """xlm-roberta"""
def __init__( self: int,A_: Any=3_0522,A_: Any=768,A_: Tuple=12,A_: Any=12,A_: Optional[int]=3072,A_: List[Any]="gelu",A_: Union[str, Any]=0.1,A_: Optional[Any]=0.1,A_: Union[str, Any]=512,A_: Union[str, Any]=2,A_: Any=0.0_2,A_: int=1E-12,A_: List[Any]=1,A_: List[Any]=0,A_: int=2,A_: Any="absolute",A_: int=True,A_: Any=None,**A_: int,):
'''simple docstring'''
super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = use_cache
__UpperCamelCase = classifier_dropout
class __lowerCamelCase (_a ):
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__snake_case = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''UniSpeechForCTC''',
'''UniSpeechForPreTraining''',
'''UniSpeechForSequenceClassification''',
'''UniSpeechModel''',
'''UniSpeechPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 | 1 |
def _A ( ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = 0
for i in range(1 , 10_01 ):
total += i**i
return str(_lowercase )[-10:]
if __name__ == "__main__":
print(solution())
| 1 |
__snake_case = {
'''a''': '''AAAAA''',
'''b''': '''AAAAB''',
'''c''': '''AAABA''',
'''d''': '''AAABB''',
'''e''': '''AABAA''',
'''f''': '''AABAB''',
'''g''': '''AABBA''',
'''h''': '''AABBB''',
'''i''': '''ABAAA''',
'''j''': '''BBBAA''',
'''k''': '''ABAAB''',
'''l''': '''ABABA''',
'''m''': '''ABABB''',
'''n''': '''ABBAA''',
'''o''': '''ABBAB''',
'''p''': '''ABBBA''',
'''q''': '''ABBBB''',
'''r''': '''BAAAA''',
'''s''': '''BAAAB''',
'''t''': '''BAABA''',
'''u''': '''BAABB''',
'''v''': '''BBBAB''',
'''w''': '''BABAA''',
'''x''': '''BABAB''',
'''y''': '''BABBA''',
'''z''': '''BABBB''',
''' ''': ''' ''',
}
__snake_case = {value: key for key, value in encode_dict.items()}
def _A ( _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = ''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('encode() accepts only letters of the alphabet and spaces' )
return encoded
def _A ( _lowercase ) -> str:
"""simple docstring"""
if set(_lowercase ) - {"A", "B", " "} != set():
raise Exception('decode() accepts only \'A\', \'B\' and spaces' )
__UpperCamelCase = ''
for word in coded.split():
while len(_lowercase ) != 0:
decoded += decode_dict[word[:5]]
__UpperCamelCase = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__snake_case = 1_6
__snake_case = 3_2
def _A ( _lowercase , _lowercase = 16 , _lowercase = "bert-base-cased" ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase )
__UpperCamelCase = load_dataset('glue' , 'mrpc' )
def tokenize_function(_lowercase ):
# max_length=None => use the model max length (it's actually the default)
__UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowercase , max_length=_lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCamelCase = datasets.map(
_lowercase , batched=_lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(_lowercase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(_lowercase , padding='max_length' , max_length=1_28 , return_tensors='pt' )
return tokenizer.pad(_lowercase , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
__UpperCamelCase = DataLoader(
tokenized_datasets['train'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
__UpperCamelCase = DataLoader(
tokenized_datasets['validation'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
return train_dataloader, eval_dataloader
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__UpperCamelCase = config['lr']
__UpperCamelCase = int(config['num_epochs'] )
__UpperCamelCase = int(config['seed'] )
__UpperCamelCase = int(config['batch_size'] )
__UpperCamelCase = args.model_name_or_path
set_seed(_lowercase )
__UpperCamelCase, __UpperCamelCase = get_dataloaders(_lowercase , _lowercase , _lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase )
# Instantiate optimizer
__UpperCamelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__UpperCamelCase = optimizer_cls(params=model.parameters() , lr=_lowercase )
if accelerator.state.deepspeed_plugin is not None:
__UpperCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
__UpperCamelCase = 1
__UpperCamelCase = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__UpperCamelCase = get_linear_schedule_with_warmup(
optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , )
else:
__UpperCamelCase = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare(
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
# We need to keep track of how many total steps we have iterated over
__UpperCamelCase = 0
# We also need to keep track of the stating epoch so files are named properly
__UpperCamelCase = 0
# Now we train the model
__UpperCamelCase = evaluate.load('glue' , 'mrpc' )
__UpperCamelCase = 0
__UpperCamelCase = {}
for epoch in range(_lowercase , _lowercase ):
model.train()
for step, batch in enumerate(_lowercase ):
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.loss
__UpperCamelCase = loss / gradient_accumulation_steps
accelerator.backward(_lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
__UpperCamelCase = 0
for step, batch in enumerate(_lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__UpperCamelCase, __UpperCamelCase = accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(_lowercase ) - 1:
__UpperCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__UpperCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=_lowercase , references=_lowercase , )
__UpperCamelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , _lowercase )
__UpperCamelCase = eval_metric['accuracy']
if best_performance < eval_metric["accuracy"]:
__UpperCamelCase = eval_metric['accuracy']
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'''
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f:
json.dump(_lowercase , _lowercase )
def _A ( ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path' , type=_lowercase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowercase , )
parser.add_argument(
'--output_dir' , type=_lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , )
parser.add_argument(
'--performance_lower_bound' , type=_lowercase , default=_lowercase , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , )
parser.add_argument(
'--num_epochs' , type=_lowercase , default=3 , help='Number of train epochs.' , )
__UpperCamelCase = parser.parse_args()
__UpperCamelCase = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(_lowercase , _lowercase )
if __name__ == "__main__":
main()
| 1 |
from collections.abc import Generator
from math import sin
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
if len(_lowercase ) != 32:
raise ValueError('Input must be of length 32' )
__UpperCamelCase = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
__UpperCamelCase = format(_lowercase , '08x' )[-8:]
__UpperCamelCase = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = B''
for char in message:
bit_string += format(_lowercase , '08b' ).encode('utf-8' )
__UpperCamelCase = format(len(_lowercase ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(_lowercase ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def _A ( _lowercase ) -> Generator[list[int], None, None]:
"""simple docstring"""
if len(_lowercase ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(_lowercase ) , 5_12 ):
__UpperCamelCase = bit_string[pos : pos + 5_12]
__UpperCamelCase = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def _A ( _lowercase ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
__UpperCamelCase = format(_lowercase , '032b' )
__UpperCamelCase = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(_lowercase , 2 )
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return (a + b) % 2**32
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = preprocess(_lowercase )
__UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__UpperCamelCase = 0X67_45_23_01
__UpperCamelCase = 0Xef_cd_ab_89
__UpperCamelCase = 0X98_ba_dc_fe
__UpperCamelCase = 0X10_32_54_76
__UpperCamelCase = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(_lowercase ):
__UpperCamelCase = aa
__UpperCamelCase = ba
__UpperCamelCase = ca
__UpperCamelCase = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__UpperCamelCase = d ^ (b & (c ^ d))
__UpperCamelCase = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__UpperCamelCase = c ^ (d & (b ^ c))
__UpperCamelCase = (5 * i + 1) % 16
elif i <= 47:
__UpperCamelCase = b ^ c ^ d
__UpperCamelCase = (3 * i + 5) % 16
else:
__UpperCamelCase = c ^ (b | not_aa(_lowercase ))
__UpperCamelCase = (7 * i) % 16
__UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32
__UpperCamelCase = d
__UpperCamelCase = c
__UpperCamelCase = b
__UpperCamelCase = sum_aa(_lowercase , left_rotate_aa(_lowercase , shift_amounts[i] ) )
# Add hashed chunk to running total
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 | 1 |
def _A ( _lowercase = 10_00 ) -> int:
"""simple docstring"""
__UpperCamelCase = 2**power
__UpperCamelCase = str(_lowercase )
__UpperCamelCase = list(_lowercase )
__UpperCamelCase = 0
for i in list_num:
sum_of_num += int(_lowercase )
return sum_of_num
if __name__ == "__main__":
__snake_case = int(input('''Enter the power of 2: ''').strip())
print('''2 ^ ''', power, ''' = ''', 2**power)
__snake_case = solution(power)
print('''Sum of the digits is: ''', result)
| 1 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__snake_case = 0
__snake_case = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__snake_case = tuple[int, int]
class __lowerCamelCase :
def __init__( self: str,A_: int,A_: int,A_: int,A_: int,A_: int,A_: Node | None,):
'''simple docstring'''
__UpperCamelCase = pos_x
__UpperCamelCase = pos_y
__UpperCamelCase = (pos_y, pos_x)
__UpperCamelCase = goal_x
__UpperCamelCase = goal_y
__UpperCamelCase = g_cost
__UpperCamelCase = parent
__UpperCamelCase = self.calculate_heuristic()
__UpperCamelCase = self.g_cost + self.h_cost
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.pos_x - self.goal_x
__UpperCamelCase = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(A_ ) + abs(A_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self: int,A_: Node ):
'''simple docstring'''
return self.f_cost < other.f_cost
class __lowerCamelCase :
def __init__( self: Any,A_: TPosition,A_: TPosition ):
'''simple docstring'''
__UpperCamelCase = Node(start[1],start[0],goal[1],goal[0],0,A_ )
__UpperCamelCase = Node(goal[1],goal[0],goal[1],goal[0],9_9999,A_ )
__UpperCamelCase = [self.start]
__UpperCamelCase = []
__UpperCamelCase = False
def snake_case_ ( self: Any ):
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
__UpperCamelCase = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(A_ )
self.closed_nodes.append(A_ )
__UpperCamelCase = self.get_successors(A_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(A_ )
else:
# retrieve the best current path
__UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(A_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(A_ )
else:
self.open_nodes.append(A_ )
return [self.start.pos]
def snake_case_ ( self: int,A_: Node ):
'''simple docstring'''
__UpperCamelCase = []
for action in delta:
__UpperCamelCase = parent.pos_x + action[1]
__UpperCamelCase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
A_,A_,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,A_,) )
return successors
def snake_case_ ( self: Any,A_: Node | None ):
'''simple docstring'''
__UpperCamelCase = node
__UpperCamelCase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__UpperCamelCase = current_node.parent
path.reverse()
return path
class __lowerCamelCase :
def __init__( self: List[Any],A_: TPosition,A_: TPosition ):
'''simple docstring'''
__UpperCamelCase = AStar(A_,A_ )
__UpperCamelCase = AStar(A_,A_ )
__UpperCamelCase = False
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
__UpperCamelCase = self.fwd_astar.open_nodes.pop(0 )
__UpperCamelCase = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
A_,A_ )
self.fwd_astar.closed_nodes.append(A_ )
self.bwd_astar.closed_nodes.append(A_ )
__UpperCamelCase = current_bwd_node
__UpperCamelCase = current_fwd_node
__UpperCamelCase = {
self.fwd_astar: self.fwd_astar.get_successors(A_ ),
self.bwd_astar: self.bwd_astar.get_successors(A_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(A_ )
else:
# retrieve the best current path
__UpperCamelCase = astar.open_nodes.pop(
astar.open_nodes.index(A_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(A_ )
else:
astar.open_nodes.append(A_ )
return [self.fwd_astar.start.pos]
def snake_case_ ( self: List[str],A_: Node,A_: Node ):
'''simple docstring'''
__UpperCamelCase = self.fwd_astar.retrace_path(A_ )
__UpperCamelCase = self.bwd_astar.retrace_path(A_ )
bwd_path.pop()
bwd_path.reverse()
__UpperCamelCase = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__snake_case = (0, 0)
__snake_case = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__snake_case = time.time()
__snake_case = AStar(init, goal)
__snake_case = a_star.search()
__snake_case = time.time() - start_time
print(f"""AStar execution time = {end_time:f} seconds""")
__snake_case = time.time()
__snake_case = BidirectionalAStar(init, goal)
__snake_case = time.time() - bd_start_time
print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
| 1 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case = {
'''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GraphormerForGraphClassification''',
'''GraphormerModel''',
'''GraphormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
__snake_case = get_tests_dir('''fixtures''')
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = mock.Mock()
__UpperCamelCase = 500
__UpperCamelCase = {}
__UpperCamelCase = HTTPError
__UpperCamelCase = {}
# Download this model to make sure it's in the cache.
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request',return_value=A_ ) as mock_head:
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# This check we did call the fake head request
mock_head.assert_called()
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' )
@is_staging_test
class __lowerCamelCase (unittest.TestCase ):
@classmethod
def snake_case_ ( cls: Tuple ):
'''simple docstring'''
__UpperCamelCase = TOKEN
HfFolder.save_token(A_ )
@classmethod
def snake_case_ ( cls: Tuple ):
'''simple docstring'''
try:
delete_repo(token=cls._token,repo_id='test-feature-extractor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token,repo_id='valid_org/test-feature-extractor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token,repo_id='test-dynamic-feature-extractor' )
except HTTPError:
pass
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('test-feature-extractor',use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
# Reset repo
delete_repo(token=self._token,repo_id='test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
A_,repo_id='test-feature-extractor',push_to_hub=A_,use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('valid_org/test-feature-extractor',use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
# Reset repo
delete_repo(token=self._token,repo_id='valid_org/test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
A_,repo_id='valid_org/test-feature-extractor-org',push_to_hub=A_,use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
def snake_case_ ( self: int ):
'''simple docstring'''
CustomFeatureExtractor.register_for_auto_class()
__UpperCamelCase = CustomFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('test-dynamic-feature-extractor',use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map,{'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'},)
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(
F'''{USER}/test-dynamic-feature-extractor''',trust_remote_code=A_ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__,'CustomFeatureExtractor' )
| 1 | 1 |
__snake_case = '''
# Transformers 설치 방법
! pip install transformers datasets
# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
__snake_case = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
__snake_case = {
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 1 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__snake_case = 1_6
__snake_case = 3_2
def _A ( _lowercase , _lowercase = 16 , _lowercase = "bert-base-cased" ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase )
__UpperCamelCase = load_dataset('glue' , 'mrpc' )
def tokenize_function(_lowercase ):
# max_length=None => use the model max length (it's actually the default)
__UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowercase , max_length=_lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCamelCase = datasets.map(
_lowercase , batched=_lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(_lowercase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(_lowercase , padding='max_length' , max_length=1_28 , return_tensors='pt' )
return tokenizer.pad(_lowercase , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
__UpperCamelCase = DataLoader(
tokenized_datasets['train'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
__UpperCamelCase = DataLoader(
tokenized_datasets['validation'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
return train_dataloader, eval_dataloader
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__UpperCamelCase = config['lr']
__UpperCamelCase = int(config['num_epochs'] )
__UpperCamelCase = int(config['seed'] )
__UpperCamelCase = int(config['batch_size'] )
__UpperCamelCase = args.model_name_or_path
set_seed(_lowercase )
__UpperCamelCase, __UpperCamelCase = get_dataloaders(_lowercase , _lowercase , _lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase )
# Instantiate optimizer
__UpperCamelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__UpperCamelCase = optimizer_cls(params=model.parameters() , lr=_lowercase )
if accelerator.state.deepspeed_plugin is not None:
__UpperCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
__UpperCamelCase = 1
__UpperCamelCase = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__UpperCamelCase = get_linear_schedule_with_warmup(
optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , )
else:
__UpperCamelCase = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare(
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
# We need to keep track of how many total steps we have iterated over
__UpperCamelCase = 0
# We also need to keep track of the stating epoch so files are named properly
__UpperCamelCase = 0
# Now we train the model
__UpperCamelCase = evaluate.load('glue' , 'mrpc' )
__UpperCamelCase = 0
__UpperCamelCase = {}
for epoch in range(_lowercase , _lowercase ):
model.train()
for step, batch in enumerate(_lowercase ):
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.loss
__UpperCamelCase = loss / gradient_accumulation_steps
accelerator.backward(_lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
__UpperCamelCase = 0
for step, batch in enumerate(_lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__UpperCamelCase, __UpperCamelCase = accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(_lowercase ) - 1:
__UpperCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__UpperCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=_lowercase , references=_lowercase , )
__UpperCamelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , _lowercase )
__UpperCamelCase = eval_metric['accuracy']
if best_performance < eval_metric["accuracy"]:
__UpperCamelCase = eval_metric['accuracy']
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'''
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f:
json.dump(_lowercase , _lowercase )
def _A ( ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path' , type=_lowercase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowercase , )
parser.add_argument(
'--output_dir' , type=_lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , )
parser.add_argument(
'--performance_lower_bound' , type=_lowercase , default=_lowercase , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , )
parser.add_argument(
'--num_epochs' , type=_lowercase , default=3 , help='Number of train epochs.' , )
__UpperCamelCase = parser.parse_args()
__UpperCamelCase = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(_lowercase , _lowercase )
if __name__ == "__main__":
main()
| 1 | 1 |
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
__snake_case = logging.getLogger(__name__)
require_version('''pytorch_lightning>=1.0.4''')
__snake_case = {
'''base''': AutoModel,
'''sequence-classification''': AutoModelForSequenceClassification,
'''question-answering''': AutoModelForQuestionAnswering,
'''pretraining''': AutoModelForPreTraining,
'''token-classification''': AutoModelForTokenClassification,
'''language-modeling''': AutoModelWithLMHead,
'''summarization''': AutoModelForSeqaSeqLM,
'''translation''': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
__snake_case = {
'''linear''': get_linear_schedule_with_warmup,
'''cosine''': get_cosine_schedule_with_warmup,
'''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup,
'''polynomial''': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
__snake_case = sorted(arg_to_scheduler.keys())
__snake_case = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}'''
class __lowerCamelCase (pl.LightningModule ):
def __init__( self: Union[str, Any],A_: argparse.Namespace,A_: List[str]=None,A_: List[Any]="base",A_: int=None,A_: Any=None,A_: Dict=None,**A_: Union[str, Any],):
'''simple docstring'''
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(A_ )
__UpperCamelCase = 0
__UpperCamelCase = Path(self.hparams.output_dir )
__UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
__UpperCamelCase = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path,**({'num_labels': num_labels} if num_labels is not None else {}),cache_dir=A_,**A_,)
else:
__UpperCamelCase = config
__UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(self.hparams,A_,A_ ):
assert hasattr(self.config,A_ ), F'''model config doesn\'t have a `{p}` attribute'''
setattr(self.config,A_,getattr(self.hparams,A_ ) )
if tokenizer is None:
__UpperCamelCase = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path,cache_dir=A_,)
else:
__UpperCamelCase = tokenizer
__UpperCamelCase = MODEL_MODES[mode]
if model is None:
__UpperCamelCase = self.model_type.from_pretrained(
self.hparams.model_name_or_path,from_tf=bool('.ckpt' in self.hparams.model_name_or_path ),config=self.config,cache_dir=A_,)
else:
__UpperCamelCase = model
def snake_case_ ( self: str,*A_: Dict,**A_: Any ):
'''simple docstring'''
__UpperCamelCase = self.model_type.from_pretrained(*A_,**A_ )
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler]
__UpperCamelCase = get_schedule_func(
self.opt,num_warmup_steps=self.hparams.warmup_steps,num_training_steps=self.total_steps() )
__UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1}
return scheduler
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.model
__UpperCamelCase = ['bias', 'LayerNorm.weight']
__UpperCamelCase = [
{
'params': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'weight_decay': self.hparams.weight_decay,
},
{
'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'weight_decay': 0.0,
},
]
if self.hparams.adafactor:
__UpperCamelCase = Adafactor(
A_,lr=self.hparams.learning_rate,scale_parameter=A_,relative_step=A_ )
else:
__UpperCamelCase = AdamW(
A_,lr=self.hparams.learning_rate,eps=self.hparams.adam_epsilon )
__UpperCamelCase = optimizer
__UpperCamelCase = self.get_lr_scheduler()
return [optimizer], [scheduler]
def snake_case_ ( self: int,A_: int,A_: str ):
'''simple docstring'''
return self.validation_step(A_,A_ )
def snake_case_ ( self: Any,A_: Any ):
'''simple docstring'''
return self.validation_end(A_ )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = max(1,self.hparams.gpus ) # TODO: consider num_tpu_cores
__UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def snake_case_ ( self: List[str],A_: Optional[Any] ):
'''simple docstring'''
if stage == "test":
__UpperCamelCase = len(self.test_dataloader().dataset )
else:
__UpperCamelCase = self.get_dataloader('train',self.hparams.train_batch_size,shuffle=A_ )
__UpperCamelCase = len(self.train_dataloader().dataset )
def snake_case_ ( self: Optional[Any],A_: str,A_: int,A_: bool = False ):
'''simple docstring'''
raise NotImplementedError('You must implement this for your task' )
def snake_case_ ( self: int ):
'''simple docstring'''
return self.train_loader
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
return self.get_dataloader('dev',self.hparams.eval_batch_size,shuffle=A_ )
def snake_case_ ( self: Any ):
'''simple docstring'''
return self.get_dataloader('test',self.hparams.eval_batch_size,shuffle=A_ )
def snake_case_ ( self: List[str],A_: Dict ):
'''simple docstring'''
return os.path.join(
self.hparams.data_dir,'cached_{}_{}_{}'.format(
A_,list(filter(A_,self.hparams.model_name_or_path.split('/' ) ) ).pop(),str(self.hparams.max_seq_length ),),)
@pl.utilities.rank_zero_only
def snake_case_ ( self: Optional[Any],A_: Dict[str, Any] ):
'''simple docstring'''
__UpperCamelCase = self.output_dir.joinpath('best_tfmr' )
__UpperCamelCase = self.step_count
self.model.save_pretrained(A_ )
self.tokenizer.save_pretrained(A_ )
@staticmethod
def snake_case_ ( A_: List[Any],A_: Tuple ):
'''simple docstring'''
parser.add_argument(
'--model_name_or_path',default=A_,type=A_,required=A_,help='Path to pretrained model or model identifier from huggingface.co/models',)
parser.add_argument(
'--config_name',default='',type=A_,help='Pretrained config name or path if not the same as model_name' )
parser.add_argument(
'--tokenizer_name',default=A_,type=A_,help='Pretrained tokenizer name or path if not the same as model_name',)
parser.add_argument(
'--cache_dir',default=str(Path(A_ ).parent / 'test_run' / 'cache' ),type=A_,help='Where do you want to store the pre-trained models downloaded from huggingface.co',)
parser.add_argument(
'--encoder_layerdrop',type=A_,help='Encoder layer dropout probability (Optional). Goes into model.config',)
parser.add_argument(
'--decoder_layerdrop',type=A_,help='Decoder layer dropout probability (Optional). Goes into model.config',)
parser.add_argument(
'--dropout',type=A_,help='Dropout probability (Optional). Goes into model.config',)
parser.add_argument(
'--attention_dropout',type=A_,help='Attention dropout probability (Optional). Goes into model.config',)
parser.add_argument('--learning_rate',default=5E-5,type=A_,help='The initial learning rate for Adam.' )
parser.add_argument(
'--lr_scheduler',default='linear',choices=A_,metavar=A_,type=A_,help='Learning rate scheduler',)
parser.add_argument('--weight_decay',default=0.0,type=A_,help='Weight decay if we apply some.' )
parser.add_argument('--adam_epsilon',default=1E-8,type=A_,help='Epsilon for Adam optimizer.' )
parser.add_argument('--warmup_steps',default=0,type=A_,help='Linear warmup over warmup_steps.' )
parser.add_argument('--num_workers',default=4,type=A_,help='kwarg passed to DataLoader' )
parser.add_argument('--num_train_epochs',dest='max_epochs',default=3,type=A_ )
parser.add_argument('--train_batch_size',default=32,type=A_ )
parser.add_argument('--eval_batch_size',default=32,type=A_ )
parser.add_argument('--adafactor',action='store_true' )
class __lowerCamelCase (pl.Callback ):
def snake_case_ ( self: Optional[int],A_: Tuple,A_: Optional[Any] ):
'''simple docstring'''
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class __lowerCamelCase (pl.Callback ):
def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: int ):
'''simple docstring'''
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(A_ )
class __lowerCamelCase (pl.Callback ):
def snake_case_ ( self: str,A_: List[str],A_: List[str] ):
'''simple docstring'''
__UpperCamelCase = trainer.lr_schedulers[0]['scheduler']
__UpperCamelCase = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(A_ )
def snake_case_ ( self: Any,A_: pl.Trainer,A_: pl.LightningModule ):
'''simple docstring'''
rank_zero_info('***** Validation results *****' )
__UpperCamelCase = trainer.callback_metrics
# Log results
for key in sorted(A_ ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(A_,str(metrics[key] ) ) )
def snake_case_ ( self: Dict,A_: pl.Trainer,A_: pl.LightningModule ):
'''simple docstring'''
rank_zero_info('***** Test results *****' )
__UpperCamelCase = trainer.callback_metrics
# Log and save results to file
__UpperCamelCase = os.path.join(pl_module.hparams.output_dir,'test_results.txt' )
with open(A_,'w' ) as writer:
for key in sorted(A_ ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(A_,str(metrics[key] ) ) )
writer.write('{} = {}\n'.format(A_,str(metrics[key] ) ) )
def _A ( _lowercase , _lowercase ) -> None:
"""simple docstring"""
parser.add_argument(
'--output_dir' , default=str(Path(_lowercase ).parent / 'test_run' / 'model_checkpoints' ) , type=_lowercase , help='The output directory where the model predictions and checkpoints will be written.' , )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=_lowercase , default='O2' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=_lowercase )
parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=_lowercase , help='Max gradient norm' )
parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' )
parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' )
parser.add_argument(
'--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=_lowercase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , )
parser.add_argument('--seed' , type=_lowercase , default=42 , help='random seed for initialization' )
parser.add_argument(
'--data_dir' , default=str(Path(_lowercase ).parent / 'test_run' / 'dummy-train-data' ) , type=_lowercase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , )
def _A ( _lowercase , _lowercase , _lowercase=None , _lowercase=True , _lowercase=[] , _lowercase=None , _lowercase=None , **_lowercase , ) -> List[str]:
"""simple docstring"""
pl.seed_everything(args.seed )
# init model
__UpperCamelCase = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=_lowercase )
# add custom checkpoints
if checkpoint_callback is None:
__UpperCamelCase = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(_lowercase )
if logging_callback is None:
__UpperCamelCase = LoggingCallback()
__UpperCamelCase = {}
if args.fpaa:
__UpperCamelCase = 16
if args.gpus > 1:
__UpperCamelCase = 'auto'
__UpperCamelCase = 'ddp'
__UpperCamelCase = args.accumulate_grad_batches
__UpperCamelCase = None
__UpperCamelCase = 'auto'
__UpperCamelCase = pl.Trainer.from_argparse_args(
_lowercase , weights_summary=_lowercase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_lowercase , val_check_interval=1 , num_sanity_val_steps=2 , **_lowercase , )
if args.do_train:
trainer.fit(_lowercase )
else:
print('RAG modeling tests with new set functions successfuly executed!' )
return trainer
| 1 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class __lowerCamelCase (_a ):
@slow
@require_torch
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny','prajjwal1/bert-tiny' )
__UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' )
__UpperCamelCase = bertabert.config.encoder.vocab_size
__UpperCamelCase = tokenizer.sep_token_id
__UpperCamelCase = tokenizer.cls_token_id
__UpperCamelCase = 128
__UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='train[:1%]' )
__UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='validation[:1%]' )
__UpperCamelCase = train_dataset.select(range(32 ) )
__UpperCamelCase = val_dataset.select(range(16 ) )
__UpperCamelCase = 4
def _map_to_encoder_decoder_inputs(A_: Dict ):
# Tokenizer will automatically set [BOS] <text> [EOS]
__UpperCamelCase = tokenizer(batch['article'],padding='max_length',truncation=A_,max_length=512 )
__UpperCamelCase = tokenizer(batch['highlights'],padding='max_length',truncation=A_,max_length=128 )
__UpperCamelCase = inputs.input_ids
__UpperCamelCase = inputs.attention_mask
__UpperCamelCase = outputs.input_ids
__UpperCamelCase = outputs.input_ids.copy()
__UpperCamelCase = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels']
]
__UpperCamelCase = outputs.attention_mask
assert all(len(A_ ) == 512 for x in inputs.input_ids )
assert all(len(A_ ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(A_: str ):
__UpperCamelCase = pred.label_ids
__UpperCamelCase = pred.predictions
# all unnecessary tokens are removed
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A_ ) )] ) / len(A_ )
return {"accuracy": accuracy}
# map train dataset
__UpperCamelCase = train_dataset.map(
_map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],)
train_dataset.set_format(
type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],)
# same for validation dataset
__UpperCamelCase = val_dataset.map(
_map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],)
val_dataset.set_format(
type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],)
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = SeqaSeqTrainingArguments(
output_dir=A_,per_device_train_batch_size=A_,per_device_eval_batch_size=A_,predict_with_generate=A_,evaluation_strategy='steps',do_train=A_,do_eval=A_,warmup_steps=0,eval_steps=2,logging_steps=2,)
# instantiate trainer
__UpperCamelCase = SeqaSeqTrainer(
model=A_,args=A_,compute_metrics=_compute_metrics,train_dataset=A_,eval_dataset=A_,tokenizer=A_,)
# start training
trainer.train()
| 1 | 1 |
import numpy as np
from PIL import Image
def _A ( _lowercase , _lowercase , _lowercase ) -> np.ndarray:
"""simple docstring"""
__UpperCamelCase = np.array(_lowercase )
if arr.shape[0] != arr.shape[1]:
raise ValueError('The input array is not a square matrix' )
__UpperCamelCase = 0
__UpperCamelCase = 0
__UpperCamelCase = 0
__UpperCamelCase = 0
# compute the shape of the output matrix
__UpperCamelCase = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
__UpperCamelCase = np.zeros((maxpool_shape, maxpool_shape) )
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
__UpperCamelCase = np.max(arr[i : i + size, j : j + size] )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
__UpperCamelCase = 0
__UpperCamelCase = 0
return updated_arr
def _A ( _lowercase , _lowercase , _lowercase ) -> np.ndarray:
"""simple docstring"""
__UpperCamelCase = np.array(_lowercase )
if arr.shape[0] != arr.shape[1]:
raise ValueError('The input array is not a square matrix' )
__UpperCamelCase = 0
__UpperCamelCase = 0
__UpperCamelCase = 0
__UpperCamelCase = 0
# compute the shape of the output matrix
__UpperCamelCase = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
__UpperCamelCase = np.zeros((avgpool_shape, avgpool_shape) )
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
__UpperCamelCase = int(np.average(arr[i : i + size, j : j + size] ) )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
__UpperCamelCase = 0
__UpperCamelCase = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name='''avgpooling''', verbose=True)
# Loading the image
__snake_case = Image.open('''path_to_image''')
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 1 |
def _A ( _lowercase = 1_00 ) -> int:
"""simple docstring"""
__UpperCamelCase = 0
__UpperCamelCase = 0
for i in range(1 , n + 1 ):
sum_of_squares += i**2
sum_of_ints += i
return sum_of_ints**2 - sum_of_squares
if __name__ == "__main__":
print(f"""{solution() = }""")
| 1 | 1 |
def _A ( _lowercase , _lowercase ) -> float:
"""simple docstring"""
if density <= 0:
raise ValueError('Impossible fluid density' )
if bulk_modulus <= 0:
raise ValueError('Impossible bulk modulus' )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def _A ( _lowercase , _lowercase=0 ) -> Dict:
"""simple docstring"""
return sorted(_lowercase , key=lambda _lowercase : x[column] )
def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> List[Any]:
"""simple docstring"""
for i in range(points_counts - 1 ):
for j in range(i + 1 , _lowercase ):
__UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCamelCase = current_dis
return min_dis
def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> Tuple:
"""simple docstring"""
for i in range(min(6 , points_counts - 1 ) , _lowercase ):
for j in range(max(0 , i - 6 ) , _lowercase ):
__UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCamelCase = current_dis
return min_dis
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
"""simple docstring"""
if points_counts <= 3:
return dis_between_closest_pair(_lowercase , _lowercase )
# recursion
__UpperCamelCase = points_counts // 2
__UpperCamelCase = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[:mid] , _lowercase )
__UpperCamelCase = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[mid:] , points_counts - mid )
__UpperCamelCase = min(_lowercase , _lowercase )
__UpperCamelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(_lowercase )
__UpperCamelCase = dis_between_closest_in_strip(
_lowercase , len(_lowercase ) , _lowercase )
return min(_lowercase , _lowercase )
def _A ( _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = column_based_sort(_lowercase , column=0 )
__UpperCamelCase = column_based_sort(_lowercase , column=1 )
return (
closest_pair_of_points_sqr(
_lowercase , _lowercase , _lowercase )
) ** 0.5
if __name__ == "__main__":
__snake_case = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)]
print('''Distance:''', closest_pair_of_points(points, len(points)))
| 1 | 1 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__snake_case = {
'''configuration_efficientnet''': [
'''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''EfficientNetConfig''',
'''EfficientNetOnnxConfig''',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''EfficientNetImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''EfficientNetForImageClassification''',
'''EfficientNetModel''',
'''EfficientNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''',
'''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''',
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''',
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''',
'''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'''
),
'''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class __lowerCamelCase (_a ):
_lowercase = """bert"""
def __init__( self: Any,A_: Dict=3_0522,A_: Optional[Any]=768,A_: Union[str, Any]=12,A_: List[Any]=12,A_: Optional[int]=3072,A_: Union[str, Any]="gelu",A_: List[str]=0.1,A_: Dict=0.1,A_: Optional[int]=512,A_: Optional[Any]=2,A_: Union[str, Any]=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=0,A_: List[Any]="absolute",A_: str=True,A_: Union[str, Any]=None,**A_: int,):
'''simple docstring'''
super().__init__(pad_token_id=A_,**A_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = use_cache
__UpperCamelCase = classifier_dropout
class __lowerCamelCase (_a ):
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 1 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__snake_case = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''UniSpeechForCTC''',
'''UniSpeechForPreTraining''',
'''UniSpeechForSequenceClassification''',
'''UniSpeechModel''',
'''UniSpeechPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 |
def _A ( _lowercase ) -> int:
"""simple docstring"""
assert column_title.isupper()
__UpperCamelCase = 0
__UpperCamelCase = len(_lowercase ) - 1
__UpperCamelCase = 0
while index >= 0:
__UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , _lowercase )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
from __future__ import annotations
import numpy as np
def _A ( _lowercase ) -> int:
"""simple docstring"""
return np.maximum(0 , _lowercase )
if __name__ == "__main__":
print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
| 1 |
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def _A ( ) -> int:
"""simple docstring"""
__UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
__UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('RGB' )
return image
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = []
# fmt: off
# vision encoder
rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') )
rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') )
rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') )
rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') )
rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') )
rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') )
# QFormer
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') )
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') )
# fmt: on
return rename_keys
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = dct.pop(_lowercase )
__UpperCamelCase = val
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
__UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' )
__UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' )
# next, set bias in the state dict
__UpperCamelCase = torch.cat((q_bias, torch.zeros_like(_lowercase , requires_grad=_lowercase ), v_bias) )
__UpperCamelCase = qkv_bias
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = 3_64 if 'coco' in model_name else 2_24
__UpperCamelCase = BlipaVisionConfig(image_size=_lowercase ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
__UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_lowercase ).to_dict()
elif "opt-6.7b" in model_name:
__UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_lowercase ).to_dict()
elif "t5-xl" in model_name:
__UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
__UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
__UpperCamelCase = BlipaConfig(vision_config=_lowercase , text_config=_lowercase )
return config, image_size
@torch.no_grad()
def _A ( _lowercase , _lowercase=None , _lowercase=False ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = (
AutoTokenizer.from_pretrained('facebook/opt-2.7b' )
if 'opt' in model_name
else AutoTokenizer.from_pretrained('google/flan-t5-xl' )
)
__UpperCamelCase = tokenizer('\n' , add_special_tokens=_lowercase ).input_ids[0]
__UpperCamelCase, __UpperCamelCase = get_blipa_config(_lowercase , eos_token_id=_lowercase )
__UpperCamelCase = BlipaForConditionalGeneration(_lowercase ).eval()
__UpperCamelCase = {
'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'),
'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'),
'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'),
'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'),
'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'),
'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'),
'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'),
}
__UpperCamelCase, __UpperCamelCase = model_name_to_original[model_name]
# load original model
print('Loading original model...' )
__UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu'
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = load_model_and_preprocess(
name=_lowercase , model_type=_lowercase , is_eval=_lowercase , device=_lowercase )
original_model.eval()
print('Done!' )
# update state dict keys
__UpperCamelCase = original_model.state_dict()
__UpperCamelCase = create_rename_keys(_lowercase )
for src, dest in rename_keys:
rename_key(_lowercase , _lowercase , _lowercase )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
__UpperCamelCase = state_dict.pop(_lowercase )
if key.startswith('Qformer.bert' ):
__UpperCamelCase = key.replace('Qformer.bert' , 'qformer' )
if "attention.self" in key:
__UpperCamelCase = key.replace('self' , 'attention' )
if "opt_proj" in key:
__UpperCamelCase = key.replace('opt_proj' , 'language_projection' )
if "t5_proj" in key:
__UpperCamelCase = key.replace('t5_proj' , 'language_projection' )
if key.startswith('opt' ):
__UpperCamelCase = key.replace('opt' , 'language' )
if key.startswith('t5' ):
__UpperCamelCase = key.replace('t5' , 'language' )
__UpperCamelCase = val
# read in qv biases
read_in_q_v_bias(_lowercase , _lowercase )
__UpperCamelCase, __UpperCamelCase = hf_model.load_state_dict(_lowercase , strict=_lowercase )
assert len(_lowercase ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
__UpperCamelCase = load_demo_image()
__UpperCamelCase = vis_processors['eval'](_lowercase ).unsqueeze(0 ).to(_lowercase )
__UpperCamelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_lowercase )
# create processor
__UpperCamelCase = BlipImageProcessor(
size={'height': image_size, 'width': image_size} , image_mean=_lowercase , image_std=_lowercase )
__UpperCamelCase = BlipaProcessor(image_processor=_lowercase , tokenizer=_lowercase )
__UpperCamelCase = processor(images=_lowercase , return_tensors='pt' ).pixel_values.to(_lowercase )
# make sure processor creates exact same pixel values
assert torch.allclose(_lowercase , _lowercase )
original_model.to(_lowercase )
hf_model.to(_lowercase )
with torch.no_grad():
if "opt" in model_name:
__UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits
__UpperCamelCase = hf_model(_lowercase , _lowercase ).logits
else:
__UpperCamelCase = original_model(
{'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits
__UpperCamelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 )
__UpperCamelCase = hf_model(_lowercase , _lowercase , labels=_lowercase ).logits
assert original_logits.shape == logits.shape
print('First values of original logits:' , original_logits[0, :3, :3] )
print('First values of HF logits:' , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
__UpperCamelCase = torch.tensor(
[[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=_lowercase )
assert torch.allclose(logits[0, :3, :3] , _lowercase , atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
__UpperCamelCase = torch.tensor(
[[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=_lowercase )
else:
# cast to same type
__UpperCamelCase = logits.dtype
assert torch.allclose(original_logits.to(_lowercase ) , _lowercase , atol=1e-2 )
print('Looks ok!' )
print('Generating a caption...' )
__UpperCamelCase = ''
__UpperCamelCase = tokenizer(_lowercase , return_tensors='pt' ).input_ids.to(_lowercase )
__UpperCamelCase = original_model.generate({'image': original_pixel_values} )
__UpperCamelCase = hf_model.generate(
_lowercase , _lowercase , do_sample=_lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print('Original generation:' , _lowercase )
__UpperCamelCase = input_ids.shape[1]
__UpperCamelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowercase )
__UpperCamelCase = [text.strip() for text in output_text]
print('HF generation:' , _lowercase )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(_lowercase )
hf_model.save_pretrained(_lowercase )
if push_to_hub:
processor.push_to_hub(f'''nielsr/{model_name}''' )
hf_model.push_to_hub(f'''nielsr/{model_name}''' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
__snake_case = [
'''blip2-opt-2.7b''',
'''blip2-opt-6.7b''',
'''blip2-opt-2.7b-coco''',
'''blip2-opt-6.7b-coco''',
'''blip2-flan-t5-xl''',
'''blip2-flan-t5-xl-coco''',
'''blip2-flan-t5-xxl''',
]
parser.add_argument(
'''--model_name''',
default='''blip2-opt-2.7b''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
__snake_case = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 1 | 1 |
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class __lowerCamelCase (unittest.TestCase ):
def __init__( self: int,A_: List[str],A_: bool = True,A_: Dict[str, int] = None,A_: int = 32,A_: bool = True,A_: Union[int, float] = 1 / 255,A_: bool = True,A_: bool = True,A_: Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],A_: Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],A_: bool = True,A_: Union[str, Any]=7,A_: Dict=30,A_: Dict=400,A_: Optional[int]=3,):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = do_resize
__UpperCamelCase = size if size is not None else {'shortest_edge': 288}
__UpperCamelCase = size_divisor
__UpperCamelCase = do_rescale
__UpperCamelCase = rescale_factor
__UpperCamelCase = do_normalize
__UpperCamelCase = do_center_crop
__UpperCamelCase = image_mean
__UpperCamelCase = image_std
__UpperCamelCase = do_pad
__UpperCamelCase = batch_size
__UpperCamelCase = num_channels
__UpperCamelCase = min_resolution
__UpperCamelCase = max_resolution
def snake_case_ ( self: Dict ):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def snake_case_ ( self: List[str],A_: Tuple,A_: List[Any]=False ):
'''simple docstring'''
if not batched:
__UpperCamelCase = self.size['shortest_edge']
__UpperCamelCase = image_inputs[0]
if isinstance(A_,Image.Image ):
__UpperCamelCase, __UpperCamelCase = image.size
else:
__UpperCamelCase, __UpperCamelCase = image.shape[1], image.shape[2]
__UpperCamelCase = size / min(A_,A_ )
if h < w:
__UpperCamelCase, __UpperCamelCase = size, scale * w
else:
__UpperCamelCase, __UpperCamelCase = scale * h, size
__UpperCamelCase = int((1333 / 800) * size )
if max(A_,A_ ) > max_size:
__UpperCamelCase = max_size / max(A_,A_ )
__UpperCamelCase = newh * scale
__UpperCamelCase = neww * scale
__UpperCamelCase, __UpperCamelCase = int(newh + 0.5 ), int(neww + 0.5 )
__UpperCamelCase, __UpperCamelCase = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
__UpperCamelCase = []
for image in image_inputs:
__UpperCamelCase, __UpperCamelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__UpperCamelCase = max(A_,key=lambda A_ : item[0] )[0]
__UpperCamelCase = max(A_,key=lambda A_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = BridgeTowerImageProcessor if is_vision_available() else None
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = BridgeTowerImageProcessingTester(self )
@property
def snake_case_ ( self: int ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A_,'image_mean' ) )
self.assertTrue(hasattr(A_,'image_std' ) )
self.assertTrue(hasattr(A_,'do_normalize' ) )
self.assertTrue(hasattr(A_,'do_resize' ) )
self.assertTrue(hasattr(A_,'size' ) )
self.assertTrue(hasattr(A_,'size_divisor' ) )
def snake_case_ ( self: Dict ):
'''simple docstring'''
pass
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__UpperCamelCase = prepare_image_inputs(self.image_processor_tester,equal_resolution=A_ )
for image in image_inputs:
self.assertIsInstance(A_,Image.Image )
# Test not batched input
__UpperCamelCase = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values
__UpperCamelCase, __UpperCamelCase = self.image_processor_tester.get_expected_values(A_ )
self.assertEqual(
encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),)
# Test batched
__UpperCamelCase = image_processing(A_,return_tensors='pt' ).pixel_values
__UpperCamelCase, __UpperCamelCase = self.image_processor_tester.get_expected_values(A_,batched=A_ )
self.assertEqual(
encoded_images.shape,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),)
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__UpperCamelCase = prepare_image_inputs(self.image_processor_tester,equal_resolution=A_,numpify=A_ )
for image in image_inputs:
self.assertIsInstance(A_,np.ndarray )
# Test not batched input
__UpperCamelCase = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values
__UpperCamelCase, __UpperCamelCase = self.image_processor_tester.get_expected_values(A_ )
self.assertEqual(
encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),)
# Test batched
__UpperCamelCase = image_processing(A_,return_tensors='pt' ).pixel_values
__UpperCamelCase, __UpperCamelCase = self.image_processor_tester.get_expected_values(A_,batched=A_ )
self.assertEqual(
encoded_images.shape,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),)
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__UpperCamelCase = prepare_image_inputs(self.image_processor_tester,equal_resolution=A_,torchify=A_ )
for image in image_inputs:
self.assertIsInstance(A_,torch.Tensor )
# Test not batched input
__UpperCamelCase = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values
__UpperCamelCase, __UpperCamelCase = self.image_processor_tester.get_expected_values(A_ )
self.assertEqual(
encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),)
# Test batched
__UpperCamelCase = image_processing(A_,return_tensors='pt' ).pixel_values
__UpperCamelCase, __UpperCamelCase = self.image_processor_tester.get_expected_values(A_,batched=A_ )
self.assertEqual(
encoded_images.shape,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),)
| 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__snake_case = logging.getLogger(__name__)
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
_lowercase = field(
default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
_lowercase = field(default=_a , metadata={"""help""": """Set this flag to use fast tokenization."""} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
_lowercase = field(
default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} )
_lowercase = field(
default=_a , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , )
_lowercase = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
_lowercase = field(
default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def _A ( ) -> str:
"""simple docstring"""
__UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
' --overwrite_output_dir to overcome.' )
__UpperCamelCase = import_module('tasks' )
try:
__UpperCamelCase = getattr(_lowercase , model_args.task_type )
__UpperCamelCase = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , _lowercase )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
__UpperCamelCase = token_classification_task.get_labels(data_args.labels )
__UpperCamelCase = dict(enumerate(_lowercase ) )
__UpperCamelCase = len(_lowercase )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , idalabel=_lowercase , labelaid={label: i for i, label in enumerate(_lowercase )} , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
__UpperCamelCase = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , )
# Get datasets
__UpperCamelCase = (
TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__UpperCamelCase = (
TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(_lowercase , _lowercase ) -> Tuple[List[int], List[int]]:
__UpperCamelCase = np.argmax(_lowercase , axis=2 )
__UpperCamelCase, __UpperCamelCase = preds.shape
__UpperCamelCase = [[] for _ in range(_lowercase )]
__UpperCamelCase = [[] for _ in range(_lowercase )]
for i in range(_lowercase ):
for j in range(_lowercase ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(_lowercase ) -> Dict:
__UpperCamelCase, __UpperCamelCase = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(_lowercase , _lowercase ),
"precision": precision_score(_lowercase , _lowercase ),
"recall": recall_score(_lowercase , _lowercase ),
"f1": fa_score(_lowercase , _lowercase ),
}
# Data collator
__UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__UpperCamelCase = Trainer(
model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCamelCase = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__UpperCamelCase = trainer.evaluate()
__UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
results.update(_lowercase )
# Predict
if training_args.do_predict:
__UpperCamelCase = TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = trainer.predict(_lowercase )
__UpperCamelCase, __UpperCamelCase = align_predictions(_lowercase , _lowercase )
__UpperCamelCase = os.path.join(training_args.output_dir , 'test_results.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
for key, value in metrics.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
# Save predictions
__UpperCamelCase = os.path.join(training_args.output_dir , 'test_predictions.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f:
token_classification_task.write_predictions_to_file(_lowercase , _lowercase , _lowercase )
return results
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 1 | 1 |
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class __lowerCamelCase (_a ):
def __init__( self: Optional[int],A_: Dict,A_: List[str]=13,A_: List[str]=7,A_: Dict=True,A_: Any=True,A_: Optional[Any]=False,A_: Any=True,A_: List[Any]=99,A_: Optional[Any]=32,A_: Union[str, Any]=5,A_: str=4,A_: Optional[int]=64,A_: Tuple="gelu",A_: Optional[int]=0.1,A_: str=0.1,A_: Union[str, Any]=512,A_: Optional[Any]=16,A_: Any=2,A_: Dict=0.0_2,A_: Dict=3,A_: List[Any]=4,A_: Optional[Any]=None,A_: Tuple=2,A_: Optional[int]=2,A_: int=2,A_: List[Any]=2,A_: Optional[Any]=4,A_: Any=1,):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_input_mask
__UpperCamelCase = use_token_type_ids
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = type_sequence_label_size
__UpperCamelCase = initializer_range
__UpperCamelCase = num_labels
__UpperCamelCase = num_choices
__UpperCamelCase = scope
__UpperCamelCase = q_groups
__UpperCamelCase = k_groups
__UpperCamelCase = v_groups
__UpperCamelCase = post_attention_groups
__UpperCamelCase = intermediate_groups
__UpperCamelCase = output_groups
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length],self.vocab_size )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size],self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length],self.num_labels )
__UpperCamelCase = ids_tensor([self.batch_size],self.num_choices )
__UpperCamelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
return SqueezeBertConfig(
embedding_size=self.hidden_size,vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,attention_probs_dropout_prob=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,q_groups=self.q_groups,k_groups=self.k_groups,v_groups=self.v_groups,post_attention_groups=self.post_attention_groups,intermediate_groups=self.intermediate_groups,output_groups=self.output_groups,)
def snake_case_ ( self: List[str],A_: str,A_: str,A_: str,A_: List[Any],A_: Any,A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = SqueezeBertModel(config=A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = model(A_,A_ )
__UpperCamelCase = model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
def snake_case_ ( self: int,A_: Optional[Any],A_: List[Any],A_: List[str],A_: List[str],A_: Optional[Any],A_: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = SqueezeBertForMaskedLM(config=A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = model(A_,attention_mask=A_,labels=A_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) )
def snake_case_ ( self: str,A_: str,A_: Union[str, Any],A_: Tuple,A_: Any,A_: List[str],A_: Dict ):
'''simple docstring'''
__UpperCamelCase = SqueezeBertForQuestionAnswering(config=A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = model(
A_,attention_mask=A_,start_positions=A_,end_positions=A_ )
self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) )
def snake_case_ ( self: Optional[int],A_: Optional[int],A_: List[str],A_: int,A_: Optional[int],A_: Dict,A_: int ):
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = SqueezeBertForSequenceClassification(A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = model(A_,attention_mask=A_,labels=A_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) )
def snake_case_ ( self: str,A_: Any,A_: str,A_: Optional[Any],A_: Optional[Any],A_: Optional[Any],A_: Dict ):
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = SqueezeBertForTokenClassification(config=A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = model(A_,attention_mask=A_,labels=A_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) )
def snake_case_ ( self: Union[str, Any],A_: Tuple,A_: str,A_: Any,A_: Union[str, Any],A_: Dict,A_: str ):
'''simple docstring'''
__UpperCamelCase = self.num_choices
__UpperCamelCase = SqueezeBertForMultipleChoice(config=A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous()
__UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous()
__UpperCamelCase = model(
A_,attention_mask=A_,labels=A_,)
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
((__UpperCamelCase), (__UpperCamelCase), (__UpperCamelCase), (__UpperCamelCase), (__UpperCamelCase), (__UpperCamelCase)) = config_and_inputs
__UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __lowerCamelCase (_a , _a , unittest.TestCase ):
_lowercase = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
_lowercase = (
{
"""feature-extraction""": SqueezeBertModel,
"""fill-mask""": SqueezeBertForMaskedLM,
"""question-answering""": SqueezeBertForQuestionAnswering,
"""text-classification""": SqueezeBertForSequenceClassification,
"""token-classification""": SqueezeBertForTokenClassification,
"""zero-shot""": SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
_lowercase = False
_lowercase = True
_lowercase = False
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = SqueezeBertModelTester(self )
__UpperCamelCase = ConfigTester(self,config_class=A_,dim=37 )
def snake_case_ ( self: int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*A_ )
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*A_ )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*A_ )
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*A_ )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*A_ )
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*A_ )
@slow
def snake_case_ ( self: int ):
'''simple docstring'''
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = SqueezeBertModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
@require_sentencepiece
@require_tokenizers
@require_torch
class __lowerCamelCase (unittest.TestCase ):
@slow
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' )
__UpperCamelCase = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] )
__UpperCamelCase = model(A_ )[0]
__UpperCamelCase = torch.Size((1, 3) )
self.assertEqual(output.shape,A_ )
__UpperCamelCase = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] )
self.assertTrue(torch.allclose(A_,A_,atol=1E-4 ) )
| 1 |
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def _A ( *_lowercase ) -> Tuple:
"""simple docstring"""
with open(_lowercase , 'r' ) as fh:
fcntl.flock(_lowercase , fcntl.LOCK_EX )
try:
print(*_lowercase )
finally:
fcntl.flock(_lowercase , fcntl.LOCK_UN )
__snake_case = int(os.environ['''LOCAL_RANK'''])
torch.cuda.set_device(local_rank)
__snake_case = torch.device('''cuda''', local_rank)
__snake_case = socket.gethostname()
__snake_case = f"""[{hostname}-{local_rank}]"""
try:
# test distributed
dist.init_process_group('''nccl''')
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
__snake_case = dist.get_rank()
__snake_case = dist.get_world_size()
printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""")
dist.barrier()
if rank == 0:
printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""")
except Exception:
printflock(f"""{gpu} is broken""")
raise
| 1 | 1 |