Dataset Viewer
Full Screen Viewer
Full Screen
The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
How to use the data sets
This dataset contains about 36,000 unique pairs of protein sequences and ligand SMILES, and the coordinates of their complexes from the PDB.
SMILES are assumed to be tokenized by the regex from P. Schwaller.
Ligand selection criteria
Only ligands
- that have at least 3 atoms,
- a molecular weight >= 100 Da,
- and which are not among the 280 most common ligands in the PDB (this includes common additives like PEG, ADP, ..)
are considered.
Use the already preprocessed data
Load a test/train split using
import pandas as pd
train = pd.read_pickle('data/pdb_train.p')
test = pd.read_pickle('data/pdb_test.p')
Receptor features contain protein frames and side chain angles in OpenFold/AlphaFold format.
Ligand tokens which do not correspond to atoms have nan
as their coordinates.
Documentation by example:
>>> import pandas as pd
>>> test = pd.read_pickle('data/pdb_test.p')
>>> test.head(5)
pdb_id lig_id ... ligand_xyz_2d ligand_bonds
0 7k38 VTY ... [(-2.031355975502858, -1.6316778784387098, 0.0... [(0, 1), (1, 4), (4, 5), (5, 10), (10, 9), (9,...
1 6prt OWA ... [(4.883261310160714, -0.37850716807626705, 0.0... [(11, 18), (18, 20), (20, 8), (8, 7), (7, 2), ...
2 4lxx FNF ... [(8.529427756002057, 2.2434809270065372, 0.0),... [(51, 49), (49, 48), (48, 46), (46, 53), (53, ...
3 4lxx FON ... [(-10.939694946697701, -1.1876214529096956, 0.... [(13, 1), (1, 0), (0, 3), (3, 4), (4, 7), (7, ...
4 7bp1 CAQ ... [(-1.9485571585149868, -1.499999999999999, 0.0... [(4, 3), (3, 1), (1, 0), (0, 7), (7, 9), (7, 6...
[5 rows x 8 columns]
>>> test.columns
Index(['pdb_id', 'lig_id', 'seq', 'smiles', 'receptor_features', 'ligand_xyz',
'ligand_xyz_2d', 'ligand_bonds'],
dtype='object')
>>> test.iloc[0]['receptor_features']
{'rigidgroups_gt_frames': array([[[[-5.3122622e-01, 2.0922849e-01, -8.2098854e-01,
1.7295000e+01],
[-7.1005428e-01, -6.3858479e-01, 2.9670244e-01,
-9.1399997e-01],
[-4.6219218e-01, 7.4056256e-01, 4.8779655e-01,
3.3284000e+01],
[ 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
1.0000000e+00]],
...
[[ 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
-3.5030000e+00],
[ 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
2.6764999e+01],
[ 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
1.5136000e+01],
[ 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
1.0000000e+00]]]], dtype=float32), 'torsion_angles_sin_cos': array([[[-1.90855725e-09, 3.58859784e-02],
[ 1.55730803e-01, 9.87799530e-01],
[ 6.05505241e-01, -7.95841312e-01],
...,
[-2.92459433e-01, -9.56277928e-01],
[ 9.96634814e-01, -8.19697779e-02],
[ 0.00000000e+00, 0.00000000e+00]],
...
[[ 2.96455977e-04, -9.99999953e-01],
[-8.15660990e-01, 5.78530158e-01],
[-3.17915569e-01, 9.48119024e-01],
...,
[ 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00]]])}
>>> test.iloc[0]['receptor_features'].keys()
dict_keys(['rigidgroups_gt_frames', 'torsion_angles_sin_cos'])
>>> test.iloc[0]['ligand_xyz']
[(22.289, 11.985, 9.225), (21.426, 11.623, 7.959), (nan, nan, nan), (nan, nan, nan), (21.797, 11.427, 6.574), (20.556, 11.56, 5.792), (nan, nan, nan), (20.507, 11.113, 4.552), (nan, nan, nan), (19.581, 10.97, 6.639), (20.107, 10.946, 7.954), (nan, nan, nan), (nan, nan, nan), (19.645, 10.364, 8.804)]
Manual update from PDB
# download the PDB archive into folder pdb/
sh rsync.sh 24 # number of parallel download processes
# extract sequences and coordinates in parallel
sbatch pdb.slurm
# or
mpirun -n 42 parse_complexes.py # desired number of tasks
- Downloads last month
- 120