kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
18,968,817 | outlier = train_data.loc[train_data.target < 1.0]
print(outlier )<drop_column> | submission = pd.DataFrame({'ImageId' : range(1,28001), 'Label' : list(subs)})
submission.head(10)
submission.shape | Digit Recognizer |
18,968,817 | <prepare_x_and_y><EOS> | submission.to_csv("submission1.csv", index = False ) | Digit Recognizer |
18,871,430 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<choose_model_class> | !nvidia-smi | Digit Recognizer |
18,871,430 | params = { 'n_estimators' : [1500, 2000, 2500],
'learning_rate' : [0.01, 0.02]
}
xgb = XGBRegressor(
objective = 'reg:squarederror',
subsample = 0.8,
colsample_bytree = 0.8,
learning_rate = 0.01,
tree_method = 'gpu_hist')
grid_search = GridSearchCV(xgb,
param_grid = params,
scoring = 'neg_root_mean_squared_error',
n_jobs = -1,
verbose = 10)
grid_search.fit(train_data, y_train)
print('
Best estimator:')
print(grid_search.best_estimator_)
print('
Best score:')
print(grid_search.best_score_)
print('
Best hyperparameters:')
print(grid_search.best_params_ )<train_model> | %matplotlib inline
sns.set(style='white', context='notebook', palette='deep')
np.random.seed(2 ) | Digit Recognizer |
18,871,430 | clf = XGBRegressor(
objective = 'reg:squarederror',
subsample = 0.8,
learning_rate = 0.02,
max_depth = 7,
n_estimators = 2500,
tree_method = 'gpu_hist')
clf.fit(train_data, y_train)
y_pred_xgb = clf.predict(test_data)
print(y_pred_xgb )<save_to_csv> | train = pd.read_csv('.. /input/digit-recognizer/train.csv')
test = pd.read_csv('.. /input/digit-recognizer/test.csv' ) | Digit Recognizer |
18,871,430 | solution = pd.DataFrame({"id":test_data.id, "target":y_pred_xgb})
solution.to_csv("solution.csv", index = False)
print("saved successful!" )<install_modules> | y_train = train["label"]
X_train = train.drop(labels=["label"], axis = 1 ) | Digit Recognizer |
18,871,430 | !pip install.. /input/efficientnet/efficientnet-1.0.0-py3-none-any.whl<import_modules> | ( X_train1, y_train1),(X_test1, y_test1)= mnist.load_data()
X_train1 = np.concatenate([X_train1, X_test1], axis=0)
y_train1 = np.concatenate([y_train1, y_test1], axis=0)
X_train1 = X_train1.reshape(-1, 28*28 ) | Digit Recognizer |
18,871,430 | import pandas as pd
import tensorflow as tf
import cv2
import glob
from tqdm.notebook import tqdm
import numpy as np
import os
import efficientnet.keras as efn
from keras.layers import *
from keras import Model
import matplotlib.pyplot as plt
import time<load_pretrained> | X_train = X_train/255.
X_train1 = X_train1/255.
test = test/255 . | Digit Recognizer |
18,871,430 | detection_graph = tf.Graph()
with detection_graph.as_default() :
od_graph_def = tf.compat.v1.GraphDef()
with tf.io.gfile.GFile('.. /input/mobilenet-face/frozen_inference_graph_face.pb', 'rb')as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='' )<set_options> | X_train = np.concatenate(( X_train.values, X_train1))
y_train = np.concatenate(( y_train, y_train1)) | Digit Recognizer |
18,871,430 | cm = detection_graph.as_default()
cm.__enter__()<prepare_x_and_y> | y_train = to_categorical(y_train, num_classes = 10 ) | Digit Recognizer |
18,871,430 | config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
sess=tf.compat.v1.Session(graph=detection_graph, config=config)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes_tensor = detection_graph.get_tensor_by_name('detection_boxes:0')
scores_tensor = detection_graph.get_tensor_by_name('detection_scores:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0' )<categorify> | X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size = 0.1, random_state = 2 ) | Digit Recognizer |
18,871,430 | def get_img(images):
global boxes,scores,num_detections
im_heights,im_widths=[],[]
imgs=[]
for image in images:
(im_height,im_width)=image.shape[:-1]
imgs.append(image)
im_heights.append(im_height)
im_widths.append(im_widths)
imgs=np.array(imgs)
(boxes, scores_)= sess.run(
[boxes_tensor, scores_tensor],
feed_dict={image_tensor: imgs})
finals=[]
for x in range(boxes.shape[0]):
scores=scores_[x]
max_=np.where(scores==scores.max())[0][0]
box=boxes[x][max_]
ymin, xmin, ymax, xmax = box
(left, right, top, bottom)=(xmin * im_width, xmax * im_width,
ymin * im_height, ymax * im_height)
left, right, top, bottom = int(left), int(right), int(top), int(bottom)
image=imgs[x]
finals.append(cv2.cvtColor(cv2.resize(image[max([0,top-40]):bottom+80,max([0,left-40]):right+80],(240,240)) ,cv2.COLOR_BGR2RGB))
return finals
def detect_video(video, start_frame):
frame_count=10
capture = cv2.VideoCapture(video)
v_len = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
frame_idxs = np.linspace(start_frame,v_len,frame_count, endpoint=False, dtype=np.int)
imgs=[]
i=0
for frame_idx in range(int(v_len)) :
ret = capture.grab()
if not ret:
print("Error grabbing frame %d from movie %s" %(frame_idx, video))
if frame_idx >= frame_idxs[i]:
if frame_idx-frame_idxs[i]>20:
return None
ret, frame = capture.retrieve()
if not ret or frame is None:
print("Error retrieving frame %d from movie %s" %(frame_idx, video))
else:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
imgs.append(frame)
i += 1
if i >= len(frame_idxs):
break
imgs=get_img(imgs)
if len(imgs)<10:
return None
return np.hstack(imgs)
<train_model> | print(f"Training shape {X_train.shape}
Validation shape {X_val.shape}" ) | Digit Recognizer |
18,871,430 | os.mkdir('./videos/')
for x in tqdm(glob.glob('.. /input/deepfake-detection-challenge/test_videos/*.mp4')) :
try:
filename=x.replace('.. /input/deepfake-detection-challenge/test_videos/','' ).replace('.mp4','.jpg')
a=detect_video(x,0)
if a is None:
continue
cv2.imwrite('./videos/'+filename,a)
except Exception as err:
print(err )<train_model> | model = Sequential()
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(BatchNormalization())
model.add(Conv2D(128,(3, 3), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(256, kernel_size=(3, 3),
activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512,(3, 3), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(BatchNormalization())
model.add(Dense(256))
model.add(BatchNormalization())
model.add(Dense(128))
model.add(BatchNormalization())
model.add(Dense(10, activation='softmax')) | Digit Recognizer |
18,871,430 | os.mkdir('./videos_2/')
for x in tqdm(glob.glob('.. /input/deepfake-detection-challenge/test_videos/*.mp4')) :
try:
filename=x.replace('.. /input/deepfake-detection-challenge/test_videos/','' ).replace('.mp4','.jpg')
a=detect_video(x,95)
if a is None:
continue
cv2.imwrite('./videos_2/'+filename,a)
except Exception as err:
print(err )<choose_model_class> | plot_model(model, to_file='model.png', show_shapes=True, show_layer_names=True)
Image('model.png' ) | Digit Recognizer |
18,871,430 | bottleneck = efn.EfficientNetB1(weights=None,include_top=False,pooling='avg')
inp=Input(( 10,240,240,3))
x=TimeDistributed(bottleneck )(inp)
x = LSTM(128 )(x)
x = Dense(64, activation='elu' )(x)
x = Dense(1,activation='sigmoid' )(x )<define_variables> | optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
18,871,430 | model=Model(inp,x)
weights = ['.. /input/deepfake-20/saved-model-01-0.06.hdf5', '.. /input/deepfake-20/saved-model-02-0.05.hdf5', '.. /input/model-epoch-3/saved-model-03-0.06.hdf5','.. /input/model-02/saved-model-01-0.06.hdf5']*2
sub_file = ['submission_'+str(i)+'.csv' for i in range(1,9)]
video = ['./videos/']*4+['./videos_2/']*4
for xxxxx in range(8):
start = time.time()
model.load_weights(weights[xxxxx])
def get_birghtness(img):
return img/img.max()
def process_img(img,flip=[False]*10):
imgs=[]
for x in range(10):
if flip[x]:
imgs.append(get_birghtness(cv2.flip(img[:,x*240:(x+1)*240,:],1)))
else:
imgs.append(get_birghtness(img[:,x*240:(x+1)*240,:]))
return np.array(imgs)
sample_submission = pd.read_csv(".. /input/deepfake-detection-challenge/sample_submission.csv")
test_files=glob.glob(video[xxxxx]+'*.jpg')
submission=pd.DataFrame()
submission['filename']=os.listdir(( '.. /input/deepfake-detection-challenge/test_videos/'))
submission['label']=0.5
filenames=[]
batch=[]
batch1=[]
batch2=[]
batch3=[]
preds=[]
for x in test_files:
img=process_img(cv2.cvtColor(cv2.imread(x),cv2.COLOR_BGR2RGB))
if img is None:
continue
batch.append(img)
batch1.append(process_img(cv2.cvtColor(cv2.imread(x),cv2.COLOR_BGR2RGB),[True]*10))
batch2.append(process_img(cv2.cvtColor(cv2.imread(x),cv2.COLOR_BGR2RGB),[True,False]*5))
batch3.append(process_img(cv2.cvtColor(cv2.imread(x),cv2.COLOR_BGR2RGB),[False,True]*5))
filenames.append(x.replace(video[xxxxx],'' ).replace('.jpg','.mp4'))
if len(batch)==16:
preds+=(((0.25*model.predict(np.array(batch)))) +(( 0.25*model.predict(np.array(batch1)))) +(( 0.25*model.predict(np.array(batch2)))) +(( 0.25*model.predict(np.array(batch3)))) ).tolist()
batch=[]
batch1=[]
batch2=[]
batch3=[]
if len(batch)!=0:
preds+=(((0.25*model.predict(np.array(batch)))) +(( 0.25*model.predict(np.array(batch1)))) +(( 0.25*model.predict(np.array(batch2)))) +(( 0.25*model.predict(np.array(batch3)))) ).tolist()
print(time.time() -start)
new_preds=[]
for x in preds:
new_preds.append(x[0])
print(sum(new_preds)/len(new_preds))
for x,y in zip(new_preds,filenames):
submission.loc[submission['filename']==y,'label']=min([max([0.05,x]),0.95])
submission.to_csv(sub_file[xxxxx], index=False )<set_options> | learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.2,
min_lr=0.00001)
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=15)
checkpoint = ModelCheckpoint(filepath='model.h5', monitor='val_loss', mode='min', save_best_only=True, save_weights_only=True ) | Digit Recognizer |
18,871,430 | !rm -r videos
!rm -r videos_2<load_from_csv> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range=0.1,
width_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train ) | Digit Recognizer |
18,871,430 | df1 = pd.read_csv('submission_1.csv' ).set_index('filename' ).transpose().to_dict()
df2 = pd.read_csv('submission_2.csv' ).set_index('filename' ).transpose().to_dict()
df3 = pd.read_csv('submission_3.csv' ).set_index('filename' ).transpose().to_dict()
df4 = pd.read_csv('submission_4.csv' ).set_index('filename' ).transpose().to_dict()
df5 = pd.read_csv('submission_5.csv' ).set_index('filename' ).transpose().to_dict()
df6 = pd.read_csv('submission_6.csv' ).set_index('filename' ).transpose().to_dict()
df7 = pd.read_csv('submission_7.csv' ).set_index('filename' ).transpose().to_dict()
df8 = pd.read_csv('submission_8.csv' ).set_index('filename' ).transpose().to_dict()
filename = []
label = []
for i in df1.keys() :
filename.append(i)
a = []
if df1[i]['label']!=0.5:
a.append(df1[i]['label'])
if df2[i]['label']!=0.5:
a.append(df2[i]['label'])
if df3[i]['label']!=0.5:
a.append(df3[i]['label'])
if df4[i]['label']!=0.5:
a.append(df4[i]['label'])
if df5[i]['label']!=0.5:
a.append(df5[i]['label'])
if df6[i]['label']!=0.5:
a.append(df6[i]['label'])
if df7[i]['label']!=0.5:
a.append(df7[i]['label'])
if df8[i]['label']!=0.5:
a.append(df8[i]['label'])
if len(a)==0:
label.append(0.5)
else:
label.append(min([max([0.05,sum(a)/len(a)]),0.95]))
df = pd.DataFrame()
df['filename'] = filename
df['label'] = label
print(np.array(df['label'] ).mean())
df.to_csv('submission.csv', index=False )<load_from_csv> | epochs = 50
batch_size = 128 | Digit Recognizer |
18,871,430 | !rm submission_1.csv
!rm submission_2.csv
!rm submission_3.csv
!rm submission_4.csv
!rm submission_5.csv
!rm submission_6.csv
!rm submission_7.csv
!rm submission_8.csv<set_options> | history = model.fit_generator(datagen.flow(X_train, y_train, batch_size=batch_size),
epochs=epochs,
validation_data=(X_val, y_val),
verbose=2,
steps_per_epoch=X_train.shape[0]//batch_size,
callbacks=[learning_rate_reduction, es, checkpoint] ) | Digit Recognizer |
18,871,430 | %matplotlib inline
warnings.filterwarnings('ignore')
pd.set_option('display.max_rows', 100)
pd.set_option('display.max_columns', 200 )<load_from_csv> | results = model.predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label" ) | Digit Recognizer |
18,871,430 | <count_missing_values><EOS> | submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("submission.csv",index=False ) | Digit Recognizer |
18,752,947 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<count_values> | from matplotlib import pyplot as plt
import os
import scipy
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
import seaborn as sns
from sklearn.model_selection import train_test_split
import cv2 | Digit Recognizer |
18,752,947 | app_train['TARGET'].value_counts()<define_variables> | main_path = r".. /input/digit-recognizer"
train_df = pd.read_csv(os.path.join(main_path, "train.csv"))
test_df = pd.read_csv(os.path.join(main_path, "test.csv")) | Digit Recognizer |
18,752,947 | columns = ['AMT_INCOME_TOTAL','AMT_CREDIT', 'AMT_ANNUITY', 'AMT_GOODS_PRICE', 'DAYS_BIRTH', 'DAYS_EMPLOYED', 'DAYS_ID_PUBLISH',
'DAYS_REGISTRATION', 'DAYS_LAST_PHONE_CHANGE', 'CNT_FAM_MEMBERS', 'REGION_RATING_CLIENT', 'EXT_SOURCE_1',
'EXT_SOURCE_2', 'EXT_SOURCE_3', 'AMT_REQ_CREDIT_BUREAU_HOUR', 'AMT_REQ_CREDIT_BUREAU_DAY', 'AMT_REQ_CREDIT_BUREAU_WEEK',
'AMT_REQ_CREDIT_BUREAU_MON', 'AMT_REQ_CREDIT_BUREAU_QRT', 'AMT_REQ_CREDIT_BUREAU_YEAR']
show_hist_by_target(app_train, columns )<feature_engineering> | x_train = train_df.drop(labels=["label"], axis=1)
y_train = train_df["label"]
y_train.head() | Digit Recognizer |
18,752,947 | app_train['DAYS_BIRTH']=abs(app_train['DAYS_BIRTH'])
app_train['DAYS_BIRTH'].corr(app_train['TARGET'] )<count_missing_values> | x_train = x_train.to_numpy() / 255.0
x_test = test_df.to_numpy() / 255.0
x_train = x_train.reshape(-1, 28, 28, 1)
x_test = x_test.reshape(-1, 28, 28, 1)
y_train = to_categorical(y_train)
plt.imshow(x_train[125, :, :, :] ) | Digit Recognizer |
18,752,947 | app_train[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3']].isnull().sum()<count_values> | x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.15, random_state=2)
datagen = ImageDataGenerator(
rotation_range=27,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.3,
zoom_range=0.2
) | Digit Recognizer |
18,752,947 | app_train['EXT_SOURCE_3'].value_counts(dropna=False )<count_values> | model = Sequential()
model.add(Conv2D(filters=64, kernel_size=(5,5), padding='same', activation='relu', input_shape=(28,28,1)))
model.add(BatchNormalization())
model.add(Conv2D(filters=64, kernel_size=(5,5), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters=64, kernel_size=(3,3), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(filters=64, kernel_size=(3,3), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters=64, kernel_size=(3,3), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Dense(10, activation='softmax'))
model.summary() | Digit Recognizer |
18,752,947 | cond_1 =(app_train['TARGET'] == 1)
cond_0 =(app_train['TARGET'] == 0)
print(app_train['CODE_GENDER'].value_counts() /app_train.shape[0])
print('
연체인 경우
',app_train[cond_1]['CODE_GENDER'].value_counts() /app_train[cond_1].shape[0])
print('
연체가 아닌 경우
',app_train[cond_0]['CODE_GENDER'].value_counts() /app_train[cond_0].shape[0] )<load_from_csv> | class myCallback(keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
if(logs.get('val_accuracy')> 0.9955):
print("Stop training!")
self.model.stop_training = True
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])
reduce_lr = ReduceLROnPlateau(
monitor='val_accuracy',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001
)
epoch_end = myCallback()
| Digit Recognizer |
18,752,947 | app_train = pd.read_csv('.. /input/home-credit-default-risk/application_train.csv')
app_test = pd.read_csv('.. /input/home-credit-default-risk/application_test.csv' )<concatenate> | history = model.fit(datagen.flow(x_train, y_train, batch_size=256),
epochs=200, validation_data=(x_val, y_val),
verbose=1, steps_per_epoch=x_train.shape[0]/256,
callbacks=[reduce_lr, epoch_end] ) | Digit Recognizer |
18,752,947 | <feature_engineering><EOS> | results = model.predict(x_test)
results = np.argmax(results, axis=1)
submission = pd.read_csv(os.path.join(main_path, "sample_submission.csv"))
image_id = range(1, x_test.shape[0]+1)
submission = pd.DataFrame({'Imageid':image_id, 'Label':results})
submission.to_csv('cnn2_submission.csv', index=False ) | Digit Recognizer |
16,960,601 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<load_from_csv> | %matplotlib inline
| Digit Recognizer |
16,960,601 | prev_app = pd.read_csv('.. /input/home-credit-default-risk/previous_application.csv')
print(prev_app.shape, apps.shape )<merge> | train = import_data('.. /input/digit-recognizer/train.csv')
test = import_data('.. /input/digit-recognizer/test.csv')
y_lab = train['label']
y = tf.keras.utils.to_categorical(y_lab)
train.drop('label', axis=1, inplace=True ) | Digit Recognizer |
16,960,601 | prev_app_outer = prev_app.merge(apps['SK_ID_CURR'], on='SK_ID_CURR', how='outer', indicator=True )<count_values> | train_df = np.array(train ).reshape(-1, 28, 28, 1)
test_df = np.array(test ).reshape(-1, 28, 28, 1)
del train
del test
del y_lab | Digit Recognizer |
16,960,601 | prev_app_outer['_merge'].value_counts()<sort_values> | def change_size(image):
img = array_to_img(image, scale=False)
img = img.resize(( 75, 75))
img = img.convert(mode='RGB')
arr = img_to_array(img)
return arr.astype(np.float32 ) | Digit Recognizer |
16,960,601 | def missing_data(data):
total = data.isnull().sum().sort_values(ascending = False)
percent =(data.isnull().sum() /data.isnull().count() *100 ).sort_values(ascending = False)
return pd.concat([total, percent], axis=1, keys=['Total', 'Percent'] )<groupby> | train_array = [change_size(img)for img in train_df]
train = np.array(train_array)
del train_array
test_array = [change_size(img)for img in test_df]
test = np.array(test_array)
del test_array | Digit Recognizer |
16,960,601 | prev_app.groupby('SK_ID_CURR' ).count()<groupby> | def get_random_eraser(p=0.5, s_l=0.02, s_h=0.4, r_1=0.3, r_2=1/0.3, v_l=0, v_h=255, pixel_level=False):
def eraser(input_img):
if input_img.ndim == 3:
img_h, img_w, img_c = input_img.shape
elif input_img.ndim == 2:
img_h, img_w = input_img.shape
p_1 = np.random.rand()
if p_1 > p:
return input_img
while True:
s = np.random.uniform(s_l, s_h)* img_h * img_w
r = np.random.uniform(r_1, r_2)
w = int(np.sqrt(s / r))
h = int(np.sqrt(s * r))
left = np.random.randint(0, img_w)
top = np.random.randint(0, img_h)
if left + w <= img_w and top + h <= img_h:
break
if pixel_level:
if input_img.ndim == 3:
c = np.random.uniform(v_l, v_h,(h, w, img_c))
if input_img.ndim == 2:
c = np.random.uniform(v_l, v_h,(h, w))
else:
c = np.random.uniform(v_l, v_h)
input_img[top:top + h, left:left + w] = c
return input_img
return eraser | Digit Recognizer |
16,960,601 | prev_app.groupby('SK_ID_CURR')['SK_ID_CURR'].count()<merge> | image_gen = ImageDataGenerator(rescale=1./255,
featurewise_center=False,
preprocessing_function=get_random_eraser(v_l=0, v_h=1),
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
zoom_range=0.1,
rotation_range=10,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.3,
validation_split=0.2)
train_generator = image_gen.flow(train,
y,
batch_size=32,
shuffle=True,
subset='training',
seed=42)
valid_generator = image_gen.flow(train,
y,
batch_size=16,
shuffle=True,
subset='validation')
del train_df
del test_df
del train | Digit Recognizer |
16,960,601 | app_prev_target = prev_app.merge(app_train[['SK_ID_CURR', 'TARGET']], on='SK_ID_CURR', how='left')
app_prev_target.shape<define_variables> | model = Sequential()
model.add(tf.keras.applications.resnet50.ResNet50(input_shape =(75, 75, 3),
pooling = 'avg',
include_top = False,
weights = 'imagenet'))
model.add(L.Flatten())
model.add(L.Dense(128, activation='relu'))
model.add(L.Dense(10, activation='softmax'))
model.compile(optimizer=RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0), loss='categorical_crossentropy', metrics=['accuracy'])
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001)
| Digit Recognizer |
16,960,601 | num_columns = [column for column in num_columns if column not in ['SK_ID_PREV', 'SK_ID_CURR', 'TARGET']]
num_columns<count_values> | for layer in model.layers[0].layers:
if layer.name == 'conv5_block1_0_conv':
break
layer.trainable=False | Digit Recognizer |
16,960,601 | app_prev_target.TARGET.value_counts()<groupby> | history = model.fit(train_generator, validation_data=valid_generator, epochs=20,
steps_per_epoch=train_generator.n//train_generator.batch_size,
validation_steps=valid_generator.n//valid_generator.batch_size,
callbacks=[learning_rate_reduction] ) | Digit Recognizer |
16,960,601 | print(app_prev_target.groupby('TARGET' ).agg({'AMT_ANNUITY': ['mean', 'median', 'count']}))
print(app_prev_target.groupby('TARGET' ).agg({'AMT_APPLICATION': ['mean', 'median', 'count']}))
print(app_prev_target.groupby('TARGET' ).agg({'AMT_CREDIT': ['mean', 'median', 'count']}))<groupby> | test = test/255 | Digit Recognizer |
16,960,601 | <groupby><EOS> | res = model.predict(test[:])
output = pd.DataFrame({'ImageId':[ i+1 for i in range(len(res)) ],
'Label': [ xi.argmax() for xi in res]})
output.to_csv('submission_grid.csv', index=False ) | Digit Recognizer |
18,665,924 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<groupby> | warnings.filterwarnings("ignore")
%matplotlib inline
np.random.seed(2)
sns.set(style='white', context='notebook', palette='deep' ) | Digit Recognizer |
18,665,924 | prev_group = prev_app.groupby('SK_ID_CURR')
prev_group.head()<create_dataframe> | train = pd.read_csv('.. /input/digit-recognizer/train.csv')
test = pd.read_csv('.. /input/digit-recognizer/test.csv')
sub = pd.read_csv('.. /input/digit-recognizer/sample_submission.csv')
print("Data are Ready!!" ) | Digit Recognizer |
18,665,924 | prev_agg = pd.DataFrame()
prev_agg['CNT'] = prev_group['SK_ID_CURR'].count()
prev_agg.head()<feature_engineering> | print(f"Training data size is {train.shape}
Testing data size is {test.shape}" ) | Digit Recognizer |
18,665,924 | prev_agg['AVG_CREDIT'] = prev_group['AMT_CREDIT'].mean()
prev_agg['MAX_CREDIT'] = prev_group['AMT_CREDIT'].max()
prev_agg['MIN_CREDIT'] = prev_group['AMT_CREDIT'].min()
prev_agg.head()<merge> | Y_train = train["label"]
X_train = train.drop(labels = ["label"], axis = 1 ) | Digit Recognizer |
18,665,924 | prev_group = prev_app.groupby('SK_ID_CURR')
prev_agg1 = prev_group['AMT_CREDIT'].agg(['mean', 'max', 'min'])
prev_agg2 = prev_group['AMT_ANNUITY'].agg(['mean', 'max', 'min'])
prev_agg = prev_agg1.merge(prev_agg2, on='SK_ID_CURR', how='inner')
prev_agg.head()<feature_engineering> | ( x_train1, y_train1),(x_test1, y_test1)= mnist.load_data()
train1 = np.concatenate([x_train1, x_test1], axis=0)
y_train1 = np.concatenate([y_train1, y_test1], axis=0)
Y_train1 = y_train1
X_train1 = train1.reshape(-1, 28*28 ) | Digit Recognizer |
18,665,924 | prev_app['PREV_CREDIT_DIFF'] = prev_app['AMT_APPLICATION'] - prev_app['AMT_CREDIT']
prev_app['PREV_GOODS_DIFF'] = prev_app['AMT_APPLICATION'] - prev_app['AMT_GOODS_PRICE']
prev_app['PREV_CREDIT_APPL_RATIO'] = prev_app['AMT_CREDIT']/prev_app['AMT_APPLICATION']
prev_app['PREV_ANNUITY_APPL_RATIO'] = prev_app['AMT_ANNUITY']/prev_app['AMT_APPLICATION']
prev_app['PREV_GOODS_APPL_RATIO'] = prev_app['AMT_GOODS_PRICE']/prev_app['AMT_APPLICATION']<feature_engineering> | X_train = X_train / 255.0
test = test / 255.0
X_train1 = X_train1 / 255.0 | Digit Recognizer |
18,665,924 | prev_app['DAYS_FIRST_DRAWING'].replace(365243, np.nan, inplace=True)
prev_app['DAYS_FIRST_DUE'].replace(365243, np.nan, inplace= True)
prev_app['DAYS_LAST_DUE_1ST_VERSION'].replace(365243, np.nan, inplace= True)
prev_app['DAYS_LAST_DUE'].replace(365243, np.nan, inplace= True)
prev_app['DAYS_TERMINATION'].replace(365243, np.nan, inplace= True)
prev_app['PREV_DAYS_LAST_DUE_DIFF'] = prev_app['DAYS_LAST_DUE_1ST_VERSION'] - prev_app['DAYS_LAST_DUE']<feature_engineering> | X_train = np.concatenate(( X_train.values, X_train1))
Y_train = np.concatenate(( Y_train, Y_train1)) | Digit Recognizer |
18,665,924 | all_pay = prev_app['AMT_ANNUITY'] * prev_app['CNT_PAYMENT']
prev_app['PREV_INTERESTS_RATE'] =(all_pay/prev_app['AMT_CREDIT'] - 1)/prev_app['CNT_PAYMENT']<define_variables> | Y_train = to_categorical(Y_train, num_classes = 10 ) | Digit Recognizer |
18,665,924 | agg_dict = {
'SK_ID_CURR':['count'],
'AMT_CREDIT':['mean', 'max', 'sum'],
'AMT_ANNUITY':['mean', 'max', 'sum'],
'AMT_APPLICATION':['mean', 'max', 'sum'],
'AMT_DOWN_PAYMENT':['mean', 'max', 'sum'],
'AMT_GOODS_PRICE':['mean', 'max', 'sum'],
'RATE_DOWN_PAYMENT': ['min', 'max', 'mean'],
'DAYS_DECISION': ['min', 'max', 'mean'],
'CNT_PAYMENT': ['mean', 'sum'],
'PREV_CREDIT_DIFF':['mean', 'max', 'sum'],
'PREV_CREDIT_APPL_RATIO':['mean', 'max'],
'PREV_GOODS_DIFF':['mean', 'max', 'sum'],
'PREV_GOODS_APPL_RATIO':['mean', 'max'],
'PREV_DAYS_LAST_DUE_DIFF':['mean', 'max', 'sum'],
'PREV_INTERESTS_RATE':['mean', 'max']
}<groupby> | X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=2 ) | Digit Recognizer |
18,665,924 | prev_group = prev_app.groupby('SK_ID_CURR')
prev_amt_agg = prev_group.agg(agg_dict)
prev_amt_agg.columns = ['PREV_'+('_' ).join(column ).upper() for column in prev_amt_agg.columns.ravel() ]<count_values> |
model = Sequential()
model.add(Conv2D(filters = 64, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1)))
model.add(BatchNormalization())
model.add(Conv2D(filters = 64, kernel_size =(5,5),padding = 'Same', activation ='relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model.add(BatchNormalization())
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'Same', activation ='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Dense(10, activation = "softmax")) | Digit Recognizer |
18,665,924 | prev_app['NAME_CONTRACT_STATUS'].value_counts()<groupby> | optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0 ) | Digit Recognizer |
18,665,924 | prev_refused_agg = prev_refused.groupby('SK_ID_CURR')['SK_ID_CURR'].count()
prev_refused_agg.shape, prev_amt_agg.shape<create_dataframe> | model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
18,665,924 | pd.DataFrame(prev_refused_agg )<rename_columns> | learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001 ) | Digit Recognizer |
18,665,924 | prev_refused_agg.reset_index(name='PREV_REFUSED_COUNT' )<merge> | epochs = 50
batch_size = 128 | Digit Recognizer |
18,665,924 | prev_refused_agg = prev_refused_agg.reset_index(name='PREV_REFUSED_COUNT')
prev_amt_agg = prev_amt_agg.reset_index()
prev_amt_refused_agg = prev_amt_agg.merge(prev_refused_agg, on='SK_ID_CURR', how='left')
prev_amt_refused_agg.head(10 )<count_values> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
train_gen = datagen.flow(X_train,Y_train, batch_size=batch_size ) | Digit Recognizer |
18,665,924 | prev_amt_refused_agg['PREV_REFUSED_COUNT'].value_counts(dropna=False )<feature_engineering> | history = model.fit(train_gen,
epochs = epochs,validation_data =(X_val,Y_val),
verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=[learning_rate_reduction],
validation_steps = X_val.shape[0] // batch_size ) | Digit Recognizer |
18,665,924 | prev_amt_refused_agg = prev_amt_refused_agg.fillna(0)
prev_amt_refused_agg['PREV_REFUSE_RATIO'] = prev_amt_refused_agg['PREV_REFUSED_COUNT'] / prev_amt_refused_agg['PREV_SK_ID_CURR_COUNT']
prev_amt_refused_agg.head(10 )<groupby> | errors =(Y_pred_classes - Y_true != 0)
Y_pred_classes_errors = Y_pred_classes[errors]
Y_pred_errors = Y_pred[errors]
Y_true_errors = Y_true[errors]
X_val_errors = X_val[errors] | Digit Recognizer |
18,665,924 | prev_refused_appr_group = prev_app[prev_app['NAME_CONTRACT_STATUS'].isin(['Approved', 'Refused'])].groupby(['SK_ID_CURR', 'NAME_CONTRACT_STATUS'])
prev_refused_appr_agg = prev_refused_appr_group['SK_ID_CURR'].count().unstack()
prev_refused_appr_agg.head(10 )<drop_column> | Y_pred_errors_prob = np.max(Y_pred_errors,axis = 1)
true_prob_errors = np.diagonal(np.take(Y_pred_errors, Y_true_errors, axis=1))
delta_pred_true_errors = Y_pred_errors_prob - true_prob_errors
sorted_dela_errors = np.argsort(delta_pred_true_errors)
most_important_errors = sorted_dela_errors[-6:]
display_errors(most_important_errors, X_val_errors, Y_pred_classes_errors, Y_true_errors ) | Digit Recognizer |
18,665,924 | prev_refused_appr_agg = prev_refused_appr_agg.fillna(0)
prev_refused_appr_agg.columns = ['PREV_APPROVED_COUNT', 'PREV_REFUSED_COUNT']
prev_refused_appr_agg = prev_refused_appr_agg.reset_index()
prev_refused_appr_agg.head(10 )<merge> | results = model.predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label" ) | Digit Recognizer |
18,665,924 | prev_agg = prev_amt_agg.merge(prev_refused_appr_agg, on='SK_ID_CURR', how='left')
prev_agg['PREV_REFUSED_RATIO'] = prev_agg['PREV_REFUSED_COUNT']/prev_agg['PREV_SK_ID_CURR_COUNT']
prev_agg['PREV_APPROVED_RATIO'] = prev_agg['PREV_APPROVED_COUNT']/prev_agg['PREV_SK_ID_CURR_COUNT']
prev_agg = prev_agg.drop(['PREV_REFUSED_COUNT', 'PREV_APPROVED_COUNT'], axis=1)
prev_agg.head(30 )<categorify> | submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("cnn_mnist_submission.csv",index=False ) | Digit Recognizer |
18,665,924 | apps_all = get_apps_processed(apps )<merge> | ( x_train1, y_train1),(x_test1, y_test1)= mnist.load_data()
Y_train1 = y_train1
X_train1 = x_train1.reshape(-1, 28*28 ) | Digit Recognizer |
18,665,924 | print(apps_all.shape, prev_agg.shape)
apps_all = apps_all.merge(prev_agg, on='SK_ID_CURR', how='left')
print(apps_all.shape )<feature_engineering> | train_data = pd.read_csv('.. /input/digit-recognizer/train.csv')
test_data = pd.read_csv('.. /input/digit-recognizer/test.csv' ) | Digit Recognizer |
18,665,924 | object_columns = apps_all.dtypes[apps_all.dtypes == 'object'].index.tolist()
for column in object_columns:
apps_all[column] = pd.factorize(apps_all[column])[0]<drop_column> | train_images = train_data.copy()
train_images = train_images.values
X_train = train_images[:,1:]
y_train = train_images[:,0]
X_test = test_data.values | Digit Recognizer |
18,665,924 | apps_all_train = apps_all[~apps_all['TARGET'].isnull() ]
apps_all_test = apps_all[apps_all['TARGET'].isnull() ]
apps_all_test = apps_all_test.drop('TARGET', axis=1 )<split> | predictions = np.zeros(( X_train.shape[0])) | Digit Recognizer |
18,665,924 | ftr_app = apps_all_train.drop(['SK_ID_CURR', 'TARGET'], axis=1)
target_app = apps_all_train['TARGET']
train_x, valid_x, train_y, valid_y = train_test_split(ftr_app, target_app, test_size=0.3, random_state=2020)
train_x.shape, valid_x.shape<train_model> | x1=0
x2=0
print("Classifying Kaggle's 'test.csv' using KNN where K=1 and MNIST 70k images.. ")
for i in range(0,28000):
for j in range(0,70000):
if np.absolute(X_test[i,:]-mnist_image[j,:] ).sum() ==0:
predictions[i]=mnist_label[j]
if i%1000==0:
print(" %d images classified perfectly"%(i),end="")
if j<60000:
x1+=1
else:
x2+=1
break
if x1+x2==28000:
print(" 28000 images classified perfectly.")
print("All 28000 images are contained in MNIST.npz Dataset.")
print("%d images are in MNIST.npz train and %d images are in MNIST.npz test"%(x1,x2)) | Digit Recognizer |
18,665,924 | clf = LGBMClassifier(
n_jobs=-1,
n_estimators=1000,
learning_rate=0.02,
num_leaves=32,
subsample=0.8,
max_depth=12,
silent=-1,
verbose=-1
)
clf.fit(train_x, train_y, eval_set=[(train_x, train_y),(valid_x, valid_y)], eval_metric= 'auc', verbose= 100,
early_stopping_rounds= 50 )<save_to_csv> | final_pred = predictions[0:28000] | Digit Recognizer |
18,665,924 | preds = clf.predict_proba(apps_all_test.drop('SK_ID_CURR', axis=1)) [:, 1 ]
apps_all_test['TARGET'] = preds
apps_all_test[['SK_ID_CURR', 'TARGET']].to_csv('prev_baseline_03.csv', index=False )<load_from_csv> | my_submission = pd.DataFrame({'ImageId':np.arange(28000),'Label':final_pred.squeeze().astype(np.int)})
my_submission.head() | Digit Recognizer |
18,665,924 | application_train = pd.read_csv('/kaggle/input/home-credit-default-risk/application_train.csv')
application_test = pd.read_csv('/kaggle/input/home-credit-default-risk/application_test.csv')
<train_model> | my_submission["ImageId"]=my_submission["ImageId"]+1 | Digit Recognizer |
18,665,924 | print("Dimension of application_train :", application_train.shape)
print("결측치가 있는 컬럼 수 :",(application_train.isnull().sum() !=0 ).sum())
application_train.head()<train_model> | my_submission.to_csv('best_submission.csv', index=False ) | Digit Recognizer |
21,304,203 | print("Dimension :", application_train.dropna(axis=0 ).shape)
print("결측치가 있는 컬럼 수 :",(application_train.dropna(axis=0 ).isnull().sum() !=0 ).sum())
application_train.dropna(axis=0 )<train_model> | data_train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
data_test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' ) | Digit Recognizer |
21,304,203 | column_list = []
for name in column_series.keys() :
if(column_series[name]>100000):
column_list.append(name)
print(column_list, len(column_list))<train_model> | print('Number of non-valid elements in training set:', data_train[data_train.isna() == True].count().sum() ,
'
Number of non valid elements in test set:', data_test[data_test.isna() == True].count().sum() ) | Digit Recognizer |
21,304,203 | def show_hist_by_target(df, columns):
cond_1 =(df['TARGET'] == 1)
cond_0 =(df['TARGET'] == 0)
for column in columns:
fig, ax = plt.subplots(figsize=(12, 4), nrows=1, ncols=2, squeeze=False)
if(type(df[column][0])is str):
df_temp = df[["TARGET",column]].value_counts().astype(float)
idx_temp = df_temp.reset_index(name='RATIO')[column].unique()
for i in range(0,2):
sum_temp = df_temp[i].sum()
for j in idx_temp:
df_temp[(i,j)] = df_temp[(i,j)] / sum_temp
df_temp = df_temp.reset_index(name='RATIO')
sns.barplot(x="TARGET", y="RATIO", hue=column, data=df_temp,ax=ax[0][0])
sns.lineplot(x=df[cond_1][column].value_counts().keys().tolist() , y=df[cond_1][column].value_counts() , label = 'target=1', color='red', ax=ax[0][1])
sns.lineplot(x=df[cond_0][column].value_counts().keys().tolist() , y=df[cond_0][column].value_counts() , label = 'target=0', color='blue', ax=ax[0][1])
else:
sns.violinplot(x='TARGET', y=column, data=df, ax=ax[0][0])
sns.histplot(df[cond_1][column], label='target=1', color='red', ax=ax[0][1], kde=True)
sns.histplot(df[cond_0][column], label='target=0', color='blue', ax=ax[0][1], kde=True)
plt.show()
plt.close()<sort_values> | data_train_pd = data_train.copy() | Digit Recognizer |
21,304,203 | abs(cor["TARGET"] ).sort_values()<count_values> | true_labels = data_train.label
data_train = data_train.drop('label', axis = 1 ) | Digit Recognizer |
21,304,203 | application_train.dtypes.value_counts()<categorify> | tsne = TSNE(n_components=2, verbose=1, perplexity=40, n_iter=300)
data_train_embedded = tsne.fit_transform(sample.drop('label', axis = 1)) | Digit Recognizer |
21,304,203 | application_train["FONDKAPREMONT_MODE"]<categorify> | X_train, X_holdout, y_train, y_holdout = train_test_split(data_train_pd.drop('label', axis = 1), data_train_pd.label,
test_size = 0.25, random_state=0)
knn = KNeighborsClassifier(n_neighbors=10, n_jobs=-1)
knn.fit(X_train, y_train)
| Digit Recognizer |
21,304,203 | le = LabelEncoder()
le_count = 0
for col in application_train:
if application_train[col].dtype == 'object':
if len(list(application_train[col].unique())) >= 2:
le.fit(application_train[col])
application_train[col] = le.transform(application_train[col])
application_test[col] = le.transform(application_test[col])
le_count += 1
print('Label Encoding : %d 컬럼 라벨 인코딩 완료.' % le_count )<define_variables> | X_train, X_holdout, y_train, y_holdout = train_test_split(data_train_pd.drop('label', axis = 1), data_train_pd.label,
test_size = 0.25, random_state=0)
bnbclf = BernoulliNB()
bnbclf.fit(X_train, y_train ) | Digit Recognizer |
21,304,203 | application_train["FONDKAPREMONT_MODE"]<count_unique_values> | print("Accuracy score: {:.2f}".format(bnbclf.score(X_holdout, y_holdout)))
print("Cross-entropy loss: {:.2f}".format(log_loss(np.array(y_holdout), bnbclf.predict_proba(X_holdout)))) | Digit Recognizer |
21,304,203 | application_train.select_dtypes('object' ).apply(pd.Series.nunique, axis = 0 )<define_variables> | bnb_params = {'alpha': np.arange(0.01, 0.1, 0.05),
'binarize' : np.arange(0, 0.5, 0.2),
'fit_prior': [True, False]
}
bnbcv = GridSearchCV(bnbclf, param_grid = bnb_params, cv = 3 ) | Digit Recognizer |
21,304,203 | rel_list = []
for rel_column in rel.index:
if(rel[rel_column]<0.03):
rel_list.append(rel_column)
print(rel_column )<drop_column> | bnbcv.fit(X_train, y_train)
bnb_best = bnbcv.best_estimator_ | Digit Recognizer |
21,304,203 | rel_list.remove('SK_ID_CURR' )<drop_column> | bnbcv.best_params_ | Digit Recognizer |
21,304,203 | column_list.remove("EXT_SOURCE_1")
app_train = application_train<train_model> | print("Accuracy score: {:.2f}".format(bnb_best.score(X_holdout, y_holdout)))
print("Cross-entropy loss: {:.2f}".format(log_loss(np.array(y_holdout), bnb_best.predict_proba(X_holdout)))) | Digit Recognizer |
21,304,203 | print("Dimension of application_test :", application_test.shape)
print("결측치가 있는 컬럼 수 :",(application_test.isnull().sum() !=0 ).sum())
application_test.head()<drop_column> | model = Sequential()
model.add(Convolution2D(32,(3, 3), activation='relu', input_shape=(28,28,1)))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization(axis=1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer="zeros", gamma_initializer="ones",))
model.add(Convolution2D(32,(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization(axis=1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer="zeros", gamma_initializer="ones",))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax')) | Digit Recognizer |
21,304,203 | app_test = application_test<feature_engineering> | data_train = data_train / 255
data_test = data_test / 255 | Digit Recognizer |
21,304,203 | def data_processing(out, data):
out['APPS_EXT_SOURCE_MEAN'] = data[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3']].mean(axis=1)
out['APPS_EXT_SOURCE_STD'] = data[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3']].std(axis=1)
out['APPS_EXT_SOURCE_STD'] = out['APPS_EXT_SOURCE_STD'].fillna(out['APPS_EXT_SOURCE_STD'].mean())
out['APPS_ANNUITY_CREDIT_RATIO'] = data['AMT_ANNUITY']/data['AMT_CREDIT']
out['APPS_GOODS_CREDIT_RATIO'] = data['AMT_GOODS_PRICE']/data['AMT_CREDIT']
out['APPS_ANNUITY_INCOME_RATIO'] = data['AMT_ANNUITY']/data['AMT_INCOME_TOTAL']
out['APPS_GOODS_INCOME_RATIO'] = data['AMT_GOODS_PRICE']/data['AMT_INCOME_TOTAL']
out['APPS_CREDIT_INCOME_RATIO'] = data['AMT_CREDIT']/data['AMT_INCOME_TOTAL']
out['APPS_CNT_FAM_INCOME_RATIO'] = data['AMT_INCOME_TOTAL']/data['CNT_FAM_MEMBERS']
out['APPS_EMPLOYED_BIRTH_RATIO'] = data['DAYS_EMPLOYED']/data['DAYS_BIRTH']
out['APPS_INCOME_EMPLOYED_RATIO'] = data['AMT_INCOME_TOTAL']/data['DAYS_EMPLOYED']
out['APPS_INCOME_BIRTH_RATIO'] = data['AMT_INCOME_TOTAL']/data['DAYS_BIRTH']
out['APPS_CAR_BIRTH_RATIO'] = data['OWN_CAR_AGE'] / data['DAYS_BIRTH']
out['APPS_CAR_EMPLOYED_RATIO'] = data['OWN_CAR_AGE'] / data['DAYS_EMPLOYED']
return out<train_model> | y = np.array(pd.get_dummies(true_labels)) | Digit Recognizer |
21,304,203 | app_train = data_processing(app_train, application_train)
app_test = data_processing(app_test, application_test)
app_train.shape, app_test.shape<load_from_csv> | X_train, X_holdout, y_train, y_holdout = train_test_split(data_train, y,
test_size = 0.25, random_state=17 ) | Digit Recognizer |
21,304,203 | prev_app = pd.read_csv('.. /input/home-credit-default-risk/previous_application.csv')
print(prev_app.shape, app_train.shape )<feature_engineering> | reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss',
factor=0.1,
patience=5,
min_lr=0.000001,
verbose=1 ) | Digit Recognizer |
21,304,203 | prev_app['PREV_CREDIT_DIFF'] = prev_app['AMT_APPLICATION'] - prev_app['AMT_CREDIT']
prev_app['PREV_GOODS_DIFF'] = prev_app['AMT_APPLICATION'] - prev_app['AMT_GOODS_PRICE']
prev_app['PREV_CREDIT_APPL_RATIO'] = prev_app['AMT_CREDIT']/prev_app['AMT_APPLICATION']
prev_app['PREV_ANNUITY_APPL_RATIO'] = prev_app['AMT_ANNUITY']/prev_app['AMT_APPLICATION']
prev_app['PREV_GOODS_APPL_RATIO'] = prev_app['AMT_GOODS_PRICE']/prev_app['AMT_APPLICATION']<feature_engineering> | model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
result = model.fit(X_train, y_train, batch_size=32, epochs=10, verbose=1, validation_data=(X_holdout, y_holdout), callbacks = [reduce_lr] ) | Digit Recognizer |
21,304,203 | prev_app['DAYS_FIRST_DRAWING'].replace(365243, np.nan, inplace=True)
prev_app['DAYS_FIRST_DUE'].replace(365243, np.nan, inplace= True)
prev_app['DAYS_LAST_DUE_1ST_VERSION'].replace(365243, np.nan, inplace= True)
prev_app['DAYS_LAST_DUE'].replace(365243, np.nan, inplace= True)
prev_app['DAYS_TERMINATION'].replace(365243, np.nan, inplace= True)
prev_app['PREV_DAYS_LAST_DUE_DIFF'] = prev_app['DAYS_LAST_DUE_1ST_VERSION'] - prev_app['DAYS_LAST_DUE']<define_variables> | layer_names = [layer.name for layer in model.layers]
layer_outputs = [layer.output for layer in model.layers]
layer_outputs = [layer_outputs[0], layer_outputs[2]]
feature_map_model = Model(model.input, layer_outputs)
im = X_train[99:100,:]
feature_maps = feature_map_model.predict(im ) | Digit Recognizer |
21,304,203 | agg_dict = {
'SK_ID_CURR':['count'],
'AMT_CREDIT':['mean', 'max', 'sum'],
'AMT_ANNUITY':['mean', 'max', 'sum'],
'AMT_APPLICATION':['mean', 'max', 'sum'],
'AMT_DOWN_PAYMENT':['mean', 'max', 'sum'],
'AMT_GOODS_PRICE':['mean', 'max', 'sum'],
'RATE_DOWN_PAYMENT': ['min', 'max', 'mean'],
'DAYS_DECISION': ['min', 'max', 'mean'],
'CNT_PAYMENT': ['mean', 'sum'],
'PREV_CREDIT_DIFF':['mean', 'max', 'sum'],
'PREV_CREDIT_APPL_RATIO':['mean', 'max'],
'PREV_GOODS_DIFF':['mean', 'max', 'sum'],
'PREV_GOODS_APPL_RATIO':['mean', 'max'],
'PREV_DAYS_LAST_DUE_DIFF':['mean', 'max', 'sum'],
'PREV_INTERESTS_RATE':['mean', 'max']
}
prev_group = prev_app.groupby('SK_ID_CURR')
prev_amt_agg = prev_group.agg(agg_dict)
prev_amt_agg.columns = ['PREV_' +('_' ).join(column ).upper() for column in prev_amt_agg.columns.ravel() ]
prev_amt_agg.head()<merge> | augumentator = tf.keras.preprocessing.image.ImageDataGenerator(
rotation_range=15,
width_shift_range=0.15,
shear_range=0.1,
zoom_range=0.1,
validation_split=0.0,
horizontal_flip=False,
vertical_flip=False)
augumentator.fit(X_train ) | Digit Recognizer |
21,304,203 | prev_app_merge = app_train.merge(prev_amt_agg, on='SK_ID_CURR', how='left', indicator=True)
prev_app_merge = prev_app_merge.drop(columns=['_merge'])
prev_app_merge.shape<count_values> | history = model.fit(augumentator.flow(X_train, y_train, batch_size = 32), epochs = 10,
validation_data =(X_holdout, y_holdout), verbose = 1, callbacks = [reduce_lr] ) | Digit Recognizer |
21,304,203 | prev_app['NAME_CONTRACT_STATUS'].value_counts()<define_variables> | mnist = tf.keras.datasets.mnist
(X_train_mnist, y_train_mnist),(X_val_mnist, y_val_mnist)= mnist.load_data() | Digit Recognizer |
21,304,203 | cond_refused =(prev_app['NAME_CONTRACT_STATUS'] == 'Refused')
cond_approved =(prev_app['NAME_CONTRACT_STATUS'] == 'Approved')
prev_refused = prev_app[cond_refused]
prev_approved = prev_app[cond_approved]
prev_refused.shape, prev_approved.shape, prev_app.shape<groupby> | y_train_mnist = np.array(pd.get_dummies(pd.Series(y_train_mnist)))
y_holdout_mnist = np.array(pd.get_dummies(pd.Series(y_val_mnist)) ) | Digit Recognizer |
21,304,203 | prev_refused = prev_refused.groupby('SK_ID_CURR')
prev_approved = prev_approved.groupby('SK_ID_CURR' )<count_values> | X_train_mnist = X_train_mnist.reshape(-1, 28, 28, 1)
X_holdout_mnist = X_val_mnist.reshape(-1, 28, 28, 1)
X_train_mnist = X_train_mnist / 255
X_holdout_mnist = X_holdout_mnist /255 | Digit Recognizer |
21,304,203 | prev_refused = prev_refused['NAME_CONTRACT_TYPE'].count()
prev_refused.name = "PRE_CONTRACT_REFUSED"
prev_approved = prev_approved['NAME_CONTRACT_TYPE'].count()
prev_approved.name = "PRE_CONTRACT_APPROVED"<merge> | X_train_ext = np.concatenate(( X_train, X_train_mnist), axis = 0)
X_holdout_ext = np.concatenate(( X_holdout, X_holdout_mnist), axis = 0)
y_train_ext = np.concatenate(( y_train, y_train_mnist), axis = 0)
y_holdout_ext = np.concatenate(( y_holdout, y_holdout_mnist), axis = 0 ) | Digit Recognizer |
21,304,203 | prev_app_merge = prev_app_merge.merge(prev_approved, on='SK_ID_CURR', how='left', indicator=False)
prev_app_merge = prev_app_merge.merge(prev_refused, on='SK_ID_CURR', how='left', indicator=False)
prev_app_merge['PRE_CONTRACT_APPROVED_RATE'] = prev_app_merge['PRE_CONTRACT_APPROVED'] /(prev_app_merge['PRE_CONTRACT_APPROVED'] + prev_app_merge['PRE_CONTRACT_REFUSED'])
prev_app_merge['PRE_CONTRACT_REFUSED_RATE'] = prev_app_merge['PRE_CONTRACT_REFUSED'] /(prev_app_merge['PRE_CONTRACT_APPROVED'] + prev_app_merge['PRE_CONTRACT_REFUSED'])
prev_app_merge.head()<categorify> | model.fit(X_train_ext, y_train_ext, batch_size=32, epochs=20, verbose=1, validation_data=(X_holdout, y_holdout), callbacks = [reduce_lr] ) | Digit Recognizer |
21,304,203 | prev_app_merge = prev_app_merge.replace(float('NaN'),0)
prev_app_merge.head()<load_from_csv> | predictions = model.predict(data_test ).argmax(axis = 1)
predictions
submission = pd.DataFrame({'ImageId':np.arange(1, len(predictions)+1), 'Label':predictions})
submission.to_csv('submission.csv', index=False ) | Digit Recognizer |
21,316,401 | bureau = pd.read_csv('.. /input/home-credit-default-risk/bureau.csv')
print("Size of bureau data", bureau.shape )<merge> | from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten
from tensorflow.keras import utils
from tensorflow.keras.preprocessing import image
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.callbacks import ReduceLROnPlateau, ModelCheckpoint
import tensorflow as tf
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt | Digit Recognizer |
21,316,401 | PAST_LOANS_PER_CUS = bureau[['SK_ID_CURR', 'DAYS_CREDIT']].groupby(by = ['SK_ID_CURR'])['DAYS_CREDIT'].count().reset_index().rename(index=str, columns={'DAYS_CREDIT': 'BUREAU_LOAN_COUNT'})
app_train_bureau = prev_app_merge.merge(PAST_LOANS_PER_CUS, on = ['SK_ID_CURR'], how = 'left')
print(app_train_bureau.shape)
app_train_bureau.head()<merge> | data_train = np.loadtxt('/kaggle/input/digit-recognizer/train.csv', skiprows = 1, delimiter= ',')
data_train[0:5] | Digit Recognizer |