name
stringlengths
9
16
description
stringlengths
419
314k
HOWPOZ_clean
CdC10N3H9O4 crystallizes in the orthorhombic Pbcn space group. Cd(1) is bonded to one N(1), one N(2), one O(1), one O(2), one O(3), and one O(4) atom to form distorted CdN2O4 octahedra that share a cornercorner with one C(10)H2N2 tetrahedra, a cornercorner with one C(8)H2N2 tetrahedra, and a cornercorner with one C(9)H2N2 tetrahedra. The Cd(1)-N(1) bond length is 2.38 Å. The Cd(1)-N(2) bond length is 2.44 Å. The Cd(1)-O(1) bond length is 2.31 Å. The Cd(1)-O(2) bond length is 2.58 Å. The Cd(1)-O(3) bond length is 2.48 Å. The Cd(1)-O(4) bond length is 2.43 Å. There are eleven inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.48 Å. The C(1)-O(1) bond length is 1.27 Å. The C(1)-O(2) bond length is 1.25 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.43 Å. The C(2)-C(7) bond length is 1.37 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(5) atom. The C(3)-C(4) bond length is 1.50 Å. The C(3)-C(5) bond length is 1.38 Å. In the fourth C site, C(4) is bonded in a distorted bent 120 degrees geometry to one C(3), one O(3), and one O(4) atom. The C(4)-O(3) bond length is 1.28 Å. The C(4)-O(4) bond length is 1.23 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(3) and one H(1) atom. The C(5)-H(1) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(2) atom. The C(6)-N(1) bond length is 1.32 Å. The C(6)-H(2) bond length is 0.93 Å. In the seventh C site, C(7) is bonded in a distorted bent 120 degrees geometry to one C(2), one N(1), and one H(3) atom. The C(7)-N(1) bond length is 1.35 Å. The C(7)-H(3) bond length is 0.93 Å. In the eighth C site, C(8) is bonded to one N(2); one N(3); and two equivalent H(4,5) atoms to form CH2N2 tetrahedra that share a cornercorner with one Cd(1)N2O4 octahedra, a cornercorner with one C(10)H2N2 tetrahedra, a cornercorner with one C(11)H2N2 tetrahedra, and corners with two equivalent C(9)H2N2 tetrahedra. The corner-sharing octahedral tilt angles are 71°. The C(8)-N(2) bond length is 1.44 Å. The C(8)-N(3) bond length is 1.46 Å. Both C(8)-H(4,5) bond lengths are 0.97 Å. In the ninth C site, C(9) is bonded to one N(2); one N(3); and two equivalent H(7,8) atoms to form CH2N2 tetrahedra that share a cornercorner with one Cd(1)N2O4 octahedra, a cornercorner with one C(10)H2N2 tetrahedra, a cornercorner with one C(11)H2N2 tetrahedra, and corners with two equivalent C(8)H2N2 tetrahedra. The corner-sharing octahedral tilt angles are 74°. The C(9)-N(2) bond length is 1.49 Å. The C(9)-N(3) bond length is 1.44 Å. Both C(9)-H(7,8) bond lengths are 0.97 Å. In the tenth C site, C(10) is bonded to two equivalent N(2) and two equivalent H(6) atoms to form CH2N2 tetrahedra that share corners with two equivalent Cd(1)N2O4 octahedra, corners with two equivalent C(8)H2N2 tetrahedra, and corners with two equivalent C(9)H2N2 tetrahedra. The corner-sharing octahedral tilt angles are 62°. Both C(10)-N(2) bond lengths are 1.46 Å. Both C(10)-H(6) bond lengths are 0.97 Å. In the eleventh C site, C(11) is bonded to two equivalent N(3) and two equivalent H(9) atoms to form corner-sharing CH2N2 tetrahedra. Both C(11)-N(3) bond lengths are 1.42 Å. Both C(11)-H(9) bond lengths are 0.97 Å. There are three inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Cd(1), one C(6), and one C(7) atom. In the second N site, N(2) is bonded to one Cd(1), one C(10), one C(8), and one C(9) atom to form distorted corner-sharing NCdC3 tetrahedra. In the third N site, N(3) is bonded in a trigonal non-coplanar geometry to one C(11), one C(8), and one C(9) atom. There are seven inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(5) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(6) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(7) atom. In the fourth H site, H(4,5) is bonded in a single-bond geometry to one C(8) atom. In the fifth H site, H(6) is bonded in a single-bond geometry to one C(10) atom. In the sixth H site, H(7,8) is bonded in a single-bond geometry to one C(9) atom. In the seventh H site, H(9) is bonded in a single-bond geometry to one C(11) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a distorted water-like geometry to one Cd(1) and one C(1) atom. In the second O site, O(2) is bonded in a single-bond geometry to one Cd(1) and one C(1) atom. In the third O site, O(3) is bonded in a single-bond geometry to one Cd(1) and one C(4) atom. In the fourth O site, O(4) is bonded in a distorted single-bond geometry to one Cd(1) and one C(4) atom. Linkers: 8 [O]C(=O)c1ccncc1C([O])=O ,5 C1N2CN3CN1CN(C2)C3. Metal clusters: 8 O=[C]O[Cd]1O[C]O1. The MOF has largest included sphere 7.22 A, density 1.28 g/cm3, surface area 3545.78 m2/g, accessible volume 0.38 cm3/g
XEGKUR_clean
GdC21H6(NO3)6 crystallizes in the monoclinic C2/c space group. Gd(1) is bonded in a 7-coordinate geometry to one O(1), one O(14), one O(2), one O(3), one O(4), and two equivalent O(13) atoms. The Gd(1)-O(1) bond length is 2.40 Å. The Gd(1)-O(14) bond length is 2.42 Å. The Gd(1)-O(2) bond length is 2.36 Å. The Gd(1)-O(3) bond length is 2.45 Å. The Gd(1)-O(4) bond length is 2.53 Å. There is one shorter (2.34 Å) and one longer (2.70 Å) Gd(1)-O(13) bond length. There are twenty-one inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.48 Å. The C(1)-O(1) bond length is 1.26 Å. The C(1)-O(2) bond length is 1.23 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.41 Å. The C(2)-C(7) bond length is 1.36 Å. In the third C site, C(3) is bonded in a distorted trigonal planar geometry to one C(2), one C(4), and one H(1) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a distorted trigonal planar geometry to one C(3), one C(5), and one N(1) atom. The C(4)-C(5) bond length is 1.40 Å. The C(4)-N(1) bond length is 1.48 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(4), one C(6), and one C(8) atom. The C(5)-C(6) bond length is 1.37 Å. The C(5)-C(8) bond length is 1.48 Å. In the sixth C site, C(6) is bonded in a distorted trigonal planar geometry to one C(5), one C(7), and one N(2) atom. The C(6)-C(7) bond length is 1.42 Å. The C(6)-N(2) bond length is 1.47 Å. In the seventh C site, C(7) is bonded in a distorted trigonal planar geometry to one C(2), one C(6), and one H(2) atom. The C(7)-H(2) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one C(13), one C(5), and one C(9) atom. The C(8)-C(13) bond length is 1.45 Å. The C(8)-C(9) bond length is 1.35 Å. In the ninth C site, C(9) is bonded in a distorted trigonal planar geometry to one C(10), one C(8), and one N(3) atom. The C(9)-C(10) bond length is 1.41 Å. The C(9)-N(3) bond length is 1.49 Å. In the tenth C site, C(10) is bonded in a distorted trigonal planar geometry to one C(11), one C(9), and one H(3) atom. The C(10)-C(11) bond length is 1.41 Å. The C(10)-H(3) bond length is 0.93 Å. In the eleventh C site, C(11) is bonded in a trigonal planar geometry to one C(10), one C(12), and one C(14) atom. The C(11)-C(12) bond length is 1.39 Å. The C(11)-C(14) bond length is 1.46 Å. In the twelfth C site, C(12) is bonded in a distorted single-bond geometry to one C(11), one C(13), and one H(4) atom. The C(12)-C(13) bond length is 1.34 Å. The C(12)-H(4) bond length is 0.93 Å. In the thirteenth C site, C(13) is bonded in a distorted trigonal planar geometry to one C(12), one C(8), and one N(4) atom. The C(13)-N(4) bond length is 1.47 Å. In the fourteenth C site, C(14) is bonded in a distorted bent 120 degrees geometry to one C(11), one O(3), and one O(4) atom. The C(14)-O(3) bond length is 1.29 Å. The C(14)-O(4) bond length is 1.24 Å. In the fifteenth C site, C(15) is bonded in a bent 120 degrees geometry to one C(16), one O(13), and one O(14) atom. The C(15)-C(16) bond length is 1.51 Å. The C(15)-O(13) bond length is 1.26 Å. The C(15)-O(14) bond length is 1.23 Å. In the sixteenth C site, C(16) is bonded in a trigonal planar geometry to one C(15), one C(17), and one C(21) atom. The C(16)-C(17) bond length is 1.35 Å. The C(16)-C(21) bond length is 1.40 Å. In the seventeenth C site, C(17) is bonded in a distorted trigonal planar geometry to one C(16), one C(18), and one H(5) atom. The C(17)-C(18) bond length is 1.38 Å. The C(17)-H(5) bond length is 0.93 Å. In the eighteenth C site, C(18) is bonded in a distorted trigonal planar geometry to one C(17), one C(19), and one N(5) atom. The C(18)-C(19) bond length is 1.42 Å. The C(18)-N(5) bond length is 1.50 Å. In the nineteenth C site, C(19) is bonded in a trigonal planar geometry to one C(18), one C(19), and one C(20) atom. The C(19)-C(19) bond length is 1.51 Å. The C(19)-C(20) bond length is 1.39 Å. In the twentieth C site, C(20) is bonded in a 3-coordinate geometry to one C(19), one C(21), and one N(6) atom. The C(20)-C(21) bond length is 1.42 Å. The C(20)-N(6) bond length is 1.44 Å. In the twenty-first C site, C(21) is bonded in a distorted trigonal planar geometry to one C(16), one C(20), and one H(6) atom. The C(21)-H(6) bond length is 0.93 Å. There are six inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one C(4), one O(5), and one O(6) atom. The N(1)-O(5) bond length is 1.16 Å. The N(1)-O(6) bond length is 1.28 Å. In the second N site, N(2) is bonded in a trigonal planar geometry to one C(6), one O(7), and one O(8) atom. The N(2)-O(7) bond length is 1.17 Å. The N(2)-O(8) bond length is 1.18 Å. In the third N site, N(3) is bonded in a trigonal planar geometry to one C(9), one O(10), and one O(9) atom. The N(3)-O(10) bond length is 1.28 Å. The N(3)-O(9) bond length is 1.23 Å. In the fourth N site, N(4) is bonded in a trigonal planar geometry to one C(13), one O(11), and one O(12) atom. The N(4)-O(11) bond length is 1.21 Å. The N(4)-O(12) bond length is 1.19 Å. In the fifth N site, N(5) is bonded in a trigonal planar geometry to one C(18), one O(15), and one O(16) atom. The N(5)-O(15) bond length is 1.19 Å. The N(5)-O(16) bond length is 1.22 Å. In the sixth N site, N(6) is bonded in a trigonal non-coplanar geometry to one C(20), one O(17), and one O(18) atom. The N(6)-O(17) bond length is 1.18 Å. The N(6)-O(18) bond length is 1.21 Å. There are six inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(7) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(10) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(12) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(17) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(21) atom. There are eighteen inequivalent O sites. In the first O site, O(1) is bonded in a distorted single-bond geometry to one Gd(1) and one C(1) atom. In the second O site, O(2) is bonded in a distorted bent 150 degrees geometry to one Gd(1) and one C(1) atom. In the third O site, O(3) is bonded in a distorted single-bond geometry to one Gd(1) and one C(14) atom. In the fourth O site, O(4) is bonded in a distorted single-bond geometry to one Gd(1) and one C(14) atom. In the fifth O site, O(5) is bonded in a single-bond geometry to one N(1) atom. In the sixth O site, O(6) is bonded in a single-bond geometry to one N(1) atom. In the seventh O site, O(7) is bonded in a single-bond geometry to one N(2) atom. In the eighth O site, O(8) is bonded in a single-bond geometry to one N(2) atom. In the ninth O site, O(9) is bonded in a single-bond geometry to one N(3) atom. In the tenth O site, O(10) is bonded in a single-bond geometry to one N(3) atom. In the eleventh O site, O(11) is bonded in a single-bond geometry to one N(4) atom. In the twelfth O site, O(12) is bonded in a single-bond geometry to one N(4) atom. In the thirteenth O site, O(13) is bonded in a 1-coordinate geometry to two equivalent Gd(1) and one C(15) atom. In the fourteenth O site, O(14) is bonded in a distorted water-like geometry to one Gd(1) and one C(15) atom. In the fifteenth O site, O(15) is bonded in a single-bond geometry to one N(5) atom. In the sixteenth O site, O(16) is bonded in a single-bond geometry to one N(5) atom. In the seventeenth O site, O(17) is bonded in a single-bond geometry to one N(6) atom. In the eighteenth O site, O(18) is bonded in a single-bond geometry to one N(6) atom. Linkers: 6 [O]C(=O)c1cc([N+](=O)[O-])c(-c2c([N+](=O)[O-])cc(C([O])=O)cc2[N+](=O)[O-])c([N+](=O)[O-])c1. Metal clusters: 2 [C]1O[Gd]234(O1)O[C]O[Gd]1(O[C]O1)(O[C]O2)(O[C]O3)O[C]O4. RCSR code: pcu. The MOF has largest included sphere 6.60 A, density 1.03 g/cm3, surface area 3580.02 m2/g, accessible volume 0.55 cm3/g
ENANIS_clean
CuC18H12(N3O2)2 is Indium-like structured and crystallizes in the orthorhombic Pnna space group. The structure is zero-dimensional and consists of four CuC18H12(N3O2)2 clusters. Cu(1) is bonded in a 6-coordinate geometry to two equivalent N(3), two equivalent O(1), and two equivalent O(2) atoms. Both Cu(1)-N(3) bond lengths are 1.98 Å. Both Cu(1)-O(1) bond lengths are 1.98 Å. Both Cu(1)-O(2) bond lengths are 2.51 Å. There are nine inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.50 Å. The C(1)-O(1) bond length is 1.28 Å. The C(1)-O(2) bond length is 1.24 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.37 Å. The C(2)-C(7) bond length is 1.37 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2) and one H(1) atom. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a single-bond geometry to one C(5) and one H(2) atom. The C(4)-C(5) bond length is 1.38 Å. The C(4)-H(2) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a distorted trigonal planar geometry to one C(4), one C(6), and one N(1) atom. The C(5)-C(6) bond length is 1.36 Å. The C(5)-N(1) bond length is 1.43 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(5) and one H(3) atom. The C(6)-H(3) bond length is 0.93 Å. In the seventh C site, C(7) is bonded in a single-bond geometry to one C(2) and one H(4) atom. The C(7)-H(4) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one N(2), one N(3), and one H(5) atom. The C(8)-N(2) bond length is 1.30 Å. The C(8)-N(3) bond length is 1.36 Å. The C(8)-H(5) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a trigonal planar geometry to one N(1), one N(3), and one H(6) atom. The C(9)-N(1) bond length is 1.32 Å. The C(9)-N(3) bond length is 1.33 Å. The C(9)-H(6) bond length is 0.93 Å. There are three inequivalent N sites. In the first N site, N(1) is bonded in a 2-coordinate geometry to one C(5) and one C(9) atom. In the second N site, N(2) is bonded in a distorted single-bond geometry to one C(8) atom. In the third N site, N(3) is bonded in a trigonal planar geometry to one Cu(1), one C(8), and one C(9) atom. There are six inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(6) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(7) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(8) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(9) atom. There are two inequivalent O sites. In the first O site, O(1) is bonded in a water-like geometry to one Cu(1) and one C(1) atom. In the second O site, O(2) is bonded in a single-bond geometry to one Cu(1) and one C(1) atom. Linkers: 6 [O]C(=O)c1ccc(-n2cncn2)cc1 ,2 [O]C(=O)c1ccc(N2[CH]N=C[N]2)cc1. Metal clusters: 4 O=[C]O[Cu]O[C]=O. The MOF has largest included sphere 4.63 A, density 1.34 g/cm3, surface area 4331.25 m2/g, accessible volume 0.34 cm3/g
DOJXOQ_clean
PrH6(C7O4)2(CH)2 crystallizes in the orthorhombic Pnna space group. The structure consists of eight 02329_fluka molecules inside a PrH6(C7O4)2 framework. In the PrH6(C7O4)2 framework, Pr(1) is bonded in a 8-coordinate geometry to two equivalent O(1), two equivalent O(2), two equivalent O(3), and two equivalent O(4) atoms. Both Pr(1)-O(1) bond lengths are 2.39 Å. Both Pr(1)-O(2) bond lengths are 2.38 Å. Both Pr(1)-O(3) bond lengths are 2.57 Å. Both Pr(1)-O(4) bond lengths are 2.67 Å. There are seven inequivalent C sites. In the first C site, C(1) is bonded in a single-bond geometry to one C(2), one C(6), and one H(1) atom. The C(1)-C(2) bond length is 1.39 Å. The C(1)-C(6) bond length is 1.39 Å. The C(1)-H(1) bond length is 0.91 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(4) atom. The C(2)-C(3) bond length is 1.50 Å. The C(2)-C(4) bond length is 1.39 Å. In the third C site, C(3) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(3), and one O(4) atom. The C(3)-O(3) bond length is 1.25 Å. The C(3)-O(4) bond length is 1.27 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(2) and one H(3) atom. The C(4)-H(3) bond length is 0.95 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one C(6), one O(1), and one O(2) atom. The C(5)-C(6) bond length is 1.50 Å. The C(5)-O(1) bond length is 1.24 Å. The C(5)-O(2) bond length is 1.25 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(1), one C(5), and one C(7) atom. The C(6)-C(7) bond length is 1.39 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(6) and one H(2) atom. The C(7)-H(2) bond length is 0.91 Å. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(7) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(4) atom. There are four inequivalent O sites. In the first O site, O(2) is bonded in a bent 150 degrees geometry to one Pr(1) and one C(5) atom. In the second O site, O(3) is bonded in a distorted single-bond geometry to one Pr(1) and one C(3) atom. In the third O site, O(4) is bonded in a single-bond geometry to one Pr(1) and one C(3) atom. In the fourth O site, O(1) is bonded in a distorted linear geometry to one Pr(1) and one C(5) atom. Linkers: 8 [O]C(=O)c1cccc(C([O])=O)c1. Metal clusters: 4 [Pr]. The MOF has largest included sphere 4.85 A, density 1.65 g/cm3, surface area 3533.54 m2/g, accessible volume 0.24 cm3/g
KAYBIX_clean
CaC7NH3O4 crystallizes in the monoclinic P2_1/c space group. Ca(1) is bonded in a 7-coordinate geometry to one N(1), one O(2), one O(3), two equivalent O(1), and two equivalent O(4) atoms. The Ca(1)-N(1) bond length is 2.56 Å. The Ca(1)-O(2) bond length is 2.46 Å. The Ca(1)-O(3) bond length is 2.56 Å. There is one shorter (2.45 Å) and one longer (2.49 Å) Ca(1)-O(1) bond length. There is one shorter (2.36 Å) and one longer (2.50 Å) Ca(1)-O(4) bond length. There are seven inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(4), one C(5), and one C(6) atom. The C(1)-C(4) bond length is 1.38 Å. The C(1)-C(5) bond length is 1.38 Å. The C(1)-C(6) bond length is 1.51 Å. In the second C site, C(2) is bonded in a distorted trigonal planar geometry to one C(3), one C(7), and one N(1) atom. The C(2)-C(3) bond length is 1.38 Å. The C(2)-C(7) bond length is 1.52 Å. The C(2)-N(1) bond length is 1.33 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2) and one H(1) atom. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a distorted trigonal planar geometry to one C(1), one N(1), and one H(2) atom. The C(4)-N(1) bond length is 1.34 Å. The C(4)-H(2) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(1) and one H(3) atom. The C(5)-H(3) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one C(1), one O(3), and one O(4) atom. The C(6)-O(3) bond length is 1.24 Å. The C(6)-O(4) bond length is 1.25 Å. In the seventh C site, C(7) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(7)-O(1) bond length is 1.27 Å. The C(7)-O(2) bond length is 1.24 Å. N(1) is bonded in a trigonal planar geometry to one Ca(1), one C(2), and one C(4) atom. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(5) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a distorted trigonal planar geometry to two equivalent Ca(1) and one C(7) atom. In the second O site, O(2) is bonded in a distorted bent 150 degrees geometry to one Ca(1) and one C(7) atom. In the third O site, O(3) is bonded in a distorted L-shaped geometry to one Ca(1) and one C(6) atom. In the fourth O site, O(4) is bonded in a distorted T-shaped geometry to two equivalent Ca(1) and one C(6) atom. Linkers: 4 [O]C(=O)c1ccc(C([O])=O)nc1. Metal clusters: 4 [Ca]. The MOF has largest included sphere 5.69 A, density 1.21 g/cm3, surface area 3337.32 m2/g, accessible volume 0.34 cm3/g
QOMRUH_clean
Cu3H16(C12N13)2 crystallizes in the monoclinic P2_1/c space group. There are two inequivalent Cu sites. In the first Cu site, Cu(1) is bonded to one N(1), one N(11), one N(3), one N(6), and one N(9) atom to form corner-sharing CuN5 square pyramids. The corner-sharing octahedral tilt angles are 76°. The Cu(1)-N(1) bond length is 2.01 Å. The Cu(1)-N(11) bond length is 1.97 Å. The Cu(1)-N(3) bond length is 2.33 Å. The Cu(1)-N(6) bond length is 2.01 Å. The Cu(1)-N(9) bond length is 2.02 Å. In the second Cu site, Cu(2) is bonded to two equivalent N(11), two equivalent N(4), and two equivalent N(8) atoms to form corner-sharing CuN6 octahedra. Both Cu(2)-N(11) bond lengths are 2.34 Å. Both Cu(2)-N(4) bond lengths are 2.02 Å. Both Cu(2)-N(8) bond lengths are 2.03 Å. There are twelve inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(1) atom. The C(1)-N(1) bond length is 1.31 Å. The C(1)-H(1) bond length is 0.93 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(3) and one H(2) atom. The C(2)-C(3) bond length is 1.37 Å. The C(2)-H(2) bond length is 0.93 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(6) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-C(6) bond length is 1.47 Å. In the fourth C site, C(4) is bonded in a distorted trigonal planar geometry to one C(3), one C(5), and one H(3) atom. The C(4)-C(5) bond length is 1.37 Å. The C(4)-H(3) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one C(4), one N(1), and one H(4) atom. The C(5)-N(1) bond length is 1.34 Å. The C(5)-H(4) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one C(3), one N(2), and one N(5) atom. The C(6)-N(2) bond length is 1.34 Å. The C(6)-N(5) bond length is 1.33 Å. In the seventh C site, C(7) is bonded in a distorted bent 120 degrees geometry to one C(8), one N(6), and one H(5) atom. The C(7)-C(8) bond length is 1.39 Å. The C(7)-N(6) bond length is 1.27 Å. The C(7)-H(5) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a distorted trigonal planar geometry to one C(7), one C(9), and one H(6) atom. The C(8)-C(9) bond length is 1.33 Å. The C(8)-H(6) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a trigonal planar geometry to one C(10), one C(12), and one C(8) atom. The C(9)-C(10) bond length is 1.36 Å. The C(9)-C(12) bond length is 1.48 Å. In the tenth C site, C(10) is bonded in a distorted trigonal planar geometry to one C(11), one C(9), and one H(7) atom. The C(10)-C(11) bond length is 1.39 Å. The C(10)-H(7) bond length is 0.93 Å. In the eleventh C site, C(11) is bonded in a distorted bent 120 degrees geometry to one C(10), one N(6), and one H(8) atom. The C(11)-N(6) bond length is 1.32 Å. The C(11)-H(8) bond length is 0.93 Å. In the twelfth C site, C(12) is bonded in a distorted bent 120 degrees geometry to one C(9), one N(10), and one N(7) atom. The C(12)-N(10) bond length is 1.34 Å. The C(12)-N(7) bond length is 1.32 Å. There are thirteen inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Cu(1), one C(1), and one C(5) atom. In the second N site, N(2) is bonded in a water-like geometry to one C(6) and one N(3) atom. The N(2)-N(3) bond length is 1.34 Å. In the third N site, N(3) is bonded in a distorted trigonal planar geometry to one Cu(1), one N(2), and one N(4) atom. The N(3)-N(4) bond length is 1.31 Å. In the fourth N site, N(4) is bonded in a distorted trigonal planar geometry to one Cu(2), one N(3), and one N(5) atom. The N(4)-N(5) bond length is 1.32 Å. In the fifth N site, N(5) is bonded in a water-like geometry to one C(6) and one N(4) atom. In the sixth N site, N(6) is bonded in a trigonal planar geometry to one Cu(1), one C(11), and one C(7) atom. In the seventh N site, N(7) is bonded in a water-like geometry to one C(12) and one N(8) atom. The N(7)-N(8) bond length is 1.32 Å. In the eighth N site, N(8) is bonded in a distorted trigonal planar geometry to one Cu(2), one N(7), and one N(9) atom. The N(8)-N(9) bond length is 1.31 Å. In the ninth N site, N(9) is bonded in a distorted trigonal planar geometry to one Cu(1), one N(10), and one N(8) atom. The N(9)-N(10) bond length is 1.34 Å. In the tenth N site, N(10) is bonded in a water-like geometry to one C(12) and one N(9) atom. In the eleventh N site, N(11) is bonded in a distorted trigonal planar geometry to one Cu(1), one Cu(2), and one N(12) atom. The N(11)-N(12) bond length is 1.11 Å. In the twelfth N site, N(12) is bonded in a linear geometry to one N(11) and one N(13) atom. The N(12)-N(13) bond length is 1.19 Å. In the thirteenth N site, N(13) is bonded in a single-bond geometry to one N(12) atom. There are eight inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(4) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(7) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(8) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(10) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(11) atom. Linkers: 8 c1cc(C2=NN=N[N]2)ccn1. Metal clusters: 6 [Cu]. The MOF has largest included sphere 5.92 A, density 0.95 g/cm3, surface area 4106.85 m2/g, accessible volume 0.52 cm3/g
SEHNEZ_clean
Yb3Ru4C28H8(N3O)8(CH)4 crystallizes in the orthorhombic Aea2 space group. The structure consists of sixteen 02329_fluka molecules inside a Yb3Ru4C28H8(N3O)8 framework. In the Yb3Ru4C28H8(N3O)8 framework, there are two inequivalent Yb sites. In the first Yb site, Yb(1) is bonded in a 8-coordinate geometry to one N(10), one N(11), one N(5), one N(6), one O(1), one O(2), one O(3), and one O(4) atom. The Yb(1)-N(10) bond length is 2.36 Å. The Yb(1)-N(11) bond length is 2.36 Å. The Yb(1)-N(5) bond length is 2.39 Å. The Yb(1)-N(6) bond length is 2.37 Å. The Yb(1)-O(1) bond length is 2.27 Å. The Yb(1)-O(2) bond length is 2.45 Å. The Yb(1)-O(3) bond length is 2.38 Å. The Yb(1)-O(4) bond length is 2.32 Å. In the second Yb site, Yb(2) is bonded in a bent 120 degrees geometry to two equivalent N(4) atoms. Both Yb(2)-N(4) bond lengths are 2.40 Å. There are two inequivalent Ru sites. In the first Ru site, Ru(1) is bonded in an octahedral geometry to one C(10), one C(7), one C(8), one C(9), one N(1), and one N(2) atom. The Ru(1)-C(10) bond length is 2.03 Å. The Ru(1)-C(7) bond length is 2.04 Å. The Ru(1)-C(8) bond length is 1.98 Å. The Ru(1)-C(9) bond length is 1.97 Å. The Ru(1)-N(1) bond length is 2.12 Å. The Ru(1)-N(2) bond length is 2.13 Å. In the second Ru site, Ru(2) is bonded in an octahedral geometry to one C(13), one C(14), one C(15), one C(16), one N(7), and one N(8) atom. The Ru(2)-C(13) bond length is 2.03 Å. The Ru(2)-C(14) bond length is 1.97 Å. The Ru(2)-C(15) bond length is 1.99 Å. The Ru(2)-C(16) bond length is 2.05 Å. The Ru(2)-N(7) bond length is 2.13 Å. The Ru(2)-N(8) bond length is 2.11 Å. There are fourteen inequivalent C sites. In the first C site, C(1) is bonded in a distorted trigonal planar geometry to one C(4), one N(1), and one N(7) atom. The C(1)-C(4) bond length is 1.48 Å. The C(1)-N(1) bond length is 1.33 Å. The C(1)-N(7) bond length is 1.34 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(1) atom. The C(2)-N(1) bond length is 1.35 Å. The C(2)-H(1) bond length is 0.95 Å. In the third C site, C(4) is bonded in a distorted trigonal planar geometry to one C(1), one N(2), and one N(8) atom. The C(4)-N(2) bond length is 1.34 Å. The C(4)-N(8) bond length is 1.34 Å. In the fourth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(3) atom. The C(5)-N(2) bond length is 1.33 Å. The C(5)-H(3) bond length is 0.95 Å. In the fifth C site, C(7) is bonded in a linear geometry to one Ru(1) and one N(3) atom. The C(7)-N(3) bond length is 1.15 Å. In the sixth C site, C(8) is bonded in a linear geometry to one Ru(1) and one N(4) atom. The C(8)-N(4) bond length is 1.15 Å. In the seventh C site, C(9) is bonded in a linear geometry to one Ru(1) and one N(5) atom. The C(9)-N(5) bond length is 1.16 Å. In the eighth C site, C(10) is bonded in a linear geometry to one Ru(1) and one N(6) atom. The C(10)-N(6) bond length is 1.15 Å. In the ninth C site, C(11) is bonded in a distorted bent 120 degrees geometry to one N(7) and one H(5) atom. The C(11)-N(7) bond length is 1.36 Å. The C(11)-H(5) bond length is 0.95 Å. In the tenth C site, C(12) is bonded in a distorted bent 120 degrees geometry to one N(8) and one H(6) atom. The C(12)-N(8) bond length is 1.35 Å. The C(12)-H(6) bond length is 0.95 Å. In the eleventh C site, C(13) is bonded in a linear geometry to one Ru(2) and one N(9) atom. The C(13)-N(9) bond length is 1.15 Å. In the twelfth C site, C(14) is bonded in a linear geometry to one Ru(2) and one N(10) atom. The C(14)-N(10) bond length is 1.17 Å. In the thirteenth C site, C(15) is bonded in a linear geometry to one Ru(2) and one N(11) atom. The C(15)-N(11) bond length is 1.14 Å. In the fourteenth C site, C(16) is bonded in a linear geometry to one Ru(2) and one N(12) atom. The C(16)-N(12) bond length is 1.14 Å. There are twelve inequivalent N sites. In the first N site, N(3) is bonded in a single-bond geometry to one C(7) atom. In the second N site, N(4) is bonded in a linear geometry to one Yb(2) and one C(8) atom. In the third N site, N(5) is bonded in a linear geometry to one Yb(1) and one C(9) atom. In the fourth N site, N(6) is bonded in a bent 150 degrees geometry to one Yb(1) and one C(10) atom. In the fifth N site, N(7) is bonded in a trigonal planar geometry to one Ru(2), one C(1), and one C(11) atom. In the sixth N site, N(1) is bonded in a trigonal planar geometry to one Ru(1), one C(1), and one C(2) atom. In the seventh N site, N(2) is bonded in a trigonal planar geometry to one Ru(1), one C(4), and one C(5) atom. In the eighth N site, N(8) is bonded in a trigonal planar geometry to one Ru(2), one C(12), and one C(4) atom. In the ninth N site, N(9) is bonded in a single-bond geometry to one C(13) atom. In the tenth N site, N(10) is bonded in a linear geometry to one Yb(1) and one C(14) atom. In the eleventh N site, N(11) is bonded in a linear geometry to one Yb(1) and one C(15) atom. In the twelfth N site, N(12) is bonded in a single-bond geometry to one C(16) atom. There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(3) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(5) is bonded in a single-bond geometry to one C(11) atom. In the fourth H site, H(6) is bonded in a single-bond geometry to one C(12) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a 3-coordinate geometry to one Yb(1), one O(2), and one O(4) atom. The O(1)-O(2) bond length is 0.90 Å. The O(1)-O(4) bond length is 1.89 Å. In the second O site, O(2) is bonded in a 2-coordinate geometry to one Yb(1) and one O(1) atom. In the third O site, O(3) is bonded in a 2-coordinate geometry to one Yb(1) and one O(4) atom. The O(3)-O(4) bond length is 1.31 Å. In the fourth O site, O(4) is bonded in a 3-coordinate geometry to one Yb(1), one O(1), and one O(3) atom. Linkers: 8 c1cnc(-c2ncccn2)nc1. Metal clusters: 12 [Yb] ,16 [Ru]. The MOF has largest included sphere 5.25 A, density 1.60 g/cm3, surface area 2842.70 m2/g, accessible volume 0.29 cm3/g
DUPVER_clean
Zn3C23N5H10O12 crystallizes in the monoclinic P2_1/c space group. There are three inequivalent Zn sites. In the first Zn site, Zn(1) is bonded in a distorted tetrahedral geometry to one N(2), one O(11), one O(8), and one O(9) atom. The Zn(1)-N(2) bond length is 2.00 Å. The Zn(1)-O(11) bond length is 1.95 Å. The Zn(1)-O(8) bond length is 1.99 Å. The Zn(1)-O(9) bond length is 1.95 Å. In the second Zn site, Zn(2) is bonded in a tetrahedral geometry to one N(1), one O(1), one O(12), and one O(5) atom. The Zn(2)-N(1) bond length is 1.97 Å. The Zn(2)-O(1) bond length is 1.94 Å. The Zn(2)-O(12) bond length is 1.98 Å. The Zn(2)-O(5) bond length is 1.94 Å. In the third Zn site, Zn(3) is bonded in a distorted trigonal non-coplanar geometry to one N(3), one O(2), and one O(4) atom. The Zn(3)-N(3) bond length is 2.02 Å. The Zn(3)-O(2) bond length is 1.96 Å. The Zn(3)-O(4) bond length is 1.90 Å. There are twenty-three inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(7), one O(1), and one O(7) atom. The C(1)-C(7) bond length is 1.48 Å. The C(1)-O(1) bond length is 1.27 Å. The C(1)-O(7) bond length is 1.23 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(10), one C(7), and one H(1) atom. The C(2)-C(10) bond length is 1.40 Å. The C(2)-C(7) bond length is 1.40 Å. The C(2)-H(1) bond length is 0.93 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(13), one C(4), and one H(2) atom. The C(3)-C(13) bond length is 1.38 Å. The C(3)-C(4) bond length is 1.39 Å. The C(3)-H(2) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(12), one C(14), and one C(3) atom. The C(4)-C(12) bond length is 1.39 Å. The C(4)-C(14) bond length is 1.50 Å. In the fifth C site, C(5) is bonded in a bent 120 degrees geometry to one C(10), one O(2), and one O(6) atom. The C(5)-C(10) bond length is 1.49 Å. The C(5)-O(2) bond length is 1.28 Å. The C(5)-O(6) bond length is 1.25 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(11), one C(7), and one H(3) atom. The C(6)-C(11) bond length is 1.39 Å. The C(6)-C(7) bond length is 1.38 Å. The C(6)-H(3) bond length is 0.93 Å. In the seventh C site, C(7) is bonded in a trigonal planar geometry to one C(1), one C(2), and one C(6) atom. In the eighth C site, C(8) is bonded in a distorted single-bond geometry to one C(10), one C(11), and one H(4) atom. The C(8)-C(10) bond length is 1.40 Å. The C(8)-C(11) bond length is 1.41 Å. The C(8)-H(4) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a single-bond geometry to one C(13), one C(15), and one H(5) atom. The C(9)-C(13) bond length is 1.37 Å. The C(9)-C(15) bond length is 1.39 Å. The C(9)-H(5) bond length is 0.93 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(2), one C(5), and one C(8) atom. In the eleventh C site, C(11) is bonded in a trigonal planar geometry to one C(23), one C(6), and one C(8) atom. The C(11)-C(23) bond length is 1.50 Å. In the twelfth C site, C(12) is bonded in a distorted single-bond geometry to one C(15), one C(4), and one H(6) atom. The C(12)-C(15) bond length is 1.37 Å. The C(12)-H(6) bond length is 0.93 Å. In the thirteenth C site, C(13) is bonded in a trigonal planar geometry to one C(16), one C(3), and one C(9) atom. The C(13)-C(16) bond length is 1.51 Å. In the fourteenth C site, C(14) is bonded in a bent 120 degrees geometry to one C(4), one O(5), and one O(8) atom. The C(14)-O(5) bond length is 1.25 Å. The C(14)-O(8) bond length is 1.26 Å. In the fifteenth C site, C(15) is bonded in a trigonal planar geometry to one C(12), one C(17), and one C(9) atom. The C(15)-C(17) bond length is 1.53 Å. In the sixteenth C site, C(16) is bonded in a bent 120 degrees geometry to one C(13), one O(3), and one O(9) atom. The C(16)-O(3) bond length is 1.22 Å. The C(16)-O(9) bond length is 1.25 Å. In the seventeenth C site, C(17) is bonded in a distorted trigonal planar geometry to one C(15), one O(10), and one O(4) atom. The C(17)-O(10) bond length is 1.18 Å. The C(17)-O(4) bond length is 1.26 Å. In the eighteenth C site, C(18) is bonded in a distorted single-bond geometry to one C(22) and one N(3) atom. The C(18)-C(22) bond length is 1.42 Å. The C(18)-N(3) bond length is 1.39 Å. In the nineteenth C site, C(19) is bonded in a distorted bent 120 degrees geometry to one N(1) and one N(2) atom. The C(19)-N(1) bond length is 1.36 Å. The C(19)-N(2) bond length is 1.34 Å. In the twentieth C site, C(20) is bonded in a trigonal planar geometry to one N(2), one N(5), and one H(9) atom. The C(20)-N(2) bond length is 1.35 Å. The C(20)-N(5) bond length is 1.32 Å. The C(20)-H(9) bond length is 0.93 Å. In the twenty-first C site, C(21) is bonded in a trigonal planar geometry to one N(1), one N(3), and one H(10) atom. The C(21)-N(1) bond length is 1.36 Å. The C(21)-N(3) bond length is 1.33 Å. The C(21)-H(10) bond length is 0.93 Å. In the twenty-second C site, C(22) is bonded in a distorted trigonal planar geometry to one C(18), one N(4), and one N(5) atom. The C(22)-N(4) bond length is 1.31 Å. The C(22)-N(5) bond length is 1.35 Å. In the twenty-third C site, C(23) is bonded in a distorted bent 120 degrees geometry to one C(11), one O(11), and one O(12) atom. The C(23)-O(11) bond length is 1.25 Å. The C(23)-O(12) bond length is 1.24 Å. There are five inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one Zn(2), one C(19), and one C(21) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one Zn(1), one C(19), and one C(20) atom. In the third N site, N(3) is bonded in a distorted trigonal planar geometry to one Zn(3), one C(18), and one C(21) atom. In the fourth N site, N(4) is bonded in a distorted trigonal planar geometry to one C(22), one H(7), and one H(8) atom. The N(4)-H(7) bond length is 0.86 Å. The N(4)-H(8) bond length is 0.86 Å. In the fifth N site, N(5) is bonded in a bent 120 degrees geometry to one C(20) and one C(22) atom. There are ten inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(6) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(8) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(9) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(12) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one N(4) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one N(4) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(20) atom. In the tenth H site, H(10) is bonded in a single-bond geometry to one C(21) atom. There are twelve inequivalent O sites. In the first O site, O(1) is bonded in a water-like geometry to one Zn(2) and one C(1) atom. In the second O site, O(2) is bonded in a water-like geometry to one Zn(3) and one C(5) atom. In the third O site, O(3) is bonded in a single-bond geometry to one C(16) atom. In the fourth O site, O(4) is bonded in a distorted bent 120 degrees geometry to one Zn(3) and one C(17) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Zn(2) and one C(14) atom. In the sixth O site, O(6) is bonded in a single-bond geometry to one C(5) atom. In the seventh O site, O(7) is bonded in a single-bond geometry to one C(1) atom. In the eighth O site, O(8) is bonded in a bent 150 degrees geometry to one Zn(1) and one C(14) atom. In the ninth O site, O(9) is bonded in a water-like geometry to one Zn(1) and one C(16) atom. In the tenth O site, O(10) is bonded in a single-bond geometry to one C(17) atom. In the eleventh O site, O(11) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(23) atom. In the twelfth O site, O(12) is bonded in a bent 150 degrees geometry to one Zn(2) and one C(23) atom. Linkers: 1 NC1=NC=NC2=N[CH]N([Zn](OC(=O)c3cc([C]=O)cc(C([O])=O)c3)OC(=O)c3cc(C([O])=O)cc(C([O])=O)c3)[C]12 ,3 NC1=NC=NC2=N[CH]N([Zn](OC(=O)c3cc(C([O])=O)cc(C([O])=O)c3)OC(=O)c3cc(C([O])=O)cc(C([O])=O)c3)[C]12. Metal clusters: 4 O=[C]O[Zn]1O[C]O[Zn](O[C]=O)O[C]O1. RCSR code: pts. The MOF has largest included sphere 9.93 A, density 0.80 g/cm3, surface area 3831.52 m2/g, accessible volume 0.90 cm3/g
XAPCOJ07_clean
VC8H4O5 crystallizes in the tetragonal I4_122 space group. V(1) is bonded to two equivalent O(1), two equivalent O(2), and two equivalent O(3) atoms to form corner-sharing VO6 octahedra. The corner-sharing octahedral tilt angles are 50°. Both V(1)-O(1) bond lengths are 2.03 Å. Both V(1)-O(2) bond lengths are 2.01 Å. Both V(1)-O(3) bond lengths are 1.95 Å. There are five inequivalent C sites. In the first C site, C(4) is bonded in a distorted single-bond geometry to two equivalent C(2) and one H(3) atom. Both C(4)-C(2) bond lengths are 1.37 Å. The C(4)-H(3) bond length is 0.93 Å. In the second C site, C(5) is bonded in a trigonal planar geometry to one C(5) and two equivalent C(3) atoms. The C(5)-C(5) bond length is 1.52 Å. Both C(5)-C(3) bond lengths are 1.40 Å. In the third C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.50 Å. The C(1)-O(1) bond length is 1.25 Å. The C(1)-O(2) bond length is 1.25 Å. In the fourth C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(4) atom. The C(2)-C(3) bond length is 1.44 Å. In the fifth C site, C(3) is bonded in a single-bond geometry to one C(2), one C(5), and one H(1) atom. The C(3)-H(1) bond length is 0.93 Å. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one O(3) atom. The H(2)-O(3) bond length is 0.94 Å. In the third H site, H(3) is bonded in a single-bond geometry to one C(4) atom. There are three inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one V(1) and one C(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one V(1) and one C(1) atom. In the third O site, O(3) is bonded in a distorted trigonal planar geometry to two equivalent V(1) and one H(2) atom. Linkers: 5 [O]C(=O)c1cc(C([O])=O)cc(-c2cc(C([O])=O)cc(C([O])=O)c2)c1. Metal clusters: 8 [V]. The MOF has largest included sphere 7.32 A, density 1.11 g/cm3, surface area 3435.71 m2/g, accessible volume 0.49 cm3/g
EFESOZ_clean
Zn5H28(C26O9)2(C5H3)4(CH2CO)8(CH3CHO)4 is Indium-derived structured and crystallizes in the tetragonal P-42_1c space group. The structure is zero-dimensional and consists of eight 2,5-dimethyl-3,4-dimethylidenehexa-1,5-diene molecules; thirty-two dimethyl ether molecules; sixteen dimethyl ether molecules; and four Zn5H28(C26O9)2 clusters. In each Zn5H28(C26O9)2 cluster, there are three inequivalent Zn sites. In the first Zn site, Zn(1) is bonded in a rectangular see-saw-like geometry to one O(10), one O(11), one O(12), and one O(15) atom. The Zn(1)-O(10) bond length is 2.10 Å. The Zn(1)-O(11) bond length is 2.30 Å. The Zn(1)-O(12) bond length is 2.09 Å. The Zn(1)-O(15) bond length is 2.04 Å. In the second Zn site, Zn(2) is bonded to one O(1), one O(13), one O(15), and one O(9) atom to form corner-sharing ZnO4 tetrahedra. The corner-sharing octahedral tilt angles are 61°. The Zn(2)-O(1) bond length is 1.96 Å. The Zn(2)-O(13) bond length is 1.93 Å. The Zn(2)-O(15) bond length is 1.92 Å. The Zn(2)-O(9) bond length is 1.92 Å. In the third Zn site, Zn(3) is bonded to two equivalent O(11), two equivalent O(14), and two equivalent O(15) atoms to form corner-sharing ZnO6 octahedra. Both Zn(3)-O(11) bond lengths are 2.20 Å. Both Zn(3)-O(14) bond lengths are 2.11 Å. Both Zn(3)-O(15) bond lengths are 2.00 Å. There are twenty-six inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.48 Å. The C(1)-O(1) bond length is 1.24 Å. The C(1)-O(2) bond length is 1.29 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(19), and one C(3) atom. The C(2)-C(19) bond length is 1.40 Å. The C(2)-C(3) bond length is 1.26 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2), one C(22), and one H(1) atom. The C(3)-C(22) bond length is 1.44 Å. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(14) is bonded in a distorted single-bond geometry to one C(15) and one H(19) atom. The C(14)-C(15) bond length is 1.32 Å. The C(14)-H(19) bond length is 0.92 Å. In the fifth C site, C(15) is bonded in a trigonal planar geometry to one C(14), one C(16), and one C(18) atom. The C(15)-C(16) bond length is 1.30 Å. The C(15)-C(18) bond length is 1.52 Å. In the sixth C site, C(16) is bonded in a single-bond geometry to one C(15) and one H(20) atom. The C(16)-H(20) bond length is 0.92 Å. In the seventh C site, C(18) is bonded in a distorted bent 120 degrees geometry to one C(15), one O(13), and one O(14) atom. The C(18)-O(13) bond length is 1.22 Å. The C(18)-O(14) bond length is 1.29 Å. In the eighth C site, C(19) is bonded in a distorted single-bond geometry to one C(2) and one H(22) atom. The C(19)-H(22) bond length is 0.95 Å. In the ninth C site, C(20) is bonded in a distorted single-bond geometry to one C(21) and one H(23) atom. The C(20)-C(21) bond length is 1.27 Å. The C(20)-H(23) bond length is 0.92 Å. In the tenth C site, C(21) is bonded in a trigonal planar geometry to one C(20), one C(22), and one C(23) atom. The C(21)-C(22) bond length is 1.31 Å. The C(21)-C(23) bond length is 1.49 Å. In the eleventh C site, C(22) is bonded in a 3-coordinate geometry to one C(21), one C(3), and one H(24) atom. The C(22)-H(24) bond length is 0.93 Å. In the twelfth C site, C(23) is bonded in a trigonal planar geometry to one C(21), one C(24), and one C(28) atom. The C(23)-C(24) bond length is 1.36 Å. The C(23)-C(28) bond length is 1.45 Å. In the thirteenth C site, C(24) is bonded in a distorted single-bond geometry to one C(23) and one H(25) atom. The C(24)-H(25) bond length is 0.92 Å. In the fourteenth C site, C(27) is bonded in a distorted single-bond geometry to one C(28) and one H(26) atom. The C(27)-C(28) bond length is 1.45 Å. The C(27)-H(26) bond length is 0.92 Å. In the fifteenth C site, C(28) is bonded in a trigonal planar geometry to one C(23), one C(27), and one C(29) atom. The C(28)-C(29) bond length is 1.44 Å. In the sixteenth C site, C(29) is bonded in a trigonal planar geometry to one C(28), one C(30), and one C(34) atom. The C(29)-C(30) bond length is 1.38 Å. The C(29)-C(34) bond length is 1.35 Å. In the seventeenth C site, C(30) is bonded in a distorted single-bond geometry to one C(29) and one H(27) atom. The C(30)-H(27) bond length is 0.92 Å. In the eighteenth C site, C(31) is bonded in a distorted single-bond geometry to one C(32) and one H(28) atom. The C(31)-C(32) bond length is 1.26 Å. The C(31)-H(28) bond length is 0.94 Å. In the nineteenth C site, C(32) is bonded in a trigonal planar geometry to one C(31), one C(33), and one C(35) atom. The C(32)-C(33) bond length is 1.32 Å. The C(32)-C(35) bond length is 1.55 Å. In the twentieth C site, C(33) is bonded in a distorted single-bond geometry to one C(32) and one H(29) atom. The C(33)-H(29) bond length is 0.92 Å. In the twenty-first C site, C(34) is bonded in a single-bond geometry to one C(29) and one H(30) atom. The C(34)-H(30) bond length is 0.93 Å. In the twenty-second C site, C(35) is bonded in a distorted bent 120 degrees geometry to one C(32), one O(10), and one O(9) atom. The C(35)-O(10) bond length is 1.21 Å. The C(35)-O(9) bond length is 1.27 Å. In the twenty-third C site, C(44) is bonded in a distorted single-bond geometry to one C(45) and one H(34) atom. The C(44)-C(45) bond length is 1.43 Å. The C(44)-H(34) bond length is 0.92 Å. In the twenty-fourth C site, C(45) is bonded in a trigonal planar geometry to one C(44), one C(46), and one C(48) atom. The C(45)-C(46) bond length is 1.36 Å. The C(45)-C(48) bond length is 1.46 Å. In the twenty-fifth C site, C(46) is bonded in a distorted single-bond geometry to one C(45) and one H(35) atom. The C(46)-H(35) bond length is 0.93 Å. In the twenty-sixth C site, C(48) is bonded in a bent 120 degrees geometry to one C(45), one O(11), and one O(12) atom. The C(48)-O(11) bond length is 1.25 Å. The C(48)-O(12) bond length is 1.24 Å. There are fourteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(19) is bonded in a single-bond geometry to one C(14) atom. In the third H site, H(20) is bonded in a single-bond geometry to one C(16) atom. In the fourth H site, H(22) is bonded in a single-bond geometry to one C(19) atom. In the fifth H site, H(23) is bonded in a single-bond geometry to one C(20) atom. In the sixth H site, H(24) is bonded in a single-bond geometry to one C(22) atom. In the seventh H site, H(25) is bonded in a single-bond geometry to one C(24) atom. In the eighth H site, H(26) is bonded in a single-bond geometry to one C(27) atom. In the ninth H site, H(27) is bonded in a single-bond geometry to one C(30) atom. In the tenth H site, H(28) is bonded in a single-bond geometry to one C(31) atom. In the eleventh H site, H(29) is bonded in a single-bond geometry to one C(33) atom. In the twelfth H site, H(30) is bonded in a single-bond geometry to one C(34) atom. In the thirteenth H site, H(34) is bonded in a single-bond geometry to one C(44) atom. In the fourteenth H site, H(35) is bonded in a single-bond geometry to one C(46) atom. There are nine inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Zn(2) and one C(1) atom. In the second O site, O(2) is bonded in a single-bond geometry to one C(1) atom. In the third O site, O(9) is bonded in a bent 120 degrees geometry to one Zn(2) and one C(35) atom. In the fourth O site, O(10) is bonded in a distorted bent 120 degrees geometry to one Zn(1) and one C(35) atom. In the fifth O site, O(11) is bonded in a 3-coordinate geometry to one Zn(1), one Zn(3), and one C(48) atom. In the sixth O site, O(12) is bonded in a distorted bent 150 degrees geometry to one Zn(1) and one C(48) atom. In the seventh O site, O(13) is bonded in a bent 120 degrees geometry to one Zn(2) and one C(18) atom. In the eighth O site, O(14) is bonded in a bent 150 degrees geometry to one Zn(3) and one C(18) atom. In the ninth O site, O(15) is bonded in a trigonal non-coplanar geometry to one Zn(1), one Zn(2), and one Zn(3) atom. Linkers: 8 [O]C(=O)c1ccc(-c2cc3c(cc2-c2ccc(C([O])=O)cc2)OCCOCCOc2cc(-c4ccc(C([O])=O)cc4)c(-c4ccc(C([O])=O)cc4)cc2OCCOCCO3)cc1. Metal clusters: 2 [O][C]O[Zn@@]12O[C]O[Zn]O[C]O[Zn]34(O[C]O[Zn]O[C]O[Zn@](O[C][O])(O[C]O3)O4)(O[C]O1)O2 ,2 [O][C]O[Zn@]12O[C]O[Zn]O[C]O[Zn]34(O[C]O[Zn]O[C]O[Zn@@](O[C][O])(O[C]O3)O4)(O[C]O1)O2. The MOF has largest included sphere 10.40 A, density 0.91 g/cm3, surface area 4429.95 m2/g, accessible volume 0.56 cm3/g
ZIJVOF02_clean
CuC6H6(NO)2 crystallizes in the tetragonal P4_3 space group. There are two inequivalent Cu sites. In the first Cu site, Cu(1) is bonded in a distorted rectangular see-saw-like geometry to one N(1), one N(3), one O(1), and one O(2) atom. The Cu(1)-N(1) bond length is 1.97 Å. The Cu(1)-N(3) bond length is 1.94 Å. The Cu(1)-O(1) bond length is 2.03 Å. The Cu(1)-O(2) bond length is 1.98 Å. In the second Cu site, Cu(2) is bonded in a distorted rectangular see-saw-like geometry to one N(2), one N(4), one O(3), and one O(4) atom. The Cu(2)-N(2) bond length is 1.96 Å. The Cu(2)-N(4) bond length is 1.97 Å. The Cu(2)-O(3) bond length is 1.97 Å. The Cu(2)-O(4) bond length is 2.05 Å. There are twelve inequivalent C sites. In the first C site, C(1) is bonded in a trigonal non-coplanar geometry to one C(3); one H(2); and two equivalent H(1,3) atoms. The C(1)-C(3) bond length is 1.48 Å. The C(1)-H(2) bond length is 0.96 Å. Both C(1)-H(1,3) bond lengths are 0.96 Å. In the second C site, C(2) is bonded in a trigonal non-coplanar geometry to one C(4) and three equivalent H(4,5,6,7,8,9) atoms. The C(2)-C(4) bond length is 1.51 Å. All C(2)-H(4,5,6,7,8,9) bond lengths are 0.96 Å. In the third C site, C(3) is bonded in a distorted trigonal planar geometry to one C(1), one C(5), and one N(1) atom. The C(3)-C(5) bond length is 1.38 Å. The C(3)-N(1) bond length is 1.35 Å. In the fourth C site, C(4) is bonded in a 3-coordinate geometry to one C(2), one C(5), and one N(2) atom. The C(4)-C(5) bond length is 1.45 Å. The C(4)-N(2) bond length is 1.29 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(3), one C(4), and one C(6) atom. The C(5)-C(6) bond length is 1.44 Å. In the sixth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one C(5), one O(1), and one O(2) atom. The C(6)-O(1) bond length is 1.31 Å. The C(6)-O(2) bond length is 1.22 Å. In the seventh C site, C(7) is bonded in a trigonal non-coplanar geometry to one C(9) and three equivalent H(4,5,6,7,8,9) atoms. The C(7)-C(9) bond length is 1.53 Å. All C(7)-H(4,5,6,7,8,9) bond lengths are 0.96 Å. In the eighth C site, C(8) is bonded in a trigonal non-coplanar geometry to one C(10), one H(10), one H(11), and one H(12) atom. The C(8)-C(10) bond length is 1.45 Å. The C(8)-H(10) bond length is 0.96 Å. The C(8)-H(11) bond length is 0.96 Å. The C(8)-H(12) bond length is 0.96 Å. In the ninth C site, C(9) is bonded in a 3-coordinate geometry to one C(11), one C(7), and one N(3) atom. The C(9)-C(11) bond length is 1.41 Å. The C(9)-N(3) bond length is 1.29 Å. In the tenth C site, C(10) is bonded in a distorted trigonal planar geometry to one C(11), one C(8), and one N(4) atom. The C(10)-C(11) bond length is 1.38 Å. The C(10)-N(4) bond length is 1.37 Å. In the eleventh C site, C(11) is bonded in a trigonal planar geometry to one C(10), one C(12), and one C(9) atom. The C(11)-C(12) bond length is 1.45 Å. In the twelfth C site, C(12) is bonded in a distorted bent 120 degrees geometry to one C(11), one O(3), and one O(4) atom. The C(12)-O(3) bond length is 1.23 Å. The C(12)-O(4) bond length is 1.31 Å. There are four inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one Cu(1), one C(3), and one N(2) atom. The N(1)-N(2) bond length is 1.37 Å. In the second N site, N(2) is bonded in a 3-coordinate geometry to one Cu(2), one C(4), and one N(1) atom. In the third N site, N(3) is bonded in a 3-coordinate geometry to one Cu(1), one C(9), and one N(4) atom. The N(3)-N(4) bond length is 1.39 Å. In the fourth N site, N(4) is bonded in a distorted trigonal planar geometry to one Cu(2), one C(10), and one N(3) atom. There are six inequivalent H sites. In the first H site, H(1,3) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(1) atom. In the third H site, H(4,5,6,7,8,9) is bonded in a single-bond geometry to one C(2) atom. In the fourth H site, H(10) is bonded in a single-bond geometry to one C(8) atom. In the fifth H site, H(11) is bonded in a single-bond geometry to one C(8) atom. In the sixth H site, H(12) is bonded in a single-bond geometry to one C(8) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in an L-shaped geometry to one Cu(1) and one C(6) atom. In the second O site, O(2) is bonded in an L-shaped geometry to one Cu(1) and one C(6) atom. In the third O site, O(3) is bonded in an L-shaped geometry to one Cu(2) and one C(12) atom. In the fourth O site, O(4) is bonded in an L-shaped geometry to one Cu(2) and one C(12) atom. Linkers: 7 C[C]1N=NC(C)=C1C([O])=O ,1 CC1=NN=C(C)[C]1C([O])=O. Metal clusters: 4 [C]1O[Cu]2(N=N[Cu]3(N=N2)O[C]O3)O1. The MOF has largest included sphere 5.28 A, density 1.23 g/cm3, surface area 4026.19 m2/g, accessible volume 0.48 cm3/g
XALBIW_clean
Mn3C23N8H13O9(CH)15(CH3)2CH2 crystallizes in the tetragonal I4_1/a space group. The structure is zero-dimensional and consists of one hundred and twelve 02329_fluka molecules, sixteen 02329_fluka molecules, thirty-two 02329_fluka molecules, thirty-two isobutylene molecules, and eight Mn3C23N8H13O9 clusters. In each Mn3C23N8H13O9 cluster, there are three inequivalent Mn sites. In the first Mn site, Mn(1) is bonded in a distorted square pyramidal geometry to one N(1), one N(7), one O(1), one O(3), and one O(8) atom. The Mn(1)-N(1) bond length is 1.95 Å. The Mn(1)-N(7) bond length is 2.24 Å. The Mn(1)-O(1) bond length is 1.86 Å. The Mn(1)-O(3) bond length is 1.94 Å. The Mn(1)-O(8) bond length is 1.97 Å. In the second Mn site, Mn(2) is bonded in a distorted octahedral geometry to one N(2), one N(3), one N(5), one O(2), one O(4), and one O(6) atom. The Mn(2)-N(2) bond length is 2.26 Å. The Mn(2)-N(3) bond length is 1.95 Å. The Mn(2)-N(5) bond length is 2.29 Å. The Mn(2)-O(2) bond length is 1.99 Å. The Mn(2)-O(4) bond length is 1.86 Å. The Mn(2)-O(6) bond length is 1.94 Å. In the third Mn site, Mn(3) is bonded in a distorted octahedral geometry to one N(4), one N(6), one N(8), one O(5), one O(7), and one O(9) atom. The Mn(3)-N(4) bond length is 2.25 Å. The Mn(3)-N(6) bond length is 1.95 Å. The Mn(3)-N(8) bond length is 2.28 Å. The Mn(3)-O(5) bond length is 1.99 Å. The Mn(3)-O(7) bond length is 1.86 Å. The Mn(3)-O(9) bond length is 1.94 Å. There are twenty-three inequivalent C sites. In the first C site, C(17) is bonded in a distorted bent 120 degrees geometry to one C(16), one N(3), and one O(5) atom. The C(17)-C(16) bond length is 1.49 Å. The C(17)-N(3) bond length is 1.32 Å. The C(17)-O(5) bond length is 1.28 Å. In the second C site, C(27) is bonded in a distorted single-bond geometry to one C(32) and one O(7) atom. The C(27)-C(32) bond length is 1.41 Å. The C(27)-O(7) bond length is 1.34 Å. In the third C site, C(19) is bonded in a water-like geometry to one C(18), one H(14), and one H(15) atom. The C(19)-C(18) bond length is 1.50 Å. The C(19)-H(14) bond length is 0.99 Å. The C(19)-H(15) bond length is 0.99 Å. In the fourth C site, C(21) is bonded in a distorted bent 120 degrees geometry to one N(5) and one H(19) atom. The C(21)-N(5) bond length is 1.30 Å. The C(21)-H(19) bond length is 0.95 Å. In the fifth C site, C(31) is bonded in a distorted single-bond geometry to one C(32) and one H(28) atom. The C(31)-C(32) bond length is 1.41 Å. The C(31)-H(28) bond length is 0.95 Å. In the sixth C site, C(32) is bonded in a trigonal planar geometry to one C(27), one C(31), and one C(33) atom. The C(32)-C(33) bond length is 1.47 Å. In the seventh C site, C(33) is bonded in a distorted bent 120 degrees geometry to one C(32), one N(6), and one O(8) atom. The C(33)-N(6) bond length is 1.32 Å. The C(33)-O(8) bond length is 1.29 Å. In the eighth C site, C(34) is bonded in a distorted bent 120 degrees geometry to one N(7) and one O(9) atom. The C(34)-N(7) bond length is 1.31 Å. The C(34)-O(9) bond length is 1.30 Å. In the ninth C site, C(36) is bonded in a distorted bent 120 degrees geometry to one N(8) and one H(31) atom. The C(36)-N(8) bond length is 1.33 Å. The C(36)-H(31) bond length is 0.95 Å. In the tenth C site, C(40) is bonded in a distorted bent 120 degrees geometry to one N(8) and one H(34) atom. The C(40)-N(8) bond length is 1.33 Å. The C(40)-H(34) bond length is 0.95 Å. In the eleventh C site, C(18) is bonded in a distorted trigonal planar geometry to one C(19), one N(4), and one O(6) atom. The C(18)-N(4) bond length is 1.30 Å. The C(18)-O(6) bond length is 1.31 Å. In the twelfth C site, C(25) is bonded in a distorted bent 120 degrees geometry to one N(5) and one H(22) atom. The C(25)-N(5) bond length is 1.35 Å. The C(25)-H(22) bond length is 0.95 Å. In the thirteenth C site, C(1) is bonded in a distorted single-bond geometry to one C(6) and one O(1) atom. The C(1)-C(6) bond length is 1.43 Å. The C(1)-O(1) bond length is 1.30 Å. In the fourteenth C site, C(5) is bonded in a distorted single-bond geometry to one C(6) and one H(4) atom. The C(5)-C(6) bond length is 1.39 Å. The C(5)-H(4) bond length is 0.95 Å. In the fifteenth C site, C(6) is bonded in a trigonal planar geometry to one C(1), one C(5), and one C(7) atom. The C(6)-C(7) bond length is 1.46 Å. In the sixteenth C site, C(7) is bonded in a distorted trigonal planar geometry to one C(6), one N(1), and one O(2) atom. The C(7)-N(1) bond length is 1.31 Å. The C(7)-O(2) bond length is 1.30 Å. In the seventeenth C site, C(8) is bonded in a trigonal planar geometry to one C(9), one N(2), and one O(3) atom. The C(8)-C(9) bond length is 1.49 Å. The C(8)-N(2) bond length is 1.31 Å. The C(8)-O(3) bond length is 1.31 Å. In the eighteenth C site, C(9) is bonded in a water-like geometry to one C(8), one H(5), and one H(6) atom. The C(9)-H(5) bond length is 0.99 Å. The C(9)-H(6) bond length is 0.99 Å. In the nineteenth C site, C(11) is bonded in a distorted single-bond geometry to one C(12), one C(16), and one O(4) atom. The C(11)-C(12) bond length is 1.41 Å. The C(11)-C(16) bond length is 1.41 Å. The C(11)-O(4) bond length is 1.33 Å. In the twentieth C site, C(12) is bonded in a distorted trigonal planar geometry to one C(11), one C(13), and one H(10) atom. The C(12)-C(13) bond length is 1.35 Å. The C(12)-H(10) bond length is 0.95 Å. In the twenty-first C site, C(13) is bonded in a distorted single-bond geometry to one C(12) and one H(11) atom. The C(13)-H(11) bond length is 0.95 Å. In the twenty-second C site, C(15) is bonded in a distorted single-bond geometry to one C(16) and one H(13) atom. The C(15)-C(16) bond length is 1.39 Å. The C(15)-H(13) bond length is 0.95 Å. In the twenty-third C site, C(16) is bonded in a trigonal planar geometry to one C(11), one C(15), and one C(17) atom. There are eight inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one Mn(1), one C(7), and one N(2) atom. The N(1)-N(2) bond length is 1.41 Å. In the second N site, N(2) is bonded in a 3-coordinate geometry to one Mn(2), one C(8), and one N(1) atom. In the third N site, N(6) is bonded in a distorted trigonal planar geometry to one Mn(3), one C(33), and one N(7) atom. The N(6)-N(7) bond length is 1.42 Å. In the fourth N site, N(7) is bonded in a 3-coordinate geometry to one Mn(1), one C(34), and one N(6) atom. In the fifth N site, N(3) is bonded in a distorted trigonal planar geometry to one Mn(2), one C(17), and one N(4) atom. The N(3)-N(4) bond length is 1.42 Å. In the sixth N site, N(4) is bonded in a 3-coordinate geometry to one Mn(3), one C(18), and one N(3) atom. In the seventh N site, N(5) is bonded in a trigonal planar geometry to one Mn(2), one C(21), and one C(25) atom. In the eighth N site, N(8) is bonded in a trigonal planar geometry to one Mn(3), one C(36), and one C(40) atom. There are thirteen inequivalent H sites. In the first H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the second H site, H(5) is bonded in a single-bond geometry to one C(9) atom. In the third H site, H(6) is bonded in a single-bond geometry to one C(9) atom. In the fourth H site, H(10) is bonded in a single-bond geometry to one C(12) atom. In the fifth H site, H(11) is bonded in a single-bond geometry to one C(13) atom. In the sixth H site, H(13) is bonded in a single-bond geometry to one C(15) atom. In the seventh H site, H(14) is bonded in a single-bond geometry to one C(19) atom. In the eighth H site, H(15) is bonded in a single-bond geometry to one C(19) atom. In the ninth H site, H(19) is bonded in a single-bond geometry to one C(21) atom. In the tenth H site, H(22) is bonded in a single-bond geometry to one C(25) atom. In the eleventh H site, H(28) is bonded in a single-bond geometry to one C(31) atom. In the twelfth H site, H(31) is bonded in a single-bond geometry to one C(36) atom. In the thirteenth H site, H(34) is bonded in a single-bond geometry to one C(40) atom. There are nine inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Mn(2) and one C(7) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(8) atom. In the fourth O site, O(4) is bonded in a bent 120 degrees geometry to one Mn(2) and one C(11) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Mn(3) and one C(17) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one Mn(2) and one C(18) atom. In the seventh O site, O(7) is bonded in a bent 120 degrees geometry to one Mn(3) and one C(27) atom. In the eighth O site, O(8) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(33) atom. In the ninth O site, O(9) is bonded in a bent 120 degrees geometry to one Mn(3) and one C(34) atom. Linkers: 16 CCC(=O)[N][N]C(=O)c1ccccc1[O] ,8 [CH2]C(=O)[N][N]C(=O)c1ccccc1[O] ,8 c1cc(CCc2ccncc2)ccn1. Metal clusters: 24 [Mn]. The MOF has largest included sphere 12.14 A, density 0.87 g/cm3, surface area 4554.76 m2/g, accessible volume 0.76 cm3/g
GEZRAG_clean
Co10C41N3H42O19(CH3)3C6H5NH crystallizes in the cubic Pa-3 space group. The structure consists of twenty-four 02329_fluka molecules and eight C6H5NH clusters inside a Co10C41N3H42O19 framework. In each C6H5NH cluster, there are two inequivalent C sites. In the first C site, C(12) is bonded in a 1-coordinate geometry to one N(2) and one H(14) atom. The C(12)-N(2) bond length is 1.33 Å. The C(12)-H(14) bond length is 0.96 Å. In the second C site, C(13) is bonded in a distorted single-bond geometry to one N(2) and one H(15) atom. The C(13)-N(2) bond length is 1.35 Å. The C(13)-H(15) bond length is 0.96 Å. N(2) is bonded in a 6-coordinate geometry to three equivalent C(12) and three equivalent C(13) atoms. There are two inequivalent H sites. In the first H site, H(14) is bonded in a single-bond geometry to one C(12) atom. In the second H site, H(15) is bonded in a single-bond geometry to one C(13) atom. In the Co10C41N3H42O19 framework, there are four inequivalent Co sites. In the first Co site, Co(1) is bonded to one O(1), one O(2), one O(7), and two equivalent O(3) atoms to form CoO5 square pyramids that share a cornercorner with one Co(2)O6 octahedra, edges with two equivalent Co(2)O6 octahedra, an edgeedge with one Co(3)NO4 square pyramid, and edges with two equivalent Co(1)O5 square pyramids. The corner-sharing octahedral tilt angles are 1°. The Co(1)-O(1) bond length is 1.99 Å. The Co(1)-O(2) bond length is 2.06 Å. The Co(1)-O(7) bond length is 2.17 Å. There is one shorter (2.01 Å) and one longer (2.04 Å) Co(1)-O(3) bond length. In the second Co site, Co(2) is bonded to one O(1), one O(2), one O(5), one O(7), and two equivalent O(4) atoms to form CoO6 octahedra that share a cornercorner with one Co(1)O5 square pyramid, edges with two equivalent Co(2)O6 octahedra, edges with two equivalent Co(3)NO4 square pyramids, and edges with two equivalent Co(1)O5 square pyramids. The Co(2)-O(1) bond length is 2.04 Å. The Co(2)-O(2) bond length is 2.06 Å. The Co(2)-O(5) bond length is 2.09 Å. The Co(2)-O(7) bond length is 2.18 Å. There is one shorter (2.01 Å) and one longer (2.08 Å) Co(2)-O(4) bond length. In the third Co site, Co(3) is bonded to one N(1), one O(1), one O(2), one O(4), and one O(6) atom to form CoNO4 square pyramids that share edges with two equivalent Co(2)O6 octahedra and an edgeedge with one Co(1)O5 square pyramid. The Co(3)-N(1) bond length is 2.11 Å. The Co(3)-O(1) bond length is 2.11 Å. The Co(3)-O(2) bond length is 2.21 Å. The Co(3)-O(4) bond length is 2.13 Å. The Co(3)-O(6) bond length is 2.08 Å. In the fourth Co site, Co(4) is bonded in a 3-coordinate geometry to three equivalent O(3) atoms. All Co(4)-O(3) bond lengths are 2.16 Å. There are fifteen inequivalent C sites. In the first C site, C(17) is bonded in a tetrahedral geometry to one C(18) and three equivalent C(10) atoms. The C(17)-C(18) bond length is 1.55 Å. All C(17)-C(10) bond lengths are 1.56 Å. In the second C site, C(1) is bonded in a distorted trigonal planar geometry to one C(2), one N(1), and one H(1) atom. The C(1)-C(2) bond length is 1.38 Å. The C(1)-N(1) bond length is 1.32 Å. The C(1)-H(1) bond length is 0.93 Å. In the third C site, C(2) is bonded in a distorted single-bond geometry to one C(1), one C(5), and one H(2) atom. The C(2)-C(5) bond length is 1.39 Å. The C(2)-H(2) bond length is 0.93 Å. In the fourth C site, C(3) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(3) atom. The C(3)-N(1) bond length is 1.31 Å. The C(3)-H(3) bond length is 0.93 Å. In the fifth C site, C(4) is bonded in a distorted single-bond geometry to one C(5) and one H(4) atom. The C(4)-C(5) bond length is 1.38 Å. The C(4)-H(4) bond length is 0.93 Å. In the sixth C site, C(5) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(6) atom. The C(5)-C(6) bond length is 1.54 Å. In the seventh C site, C(6) is bonded in a tetrahedral geometry to one C(5), one C(7), one C(8), and one C(9) atom. The C(6)-C(7) bond length is 1.56 Å. The C(6)-C(8) bond length is 1.56 Å. The C(6)-C(9) bond length is 1.56 Å. In the eighth C site, C(7) is bonded in a distorted trigonal non-coplanar geometry to one C(6), one H(5), one H(6), and one O(1) atom. The C(7)-H(5) bond length is 0.97 Å. The C(7)-H(6) bond length is 0.97 Å. The C(7)-O(1) bond length is 1.43 Å. In the ninth C site, C(8) is bonded in a distorted trigonal non-coplanar geometry to one C(6), one H(7), one H(8), and one O(2) atom. The C(8)-H(7) bond length is 0.97 Å. The C(8)-H(8) bond length is 0.97 Å. The C(8)-O(2) bond length is 1.42 Å. In the tenth C site, C(9) is bonded in a distorted trigonal non-coplanar geometry to one C(6), one H(10), one H(9), and one O(3) atom. The C(9)-H(10) bond length is 0.97 Å. The C(9)-H(9) bond length is 0.97 Å. The C(9)-O(3) bond length is 1.42 Å. In the eleventh C site, C(10) is bonded in a distorted trigonal non-coplanar geometry to one C(17); two equivalent H(11,12); and one O(4) atom. Both C(10)-H(11,12) bond lengths are 0.97 Å. The C(10)-O(4) bond length is 1.42 Å. In the twelfth C site, C(11) is bonded in a distorted single-bond geometry to one C(18) and one H(13) atom. The C(11)-C(18) bond length is 1.39 Å. The C(11)-H(13) bond length is 0.96 Å. In the thirteenth C site, C(18) is bonded in a 7-coordinate geometry to one C(17), three equivalent C(11), and three equivalent C(14) atoms. All C(18)-C(14) bond lengths are 1.39 Å. In the fourteenth C site, C(14) is bonded in a distorted single-bond geometry to one C(18) and one H(16) atom. The C(14)-H(16) bond length is 0.96 Å. In the fifteenth C site, C(15) is bonded in a distorted bent 120 degrees geometry to one O(5) and one O(6) atom. The C(15)-O(5) bond length is 1.27 Å. The C(15)-O(6) bond length is 1.25 Å. N(1) is bonded in a trigonal planar geometry to one Co(3), one C(1), and one C(3) atom. There are thirteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(3) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(4) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(7) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(7) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(8) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(8) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(9) atom. In the tenth H site, H(10) is bonded in a single-bond geometry to one C(9) atom. In the eleventh H site, H(11,12) is bonded in a single-bond geometry to one C(10) atom. In the twelfth H site, H(13) is bonded in a single-bond geometry to one C(11) atom. In the thirteenth H site, H(16) is bonded in a single-bond geometry to one C(14) atom. There are seven inequivalent O sites. In the first O site, O(1) is bonded in a 4-coordinate geometry to one Co(1), one Co(2), one Co(3), and one C(7) atom. In the second O site, O(2) is bonded in a distorted rectangular see-saw-like geometry to one Co(1), one Co(2), one Co(3), and one C(8) atom. In the third O site, O(3) is bonded in a 4-coordinate geometry to one Co(4), two equivalent Co(1), and one C(9) atom. In the fourth O site, O(4) is bonded in a distorted rectangular see-saw-like geometry to one Co(3), two equivalent Co(2), and one C(10) atom. In the fifth O site, O(5) is bonded in a distorted bent 120 degrees geometry to one Co(2) and one C(15) atom. In the sixth O site, O(6) is bonded in a distorted bent 120 degrees geometry to one Co(3) and one C(15) atom. In the seventh O site, O(7) is bonded in an octahedral geometry to three equivalent Co(1) and three equivalent Co(2) atoms. Linkers: 24 [O]CC(C[O])(C[O])c1ccncc1 ,1 [C][C@@H]1[CH][C@@H]2[CH][C@H]([CH]1)[C@H]1[C@H]3[C@@H]2[C@@H]2[N@@]43[C@H]1[C@H]24.[O]C[C](C[O])C[O] ,1 [C]1[C@@H]2[CH][C@H]1[CH][C@H]([CH]2)[C@@H]1[C@@H]2[CH][C@H]3[N@]42[C@@H]1[C@@H]34.[O]C[C](C[O])C[O] ,1 [C][C@@H]1[CH][CH][CH][C@H]([CH]1)[C@H]1[C@H]2[CH][C@@H]3[N@@]42[C@H]1[C@H]34.[O]C[C](C[O])C[O] ,1 [C][C@@H]1[CH][CH][C@H]([CH][CH]1)[C@H]1[C@H]2[CH][C@@H]3[N@@]42[C@H]1[C@H]34.[O]C[C](C[O])C[O] ,1 [CH]1[C@@H]2[CH][C@H]3[N@]42[C@@H]1[C@@H]34.[CH]1[C@@H]2[CH][C@H]3[C]2[C@@H]1[CH]3.[O]C[C](C[O])C[O] ,1 [C]1[C@@H]2[CH][C@H]1[CH][C@H]([CH]2)[C@H]1[C@H]2[CH][C@@H]3[N@@]42[C@H]1[C@H]34.[O]C[C](C[O])C[O] ,1 [CH]1[C@@H]2[CH][C@H]3[N@]42[C@@H]1[C@@H]34.[O]CC([C]1[C@H]2[CH][CH][CH][C@@H]1[CH]2)(C[O])C[O] ,1 [CH]1[C@@H]([C@H]2[C]3[C@@H]1[CH][C@@H]23)[C@@H]1[C@@H]2[CH][C@H]3[N@]42[C@@H]1[C@@H]34.[O]C[C](C[O])C[O]. Metal clusters: 8 [CH2]O[Co](O[CH2])O[C](C)O[Co].[CH2]O[Co](O[CH2])O[C](C)O[Co].[CH2]O[Co](O[CH2])O[C](C)O[Co].[CH2]O[Co](O[CH2])O[Co](O[CH2])O[CH2].[CH2]O[Co]O[CH2].[Co]. The MOF has largest included sphere 7.97 A, density 1.15 g/cm3, surface area 2850.62 m2/g, accessible volume 0.48 cm3/g
KASRAZ_clean
CdC15H8O4 crystallizes in the monoclinic P2_1/c space group. There are two inequivalent Cd sites. In the first Cd site, Cd(1) is bonded in a 6-coordinate geometry to one O(1), one O(2), one O(3), one O(8), and two equivalent O(7) atoms. The Cd(1)-O(1) bond length is 2.55 Å. The Cd(1)-O(2) bond length is 2.27 Å. The Cd(1)-O(3) bond length is 2.24 Å. The Cd(1)-O(8) bond length is 2.45 Å. There is one shorter (2.30 Å) and one longer (2.35 Å) Cd(1)-O(7) bond length. In the second Cd site, Cd(2) is bonded in a rectangular see-saw-like geometry to one O(1), one O(4), one O(5), and one O(8) atom. The Cd(2)-O(1) bond length is 2.32 Å. The Cd(2)-O(4) bond length is 2.19 Å. The Cd(2)-O(5) bond length is 2.20 Å. The Cd(2)-O(8) bond length is 2.34 Å. There are thirty inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(15), one C(2), and one C(9) atom. The C(1)-C(15) bond length is 1.49 Å. The C(1)-C(2) bond length is 1.34 Å. The C(1)-C(9) bond length is 1.49 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(21), and one C(3) atom. The C(2)-C(21) bond length is 1.49 Å. The C(2)-C(3) bond length is 1.49 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(8) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-C(8) bond length is 1.37 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3); one C(5); and one H(1,4) atom. The C(4)-C(5) bond length is 1.38 Å. The C(4)-H(1,4) bond length is 0.95 Å. In the fifth C site, C(5) is bonded in a distorted trigonal planar geometry to one C(4), one C(6), and one H(2) atom. The C(5)-C(6) bond length is 1.38 Å. The C(5)-H(2) bond length is 0.95 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(29), one C(5), and one C(7) atom. The C(6)-C(29) bond length is 1.50 Å. The C(6)-C(7) bond length is 1.39 Å. In the seventh C site, C(7) is bonded in a distorted trigonal planar geometry to one C(6), one C(8), and one H(3) atom. The C(7)-C(8) bond length is 1.38 Å. The C(7)-H(3) bond length is 0.95 Å. In the eighth C site, C(8) is bonded in a distorted single-bond geometry to one C(3); one C(7); and one H(1,4) atom. The C(8)-H(1,4) bond length is 0.95 Å. In the ninth C site, C(9) is bonded in a trigonal planar geometry to one C(1), one C(10), and one C(14) atom. The C(9)-C(10) bond length is 1.38 Å. The C(9)-C(14) bond length is 1.38 Å. In the tenth C site, C(10) is bonded in a distorted single-bond geometry to one C(9) and one H(5) atom. The C(10)-H(5) bond length is 0.95 Å. In the eleventh C site, C(11) is bonded in a distorted single-bond geometry to one C(12) and one H(6) atom. The C(11)-C(12) bond length is 1.39 Å. The C(11)-H(6) bond length is 0.95 Å. In the twelfth C site, C(12) is bonded in a trigonal planar geometry to one C(11), one C(13), and one C(30) atom. The C(12)-C(13) bond length is 1.39 Å. The C(12)-C(30) bond length is 1.50 Å. In the thirteenth C site, C(13) is bonded in a distorted trigonal planar geometry to one C(12), one C(14), and one H(7) atom. The C(13)-C(14) bond length is 1.37 Å. The C(13)-H(7) bond length is 0.95 Å. In the fourteenth C site, C(14) is bonded in a distorted single-bond geometry to one C(13), one C(9), and one H(8) atom. The C(14)-H(8) bond length is 0.95 Å. In the fifteenth C site, C(15) is bonded in a trigonal planar geometry to one C(1), one C(16), and one C(20) atom. The C(15)-C(16) bond length is 1.38 Å. The C(15)-C(20) bond length is 1.37 Å. In the sixteenth C site, C(16) is bonded in a distorted single-bond geometry to one C(15), one C(17), and one H(9) atom. The C(16)-C(17) bond length is 1.39 Å. The C(16)-H(9) bond length is 0.95 Å. In the seventeenth C site, C(17) is bonded in a distorted trigonal planar geometry to one C(16), one C(18), and one H(10) atom. The C(17)-C(18) bond length is 1.37 Å. The C(17)-H(10) bond length is 0.95 Å. In the eighteenth C site, C(18) is bonded in a trigonal planar geometry to one C(17), one C(19), and one C(28) atom. The C(18)-C(19) bond length is 1.40 Å. The C(18)-C(28) bond length is 1.48 Å. In the nineteenth C site, C(19) is bonded in a distorted trigonal planar geometry to one C(18), one C(20), and one H(11) atom. The C(19)-C(20) bond length is 1.38 Å. The C(19)-H(11) bond length is 0.95 Å. In the twentieth C site, C(20) is bonded in a distorted single-bond geometry to one C(15), one C(19), and one H(12) atom. The C(20)-H(12) bond length is 0.95 Å. In the twenty-first C site, C(21) is bonded in a trigonal planar geometry to one C(2), one C(22), and one C(26) atom. The C(21)-C(22) bond length is 1.39 Å. The C(21)-C(26) bond length is 1.39 Å. In the twenty-second C site, C(22) is bonded in a distorted single-bond geometry to one C(21), one C(23), and one H(13) atom. The C(22)-C(23) bond length is 1.38 Å. The C(22)-H(13) bond length is 0.95 Å. In the twenty-third C site, C(23) is bonded in a distorted trigonal planar geometry to one C(22), one C(24), and one H(14) atom. The C(23)-C(24) bond length is 1.38 Å. The C(23)-H(14) bond length is 0.95 Å. In the twenty-fourth C site, C(24) is bonded in a trigonal planar geometry to one C(23), one C(25), and one C(27) atom. The C(24)-C(25) bond length is 1.39 Å. The C(24)-C(27) bond length is 1.49 Å. In the twenty-fifth C site, C(25) is bonded in a distorted single-bond geometry to one C(24) and one H(15) atom. The C(25)-H(15) bond length is 0.95 Å. In the twenty-sixth C site, C(26) is bonded in a distorted single-bond geometry to one C(21) and one H(16) atom. The C(26)-H(16) bond length is 0.95 Å. In the twenty-seventh C site, C(27) is bonded in a bent 120 degrees geometry to one C(24), one O(7), and one O(8) atom. The C(27)-O(7) bond length is 1.25 Å. The C(27)-O(8) bond length is 1.25 Å. In the twenty-eighth C site, C(28) is bonded in a distorted bent 120 degrees geometry to one C(18), one O(1), and one O(2) atom. The C(28)-O(1) bond length is 1.26 Å. The C(28)-O(2) bond length is 1.26 Å. In the twenty-ninth C site, C(29) is bonded in a distorted bent 120 degrees geometry to one C(6), one O(3), and one O(4) atom. The C(29)-O(3) bond length is 1.24 Å. The C(29)-O(4) bond length is 1.28 Å. In the thirtieth C site, C(30) is bonded in a distorted bent 120 degrees geometry to one C(12), one O(5), and one O(6) atom. The C(30)-O(5) bond length is 1.24 Å. The C(30)-O(6) bond length is 1.24 Å. There are fifteen inequivalent H sites. In the first H site, H(1,4) is bonded in a single-bond geometry to one C(4) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(7) atom. In the fourth H site, H(5) is bonded in a single-bond geometry to one C(10) atom. In the fifth H site, H(6) is bonded in a single-bond geometry to one C(11) atom. In the sixth H site, H(7) is bonded in a single-bond geometry to one C(13) atom. In the seventh H site, H(8) is bonded in a single-bond geometry to one C(14) atom. In the eighth H site, H(9) is bonded in a single-bond geometry to one C(16) atom. In the ninth H site, H(10) is bonded in a single-bond geometry to one C(17) atom. In the tenth H site, H(11) is bonded in a single-bond geometry to one C(19) atom. In the eleventh H site, H(12) is bonded in a single-bond geometry to one C(20) atom. In the twelfth H site, H(13) is bonded in a single-bond geometry to one C(22) atom. In the thirteenth H site, H(14) is bonded in a single-bond geometry to one C(23) atom. In the fourteenth H site, H(15) is bonded in a single-bond geometry to one C(25) atom. In the fifteenth H site, H(16) is bonded in a single-bond geometry to one C(26) atom. There are eight inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 150 degrees geometry to one Cd(1), one Cd(2), and one C(28) atom. In the second O site, O(2) is bonded in a water-like geometry to one Cd(1) and one C(28) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Cd(1) and one C(29) atom. In the fourth O site, O(4) is bonded in a distorted bent 120 degrees geometry to one Cd(2) and one C(29) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Cd(2) and one C(30) atom. In the sixth O site, O(6) is bonded in a single-bond geometry to one C(30) atom. In the seventh O site, O(7) is bonded in a 3-coordinate geometry to two equivalent Cd(1) and one C(27) atom. In the eighth O site, O(8) is bonded in a 3-coordinate geometry to one Cd(1), one Cd(2), and one C(27) atom. Linkers: 4 [O]C(=O)c1ccc(C(=C(c2ccc(C([O])=O)cc2)c2ccc(C([O])=O)cc2)c2ccc(C([O])=O)cc2)cc1. Metal clusters: 2 O=[C]O[Cd@]12O[C]O[Cd](O[C]O1)O[C]O[Cd@]1(O[C]=O)O[C]O[Cd](O[C]O2)O[C]O1. RCSR code: scu. The MOF has largest included sphere 6.02 A, density 0.99 g/cm3, surface area 3765.91 m2/g, accessible volume 0.59 cm3/g
AVIHIY_clean
HoH3(C3O2)3 crystallizes in the tetragonal P4_3 space group. Ho(1) is bonded in a pentagonal pyramidal geometry to one O(1), one O(2), one O(3), one O(4), one O(5), and one O(6) atom. The Ho(1)-O(1) bond length is 2.29 Å. The Ho(1)-O(2) bond length is 2.29 Å. The Ho(1)-O(3) bond length is 2.29 Å. The Ho(1)-O(4) bond length is 2.28 Å. The Ho(1)-O(5) bond length is 2.29 Å. The Ho(1)-O(6) bond length is 2.28 Å. There are nine inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(6), one O(5), and one O(6) atom. The C(1)-C(6) bond length is 1.51 Å. The C(1)-O(5) bond length is 1.24 Å. The C(1)-O(6) bond length is 1.23 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(5), one C(7), and one H(1) atom. The C(2)-C(5) bond length is 1.39 Å. The C(2)-C(7) bond length is 1.37 Å. The C(2)-H(1) bond length is 0.93 Å. In the third C site, C(3) is bonded in a bent 120 degrees geometry to one C(7), one O(2), and one O(4) atom. The C(3)-C(7) bond length is 1.51 Å. The C(3)-O(2) bond length is 1.25 Å. The C(3)-O(4) bond length is 1.24 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(5), one C(6), and one H(2) atom. The C(4)-C(5) bond length is 1.39 Å. The C(4)-C(6) bond length is 1.38 Å. The C(4)-H(2) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(8) atom. The C(5)-C(8) bond length is 1.53 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(1), one C(4), and one C(9) atom. The C(6)-C(9) bond length is 1.40 Å. In the seventh C site, C(7) is bonded in a trigonal planar geometry to one C(2), one C(3), and one C(9) atom. The C(7)-C(9) bond length is 1.39 Å. In the eighth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one C(5), one O(1), and one O(3) atom. The C(8)-O(1) bond length is 1.23 Å. The C(8)-O(3) bond length is 1.26 Å. In the ninth C site, C(9) is bonded in a single-bond geometry to one C(6), one C(7), and one H(3) atom. The C(9)-H(3) bond length is 0.93 Å. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(9) atom. There are six inequivalent O sites. In the first O site, O(1) is bonded in a bent 150 degrees geometry to one Ho(1) and one C(8) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Ho(1) and one C(3) atom. In the third O site, O(3) is bonded in a bent 150 degrees geometry to one Ho(1) and one C(8) atom. In the fourth O site, O(4) is bonded in a linear geometry to one Ho(1) and one C(3) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Ho(1) and one C(1) atom. In the sixth O site, O(6) is bonded in a linear geometry to one Ho(1) and one C(1) atom. Linkers: 4 [O]C(=O)c1cc(C([O])=O)cc(C([O])=O)c1. Metal clusters: 4 [Ho]. The MOF has largest included sphere 6.88 A, density 1.62 g/cm3, surface area 2405.62 m2/g, accessible volume 0.32 cm3/g
NETYIV_clean
Cu3C40N8H28Cl is Indium-like structured and crystallizes in the monoclinic C2/c space group. The structure is zero-dimensional and consists of four Cu3C40N8H28Cl clusters. There are two inequivalent Cu sites. In the first Cu site, Cu(1) is bonded to one N(1), one N(3), one N(4), and one Cl(1) atom to form distorted corner-sharing CuN3Cl tetrahedra. The Cu(1)-N(1) bond length is 2.00 Å. The Cu(1)-N(3) bond length is 2.10 Å. The Cu(1)-N(4) bond length is 1.99 Å. The Cu(1)-Cl(1) bond length is 2.66 Å. In the second Cu site, Cu(2) is bonded in a distorted trigonal planar geometry to two equivalent N(2) and one Cl(1) atom. Both Cu(2)-N(2) bond lengths are 1.95 Å. The Cu(2)-Cl(1) bond length is 2.33 Å. There are twenty inequivalent C sites. In the first C site, C(6) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(3) atom. The C(6)-N(1) bond length is 1.34 Å. The C(6)-H(3) bond length is 0.93 Å. In the second C site, C(5) is bonded in a bent 120 degrees geometry to one C(20) and one C(8) atom. The C(5)-C(20) bond length is 1.39 Å. The C(5)-C(8) bond length is 1.39 Å. In the third C site, C(7) is bonded in a bent 120 degrees geometry to one C(3) and one C(8) atom. The C(7)-C(3) bond length is 1.39 Å. The C(7)-C(8) bond length is 1.39 Å. In the fourth C site, C(10) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(5) atom. The C(10)-N(1) bond length is 1.35 Å. The C(10)-H(5) bond length is 0.93 Å. In the fifth C site, C(11) is bonded in a trigonal planar geometry to one C(16), one C(19), and one C(4) atom. The C(11)-C(16) bond length is 1.38 Å. The C(11)-C(19) bond length is 1.38 Å. The C(11)-C(4) bond length is 1.49 Å. In the sixth C site, C(8) is bonded in a trigonal planar geometry to one C(1), one C(5), and one C(7) atom. The C(8)-C(1) bond length is 1.48 Å. In the seventh C site, C(12) is bonded in a single-bond geometry to one C(4) and one H(6) atom. The C(12)-C(4) bond length is 1.38 Å. The C(12)-H(6) bond length is 0.93 Å. In the eighth C site, C(14) is bonded in a distorted bent 120 degrees geometry to one N(4) and one H(8) atom. The C(14)-N(4) bond length is 1.34 Å. The C(14)-H(8) bond length is 0.93 Å. In the ninth C site, C(15) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(9) atom. The C(15)-N(2) bond length is 1.32 Å. The C(15)-H(9) bond length is 0.93 Å. In the tenth C site, C(16) is bonded in a distorted single-bond geometry to one C(11) and one H(10) atom. The C(16)-H(10) bond length is 0.93 Å. In the eleventh C site, C(9) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(4) atom. The C(9)-N(2) bond length is 1.34 Å. The C(9)-H(4) bond length is 0.93 Å. In the twelfth C site, C(13) is bonded in a distorted single-bond geometry to one C(1) and one H(7) atom. The C(13)-C(1) bond length is 1.38 Å. The C(13)-H(7) bond length is 0.93 Å. In the thirteenth C site, C(17) is bonded in a 3-coordinate geometry to one C(19), one N(4), and one H(11) atom. The C(17)-C(19) bond length is 1.38 Å. The C(17)-N(4) bond length is 1.35 Å. The C(17)-H(11) bond length is 0.93 Å. In the fourteenth C site, C(18) is bonded in a distorted single-bond geometry to one C(4) and one H(12) atom. The C(18)-C(4) bond length is 1.39 Å. The C(18)-H(12) bond length is 0.93 Å. In the fifteenth C site, C(19) is bonded in a distorted single-bond geometry to one C(11), one C(17), and one H(13) atom. The C(19)-H(13) bond length is 0.93 Å. In the sixteenth C site, C(20) is bonded in a distorted bent 120 degrees geometry to one C(5), one N(3), and one H(14) atom. The C(20)-N(3) bond length is 1.34 Å. The C(20)-H(14) bond length is 0.93 Å. In the seventeenth C site, C(1) is bonded in a trigonal planar geometry to one C(13), one C(2), and one C(8) atom. The C(1)-C(2) bond length is 1.39 Å. In the eighteenth C site, C(2) is bonded in a distorted single-bond geometry to one C(1) and one H(1) atom. The C(2)-H(1) bond length is 0.93 Å. In the nineteenth C site, C(3) is bonded in a distorted bent 120 degrees geometry to one C(7), one N(3), and one H(2) atom. The C(3)-N(3) bond length is 1.34 Å. The C(3)-H(2) bond length is 0.93 Å. In the twentieth C site, C(4) is bonded in a trigonal planar geometry to one C(11), one C(12), and one C(18) atom. There are four inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Cu(1), one C(10), and one C(6) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one Cu(2), one C(15), and one C(9) atom. In the third N site, N(3) is bonded in a trigonal planar geometry to one Cu(1), one C(20), and one C(3) atom. In the fourth N site, N(4) is bonded in a trigonal planar geometry to one Cu(1), one C(14), and one C(17) atom. There are fourteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(6) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(9) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(10) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(12) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(13) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(14) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(15) atom. In the tenth H site, H(10) is bonded in a single-bond geometry to one C(16) atom. In the eleventh H site, H(11) is bonded in a single-bond geometry to one C(17) atom. In the twelfth H site, H(12) is bonded in a single-bond geometry to one C(18) atom. In the thirteenth H site, H(13) is bonded in a single-bond geometry to one C(19) atom. In the fourteenth H site, H(14) is bonded in a single-bond geometry to one C(20) atom. Cl(1) is bonded in a T-shaped geometry to one Cu(2) and two equivalent Cu(1) atoms. Linkers: 7 c1cc(-c2ccncc2)ccn1 ,8 [c]1cnc[c]c1-c1ccncc1. Metal clusters: 6 [Cu] ,2 Cl[Cu].[Cu].[Cu]. The MOF has largest included sphere 8.03 A, density 0.78 g/cm3, surface area 4900.08 m2/g, accessible volume 0.79 cm3/g
VOCKUT_clean
Co2C21N4H15O9(CH)3 crystallizes in the triclinic P-1 space group. The structure consists of six 02329_fluka molecules inside a Co2C21N4H15O9 framework. In the Co2C21N4H15O9 framework, there are two inequivalent Co sites. In the first Co site, Co(1) is bonded to one N(2), one N(3), one O(2), one O(5), one O(7), and one O(9) atom to form corner-sharing CoN2O4 octahedra. The corner-sharing octahedral tilt angles are 66°. The Co(1)-N(2) bond length is 2.13 Å. The Co(1)-N(3) bond length is 2.14 Å. The Co(1)-O(2) bond length is 2.05 Å. The Co(1)-O(5) bond length is 2.10 Å. The Co(1)-O(7) bond length is 2.11 Å. The Co(1)-O(9) bond length is 2.16 Å. In the second Co site, Co(2) is bonded to one N(1), one N(4), one O(1), one O(4), one O(6), and one O(9) atom to form corner-sharing CoN2O4 octahedra. The corner-sharing octahedral tilt angles are 66°. The Co(2)-N(1) bond length is 2.15 Å. The Co(2)-N(4) bond length is 2.20 Å. The Co(2)-O(1) bond length is 2.11 Å. The Co(2)-O(4) bond length is 2.07 Å. The Co(2)-O(6) bond length is 2.07 Å. The Co(2)-O(9) bond length is 2.15 Å. There are twenty-one inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.51 Å. The C(1)-O(1) bond length is 1.25 Å. The C(1)-O(2) bond length is 1.25 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(6) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-C(6) bond length is 1.38 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2) and one H(3) atom. The C(3)-H(3) bond length is 0.95 Å. In the fourth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(5) atom. The C(5)-N(1) bond length is 1.32 Å. The C(5)-H(5) bond length is 0.95 Å. In the fifth C site, C(6) is bonded in a 3-coordinate geometry to one C(2), one N(1), and one H(6) atom. The C(6)-N(1) bond length is 1.35 Å. The C(6)-H(6) bond length is 0.95 Å. In the sixth C site, C(7) is bonded in a distorted bent 120 degrees geometry to one C(8), one O(3), and one O(4) atom. The C(7)-C(8) bond length is 1.52 Å. The C(7)-O(3) bond length is 1.24 Å. The C(7)-O(4) bond length is 1.26 Å. In the seventh C site, C(8) is bonded in a trigonal planar geometry to one C(12), one C(7), and one C(9) atom. The C(8)-C(12) bond length is 1.38 Å. The C(8)-C(9) bond length is 1.39 Å. In the eighth C site, C(9) is bonded in a distorted single-bond geometry to one C(8) and one H(7) atom. The C(9)-H(7) bond length is 0.95 Å. In the ninth C site, C(11) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(9) atom. The C(11)-N(2) bond length is 1.35 Å. The C(11)-H(9) bond length is 0.95 Å. In the tenth C site, C(12) is bonded in a distorted bent 120 degrees geometry to one C(8), one N(2), and one H(10) atom. The C(12)-N(2) bond length is 1.35 Å. The C(12)-H(10) bond length is 0.95 Å. In the eleventh C site, C(13) is bonded in a distorted bent 120 degrees geometry to one C(14), one O(5), and one O(6) atom. The C(13)-C(14) bond length is 1.51 Å. The C(13)-O(5) bond length is 1.25 Å. The C(13)-O(6) bond length is 1.27 Å. In the twelfth C site, C(14) is bonded in a trigonal planar geometry to one C(13), one C(15), and one C(18) atom. The C(14)-C(15) bond length is 1.38 Å. The C(14)-C(18) bond length is 1.38 Å. In the thirteenth C site, C(15) is bonded in a distorted single-bond geometry to one C(14) and one H(11) atom. The C(15)-H(11) bond length is 0.95 Å. In the fourteenth C site, C(17) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(13) atom. The C(17)-N(3) bond length is 1.33 Å. The C(17)-H(13) bond length is 0.95 Å. In the fifteenth C site, C(18) is bonded in a distorted bent 120 degrees geometry to one C(14), one N(3), and one H(14) atom. The C(18)-N(3) bond length is 1.34 Å. The C(18)-H(14) bond length is 0.95 Å. In the sixteenth C site, C(19) is bonded in a distorted bent 120 degrees geometry to one C(20), one O(7), and one O(8) atom. The C(19)-C(20) bond length is 1.51 Å. The C(19)-O(7) bond length is 1.25 Å. The C(19)-O(8) bond length is 1.25 Å. In the seventeenth C site, C(20) is bonded in a trigonal planar geometry to one C(19), one C(21), and one C(24) atom. The C(20)-C(21) bond length is 1.39 Å. The C(20)-C(24) bond length is 1.38 Å. In the eighteenth C site, C(21) is bonded in a distorted single-bond geometry to one C(20) and one H(15) atom. The C(21)-H(15) bond length is 0.95 Å. In the nineteenth C site, C(22) is bonded in a distorted single-bond geometry to one C(23) and one H(16) atom. The C(22)-C(23) bond length is 1.37 Å. The C(22)-H(16) bond length is 0.95 Å. In the twentieth C site, C(23) is bonded in a distorted bent 120 degrees geometry to one C(22), one N(4), and one H(17) atom. The C(23)-N(4) bond length is 1.34 Å. The C(23)-H(17) bond length is 0.95 Å. In the twenty-first C site, C(24) is bonded in a distorted bent 120 degrees geometry to one C(20), one N(4), and one H(18) atom. The C(24)-N(4) bond length is 1.35 Å. The C(24)-H(18) bond length is 0.95 Å. There are four inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Co(2), one C(5), and one C(6) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one Co(1), one C(11), and one C(12) atom. In the third N site, N(3) is bonded in a trigonal planar geometry to one Co(1), one C(17), and one C(18) atom. In the fourth N site, N(4) is bonded in a trigonal planar geometry to one Co(2), one C(23), and one C(24) atom. There are fifteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one O(9) atom. The H(1)-O(9) bond length is 0.75 Å. In the second H site, H(2) is bonded in a single-bond geometry to one O(3) and one O(9) atom. The H(2)-O(3) bond length is 1.68 Å. The H(2)-O(9) bond length is 0.92 Å. In the third H site, H(3) is bonded in a single-bond geometry to one C(3) atom. In the fourth H site, H(5) is bonded in a single-bond geometry to one C(5) atom. In the fifth H site, H(6) is bonded in a single-bond geometry to one C(6) atom. In the sixth H site, H(7) is bonded in a single-bond geometry to one C(9) atom. In the seventh H site, H(9) is bonded in a single-bond geometry to one C(11) atom. In the eighth H site, H(10) is bonded in a single-bond geometry to one C(12) atom. In the ninth H site, H(11) is bonded in a single-bond geometry to one C(15) atom. In the tenth H site, H(13) is bonded in a single-bond geometry to one C(17) atom. In the eleventh H site, H(14) is bonded in a single-bond geometry to one C(18) atom. In the twelfth H site, H(15) is bonded in a single-bond geometry to one C(21) atom. In the thirteenth H site, H(16) is bonded in a single-bond geometry to one C(22) atom. In the fourteenth H site, H(17) is bonded in a single-bond geometry to one C(23) atom. In the fifteenth H site, H(18) is bonded in a single-bond geometry to one C(24) atom. There are nine inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 150 degrees geometry to one Co(2) and one C(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Co(1) and one C(1) atom. In the third O site, O(3) is bonded in a distorted water-like geometry to one C(7) and one H(2) atom. In the fourth O site, O(4) is bonded in a bent 120 degrees geometry to one Co(2) and one C(7) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Co(1) and one C(13) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one Co(2) and one C(13) atom. In the seventh O site, O(7) is bonded in a bent 120 degrees geometry to one Co(1) and one C(19) atom. In the eighth O site, O(8) is bonded in a single-bond geometry to one C(19) atom. In the ninth O site, O(9) is bonded in a distorted water-like geometry to one Co(1), one Co(2), one H(1), and one H(2) atom. Linkers: 8 [O]C(=O)c1cccnc1. Metal clusters: 2 O.O=[C]O[Co]1O[C]O[Co](O[C]=O)O[C]O1. The MOF has largest included sphere 4.87 A, density 1.42 g/cm3, surface area 3932.30 m2/g, accessible volume 0.23 cm3/g
OYOSAX_clean
MnH6(C3O)4 crystallizes in the monoclinic P2_1/c space group. Mn(1) is bonded to one O(2), one O(3), one O(4), and two equivalent O(1) atoms to form distorted corner-sharing MnO5 square pyramids. The Mn(1)-O(2) bond length is 2.27 Å. The Mn(1)-O(3) bond length is 2.08 Å. The Mn(1)-O(4) bond length is 2.12 Å. There is one shorter (2.15 Å) and one longer (2.36 Å) Mn(1)-O(1) bond length. There are twelve inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.50 Å. The C(1)-O(1) bond length is 1.28 Å. The C(1)-O(2) bond length is 1.25 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(4) atom. The C(2)-C(3) bond length is 1.36 Å. The C(2)-C(4) bond length is 1.42 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2), one C(6), and one H(1) atom. The C(3)-C(6) bond length is 1.42 Å. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(2) and one H(2) atom. The C(4)-H(2) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a single-bond geometry to one C(6) and one H(3) atom. The C(5)-C(6) bond length is 1.41 Å. The C(5)-H(3) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(3), one C(5), and one C(6) atom. The C(6)-C(6) bond length is 1.41 Å. In the seventh C site, C(7) is bonded in a distorted bent 120 degrees geometry to one C(8), one O(3), and one O(4) atom. The C(7)-C(8) bond length is 1.51 Å. The C(7)-O(3) bond length is 1.25 Å. The C(7)-O(4) bond length is 1.25 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one C(11), one C(7), and one C(9) atom. The C(8)-C(11) bond length is 1.41 Å. The C(8)-C(9) bond length is 1.37 Å. In the ninth C site, C(9) is bonded in a distorted single-bond geometry to one C(10), one C(8), and one H(4) atom. The C(9)-C(10) bond length is 1.42 Å. The C(9)-H(4) bond length is 0.93 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(10), one C(12), and one C(9) atom. The C(10)-C(10) bond length is 1.41 Å. The C(10)-C(12) bond length is 1.41 Å. In the eleventh C site, C(11) is bonded in a distorted single-bond geometry to one C(8) and one H(5) atom. The C(11)-H(5) bond length is 0.93 Å. In the twelfth C site, C(12) is bonded in a distorted single-bond geometry to one C(10) and one H(6) atom. The C(12)-H(6) bond length is 0.93 Å. There are six inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(5) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(9) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(11) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(12) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a 3-coordinate geometry to two equivalent Mn(1) and one C(1) atom. In the second O site, O(2) is bonded in a distorted L-shaped geometry to one Mn(1) and one C(1) atom. In the third O site, O(3) is bonded in a bent 150 degrees geometry to one Mn(1) and one C(7) atom. In the fourth O site, O(4) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(7) atom. Linkers: 4 [O]C(=O)c1ccc2cc(C([O])=O)ccc2c1. Metal clusters: 4 [Mn]. RCSR code: pts. The MOF has largest included sphere 5.10 A, density 1.19 g/cm3, surface area 4243.66 m2/g, accessible volume 0.34 cm3/g
EDUSOL_clean
Zn4C36O13Br24 is alpha Po structured and crystallizes in the cubic Fm-3m space group. The structure is zero-dimensional and consists of eight Zn4C36O13Br24 clusters. Zn(1) is bonded to one O(1) and three equivalent O(2) atoms to form corner-sharing ZnO4 tetrahedra. The Zn(1)-O(1) bond length is 1.94 Å. All Zn(1)-O(2) bond lengths are 1.94 Å. There are three inequivalent C sites. In the first C site, C(1) is bonded in a distorted single-bond geometry to one C(1), one C(3), and one Br(1) atom. The C(1)-C(1) bond length is 0.93 Å. The C(1)-C(3) bond length is 1.32 Å. The C(1)-Br(1) bond length is 2.08 Å. In the second C site, C(2) is bonded in a distorted trigonal planar geometry to one C(3) and two equivalent O(2) atoms. The C(2)-C(3) bond length is 1.43 Å. Both C(2)-O(2) bond lengths are 1.25 Å. In the third C site, C(3) is bonded in a 5-coordinate geometry to one C(2) and four equivalent C(1) atoms. There are two inequivalent O sites. In the first O site, O(1) is bonded in a tetrahedral geometry to four equivalent Zn(1) atoms. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(2) atom. Br(1) is bonded in a single-bond geometry to one C(1) atom. Linkers: 3 BrBr.BrBr.Br[C]1[C](Br)c2[c]c3c([c]c21)[C](Br)[C]3Br.[O][C]=O.[O][C]=O ,4 BrBr.BrBr.Br[C@@]12[C][C][C@]1(Br)[C][C@@]1(Br)[C][C][C@@]1(Br)[C]2.[O][C]=O.[O][C]=O ,1 [Br].[Br].[Br].[Br].[C][C]1[C](Br)[C](Br)[C]1[C][C@@]1(Br)[C][C][C]1Br.[O][C]=O.[O][C]=O ,1 Br[C@@]12[C][C][C@]1(Br)[C][C@@]1(Br)[C][C][C@@]1(Br)[C]2.[Br].[Br].[Br].[Br].[O][C]=O.[O][C]=O ,2 BrBr.BrBr.Br[C]1[C][C]2[C][C]3[C][C](Br)[C@@]3(Br)[C][C@]12Br.[O][C]=O.[O][C]=O ,1 BrBr.BrBr.[C][C]1[C][C@@](Br)([C][C@@]2(Br)[C][C][C]2Br)[C]1Br.[O][C]=O.[O][C]=O ,1 Br[C]1[C][C]2[C][C]3[C][C](Br)[C@@]3(Br)[C][C@]12Br.[Br].[Br].[Br].[Br].[O][C]=O.[O][C]=O ,2 Br[C]1[C][C]2[C][C]3[C][C](Br)[C@]3(Br)[C][C@@]12Br.[Br].[Br].[Br].[Br].[O][C]=O.[O][C]=O ,1 BrBr.BrBr.Br[C]1[C][C][C]1Br.[C][C]1[C][C@@]([C])(Br)[C]1Br.[O][C]=O.[O][C]=O ,1 BrBr.BrBr.[C][C@@]1(Br)[C][C][C]1Br.[C][C]1[C][C](Br)[C]1Br.[O][C]=O.[O][C]=O ,1 BrBr.BrBr.Br[C]1[C](Br)[C]2[C][C@@]3(Br)[C][C][C@@]3(Br)[C][C]12.[O][C]=O.[O][C]=O ,1 BrBr.BrBr.Br[C]1[C][C]2[C][C]3[C][C](Br)[C@@]3(Br)[C][C@@]12Br.[O][C]=O.[O][C]=O ,2 BrBr.BrBr.Br[C]1[C][C][C]1Br.[C][C]1[C][C](Br)[C@]1([C])Br.[O][C]=O.[O][C]=O ,2 Br[C]1[C][C][C]1Br.[Br].[Br].[Br].[Br].[C][C]1[C][C](Br)[C@@]1([C])Br.[O][C]=O.[O][C]=O ,1 Br[C]1[C][C]2[C][C]3[C][C](Br)[C@@]3(Br)[C][C@@]12Br.[Br].[Br].[Br].[Br].[O][C]=O.[O][C]=O. Metal clusters: 8 [C]1O[Zn]2O[C]O[Zn@]34O[C]O[Zn](O1)O[C]O[Zn@](O[C]O2)(O[C]O3)O4. RCSR code: pcu. The MOF has largest included sphere 12.81 A, density 2.19 g/cm3, surface area 1587.98 m2/g, accessible volume 0.27 cm3/g
WEYQAU05_clean
MnH3(C3O2)3 crystallizes in the orthorhombic Pbca space group. Mn(1) is bonded in a distorted pentagonal pyramidal geometry to one O(1), one O(2), one O(3), one O(4), one O(5), and one O(6) atom. The Mn(1)-O(1) bond length is 2.13 Å. The Mn(1)-O(2) bond length is 2.23 Å. The Mn(1)-O(3) bond length is 2.15 Å. The Mn(1)-O(4) bond length is 2.29 Å. The Mn(1)-O(5) bond length is 2.19 Å. The Mn(1)-O(6) bond length is 2.34 Å. There are nine inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(7), one O(1), and one O(3) atom. The C(1)-C(7) bond length is 1.50 Å. The C(1)-O(1) bond length is 1.27 Å. The C(1)-O(3) bond length is 1.27 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(7), one C(8), and one H(1) atom. The C(2)-C(7) bond length is 1.39 Å. The C(2)-C(8) bond length is 1.40 Å. The C(2)-H(1) bond length is 0.95 Å. In the third C site, C(3) is bonded in a distorted bent 120 degrees geometry to one C(5), one O(5), and one O(6) atom. The C(3)-C(5) bond length is 1.52 Å. The C(3)-O(5) bond length is 1.22 Å. The C(3)-O(6) bond length is 1.27 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(5), one C(7), and one H(2) atom. The C(4)-C(5) bond length is 1.39 Å. The C(4)-C(7) bond length is 1.39 Å. The C(4)-H(2) bond length is 0.95 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(3), one C(4), and one C(6) atom. The C(5)-C(6) bond length is 1.39 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(5), one C(8), and one H(3) atom. The C(6)-C(8) bond length is 1.38 Å. The C(6)-H(3) bond length is 0.95 Å. In the seventh C site, C(7) is bonded in a trigonal planar geometry to one C(1), one C(2), and one C(4) atom. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one C(2), one C(6), and one C(9) atom. The C(8)-C(9) bond length is 1.51 Å. In the ninth C site, C(9) is bonded in a bent 120 degrees geometry to one C(8), one O(2), and one O(4) atom. The C(9)-O(2) bond length is 1.23 Å. The C(9)-O(4) bond length is 1.27 Å. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(6) atom. There are six inequivalent O sites. In the first O site, O(1) is bonded in a water-like geometry to one Mn(1) and one C(1) atom. In the second O site, O(2) is bonded in an L-shaped geometry to one Mn(1) and one C(9) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(1) atom. In the fourth O site, O(4) is bonded in an L-shaped geometry to one Mn(1) and one C(9) atom. In the fifth O site, O(5) is bonded in an L-shaped geometry to one Mn(1) and one C(3) atom. In the sixth O site, O(6) is bonded in an L-shaped geometry to one Mn(1) and one C(3) atom. Linkers: 8 [O]C(=O)c1cc(C([O])=O)cc(C([O])=O)c1. Metal clusters: 4 [C]1O[Mn]23(O1)(O[C]O2)O[C]O[Mn]12(O[C]O1)(O[C]O2)O[C]O3. RCSR code: pyr. The MOF has largest included sphere 4.49 A, density 1.15 g/cm3, surface area 3740.45 m2/g, accessible volume 0.51 cm3/g
WEGFUL_clean
EuC12H8(NO3)3 is Indium-like structured and crystallizes in the monoclinic P2_1/c space group. The structure is zero-dimensional and consists of two EuC12H8(NO3)3 clusters. Eu(1) is bonded in a 9-coordinate geometry to one O(1), one O(2), one O(3), one O(5), one O(6), one O(7), one O(8), and two equivalent O(4) atoms. The Eu(1)-O(1) bond length is 2.48 Å. The Eu(1)-O(2) bond length is 2.53 Å. The Eu(1)-O(3) bond length is 2.44 Å. The Eu(1)-O(5) bond length is 2.39 Å. The Eu(1)-O(6) bond length is 2.39 Å. The Eu(1)-O(7) bond length is 2.38 Å. The Eu(1)-O(8) bond length is 2.41 Å. There is one shorter (2.37 Å) and one longer (2.76 Å) Eu(1)-O(4) bond length. There are twelve inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(2), one O(3), and one O(4) atom. The C(1)-C(2) bond length is 1.51 Å. The C(1)-O(3) bond length is 1.25 Å. The C(1)-O(4) bond length is 1.25 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(6) atom. The C(2)-C(3) bond length is 1.40 Å. The C(2)-C(6) bond length is 1.38 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2) and one H(1) atom. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(2) atom. The C(4)-N(2) bond length is 1.35 Å. The C(4)-H(2) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(3) atom. The C(5)-N(2) bond length is 1.35 Å. The C(5)-H(3) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(2) and one H(4) atom. The C(6)-H(4) bond length is 0.93 Å. In the seventh C site, C(7) is bonded in a distorted bent 120 degrees geometry to one C(8), one O(6), and one O(7) atom. The C(7)-C(8) bond length is 1.50 Å. The C(7)-O(6) bond length is 1.25 Å. The C(7)-O(7) bond length is 1.27 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one C(12), one C(7), and one C(9) atom. The C(8)-C(12) bond length is 1.40 Å. The C(8)-C(9) bond length is 1.40 Å. In the ninth C site, C(9) is bonded in a distorted single-bond geometry to one C(8) and one H(5) atom. The C(9)-H(5) bond length is 0.93 Å. In the tenth C site, C(10) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(6) atom. The C(10)-N(3) bond length is 1.34 Å. The C(10)-H(6) bond length is 0.93 Å. In the eleventh C site, C(11) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(7) atom. The C(11)-N(3) bond length is 1.33 Å. The C(11)-H(7) bond length is 0.93 Å. In the twelfth C site, C(12) is bonded in a distorted single-bond geometry to one C(8) and one H(8) atom. The C(12)-H(8) bond length is 0.93 Å. There are three inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one O(1), one O(2), and one O(9) atom. The N(1)-O(1) bond length is 1.28 Å. The N(1)-O(2) bond length is 1.26 Å. The N(1)-O(9) bond length is 1.19 Å. In the second N site, N(2) is bonded in a trigonal planar geometry to one C(4), one C(5), and one O(5) atom. The N(2)-O(5) bond length is 1.32 Å. In the third N site, N(3) is bonded in a trigonal planar geometry to one C(10), one C(11), and one O(8) atom. The N(3)-O(8) bond length is 1.34 Å. There are eight inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(5) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(6) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(9) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(10) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(11) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(12) atom. There are nine inequivalent O sites. In the first O site, O(1) is bonded in a distorted L-shaped geometry to one Eu(1) and one N(1) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one Eu(1) and one N(1) atom. In the third O site, O(3) is bonded in a distorted water-like geometry to one Eu(1) and one C(1) atom. In the fourth O site, O(4) is bonded in a distorted single-bond geometry to two equivalent Eu(1) and one C(1) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Eu(1) and one N(2) atom. In the sixth O site, O(6) is bonded in a distorted bent 150 degrees geometry to one Eu(1) and one C(7) atom. In the seventh O site, O(7) is bonded in a 2-coordinate geometry to one Eu(1) and one C(7) atom. In the eighth O site, O(8) is bonded in a bent 120 degrees geometry to one Eu(1) and one N(3) atom. In the ninth O site, O(9) is bonded in a single-bond geometry to one N(1) atom. Linkers: 8 [O]C(=O)c1cc[n+]([O-])cc1. Metal clusters: 2 [O][Eu]123([O])O[C]O[Eu]([O])([O])(O[C]O1)(O[C]O2)O[C]O3.[O][N+](=O)[O-].[O][N+](=O)[O-]. RCSR code: pcu. The MOF has largest included sphere 4.86 A, density 1.69 g/cm3, surface area 2966.01 m2/g, accessible volume 0.23 cm3/g
HADQUA_clean
Zn7H60(C11N4)12(CH)24 crystallizes in the cubic I-43d space group. The structure consists of ninety-six 02329_fluka molecules inside a Zn7H60(C11N4)12 framework. In the Zn7H60(C11N4)12 framework, there are two inequivalent Zn sites. In the first Zn site, Zn(1) is bonded in an octahedral geometry to three equivalent N(1) and three equivalent N(2) atoms. All Zn(1)-N(1) bond lengths are 2.17 Å. All Zn(1)-N(2) bond lengths are 2.13 Å. In the second Zn site, Zn(2) is bonded in a tetrahedral geometry to four equivalent N(3) atoms. All Zn(2)-N(3) bond lengths are 1.98 Å. There are eleven inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(1) atom. The C(1)-N(1) bond length is 1.32 Å. The C(1)-H(1) bond length is 0.95 Å. In the second C site, C(3) is bonded in a single-bond geometry to one C(4) and one H(3) atom. The C(3)-C(4) bond length is 1.42 Å. The C(3)-H(3) bond length is 0.95 Å. In the third C site, C(4) is bonded in a trigonal planar geometry to one C(13), one C(3), and one C(5) atom. The C(4)-C(13) bond length is 1.41 Å. The C(4)-C(5) bond length is 1.44 Å. In the fourth C site, C(5) is bonded in a distorted trigonal planar geometry to one C(10), one C(4), and one N(1) atom. The C(5)-C(10) bond length is 1.44 Å. The C(5)-N(1) bond length is 1.34 Å. In the fifth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(4) atom. The C(6)-N(2) bond length is 1.34 Å. The C(6)-H(4) bond length is 0.95 Å. In the sixth C site, C(8) is bonded in a distorted single-bond geometry to one C(9) and one H(6) atom. The C(8)-C(9) bond length is 1.41 Å. The C(8)-H(6) bond length is 0.95 Å. In the seventh C site, C(9) is bonded in a trigonal planar geometry to one C(10), one C(12), and one C(8) atom. The C(9)-C(10) bond length is 1.40 Å. The C(9)-C(12) bond length is 1.43 Å. In the eighth C site, C(10) is bonded in a distorted single-bond geometry to one C(5), one C(9), and one N(2) atom. The C(10)-N(2) bond length is 1.36 Å. In the ninth C site, C(11) is bonded in a trigonal planar geometry to one N(3), one N(4), and one H(7) atom. The C(11)-N(3) bond length is 1.37 Å. The C(11)-N(4) bond length is 1.33 Å. The C(11)-H(7) bond length is 0.95 Å. In the tenth C site, C(12) is bonded in a distorted single-bond geometry to one C(9) and one N(4) atom. The C(12)-N(4) bond length is 1.37 Å. In the eleventh C site, C(13) is bonded in a distorted single-bond geometry to one C(4) and one N(3) atom. The C(13)-N(3) bond length is 1.40 Å. There are four inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Zn(1), one C(1), and one C(5) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one Zn(1), one C(10), and one C(6) atom. In the third N site, N(3) is bonded in a trigonal planar geometry to one Zn(2), one C(11), and one C(13) atom. In the fourth N site, N(4) is bonded in a water-like geometry to one C(11) and one C(12) atom. There are five inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(3) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(4) is bonded in a single-bond geometry to one C(6) atom. In the fourth H site, H(6) is bonded in a single-bond geometry to one C(8) atom. In the fifth H site, H(7) is bonded in a single-bond geometry to one C(11) atom. Linkers: 3 c1cnc2c(c1)c1ncn([Zn](n3cnc4c5cccnc5c5ncccc5c43)(n3cnc4c5cccnc5c5ncccc5c43)n3cnc4c5cccnc5c5ncccc5c43)c1c1cccnc12 ,9 C1=Nc2c(c3cccnc3c3ncccc23)[N]1. Metal clusters: 11 [Zn]. The MOF has largest included sphere 4.81 A, density 1.02 g/cm3, surface area 4407.00 m2/g, accessible volume 0.52 cm3/g
YAQZUN_clean
UC5HO4 crystallizes in the orthorhombic Pbcn space group. U(1) is bonded in a 4-coordinate geometry to one O(1), one O(2), one O(3), and one O(4) atom. The U(1)-O(1) bond length is 2.44 Å. The U(1)-O(2) bond length is 2.43 Å. The U(1)-O(3) bond length is 2.39 Å. The U(1)-O(4) bond length is 2.34 Å. There are five inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(4), one O(1), and one O(4) atom. The C(1)-C(4) bond length is 1.50 Å. The C(1)-O(1) bond length is 1.25 Å. The C(1)-O(4) bond length is 1.26 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one C(3), one O(2), and one O(3) atom. The C(2)-C(3) bond length is 1.51 Å. The C(2)-O(2) bond length is 1.26 Å. The C(2)-O(3) bond length is 1.25 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(5) atom. The C(3)-C(4) bond length is 1.40 Å. The C(3)-C(5) bond length is 1.39 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(5) atom. The C(4)-C(5) bond length is 1.39 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(3), one C(4), and one H(1) atom. The C(5)-H(1) bond length is 0.93 Å. H(1) is bonded in a single-bond geometry to one C(5) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a distorted single-bond geometry to one U(1) and one C(1) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one U(1) and one C(2) atom. In the third O site, O(3) is bonded in a distorted bent 150 degrees geometry to one U(1) and one C(2) atom. In the fourth O site, O(4) is bonded in a distorted bent 150 degrees geometry to one U(1) and one C(1) atom. Linkers: 4 [O]C(=O)c1cc(C([O])=O)c(C([O])=O)cc1C([O])=O. Metal clusters: 8 [U]. The MOF has largest included sphere 4.42 A, density 2.96 g/cm3, surface area 1789.00 m2/g, accessible volume 0.15 cm3/g
GOGWAB_clean
ZnC8H2S2(NO)4 crystallizes in the tetragonal I-42d space group. Zn(1) is bonded in a rectangular see-saw-like geometry to four equivalent O(1) atoms. All Zn(1)-O(1) bond lengths are 2.13 Å. There are three inequivalent C sites. In the first C site, C(1) is bonded in a 3-coordinate geometry to one C(2), one N(1), and one O(1) atom. The C(1)-C(2) bond length is 1.37 Å. The C(1)-N(1) bond length is 1.42 Å. The C(1)-O(1) bond length is 1.26 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to two equivalent C(1) and one H(1) atom. The C(2)-H(1) bond length is 0.93 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to two equivalent N(1) and one S(1) atom. Both C(3)-N(1) bond lengths are 1.35 Å. The C(3)-S(1) bond length is 1.66 Å. N(1) is bonded in a bent 120 degrees geometry to one C(1) and one C(3) atom. H(1) is bonded in a single-bond geometry to one C(2) atom. S(1) is bonded in a single-bond geometry to one C(3) atom. O(1) is bonded in a distorted bent 150 degrees geometry to one Zn(1) and one C(1) atom. Linkers: 1 O=C1[CH]C(O[Zn](OC2=NC(=S)[N]C(=O)[CH]2)(OC2=NC(=S)[N]C(=O)[CH]2)OC2=NC(=S)[N]C(=O)[CH]2)=NC(=S)[N]1. Metal clusters: 1 [O][Zn]([O])([O])[O]. RCSR code: dia. The MOF has largest included sphere 4.96 A, density 1.06 g/cm3, surface area 4156.55 m2/g, accessible volume 0.55 cm3/g
BUKMUQ01_clean
ZnC7NH3O4 crystallizes in the orthorhombic P2_12_12_1 space group. Zn(1) is bonded in a trigonal non-coplanar geometry to one N(1), one O(1), and one O(3) atom. The Zn(1)-N(1) bond length is 2.04 Å. The Zn(1)-O(1) bond length is 1.94 Å. The Zn(1)-O(3) bond length is 1.94 Å. There are seven inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(5), one N(1), and one H(1) atom. The C(1)-C(5) bond length is 1.38 Å. The C(1)-N(1) bond length is 1.35 Å. The C(1)-H(1) bond length is 0.95 Å. In the second C site, C(2) is bonded in a distorted trigonal planar geometry to one C(3), one N(1), and one H(2) atom. The C(2)-C(3) bond length is 1.38 Å. The C(2)-N(1) bond length is 1.34 Å. The C(2)-H(2) bond length is 0.95 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(6) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-C(6) bond length is 1.51 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3), one C(5), and one H(3) atom. The C(4)-C(5) bond length is 1.39 Å. The C(4)-H(3) bond length is 0.95 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(1), one C(4), and one C(7) atom. The C(5)-C(7) bond length is 1.51 Å. In the sixth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one C(3), one O(1), and one O(2) atom. The C(6)-O(1) bond length is 1.29 Å. The C(6)-O(2) bond length is 1.22 Å. In the seventh C site, C(7) is bonded in a distorted bent 120 degrees geometry to one C(5), one O(3), and one O(4) atom. The C(7)-O(3) bond length is 1.28 Å. The C(7)-O(4) bond length is 1.22 Å. N(1) is bonded in a trigonal planar geometry to one Zn(1), one C(1), and one C(2) atom. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(4) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(6) atom. In the second O site, O(2) is bonded in a single-bond geometry to one C(6) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(7) atom. In the fourth O site, O(4) is bonded in a single-bond geometry to one C(7) atom. Linkers: 4 [O]C(=O)c1cncc(C([O])=O)c1. Metal clusters: 4 O=[C]O[Zn]O[C]=O. The MOF has largest included sphere 5.90 A, density 0.85 g/cm3, surface area 4082.58 m2/g, accessible volume 0.77 cm3/g
SERLEI_clean
CuC12NH3O4 crystallizes in the trigonal R-3 space group. Cu(1) is bonded in a distorted rectangular see-saw-like geometry to two equivalent O(1,3) and two equivalent O(2,4) atoms. Both Cu(1)-O(1,3) bond lengths are 1.96 Å. Both Cu(1)-O(2,4) bond lengths are 1.94 Å. There are nine inequivalent C sites. In the first C site, C(12) is bonded in a distorted single-bond geometry to one C(11), one C(4), one C(5), one C(9), and one N(1) atom. The C(12)-C(11) bond length is 1.49 Å. The C(12)-C(4) bond length is 1.36 Å. The C(12)-C(5) bond length is 1.35 Å. The C(12)-C(9) bond length is 1.36 Å. The C(12)-N(1) bond length is 1.35 Å. In the second C site, C(10) is bonded in a distorted single-bond geometry to two equivalent C(2,7) and one H(3) atom. Both C(10)-C(2,7) bond lengths are 1.38 Å. The C(10)-H(3) bond length is 0.93 Å. In the third C site, C(1,6) is bonded in a bent 120 degrees geometry to one C(2,7); one O(1,3); and one O(2,4) atom. The C(1,6)-C(2,7) bond length is 1.51 Å. The C(1,6)-O(1,3) bond length is 1.26 Å. The C(1,6)-O(2,4) bond length is 1.29 Å. In the fourth C site, C(2,7) is bonded in a trigonal planar geometry to one C(1,6); one C(10); and one C(3,8) atom. The C(2,7)-C(3,8) bond length is 1.40 Å. In the fifth C site, C(3,8) is bonded in a single-bond geometry to one C(11); one C(2,7); and one H(1,2) atom. The C(3,8)-C(11) bond length is 1.39 Å. The C(3,8)-H(1,2) bond length is 0.93 Å. In the sixth C site, C(4) is bonded in a 3-coordinate geometry to one C(12), one C(5), and one N(1) atom. The C(4)-C(5) bond length is 1.25 Å. The C(4)-N(1) bond length is 1.42 Å. In the seventh C site, C(5) is bonded in a 2-coordinate geometry to one C(12) and one C(4) atom. In the eighth C site, C(9) is bonded in a 2-coordinate geometry to one C(12) and one N(1) atom. The C(9)-N(1) bond length is 1.25 Å. In the ninth C site, C(11) is bonded in a distorted trigonal planar geometry to one C(12) and two equivalent C(3,8) atoms. N(1) is bonded in a 2-coordinate geometry to one C(12), one C(4), and one C(9) atom. There are two inequivalent H sites. In the first H site, H(1,2) is bonded in a single-bond geometry to one C(3,8) atom. In the second H site, H(3) is bonded in a single-bond geometry to one C(10) atom. There are two inequivalent O sites. In the first O site, O(1,3) is bonded in a distorted bent 120 degrees geometry to one Cu(1) and one C(1,6) atom. In the second O site, O(2,4) is bonded in a distorted bent 120 degrees geometry to one Cu(1) and one C(1,6) atom. Linkers: 3 [C]12[C]3[N@]4[C]1[C@@]41[C]4[C]5[N@]([C]41)[C@]253.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,2 [C]12[C]3[N@]4[C]1[C@]41[C]4[C]5[N@]([C]41)[C@]253.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,2 [C]12[C]3[N@]4[C]1[C@@]41[C]4[C]5[N@]([C]41)[C@@]253.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,2 [C]12[C]3[N@]4[C]1[C@]41[C]4[C]5[N@]([C]41)[C@@]253.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1. Metal clusters: 9 [C]1O[Cu]234O[C]O[Cu]2(O1)(O[C]O3)O[C]O4. RCSR code: nbo. The MOF has largest included sphere 11.28 A, density 0.74 g/cm3, surface area 3492.99 m2/g, accessible volume 1.03 cm3/g
QEWDON_clean
Zn2H7(C2O)7CH crystallizes in the tetragonal P4/ncc space group. The structure consists of sixteen 02329_fluka molecules inside a Zn2H7(C2O)7 framework. In the Zn2H7(C2O)7 framework, there are two inequivalent Zn sites. In the first Zn site, Zn(1) is bonded to one O(1), one O(2), one O(5), and one O(6) atom to form corner-sharing ZnO4 trigonal pyramids. The Zn(1)-O(1) bond length is 2.25 Å. The Zn(1)-O(2) bond length is 1.95 Å. The Zn(1)-O(5) bond length is 1.93 Å. The Zn(1)-O(6) bond length is 1.99 Å. In the second Zn site, Zn(2) is bonded to one O(3), one O(4), one O(5), and one O(7) atom to form corner-sharing ZnO4 tetrahedra. The Zn(2)-O(3) bond length is 1.94 Å. The Zn(2)-O(4) bond length is 1.98 Å. The Zn(2)-O(5) bond length is 1.91 Å. The Zn(2)-O(7) bond length is 1.97 Å. There are fourteen inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(15), one C(2), and one C(6) atom. The C(1)-C(15) bond length is 1.50 Å. The C(1)-C(2) bond length is 1.39 Å. The C(1)-C(6) bond length is 1.39 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(1), one C(3), and one H(1) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-H(1) bond length is 0.95 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(8) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-C(8) bond length is 1.49 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3), one C(5), and one H(2) atom. The C(4)-C(5) bond length is 1.41 Å. The C(4)-H(2) bond length is 0.95 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(4), one C(6), and one C(7) atom. The C(5)-C(6) bond length is 1.38 Å. The C(5)-C(7) bond length is 1.49 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(1), one C(5), and one H(3) atom. The C(6)-H(3) bond length is 0.95 Å. In the seventh C site, C(7) is bonded in a distorted bent 120 degrees geometry to one C(5), one O(1), and one O(2) atom. The C(7)-O(1) bond length is 1.25 Å. The C(7)-O(2) bond length is 1.28 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one C(13), one C(3), and one C(9) atom. The C(8)-C(13) bond length is 1.40 Å. The C(8)-C(9) bond length is 1.38 Å. In the ninth C site, C(9) is bonded in a distorted single-bond geometry to one C(10), one C(8), and one H(4) atom. The C(9)-C(10) bond length is 1.39 Å. The C(9)-H(4) bond length is 0.95 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(11), one C(14), and one C(9) atom. The C(10)-C(11) bond length is 1.40 Å. The C(10)-C(14) bond length is 1.49 Å. In the eleventh C site, C(11) is bonded in a distorted single-bond geometry to one C(10) and one H(5) atom. The C(11)-H(5) bond length is 0.95 Å. In the twelfth C site, C(13) is bonded in a distorted single-bond geometry to one C(8) and one H(7) atom. The C(13)-H(7) bond length is 0.95 Å. In the thirteenth C site, C(14) is bonded in a distorted bent 120 degrees geometry to one C(10), one O(3), and one O(4) atom. The C(14)-O(3) bond length is 1.26 Å. The C(14)-O(4) bond length is 1.24 Å. In the fourteenth C site, C(15) is bonded in a distorted bent 120 degrees geometry to one C(1), one O(6), and one O(7) atom. The C(15)-O(6) bond length is 1.24 Å. The C(15)-O(7) bond length is 1.26 Å. There are seven inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(6) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(9) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(11) atom. In the sixth H site, H(7) is bonded in a single-bond geometry to one C(13) atom. In the seventh H site, H(8) is bonded in a single-bond geometry to one O(5) atom. The H(8)-O(5) bond length is 0.84 Å. There are seven inequivalent O sites. In the first O site, O(1) is bonded in a bent 150 degrees geometry to one Zn(1) and one C(7) atom. In the second O site, O(2) is bonded in a water-like geometry to one Zn(1) and one C(7) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Zn(2) and one C(14) atom. In the fourth O site, O(4) is bonded in a bent 150 degrees geometry to one Zn(2) and one C(14) atom. In the fifth O site, O(5) is bonded in a distorted single-bond geometry to one Zn(1), one Zn(2), and one H(8) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(15) atom. In the seventh O site, O(7) is bonded in a bent 120 degrees geometry to one Zn(2) and one C(15) atom. Linkers: 16 [O]C(=O)c1cccc(-c2cc(C([O])=O)cc(C([O])=O)c2)c1. Metal clusters: 4 O[Zn@]12O[C]O[Zn]3O[C]O[Zn]4O[C]O[Zn]5O[C]O[Zn](O[C]O3)O[C]O[Zn@](O)(O[C]O[Zn@](O)(O[C]O5)O[C]O[Zn@](O)(O[C]O4)O[C]O1)O[C]O2. RCSR code: llj. The MOF has largest included sphere 6.85 A, density 1.42 g/cm3, surface area 3632.00 m2/g, accessible volume 0.30 cm3/g
FIFMIS_clean
Co2C21N3H16O8C4H3 crystallizes in the hexagonal P6_1 space group. The structure consists of six isobutylene molecules inside a Co2C21N3H16O8 framework. In the Co2C21N3H16O8 framework, there are two inequivalent Co sites. In the first Co site, Co(1) is bonded to one N(2), one O(1), one O(4), one O(5), and one O(8) atom to form corner-sharing CoNO4 square pyramids. The corner-sharing octahedral tilt angles are 66°. The Co(1)-N(2) bond length is 2.11 Å. The Co(1)-O(1) bond length is 2.12 Å. The Co(1)-O(4) bond length is 2.13 Å. The Co(1)-O(5) bond length is 2.01 Å. The Co(1)-O(8) bond length is 2.09 Å. In the second Co site, Co(2) is bonded to one N(1), one N(3), one O(1), one O(3), one O(6), and one O(7) atom to form corner-sharing CoN2O4 octahedra. The Co(2)-N(1) bond length is 2.20 Å. The Co(2)-N(3) bond length is 2.13 Å. The Co(2)-O(1) bond length is 2.09 Å. The Co(2)-O(3) bond length is 2.17 Å. The Co(2)-O(6) bond length is 2.11 Å. The Co(2)-O(7) bond length is 2.08 Å. There are twenty-one inequivalent C sites. In the first C site, C(3) is bonded in a trigonal planar geometry to one C(13), one C(2), and one C(4) atom. The C(3)-C(13) bond length is 1.52 Å. The C(3)-C(2) bond length is 1.40 Å. The C(3)-C(4) bond length is 1.40 Å. In the second C site, C(4) is bonded in a distorted single-bond geometry to one C(3), one C(5), and one H(2) atom. The C(4)-C(5) bond length is 1.36 Å. The C(4)-H(2) bond length is 0.93 Å. In the third C site, C(5) is bonded in a trigonal planar geometry to one C(4), one C(6), and one C(7) atom. The C(5)-C(6) bond length is 1.38 Å. The C(5)-C(7) bond length is 1.52 Å. In the fourth C site, C(6) is bonded in a distorted single-bond geometry to one C(1), one C(5), and one H(3) atom. The C(6)-C(1) bond length is 1.40 Å. The C(6)-H(3) bond length is 0.93 Å. In the fifth C site, C(7) is bonded in a 3-coordinate geometry to one C(5), one N(1), one H(4), and one H(5) atom. The C(7)-N(1) bond length is 1.50 Å. The C(7)-H(4) bond length is 0.97 Å. The C(7)-H(5) bond length is 0.97 Å. In the sixth C site, C(8) is bonded in a 3-coordinate geometry to one N(1) and two equivalent H(6,7) atoms. The C(8)-N(1) bond length is 1.47 Å. Both C(8)-H(6,7) bond lengths are 0.97 Å. In the seventh C site, C(9) is bonded in a distorted bent 120 degrees geometry to one O(1) and one O(2) atom. The C(9)-O(1) bond length is 1.30 Å. The C(9)-O(2) bond length is 1.21 Å. In the eighth C site, C(10) is bonded in a 3-coordinate geometry to one N(1) and two equivalent H(8,9) atoms. The C(10)-N(1) bond length is 1.48 Å. Both C(10)-H(8,9) bond lengths are 0.97 Å. In the ninth C site, C(11) is bonded in a distorted bent 120 degrees geometry to one O(3) and one O(4) atom. The C(11)-O(3) bond length is 1.26 Å. The C(11)-O(4) bond length is 1.23 Å. In the tenth C site, C(12) is bonded in a distorted bent 120 degrees geometry to one C(1), one O(5), and one O(6) atom. The C(12)-C(1) bond length is 1.52 Å. The C(12)-O(5) bond length is 1.26 Å. The C(12)-O(6) bond length is 1.25 Å. In the eleventh C site, C(13) is bonded in a distorted bent 120 degrees geometry to one C(3), one O(7), and one O(8) atom. The C(13)-O(7) bond length is 1.25 Å. The C(13)-O(8) bond length is 1.24 Å. In the twelfth C site, C(14) is bonded in a distorted trigonal planar geometry to one C(15), one N(2), and one H(10) atom. The C(14)-C(15) bond length is 1.37 Å. The C(14)-N(2) bond length is 1.34 Å. The C(14)-H(10) bond length is 0.93 Å. In the thirteenth C site, C(23) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(17) atom. The C(23)-N(3) bond length is 1.33 Å. The C(23)-H(17) bond length is 0.93 Å. In the fourteenth C site, C(24) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(18) atom. The C(24)-N(3) bond length is 1.36 Å. The C(24)-H(18) bond length is 0.93 Å. In the fifteenth C site, C(15) is bonded in a distorted single-bond geometry to one C(14), one C(16), and one H(11) atom. The C(15)-C(16) bond length is 1.41 Å. The C(15)-H(11) bond length is 0.93 Å. In the sixteenth C site, C(16) is bonded in a trigonal planar geometry to one C(15), one C(17), and one C(19) atom. The C(16)-C(17) bond length is 1.37 Å. The C(16)-C(19) bond length is 1.47 Å. In the seventeenth C site, C(17) is bonded in a distorted single-bond geometry to one C(16) and one H(12) atom. The C(17)-H(12) bond length is 0.93 Å. In the eighteenth C site, C(18) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(13) atom. The C(18)-N(2) bond length is 1.35 Å. The C(18)-H(13) bond length is 0.93 Å. In the nineteenth C site, C(19) is bonded in a distorted single-bond geometry to one C(16) and one H(14) atom. The C(19)-H(14) bond length is 0.93 Å. In the twentieth C site, C(1) is bonded in a trigonal planar geometry to one C(12), one C(2), and one C(6) atom. The C(1)-C(2) bond length is 1.38 Å. In the twenty-first C site, C(2) is bonded in a distorted single-bond geometry to one C(1), one C(3), and one H(1) atom. The C(2)-H(1) bond length is 0.93 Å. There are three inequivalent N sites. In the first N site, N(2) is bonded in a trigonal planar geometry to one Co(1), one C(14), and one C(18) atom. In the second N site, N(3) is bonded in a trigonal planar geometry to one Co(2), one C(23), and one C(24) atom. In the third N site, N(1) is bonded in a tetrahedral geometry to one Co(2), one C(10), one C(7), and one C(8) atom. There are fourteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(6) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(7) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(7) atom. In the sixth H site, H(6,7) is bonded in a single-bond geometry to one C(8) atom. In the seventh H site, H(8,9) is bonded in a single-bond geometry to one C(10) atom. In the eighth H site, H(10) is bonded in a single-bond geometry to one C(14) atom. In the ninth H site, H(11) is bonded in a single-bond geometry to one C(15) atom. In the tenth H site, H(12) is bonded in a single-bond geometry to one C(17) atom. In the eleventh H site, H(13) is bonded in a single-bond geometry to one C(18) atom. In the twelfth H site, H(14) is bonded in a single-bond geometry to one C(19) atom. In the thirteenth H site, H(17) is bonded in a single-bond geometry to one C(23) atom. In the fourteenth H site, H(18) is bonded in a single-bond geometry to one C(24) atom. There are eight inequivalent O sites. In the first O site, O(1) is bonded in a distorted trigonal planar geometry to one Co(1), one Co(2), and one C(9) atom. In the second O site, O(2) is bonded in a single-bond geometry to one C(9) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Co(2) and one C(11) atom. In the fourth O site, O(4) is bonded in a distorted bent 120 degrees geometry to one Co(1) and one C(11) atom. In the fifth O site, O(5) is bonded in a bent 150 degrees geometry to one Co(1) and one C(12) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one Co(2) and one C(12) atom. In the seventh O site, O(7) is bonded in a bent 120 degrees geometry to one Co(2) and one C(13) atom. In the eighth O site, O(8) is bonded in a distorted bent 150 degrees geometry to one Co(1) and one C(13) atom. Linkers: 6 C(=C/c1ccncc1)\c1ccncc1 ,6 [O]C(=O)CN(CC([O])=O)Cc1cc(C([O])=O)cc(C([O])=O)c1. Metal clusters: 12 [Co]. The MOF has largest included sphere 4.83 A, density 1.29 g/cm3, surface area 3943.10 m2/g, accessible volume 0.34 cm3/g
DAXNOG_clean
ZnC8H4O4 is beta Polonium structured and crystallizes in the monoclinic C2/m space group. The structure is zero-dimensional and consists of two ZnC8H4O4 clusters. Zn(1) is bonded in a distorted square co-planar geometry to two equivalent O(1) and two equivalent O(2) atoms. Both Zn(1)-O(1) bond lengths are 2.01 Å. Both Zn(1)-O(2) bond lengths are 2.04 Å. There are four inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(2), one C(3), and one C(4) atom. The C(1)-C(2) bond length is 1.38 Å. The C(1)-C(3) bond length is 1.37 Å. The C(1)-C(4) bond length is 1.51 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(1) and one H(1) atom. The C(2)-H(1) bond length is 0.95 Å. In the third C site, C(3) is bonded in a single-bond geometry to one C(1) and one H(2) atom. The C(3)-H(2) bond length is 0.95 Å. In the fourth C site, C(4) is bonded in a distorted bent 120 degrees geometry to one C(1), one O(1), and one O(2) atom. The C(4)-O(1) bond length is 1.26 Å. The C(4)-O(2) bond length is 1.25 Å. There are two inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. There are two inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(4) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(4) atom. Linkers: 2 [O]C(=O)c1ccc(C([O])=O)cc1. Metal clusters: 1 [C]1O[Zn]23O[C]O[Zn](O1)(O[C]O2)O[C]O3. RCSR code: sql. The MOF has largest included sphere 5.57 A, density 1.27 g/cm3, surface area 3664.99 m2/g, accessible volume 0.39 cm3/g
AMILUE_clean
ZnC15H12(NO2)2 crystallizes in the monoclinic Cc space group. There are four inequivalent Zn sites. In the first Zn site, Zn(1) is bonded to one N(1), one O(1), one O(4), one O(5), and one O(9) atom to form ZnNO4 square pyramids that share a cornercorner with one C(1)H2N2 tetrahedra, a cornercorner with one C(2)H2N2 tetrahedra, and a cornercorner with one C(3)H2N2 tetrahedra. The Zn(1)-N(1) bond length is 2.07 Å. The Zn(1)-O(1) bond length is 2.03 Å. The Zn(1)-O(4) bond length is 2.06 Å. The Zn(1)-O(5) bond length is 2.02 Å. The Zn(1)-O(9) bond length is 2.03 Å. In the second Zn site, Zn(2) is bonded to one N(5), one O(14), one O(2), one O(3), and one O(6) atom to form ZnNO4 square pyramids that share a cornercorner with one C(7)H2N2 tetrahedra, a cornercorner with one C(8)H2N2 tetrahedra, and a cornercorner with one C(9)H2N2 tetrahedra. The Zn(2)-N(5) bond length is 2.07 Å. The Zn(2)-O(14) bond length is 2.03 Å. The Zn(2)-O(2) bond length is 2.04 Å. The Zn(2)-O(3) bond length is 2.04 Å. The Zn(2)-O(6) bond length is 2.01 Å. In the third Zn site, Zn(3) is bonded to one N(2), one O(11), one O(12), and one O(8) atom to form distorted ZnNO3 trigonal pyramids that share a cornercorner with one C(1)H2N2 tetrahedra, a cornercorner with one C(4)H2N2 tetrahedra, and a cornercorner with one C(6)H2N2 tetrahedra. The Zn(3)-N(2) bond length is 2.15 Å. The Zn(3)-O(11) bond length is 1.98 Å. The Zn(3)-O(12) bond length is 1.95 Å. The Zn(3)-O(8) bond length is 1.93 Å. In the fourth Zn site, Zn(4) is bonded to one N(6), one O(10), one O(13), one O(15), and one O(16) atom to form distorted ZnNO4 trigonal bipyramids that share a cornercorner with one C(10)H2N2 tetrahedra, a cornercorner with one C(12)H2N2 tetrahedra, and a cornercorner with one C(7)H2N2 tetrahedra. The Zn(4)-N(6) bond length is 2.18 Å. The Zn(4)-O(10) bond length is 1.99 Å. The Zn(4)-O(13) bond length is 2.00 Å. The Zn(4)-O(15) bond length is 2.26 Å. The Zn(4)-O(16) bond length is 2.12 Å. There are sixty inequivalent C sites. In the first C site, C(1) is bonded to one N(1), one N(2), one H(1), and one H(2) atom to form CH2N2 tetrahedra that share a cornercorner with one Zn(1)NO4 square pyramid, a cornercorner with one C(2)H2N2 tetrahedra, a cornercorner with one C(3)H2N2 tetrahedra, a cornercorner with one C(4)H2N2 tetrahedra, a cornercorner with one C(6)H2N2 tetrahedra, and a cornercorner with one Zn(3)NO3 trigonal pyramid. The C(1)-N(1) bond length is 1.49 Å. The C(1)-N(2) bond length is 1.47 Å. The C(1)-H(1) bond length is 0.99 Å. The C(1)-H(2) bond length is 0.99 Å. In the second C site, C(2) is bonded to one N(1), one N(3), one H(3), and one H(4) atom to form CH2N2 tetrahedra that share a cornercorner with one Zn(1)NO4 square pyramid, a cornercorner with one C(1)H2N2 tetrahedra, a cornercorner with one C(3)H2N2 tetrahedra, a cornercorner with one C(4)H2N2 tetrahedra, and a cornercorner with one C(5)H2N2 tetrahedra. The C(2)-N(1) bond length is 1.50 Å. The C(2)-N(3) bond length is 1.45 Å. The C(2)-H(3) bond length is 0.99 Å. The C(2)-H(4) bond length is 0.99 Å. In the third C site, C(3) is bonded to one N(1); one N(4); and two equivalent H(5,6) atoms to form CH2N2 tetrahedra that share a cornercorner with one Zn(1)NO4 square pyramid, a cornercorner with one C(1)H2N2 tetrahedra, a cornercorner with one C(2)H2N2 tetrahedra, a cornercorner with one C(5)H2N2 tetrahedra, and a cornercorner with one C(6)H2N2 tetrahedra. The C(3)-N(1) bond length is 1.49 Å. The C(3)-N(4) bond length is 1.48 Å. Both C(3)-H(5,6) bond lengths are 0.99 Å. In the fourth C site, C(4) is bonded to one N(2), one N(3), one H(7), and one H(8) atom to form CH2N2 tetrahedra that share a cornercorner with one C(1)H2N2 tetrahedra, a cornercorner with one C(2)H2N2 tetrahedra, a cornercorner with one C(5)H2N2 tetrahedra, a cornercorner with one C(6)H2N2 tetrahedra, and a cornercorner with one Zn(3)NO3 trigonal pyramid. The C(4)-N(2) bond length is 1.51 Å. The C(4)-N(3) bond length is 1.48 Å. The C(4)-H(7) bond length is 0.99 Å. The C(4)-H(8) bond length is 0.99 Å. In the fifth C site, C(5) is bonded to one N(3); one N(4); and two equivalent H(9,10) atoms to form corner-sharing CH2N2 tetrahedra. The C(5)-N(3) bond length is 1.47 Å. The C(5)-N(4) bond length is 1.43 Å. Both C(5)-H(9,10) bond lengths are 0.99 Å. In the sixth C site, C(6) is bonded to one N(2); one N(4); and two equivalent H(11,12) atoms to form CH2N2 tetrahedra that share a cornercorner with one C(1)H2N2 tetrahedra, a cornercorner with one C(3)H2N2 tetrahedra, a cornercorner with one C(4)H2N2 tetrahedra, a cornercorner with one C(5)H2N2 tetrahedra, and a cornercorner with one Zn(3)NO3 trigonal pyramid. The C(6)-N(2) bond length is 1.48 Å. The C(6)-N(4) bond length is 1.47 Å. Both C(6)-H(11,12) bond lengths are 0.99 Å. In the seventh C site, C(7) is bonded to one N(5); one N(6); and two equivalent H(13,14) atoms to form CH2N2 tetrahedra that share a cornercorner with one Zn(2)NO4 square pyramid, a cornercorner with one C(10)H2N2 tetrahedra, a cornercorner with one C(12)H2N2 tetrahedra, a cornercorner with one C(8)H2N2 tetrahedra, a cornercorner with one C(9)H2N2 tetrahedra, and a cornercorner with one Zn(4)NO4 trigonal bipyramid. The C(7)-N(5) bond length is 1.49 Å. The C(7)-N(6) bond length is 1.48 Å. Both C(7)-H(13,14) bond lengths are 0.99 Å. In the eighth C site, C(8) is bonded to one N(5); one N(7); and two equivalent H(15,16) atoms to form CH2N2 tetrahedra that share a cornercorner with one Zn(2)NO4 square pyramid, a cornercorner with one C(10)H2N2 tetrahedra, a cornercorner with one C(11)H2N2 tetrahedra, a cornercorner with one C(7)H2N2 tetrahedra, and a cornercorner with one C(9)H2N2 tetrahedra. The C(8)-N(5) bond length is 1.49 Å. The C(8)-N(7) bond length is 1.45 Å. Both C(8)-H(15,16) bond lengths are 0.99 Å. In the ninth C site, C(9) is bonded to one N(5), one N(8), one H(17), and one H(18) atom to form CH2N2 tetrahedra that share a cornercorner with one Zn(2)NO4 square pyramid, a cornercorner with one C(11)H2N2 tetrahedra, a cornercorner with one C(12)H2N2 tetrahedra, a cornercorner with one C(7)H2N2 tetrahedra, and a cornercorner with one C(8)H2N2 tetrahedra. The C(9)-N(5) bond length is 1.50 Å. The C(9)-N(8) bond length is 1.44 Å. The C(9)-H(17) bond length is 0.99 Å. The C(9)-H(18) bond length is 0.99 Å. In the tenth C site, C(10) is bonded to one N(6); one N(7); and two equivalent H(19,20) atoms to form CH2N2 tetrahedra that share a cornercorner with one C(11)H2N2 tetrahedra, a cornercorner with one C(12)H2N2 tetrahedra, a cornercorner with one C(7)H2N2 tetrahedra, a cornercorner with one C(8)H2N2 tetrahedra, and a cornercorner with one Zn(4)NO4 trigonal bipyramid. The C(10)-N(6) bond length is 1.50 Å. The C(10)-N(7) bond length is 1.45 Å. Both C(10)-H(19,20) bond lengths are 0.99 Å. In the eleventh C site, C(11) is bonded to one N(7), one N(8), one H(21), and one H(22) atom to form corner-sharing CH2N2 tetrahedra. The C(11)-N(7) bond length is 1.50 Å. The C(11)-N(8) bond length is 1.46 Å. The C(11)-H(21) bond length is 0.99 Å. The C(11)-H(22) bond length is 0.99 Å. In the twelfth C site, C(12) is bonded to one N(6); one N(8); and two equivalent H(23,24) atoms to form CH2N2 tetrahedra that share a cornercorner with one C(10)H2N2 tetrahedra, a cornercorner with one C(11)H2N2 tetrahedra, a cornercorner with one C(7)H2N2 tetrahedra, a cornercorner with one C(9)H2N2 tetrahedra, and a cornercorner with one Zn(4)NO4 trigonal bipyramid. The C(12)-N(6) bond length is 1.50 Å. The C(12)-N(8) bond length is 1.47 Å. Both C(12)-H(23,24) bond lengths are 0.99 Å. In the thirteenth C site, C(13) is bonded in a bent 120 degrees geometry to one C(14), one O(1), and one O(2) atom. The C(13)-C(14) bond length is 1.51 Å. The C(13)-O(1) bond length is 1.27 Å. The C(13)-O(2) bond length is 1.26 Å. In the fourteenth C site, C(14) is bonded in a trigonal planar geometry to one C(13), one C(15), and one C(19) atom. The C(14)-C(15) bond length is 1.33 Å. The C(14)-C(19) bond length is 1.41 Å. In the fifteenth C site, C(15) is bonded in a distorted single-bond geometry to one C(14), one C(16), and one H(25) atom. The C(15)-C(16) bond length is 1.43 Å. The C(15)-H(25) bond length is 0.95 Å. In the sixteenth C site, C(16) is bonded in a trigonal planar geometry to one C(15), one C(17), and one C(20) atom. The C(16)-C(17) bond length is 1.40 Å. The C(16)-C(20) bond length is 1.40 Å. In the seventeenth C site, C(17) is bonded in a trigonal planar geometry to one C(16), one C(18), and one C(23) atom. The C(17)-C(18) bond length is 1.42 Å. The C(17)-C(23) bond length is 1.41 Å. In the eighteenth C site, C(18) is bonded in a distorted trigonal planar geometry to one C(17), one C(19), and one H(26) atom. The C(18)-C(19) bond length is 1.37 Å. The C(18)-H(26) bond length is 0.95 Å. In the nineteenth C site, C(19) is bonded in a distorted single-bond geometry to one C(14), one C(18), and one H(27) atom. The C(19)-H(27) bond length is 0.95 Å. In the twentieth C site, C(20) is bonded in a distorted single-bond geometry to one C(16) and one H(28) atom. The C(20)-H(28) bond length is 0.95 Å. In the twenty-first C site, C(21) is bonded in a single-bond geometry to one C(22) and one H(29) atom. The C(21)-C(22) bond length is 1.41 Å. The C(21)-H(29) bond length is 0.95 Å. In the twenty-second C site, C(22) is bonded in a trigonal planar geometry to one C(21), one C(23), and one C(24) atom. The C(22)-C(23) bond length is 1.38 Å. The C(22)-C(24) bond length is 1.49 Å. In the twenty-third C site, C(23) is bonded in a distorted single-bond geometry to one C(17), one C(22), and one H(30) atom. The C(23)-H(30) bond length is 0.95 Å. In the twenty-fourth C site, C(24) is bonded in a bent 120 degrees geometry to one C(22), one O(3), and one O(4) atom. The C(24)-O(3) bond length is 1.24 Å. The C(24)-O(4) bond length is 1.26 Å. In the twenty-fifth C site, C(25) is bonded in a bent 120 degrees geometry to one C(26), one O(5), and one O(6) atom. The C(25)-C(26) bond length is 1.52 Å. The C(25)-O(5) bond length is 1.25 Å. The C(25)-O(6) bond length is 1.27 Å. In the twenty-sixth C site, C(26) is bonded in a trigonal planar geometry to one C(25), one C(27), and one C(31) atom. The C(26)-C(27) bond length is 1.41 Å. The C(26)-C(31) bond length is 1.35 Å. In the twenty-seventh C site, C(27) is bonded in a distorted single-bond geometry to one C(26), one C(28), and one H(31) atom. The C(27)-C(28) bond length is 1.37 Å. The C(27)-H(31) bond length is 0.95 Å. In the twenty-eighth C site, C(28) is bonded in a distorted trigonal planar geometry to one C(27), one C(29), and one H(32) atom. The C(28)-C(29) bond length is 1.41 Å. The C(28)-H(32) bond length is 0.95 Å. In the twenty-ninth C site, C(29) is bonded in a trigonal planar geometry to one C(28), one C(30), and one C(32) atom. The C(29)-C(30) bond length is 1.40 Å. The C(29)-C(32) bond length is 1.41 Å. In the thirtieth C site, C(30) is bonded in a trigonal planar geometry to one C(29), one C(31), and one C(35) atom. The C(30)-C(31) bond length is 1.42 Å. The C(30)-C(35) bond length is 1.40 Å. In the thirty-first C site, C(31) is bonded in a distorted single-bond geometry to one C(26), one C(30), and one H(33) atom. The C(31)-H(33) bond length is 0.95 Å. In the thirty-second C site, C(32) is bonded in a distorted single-bond geometry to one C(29), one C(33), and one H(34) atom. The C(32)-C(33) bond length is 1.37 Å. The C(32)-H(34) bond length is 0.95 Å. In the thirty-third C site, C(33) is bonded in a trigonal planar geometry to one C(32), one C(34), and one C(36) atom. The C(33)-C(34) bond length is 1.40 Å. The C(33)-C(36) bond length is 1.52 Å. In the thirty-fourth C site, C(34) is bonded in a distorted single-bond geometry to one C(33) and one H(35) atom. The C(34)-H(35) bond length is 0.95 Å. In the thirty-fifth C site, C(35) is bonded in a distorted single-bond geometry to one C(30) and one H(36) atom. The C(35)-H(36) bond length is 0.95 Å. In the thirty-sixth C site, C(36) is bonded in a distorted bent 120 degrees geometry to one C(33), one O(7), and one O(8) atom. The C(36)-O(7) bond length is 1.26 Å. The C(36)-O(8) bond length is 1.23 Å. In the thirty-seventh C site, C(37) is bonded in a distorted bent 120 degrees geometry to one C(38), one O(10), and one O(11) atom. The C(37)-C(38) bond length is 1.50 Å. The C(37)-O(10) bond length is 1.25 Å. The C(37)-O(11) bond length is 1.26 Å. In the thirty-eighth C site, C(38) is bonded in a trigonal planar geometry to one C(37), one C(39), and one C(43) atom. The C(38)-C(39) bond length is 1.36 Å. The C(38)-C(43) bond length is 1.42 Å. In the thirty-ninth C site, C(39) is bonded in a single-bond geometry to one C(38), one C(40), and one H(37) atom. The C(39)-C(40) bond length is 1.43 Å. The C(39)-H(37) bond length is 0.95 Å. In the fortieth C site, C(40) is bonded in a trigonal planar geometry to one C(39), one C(41), and one C(44) atom. The C(40)-C(41) bond length is 1.43 Å. The C(40)-C(44) bond length is 1.41 Å. In the forty-first C site, C(41) is bonded in a trigonal planar geometry to one C(40), one C(42), and one C(47) atom. The C(41)-C(42) bond length is 1.42 Å. The C(41)-C(47) bond length is 1.40 Å. In the forty-second C site, C(42) is bonded in a distorted single-bond geometry to one C(41) and one H(38) atom. The C(42)-H(38) bond length is 0.95 Å. In the forty-third C site, C(43) is bonded in a single-bond geometry to one C(38) and one H(39) atom. The C(43)-H(39) bond length is 0.95 Å. In the forty-fourth C site, C(44) is bonded in a distorted single-bond geometry to one C(40) and one H(40) atom. The C(44)-H(40) bond length is 0.95 Å. In the forty-fifth C site, C(45) is bonded in a distorted single-bond geometry to one C(46) and one H(41) atom. The C(45)-C(46) bond length is 1.42 Å. The C(45)-H(41) bond length is 0.95 Å. In the forty-sixth C site, C(46) is bonded in a trigonal planar geometry to one C(45), one C(47), and one C(48) atom. The C(46)-C(47) bond length is 1.38 Å. The C(46)-C(48) bond length is 1.48 Å. In the forty-seventh C site, C(47) is bonded in a single-bond geometry to one C(41), one C(46), and one H(42) atom. The C(47)-H(42) bond length is 0.95 Å. In the forty-eighth C site, C(48) is bonded in a distorted bent 120 degrees geometry to one C(46), one O(12), and one O(13) atom. The C(48)-O(12) bond length is 1.27 Å. The C(48)-O(13) bond length is 1.26 Å. In the forty-ninth C site, C(49) is bonded in a bent 120 degrees geometry to one C(50), one O(14), and one O(9) atom. The C(49)-C(50) bond length is 1.49 Å. The C(49)-O(14) bond length is 1.25 Å. The C(49)-O(9) bond length is 1.25 Å. In the fiftieth C site, C(50) is bonded in a trigonal planar geometry to one C(49), one C(51), and one C(55) atom. The C(50)-C(51) bond length is 1.38 Å. The C(50)-C(55) bond length is 1.42 Å. In the fifty-first C site, C(51) is bonded in a distorted single-bond geometry to one C(50), one C(52), and one H(43) atom. The C(51)-C(52) bond length is 1.41 Å. The C(51)-H(43) bond length is 0.95 Å. In the fifty-second C site, C(52) is bonded in a trigonal planar geometry to one C(51), one C(53), and one C(56) atom. The C(52)-C(53) bond length is 1.40 Å. The C(52)-C(56) bond length is 1.42 Å. In the fifty-third C site, C(53) is bonded in a trigonal planar geometry to one C(52), one C(54), and one C(59) atom. The C(53)-C(54) bond length is 1.41 Å. The C(53)-C(59) bond length is 1.43 Å. In the fifty-fourth C site, C(54) is bonded in a distorted trigonal planar geometry to one C(53), one C(55), and one H(44) atom. The C(54)-C(55) bond length is 1.37 Å. The C(54)-H(44) bond length is 0.95 Å. In the fifty-fifth C site, C(55) is bonded in a distorted single-bond geometry to one C(50), one C(54), and one H(45) atom. The C(55)-H(45) bond length is 0.95 Å. In the fifty-sixth C site, C(56) is bonded in a single-bond geometry to one C(52) and one H(46) atom. The C(56)-H(46) bond length is 0.95 Å. In the fifty-seventh C site, C(57) is bonded in a distorted single-bond geometry to one C(58) and one H(47) atom. The C(57)-C(58) bond length is 1.40 Å. The C(57)-H(47) bond length is 0.95 Å. In the fifty-eighth C site, C(58) is bonded in a trigonal planar geometry to one C(57), one C(59), and one C(60) atom. The C(58)-C(59) bond length is 1.36 Å. The C(58)-C(60) bond length is 1.49 Å. In the fifty-ninth C site, C(59) is bonded in a distorted single-bond geometry to one C(53), one C(58), and one H(48) atom. The C(59)-H(48) bond length is 0.95 Å. In the sixtieth C site, C(60) is bonded in a bent 120 degrees geometry to one C(58), one O(15), and one O(16) atom. The C(60)-O(15) bond length is 1.27 Å. The C(60)-O(16) bond length is 1.24 Å. There are eight inequivalent N sites. In the first N site, N(1) is bonded to one Zn(1), one C(1), one C(2), and one C(3) atom to form corner-sharing NZnC3 tetrahedra. In the second N site, N(2) is bonded to one Zn(3), one C(1), one C(4), and one C(6) atom to form corner-sharing NZnC3 tetrahedra. In the third N site, N(3) is bonded in a trigonal non-coplanar geometry to one C(2), one C(4), and one C(5) atom. In the fourth N site, N(4) is bonded in a trigonal non-coplanar geometry to one C(3), one C(5), and one C(6) atom. In the fifth N site, N(5) is bonded to one Zn(2), one C(7), one C(8), and one C(9) atom to form corner-sharing NZnC3 tetrahedra. In the sixth N site, N(6) is bonded to one Zn(4), one C(10), one C(12), and one C(7) atom to form corner-sharing NZnC3 tetrahedra. In the seventh N site, N(7) is bonded in a trigonal non-coplanar geometry to one C(10), one C(11), and one C(8) atom. In the eighth N site, N(8) is bonded in a trigonal non-coplanar geometry to one C(11), one C(12), and one C(9) atom. There are forty-one inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(1) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(2) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(2) atom. In the fifth H site, H(5,6) is bonded in a single-bond geometry to one C(3) atom. In the sixth H site, H(7) is bonded in a single-bond geometry to one C(4) atom. In the seventh H site, H(8) is bonded in a single-bond geometry to one C(4) atom. In the eighth H site, H(9,10) is bonded in a single-bond geometry to one C(5) atom. In the ninth H site, H(11,12) is bonded in a single-bond geometry to one C(6) atom. In the tenth H site, H(13,14) is bonded in a single-bond geometry to one C(7) atom. In the eleventh H site, H(15,16) is bonded in a single-bond geometry to one C(8) atom. In the twelfth H site, H(17) is bonded in a single-bond geometry to one C(9) atom. In the thirteenth H site, H(18) is bonded in a single-bond geometry to one C(9) atom. In the fourteenth H site, H(19,20) is bonded in a single-bond geometry to one C(10) atom. In the fifteenth H site, H(21) is bonded in a single-bond geometry to one C(11) atom. In the sixteenth H site, H(22) is bonded in a single-bond geometry to one C(11) atom. In the seventeenth H site, H(23,24) is bonded in a single-bond geometry to one C(12) atom. In the eighteenth H site, H(25) is bonded in a single-bond geometry to one C(15) atom. In the nineteenth H site, H(26) is bonded in a single-bond geometry to one C(18) atom. In the twentieth H site, H(27) is bonded in a single-bond geometry to one C(19) atom. In the twenty-first H site, H(28) is bonded in a single-bond geometry to one C(20) atom. In the twenty-second H site, H(29) is bonded in a single-bond geometry to one C(21) atom. In the twenty-third H site, H(30) is bonded in a single-bond geometry to one C(23) atom. In the twenty-fourth H site, H(31) is bonded in a single-bond geometry to one C(27) atom. In the twenty-fifth H site, H(32) is bonded in a single-bond geometry to one C(28) atom. In the twenty-sixth H site, H(33) is bonded in a single-bond geometry to one C(31) atom. In the twenty-seventh H site, H(34) is bonded in a single-bond geometry to one C(32) atom. In the twenty-eighth H site, H(35) is bonded in a single-bond geometry to one C(34) atom. In the twenty-ninth H site, H(36) is bonded in a single-bond geometry to one C(35) atom. In the thirtieth H site, H(37) is bonded in a single-bond geometry to one C(39) atom. In the thirty-first H site, H(38) is bonded in a single-bond geometry to one C(42) atom. In the thirty-second H site, H(39) is bonded in a single-bond geometry to one C(43) atom. In the thirty-third H site, H(40) is bonded in a single-bond geometry to one C(44) atom. In the thirty-fourth H site, H(41) is bonded in a single-bond geometry to one C(45) atom. In the thirty-fifth H site, H(42) is bonded in a single-bond geometry to one C(47) atom. In the thirty-sixth H site, H(43) is bonded in a single-bond geometry to one C(51) atom. In the thirty-seventh H site, H(44) is bonded in a single-bond geometry to one C(54) atom. In the thirty-eighth H site, H(45) is bonded in a single-bond geometry to one C(55) atom. In the thirty-ninth H site, H(46) is bonded in a single-bond geometry to one C(56) atom. In the fortieth H site, H(47) is bonded in a single-bond geometry to one C(57) atom. In the forty-first H site, H(48) is bonded in a single-bond geometry to one C(59) atom. There are sixteen inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(13) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Zn(2) and one C(13) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Zn(2) and one C(24) atom. In the fourth O site, O(4) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(24) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(25) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one Zn(2) and one C(25) atom. In the seventh O site, O(7) is bonded in a single-bond geometry to one C(36) atom. In the eighth O site, O(8) is bonded in a water-like geometry to one Zn(3) and one C(36) atom. In the ninth O site, O(9) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(49) atom. In the tenth O site, O(10) is bonded in a bent 120 degrees geometry to one Zn(4) and one C(37) atom. In the eleventh O site, O(11) is bonded in a distorted bent 150 degrees geometry to one Zn(3) and one C(37) atom. In the twelfth O site, O(12) is bonded in a bent 120 degrees geometry to one Zn(3) and one C(48) atom. In the thirteenth O site, O(13) is bonded in a distorted bent 120 degrees geometry to one Zn(4) and one C(48) atom. In the fourteenth O site, O(14) is bonded in a bent 120 degrees geometry to one Zn(2) and one C(49) atom. In the fifteenth O site, O(15) is bonded in a distorted L-shaped geometry to one Zn(4) and one C(60) atom. In the sixteenth O site, O(16) is bonded in an L-shaped geometry to one Zn(4) and one C(60) atom. Linkers: 4 C1N2CN3CN1CN(C2)C3 ,8 [O]C(=O)c1ccc2cc(C([O])=O)ccc2c1. Metal clusters: 2 [C]1O[Zn]234O[C]O[Zn]2(O1)(O[C]O3)O[C]O4 ,2 O=[C]O[Zn]1O[C]O[Zn]2(O[C]O1)O[C]O2. The MOF has largest included sphere 11.39 A, density 0.98 g/cm3, surface area 4219.15 m2/g, accessible volume 0.60 cm3/g
HAFWIW_clean
Cu3C10H2(NO2)4 crystallizes in the tetragonal I4_1/acd space group. The structure consists of a Cu3C10H2(NO2)4 framework. There are two inequivalent Cu sites. In the first Cu site, Cu(1) is bonded in a distorted square co-planar geometry to one N(1), one O(2), and two equivalent O(1) atoms. The Cu(1)-N(1) bond length is 1.99 Å. The Cu(1)-O(2) bond length is 1.98 Å. There is one shorter (1.97 Å) and one longer (2.58 Å) Cu(1)-O(1) bond length. In the second Cu site, Cu(2) is bonded in a square co-planar geometry to two equivalent N(2) and two equivalent O(3) atoms. Both Cu(2)-N(2) bond lengths are 1.96 Å. Both Cu(2)-O(3) bond lengths are 1.96 Å. There are five inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.48 Å. The C(1)-O(1) bond length is 1.27 Å. The C(1)-O(2) bond length is 1.23 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(1), one C(3), and one N(1) atom. The C(2)-C(3) bond length is 1.40 Å. The C(2)-N(1) bond length is 1.33 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2), one C(4), and one H(1) atom. The C(3)-C(4) bond length is 1.37 Å. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a 3-coordinate geometry to one C(3), one C(5), and one N(2) atom. The C(4)-C(5) bond length is 1.50 Å. The C(4)-N(2) bond length is 1.36 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one C(4), one O(3), and one O(4) atom. The C(5)-O(3) bond length is 1.25 Å. The C(5)-O(4) bond length is 1.25 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a 3-coordinate geometry to one Cu(1), one C(2), and one N(2) atom. The N(1)-N(2) bond length is 1.34 Å. In the second N site, N(2) is bonded in a 3-coordinate geometry to one Cu(2), one C(4), and one N(1) atom. H(1) is bonded in a single-bond geometry to one C(3) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a 1-coordinate geometry to two equivalent Cu(1) and one C(1) atom. In the second O site, O(2) is bonded in a distorted water-like geometry to one Cu(1) and one C(1) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Cu(2) and one C(5) atom. In the fourth O site, O(4) is bonded in a single-bond geometry to one C(5) atom. Linkers: 9 [O]C(=O)[C]1C=C(C([O])=O)N=N1 ,6 [O]C(=O)C1=NN=C(C([O])=O)[CH]1 ,16 [O]C(=O)C1=CC(C([O])=O)=N[N]1. Metal clusters: 48 [Cu]. The MOF has largest included sphere 5.35 A, density 1.32 g/cm3, surface area 3388.54 m2/g, accessible volume 0.47 cm3/g
DOMCUE_clean
TbC22(OCl2)6 crystallizes in the tetragonal I4_1/a space group. Tb(1) is bonded in a 5-coordinate geometry to one O(1), one O(3), one O(4), one O(5), and one O(6) atom. The Tb(1)-O(1) bond length is 2.29 Å. The Tb(1)-O(3) bond length is 2.53 Å. The Tb(1)-O(4) bond length is 2.41 Å. The Tb(1)-O(5) bond length is 2.38 Å. The Tb(1)-O(6) bond length is 2.30 Å. There are twenty-two inequivalent C sites. In the first C site, C(1) is bonded in a distorted trigonal planar geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.52 Å. The C(1)-O(1) bond length is 1.25 Å. The C(1)-O(2) bond length is 1.22 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-C(7) bond length is 1.38 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one Cl(1) atom. The C(3)-C(4) bond length is 1.36 Å. The C(3)-Cl(1) bond length is 1.73 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(3), one C(5), and one Cl(2) atom. The C(4)-C(5) bond length is 1.42 Å. The C(4)-Cl(2) bond length is 1.74 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(4), one C(6), and one C(8) atom. The C(5)-C(6) bond length is 1.39 Å. The C(5)-C(8) bond length is 1.49 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(5), one C(7), and one Cl(3) atom. The C(6)-C(7) bond length is 1.40 Å. The C(6)-Cl(3) bond length is 1.71 Å. In the seventh C site, C(7) is bonded in a trigonal planar geometry to one C(2), one C(6), and one Cl(4) atom. The C(7)-Cl(4) bond length is 1.74 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one C(13), one C(20), and one C(5) atom. The C(8)-C(13) bond length is 1.47 Å. The C(8)-C(20) bond length is 1.45 Å. In the ninth C site, C(9) is bonded in a distorted bent 120 degrees geometry to one C(10), one O(3), and one O(4) atom. The C(9)-C(10) bond length is 1.51 Å. The C(9)-O(3) bond length is 1.24 Å. The C(9)-O(4) bond length is 1.23 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(11), one C(15), and one C(9) atom. The C(10)-C(11) bond length is 1.38 Å. The C(10)-C(15) bond length is 1.36 Å. In the eleventh C site, C(11) is bonded in a trigonal planar geometry to one C(10), one C(12), and one Cl(5) atom. The C(11)-C(12) bond length is 1.36 Å. The C(11)-Cl(5) bond length is 1.75 Å. In the twelfth C site, C(12) is bonded in a trigonal planar geometry to one C(11), one C(13), and one Cl(6) atom. The C(12)-C(13) bond length is 1.42 Å. The C(12)-Cl(6) bond length is 1.74 Å. In the thirteenth C site, C(13) is bonded in a trigonal planar geometry to one C(12), one C(14), and one C(8) atom. The C(13)-C(14) bond length is 1.40 Å. In the fourteenth C site, C(14) is bonded in a trigonal planar geometry to one C(13), one C(15), and one Cl(7) atom. The C(14)-C(15) bond length is 1.40 Å. The C(14)-Cl(7) bond length is 1.73 Å. In the fifteenth C site, C(15) is bonded in a trigonal planar geometry to one C(10), one C(14), and one Cl(8) atom. The C(15)-Cl(8) bond length is 1.74 Å. In the sixteenth C site, C(16) is bonded in a distorted bent 120 degrees geometry to one C(17), one O(5), and one O(6) atom. The C(16)-C(17) bond length is 1.51 Å. The C(16)-O(5) bond length is 1.24 Å. The C(16)-O(6) bond length is 1.25 Å. In the seventeenth C site, C(17) is bonded in a trigonal planar geometry to one C(16), one C(18), and one C(22) atom. The C(17)-C(18) bond length is 1.38 Å. The C(17)-C(22) bond length is 1.38 Å. In the eighteenth C site, C(18) is bonded in a trigonal planar geometry to one C(17), one C(19), and one Cl(9) atom. The C(18)-C(19) bond length is 1.38 Å. The C(18)-Cl(9) bond length is 1.73 Å. In the nineteenth C site, C(19) is bonded in a trigonal planar geometry to one C(18), one C(20), and one Cl(10) atom. The C(19)-C(20) bond length is 1.42 Å. The C(19)-Cl(10) bond length is 1.71 Å. In the twentieth C site, C(20) is bonded in a trigonal planar geometry to one C(19), one C(21), and one C(8) atom. The C(20)-C(21) bond length is 1.43 Å. In the twenty-first C site, C(21) is bonded in a trigonal planar geometry to one C(20), one C(22), and one Cl(11) atom. The C(21)-C(22) bond length is 1.37 Å. The C(21)-Cl(11) bond length is 1.72 Å. In the twenty-second C site, C(22) is bonded in a trigonal planar geometry to one C(17), one C(21), and one Cl(12) atom. The C(22)-Cl(12) bond length is 1.72 Å. There are six inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 150 degrees geometry to one Tb(1) and one C(1) atom. In the second O site, O(2) is bonded in a single-bond geometry to one C(1) atom. In the third O site, O(3) is bonded in a distorted single-bond geometry to one Tb(1) and one C(9) atom. In the fourth O site, O(4) is bonded in a distorted single-bond geometry to one Tb(1) and one C(9) atom. In the fifth O site, O(5) is bonded in a single-bond geometry to one Tb(1) and one C(16) atom. In the sixth O site, O(6) is bonded in a distorted bent 150 degrees geometry to one Tb(1) and one C(16) atom. There are twelve inequivalent Cl sites. In the first Cl site, Cl(1) is bonded in a single-bond geometry to one C(3) atom. In the second Cl site, Cl(2) is bonded in a single-bond geometry to one C(4) atom. In the third Cl site, Cl(3) is bonded in a single-bond geometry to one C(6) atom. In the fourth Cl site, Cl(4) is bonded in a single-bond geometry to one C(7) atom. In the fifth Cl site, Cl(5) is bonded in a single-bond geometry to one C(11) atom. In the sixth Cl site, Cl(6) is bonded in a single-bond geometry to one C(12) atom. In the seventh Cl site, Cl(7) is bonded in a single-bond geometry to one C(14) atom. In the eighth Cl site, Cl(8) is bonded in a single-bond geometry to one C(15) atom. In the ninth Cl site, Cl(9) is bonded in a single-bond geometry to one C(18) atom. In the tenth Cl site, Cl(10) is bonded in a single-bond geometry to one C(19) atom. In the eleventh Cl site, Cl(11) is bonded in a single-bond geometry to one C(21) atom. In the twelfth Cl site, Cl(12) is bonded in a single-bond geometry to one C(22) atom. Linkers: 5 [O]C(=O)c1c(Cl)c(Cl)c([C](c2c(Cl)c(Cl)c(C([O])=O)c(Cl)c2Cl)c2c(Cl)c(Cl)c(C([O])=O)c(Cl)c2Cl)c(Cl)c1Cl ,3 [O]C(=O)c1c(Cl)c(Cl)c([C](c2c(Cl)c(Cl)c([C]=O)c(Cl)c2Cl)c2c(Cl)c(Cl)c(C([O])=O)c(Cl)c2Cl)c(Cl)c1Cl. Metal clusters: 4 O=[C]O[Tb]12(O[C]O1)O[C]O[Tb]1(O[C]=O)(O[C]O1)O[C]O2. RCSR code: spn. The MOF has largest included sphere 18.25 A, density 0.69 g/cm3, surface area 3333.40 m2/g, accessible volume 1.14 cm3/g
XESGOS_clean
Al3P3(O6F)2 crystallizes in the monoclinic P2_1 space group. There are six inequivalent Al sites. In the first Al site, Al(1) is bonded to one O(1), one O(15), one O(17), one O(4), and one F(3) atom to form AlO4F trigonal bipyramids that share a cornercorner with one Al(2)O4F2 octahedra, a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(3)O4 tetrahedra, a cornercorner with one P(4)O4 tetrahedra, and a cornercorner with one P(5)O4 tetrahedra. The corner-sharing octahedral tilt angles are 51°. The Al(1)-O(1) bond length is 1.78 Å. The Al(1)-O(15) bond length is 1.80 Å. The Al(1)-O(17) bond length is 1.79 Å. The Al(1)-O(4) bond length is 1.85 Å. The Al(1)-F(3) bond length is 1.93 Å. In the second Al site, Al(2) is bonded to one O(16), one O(22), one O(23), one O(8), one F(2), and one F(3) atom to form AlO4F2 octahedra that share a cornercorner with one P(3)O4 tetrahedra, a cornercorner with one P(4)O4 tetrahedra, corners with two equivalent P(5)O4 tetrahedra, a cornercorner with one Al(1)O4F trigonal bipyramid, and a cornercorner with one Al(5)O4F trigonal bipyramid. The Al(2)-O(16) bond length is 1.86 Å. The Al(2)-O(22) bond length is 1.86 Å. The Al(2)-O(23) bond length is 1.87 Å. The Al(2)-O(8) bond length is 1.91 Å. The Al(2)-F(2) bond length is 1.91 Å. The Al(2)-F(3) bond length is 1.89 Å. In the third Al site, Al(3) is bonded to one O(18), one O(19), one O(3), one O(9), and one F(1) atom to form AlO4F trigonal bipyramids that share a cornercorner with one Al(4)O4F2 octahedra, a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(2)O4 tetrahedra, a cornercorner with one P(4)O4 tetrahedra, and a cornercorner with one P(6)O4 tetrahedra. The corner-sharing octahedral tilt angles are 49°. The Al(3)-O(18) bond length is 1.78 Å. The Al(3)-O(19) bond length is 1.83 Å. The Al(3)-O(3) bond length is 1.80 Å. The Al(3)-O(9) bond length is 1.83 Å. The Al(3)-F(1) bond length is 1.93 Å. In the fourth Al site, Al(4) is bonded to one O(10), one O(11), one O(12), one O(14), one F(1), and one F(4) atom to form AlO4F2 octahedra that share a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(6)O4 tetrahedra, corners with two equivalent P(2)O4 tetrahedra, a cornercorner with one Al(3)O4F trigonal bipyramid, and a cornercorner with one Al(6)O4F trigonal bipyramid. The Al(4)-O(10) bond length is 1.88 Å. The Al(4)-O(11) bond length is 1.86 Å. The Al(4)-O(12) bond length is 1.85 Å. The Al(4)-O(14) bond length is 1.88 Å. The Al(4)-F(1) bond length is 1.88 Å. The Al(4)-F(4) bond length is 1.88 Å. In the fifth Al site, Al(5) is bonded to one O(13), one O(20), one O(24), one O(6), and one F(2) atom to form AlO4F trigonal bipyramids that share a cornercorner with one Al(2)O4F2 octahedra, a cornercorner with one P(4)O4 tetrahedra, a cornercorner with one P(5)O4 tetrahedra, and corners with two equivalent P(3)O4 tetrahedra. The corner-sharing octahedral tilt angles are 54°. The Al(5)-O(13) bond length is 1.91 Å. The Al(5)-O(20) bond length is 1.74 Å. The Al(5)-O(24) bond length is 1.78 Å. The Al(5)-O(6) bond length is 1.81 Å. The Al(5)-F(2) bond length is 1.91 Å. In the sixth Al site, Al(6) is bonded to one O(2), one O(21), one O(5), one O(7), and one F(4) atom to form AlO4F trigonal bipyramids that share a cornercorner with one Al(4)O4F2 octahedra, a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(2)O4 tetrahedra, and corners with two equivalent P(6)O4 tetrahedra. The corner-sharing octahedral tilt angles are 53°. The Al(6)-O(2) bond length is 1.79 Å. The Al(6)-O(21) bond length is 1.78 Å. The Al(6)-O(5) bond length is 1.78 Å. The Al(6)-O(7) bond length is 1.90 Å. The Al(6)-F(4) bond length is 1.93 Å. There are six inequivalent P sites. In the first P site, P(1) is bonded to one O(11), one O(18), one O(2), and one O(4) atom to form PO4 tetrahedra that share a cornercorner with one Al(4)O4F2 octahedra, a cornercorner with one Al(1)O4F trigonal bipyramid, a cornercorner with one Al(3)O4F trigonal bipyramid, and a cornercorner with one Al(6)O4F trigonal bipyramid. The corner-sharing octahedral tilt angles are 46°. The P(1)-O(11) bond length is 1.53 Å. The P(1)-O(18) bond length is 1.54 Å. The P(1)-O(2) bond length is 1.54 Å. The P(1)-O(4) bond length is 1.54 Å. In the second P site, P(2) is bonded to one O(12), one O(14), one O(5), and one O(9) atom to form PO4 tetrahedra that share corners with two equivalent Al(4)O4F2 octahedra, a cornercorner with one Al(3)O4F trigonal bipyramid, and a cornercorner with one Al(6)O4F trigonal bipyramid. The corner-sharing octahedral tilt angles range from 48-53°. The P(2)-O(12) bond length is 1.52 Å. The P(2)-O(14) bond length is 1.53 Å. The P(2)-O(5) bond length is 1.55 Å. The P(2)-O(9) bond length is 1.54 Å. In the third P site, P(3) is bonded to one O(1), one O(13), one O(20), and one O(8) atom to form PO4 tetrahedra that share a cornercorner with one Al(2)O4F2 octahedra, a cornercorner with one Al(1)O4F trigonal bipyramid, and corners with two equivalent Al(5)O4F trigonal bipyramids. The corner-sharing octahedral tilt angles are 49°. The P(3)-O(1) bond length is 1.55 Å. The P(3)-O(13) bond length is 1.55 Å. The P(3)-O(20) bond length is 1.54 Å. The P(3)-O(8) bond length is 1.52 Å. In the fourth P site, P(4) is bonded to one O(15), one O(16), one O(19), and one O(24) atom to form PO4 tetrahedra that share a cornercorner with one Al(2)O4F2 octahedra, a cornercorner with one Al(1)O4F trigonal bipyramid, a cornercorner with one Al(3)O4F trigonal bipyramid, and a cornercorner with one Al(5)O4F trigonal bipyramid. The corner-sharing octahedral tilt angles are 47°. The P(4)-O(15) bond length is 1.56 Å. The P(4)-O(16) bond length is 1.54 Å. The P(4)-O(19) bond length is 1.52 Å. The P(4)-O(24) bond length is 1.55 Å. In the fifth P site, P(5) is bonded to one O(17), one O(22), one O(23), and one O(6) atom to form PO4 tetrahedra that share corners with two equivalent Al(2)O4F2 octahedra, a cornercorner with one Al(1)O4F trigonal bipyramid, and a cornercorner with one Al(5)O4F trigonal bipyramid. The corner-sharing octahedral tilt angles range from 50-52°. The P(5)-O(17) bond length is 1.55 Å. The P(5)-O(22) bond length is 1.53 Å. The P(5)-O(23) bond length is 1.52 Å. The P(5)-O(6) bond length is 1.54 Å. In the sixth P site, P(6) is bonded to one O(10), one O(21), one O(3), and one O(7) atom to form PO4 tetrahedra that share a cornercorner with one Al(4)O4F2 octahedra, a cornercorner with one Al(3)O4F trigonal bipyramid, and corners with two equivalent Al(6)O4F trigonal bipyramids. The corner-sharing octahedral tilt angles are 49°. The P(6)-O(10) bond length is 1.55 Å. The P(6)-O(21) bond length is 1.51 Å. The P(6)-O(3) bond length is 1.53 Å. The P(6)-O(7) bond length is 1.55 Å. There are twenty-four inequivalent O sites. In the first O site, O(1) is bonded in a bent 150 degrees geometry to one Al(1) and one P(3) atom. In the second O site, O(2) is bonded in a bent 150 degrees geometry to one Al(6) and one P(1) atom. In the third O site, O(3) is bonded in a bent 150 degrees geometry to one Al(3) and one P(6) atom. In the fourth O site, O(4) is bonded in a distorted bent 150 degrees geometry to one Al(1) and one P(1) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Al(6) and one P(2) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one Al(5) and one P(5) atom. In the seventh O site, O(7) is bonded in a distorted bent 120 degrees geometry to one Al(6) and one P(6) atom. In the eighth O site, O(8) is bonded in a bent 120 degrees geometry to one Al(2) and one P(3) atom. In the ninth O site, O(9) is bonded in a bent 120 degrees geometry to one Al(3) and one P(2) atom. In the tenth O site, O(10) is bonded in a bent 120 degrees geometry to one Al(4) and one P(6) atom. In the eleventh O site, O(11) is bonded in a distorted bent 120 degrees geometry to one Al(4) and one P(1) atom. In the twelfth O site, O(12) is bonded in a bent 120 degrees geometry to one Al(4) and one P(2) atom. In the thirteenth O site, O(13) is bonded in a bent 120 degrees geometry to one Al(5) and one P(3) atom. In the fourteenth O site, O(14) is bonded in a bent 120 degrees geometry to one Al(4) and one P(2) atom. In the fifteenth O site, O(15) is bonded in a bent 120 degrees geometry to one Al(1) and one P(4) atom. In the sixteenth O site, O(16) is bonded in a distorted bent 120 degrees geometry to one Al(2) and one P(4) atom. In the seventeenth O site, O(17) is bonded in a bent 120 degrees geometry to one Al(1) and one P(5) atom. In the eighteenth O site, O(18) is bonded in a bent 120 degrees geometry to one Al(3) and one P(1) atom. In the nineteenth O site, O(19) is bonded in a bent 150 degrees geometry to one Al(3) and one P(4) atom. In the twentieth O site, O(20) is bonded in a linear geometry to one Al(5) and one P(3) atom. In the twenty-first O site, O(21) is bonded in a linear geometry to one Al(6) and one P(6) atom. In the twenty-second O site, O(22) is bonded in a bent 120 degrees geometry to one Al(2) and one P(5) atom. In the twenty-third O site, O(23) is bonded in a bent 120 degrees geometry to one Al(2) and one P(5) atom. In the twenty-fourth O site, O(24) is bonded in a bent 150 degrees geometry to one Al(5) and one P(4) atom. There are four inequivalent F sites. In the first F site, F(1) is bonded in a bent 120 degrees geometry to one Al(3) and one Al(4) atom. In the second F site, F(2) is bonded in a bent 120 degrees geometry to one Al(2) and one Al(5) atom. In the third F site, F(3) is bonded in a bent 120 degrees geometry to one Al(1) and one Al(2) atom. In the fourth F site, F(4) is bonded in a bent 120 degrees geometry to one Al(4) and one Al(6) atom. Linkers: 12 [O]P([O])([O])=O. Metal clusters: 12 [Al]. The MOF has largest included sphere 3.98 A, density 1.86 g/cm3, surface area 2230.51 m2/g, accessible volume 0.24 cm3/g
RAVXIX_clean
MgC35H31O4CH3(CH2)4 crystallizes in the trigonal R3 space group. The structure consists of seventy-two 02329_fluka molecules and eighteen 02329_fluka molecules inside a MgC35H31O4 framework. In the MgC35H31O4 framework, there are two inequivalent Mg sites. In the first Mg site, Mg(1) is bonded to one O(1), one O(4), two equivalent O(2), and two equivalent O(3) atoms to form edge-sharing MgO6 octahedra. The Mg(1)-O(1) bond length is 1.97 Å. The Mg(1)-O(4) bond length is 1.97 Å. There is one shorter (1.95 Å) and one longer (2.01 Å) Mg(1)-O(2) bond length. There is one shorter (1.90 Å) and one longer (1.94 Å) Mg(1)-O(3) bond length. In the second Mg site, Mg(2) is bonded to one O(5), one O(8), two equivalent O(6), and two equivalent O(7) atoms to form edge-sharing MgO6 octahedra. The Mg(2)-O(5) bond length is 1.98 Å. The Mg(2)-O(8) bond length is 1.97 Å. There is one shorter (1.91 Å) and one longer (1.92 Å) Mg(2)-O(6) bond length. There is one shorter (1.90 Å) and one longer (1.98 Å) Mg(2)-O(7) bond length. There are sixty-nine inequivalent C sites. In the first C site, C(6) is bonded in a distorted water-like geometry to one C(26); one H(12,73); and one H(13,72) atom. The C(6)-C(26) bond length is 1.48 Å. The C(6)-H(12,73) bond length is 1.11 Å. The C(6)-H(13,72) bond length is 1.09 Å. In the second C site, C(7) is bonded in a distorted trigonal non-coplanar geometry to one C(66), one H(14), one H(15), and one H(16) atom. The C(7)-C(66) bond length is 1.48 Å. The C(7)-H(14) bond length is 1.10 Å. The C(7)-H(15) bond length is 1.08 Å. The C(7)-H(16) bond length is 1.08 Å. In the third C site, C(8) is bonded in a distorted trigonal non-coplanar geometry to one C(68); one H(17,68); one H(18,67); and one H(19,66) atom. The C(8)-C(68) bond length is 1.48 Å. The C(8)-H(17,68) bond length is 1.09 Å. The C(8)-H(18,67) bond length is 1.09 Å. The C(8)-H(19,66) bond length is 1.09 Å. In the fourth C site, C(9) is bonded in a distorted trigonal non-coplanar geometry to one C(31,50); one H(20,65); one H(21,64); and one H(22,63) atom. The C(9)-C(31,50) bond length is 1.48 Å. The C(9)-H(20,65) bond length is 1.10 Å. The C(9)-H(21,64) bond length is 1.10 Å. The C(9)-H(22,63) bond length is 1.08 Å. In the fifth C site, C(10) is bonded in a distorted trigonal non-coplanar geometry to one C(28), one H(23), one H(24), and one H(25) atom. The C(10)-C(28) bond length is 1.48 Å. The C(10)-H(23) bond length is 1.11 Å. The C(10)-H(24) bond length is 1.08 Å. The C(10)-H(25) bond length is 1.09 Å. In the sixth C site, C(11) is bonded in a distorted trigonal non-coplanar geometry to one C(63), one H(26), one H(27), and one H(28) atom. The C(11)-C(63) bond length is 1.47 Å. The C(11)-H(26) bond length is 1.10 Å. The C(11)-H(27) bond length is 1.10 Å. The C(11)-H(28) bond length is 1.08 Å. In the seventh C site, C(12) is bonded in a distorted trigonal non-coplanar geometry to one C(62), one H(29), one H(30), and one H(31) atom. The C(12)-C(62) bond length is 1.47 Å. The C(12)-H(29) bond length is 1.09 Å. The C(12)-H(30) bond length is 1.09 Å. The C(12)-H(31) bond length is 1.11 Å. In the eighth C site, C(13) is bonded in a trigonal planar geometry to one C(14), one C(22), and one C(73) atom. The C(13)-C(14) bond length is 1.37 Å. The C(13)-C(22) bond length is 1.41 Å. The C(13)-C(73) bond length is 1.48 Å. In the ninth C site, C(14) is bonded in a distorted single-bond geometry to one C(13); one C(21); and one H(32,53) atom. The C(14)-C(21) bond length is 1.38 Å. The C(14)-H(32,53) bond length is 1.08 Å. In the tenth C site, C(15) is bonded in a trigonal planar geometry to one C(16), one C(21), and one C(74) atom. The C(15)-C(16) bond length is 1.37 Å. The C(15)-C(21) bond length is 1.41 Å. The C(15)-C(74) bond length is 1.48 Å. In the eleventh C site, C(16) is bonded in a distorted trigonal planar geometry to one C(15), one C(22), and one H(33) atom. The C(16)-C(22) bond length is 1.38 Å. The C(16)-H(33) bond length is 1.08 Å. In the twelfth C site, C(17) is bonded in a distorted trigonal planar geometry to one C(18), one C(24), and one H(34) atom. The C(17)-C(18) bond length is 1.38 Å. The C(17)-C(24) bond length is 1.37 Å. The C(17)-H(34) bond length is 1.07 Å. In the thirteenth C site, C(18) is bonded in a trigonal planar geometry to one C(17), one C(23), and one C(70) atom. The C(18)-C(23) bond length is 1.40 Å. The C(18)-C(70) bond length is 1.47 Å. In the fourteenth C site, C(19) is bonded in a trigonal planar geometry to one C(20), one C(24), and one C(69) atom. The C(19)-C(20) bond length is 1.38 Å. The C(19)-C(24) bond length is 1.40 Å. The C(19)-C(69) bond length is 1.47 Å. In the fifteenth C site, C(20) is bonded in a distorted single-bond geometry to one C(19), one C(23), and one H(35) atom. The C(20)-C(23) bond length is 1.37 Å. The C(20)-H(35) bond length is 1.07 Å. In the sixteenth C site, C(21) is bonded in a trigonal planar geometry to one C(14), one C(15), and one C(54) atom. The C(21)-C(54) bond length is 1.45 Å. In the seventeenth C site, C(22) is bonded in a trigonal planar geometry to one C(13), one C(16), and one C(51) atom. The C(22)-C(51) bond length is 1.46 Å. In the eighteenth C site, C(23) is bonded in a trigonal planar geometry to one C(18), one C(20), and one C(48) atom. The C(23)-C(48) bond length is 1.46 Å. In the nineteenth C site, C(24) is bonded in a trigonal planar geometry to one C(17), one C(19), and one C(36) atom. The C(24)-C(36) bond length is 1.46 Å. In the twentieth C site, C(25) is bonded in a distorted trigonal planar geometry to one C(26), one C(54), and one H(36) atom. The C(25)-C(26) bond length is 1.38 Å. The C(25)-C(54) bond length is 1.37 Å. The C(25)-H(36) bond length is 1.06 Å. In the twenty-first C site, C(26) is bonded in a trigonal planar geometry to one C(25), one C(27), and one C(6) atom. The C(26)-C(27) bond length is 1.38 Å. In the twenty-second C site, C(27) is bonded in a trigonal planar geometry to one C(26), one C(56), and one C(60) atom. The C(27)-C(56) bond length is 1.37 Å. The C(27)-C(60) bond length is 1.45 Å. In the twenty-third C site, C(28) is bonded in a trigonal planar geometry to one C(10), one C(29), and one C(33) atom. The C(28)-C(29) bond length is 1.38 Å. The C(28)-C(33) bond length is 1.38 Å. In the twenty-fourth C site, C(29) is bonded in a distorted single-bond geometry to one C(28), one C(30), and one H(37) atom. The C(29)-C(30) bond length is 1.38 Å. The C(29)-H(37) bond length is 1.06 Å. In the twenty-fifth C site, C(30) is bonded in a trigonal planar geometry to one C(29); one C(31,50); and one C(59) atom. The C(30)-C(31,50) bond length is 1.38 Å. The C(30)-C(59) bond length is 1.46 Å. In the twenty-sixth C site, C(31,50) is bonded in a trigonal planar geometry to one C(30), one C(32), and one C(9) atom. The C(31,50)-C(32) bond length is 1.37 Å. In the twenty-seventh C site, C(32) is bonded in a distorted single-bond geometry to one C(31,50); one C(33); and one H(38,47) atom. The C(32)-C(33) bond length is 1.38 Å. The C(32)-H(38,47) bond length is 1.06 Å. In the twenty-eighth C site, C(33) is bonded in a trigonal planar geometry to one C(28), one C(32), and one C(58) atom. The C(33)-C(58) bond length is 1.46 Å. In the twenty-ninth C site, C(34) is bonded in a distorted trigonal planar geometry to one C(35), one C(42), and one H(40) atom. The C(34)-C(35) bond length is 1.37 Å. The C(34)-C(42) bond length is 1.38 Å. The C(34)-H(40) bond length is 1.08 Å. In the thirtieth C site, C(35) is bonded in a distorted single-bond geometry to one C(34), one C(36), and one H(39) atom. The C(35)-C(36) bond length is 1.39 Å. The C(35)-H(39) bond length is 1.06 Å. In the thirty-first C site, C(36) is bonded in a trigonal planar geometry to one C(24), one C(35), and one C(37) atom. The C(36)-C(37) bond length is 1.37 Å. In the thirty-second C site, C(37) is bonded in a distorted single-bond geometry to one C(36) and one H(41) atom. The C(37)-H(41) bond length is 1.07 Å. In the thirty-third C site, C(38) is bonded in a distorted single-bond geometry to one C(39), one C(44), and one O(2) atom. The C(38)-C(39) bond length is 1.43 Å. The C(38)-C(44) bond length is 1.38 Å. The C(38)-O(2) bond length is 1.37 Å. In the thirty-fourth C site, C(39) is bonded in a trigonal planar geometry to one C(38), one C(40), and one C(47) atom. The C(39)-C(40) bond length is 1.48 Å. The C(39)-C(47) bond length is 1.38 Å. In the thirty-fifth C site, C(40) is bonded in a distorted bent 120 degrees geometry to one C(39), one O(3), and one O(4) atom. The C(40)-O(3) bond length is 1.25 Å. The C(40)-O(4) bond length is 1.28 Å. In the thirty-sixth C site, C(41) is bonded in a distorted bent 120 degrees geometry to one C(42), one O(5), and one O(6) atom. The C(41)-C(42) bond length is 1.40 Å. The C(41)-O(5) bond length is 1.28 Å. The C(41)-O(6) bond length is 1.25 Å. In the thirty-seventh C site, C(42) is bonded in a trigonal planar geometry to one C(34), one C(41), and one C(43) atom. The C(42)-C(43) bond length is 1.43 Å. In the thirty-eighth C site, C(43) is bonded in a single-bond geometry to one C(42) and one O(7) atom. The C(43)-O(7) bond length is 1.25 Å. In the thirty-ninth C site, C(44) is bonded in a distorted trigonal planar geometry to one C(38), one C(45), and one H(44) atom. The C(44)-C(45) bond length is 1.37 Å. The C(44)-H(44) bond length is 1.08 Å. In the fortieth C site, C(45) is bonded in a trigonal planar geometry to one C(44), one C(46), and one C(57) atom. The C(45)-C(46) bond length is 1.39 Å. The C(45)-C(57) bond length is 1.45 Å. In the forty-first C site, C(46) is bonded in a distorted single-bond geometry to one C(45), one C(47), and one H(46) atom. The C(46)-C(47) bond length is 1.37 Å. The C(46)-H(46) bond length is 1.06 Å. In the forty-second C site, C(47) is bonded in a distorted trigonal planar geometry to one C(39), one C(46), and one H(45) atom. The C(47)-H(45) bond length is 1.08 Å. In the forty-third C site, C(48) is bonded in a trigonal planar geometry to one C(23), one C(49), and one C(53) atom. The C(48)-C(49) bond length is 1.38 Å. The C(48)-C(53) bond length is 1.38 Å. In the forty-fourth C site, C(49) is bonded in a distorted single-bond geometry to one C(31,50); one C(48); and one H(38,47) atom. The C(49)-C(31,50) bond length is 1.37 Å. The C(49)-H(38,47) bond length is 1.06 Å. In the forty-fifth C site, C(51) is bonded in a trigonal planar geometry to one C(22); one C(31,50); and one C(52) atom. The C(51)-C(31,50) bond length is 1.38 Å. The C(51)-C(52) bond length is 1.38 Å. In the forty-sixth C site, C(52) is bonded in a distorted single-bond geometry to one C(51), one C(53), and one H(48) atom. The C(52)-C(53) bond length is 1.38 Å. The C(52)-H(48) bond length is 1.06 Å. In the forty-seventh C site, C(53) is bonded in a trigonal planar geometry to one C(48), one C(52), and one C(71) atom. The C(53)-C(71) bond length is 1.49 Å. In the forty-eighth C site, C(54) is bonded in a trigonal planar geometry to one C(21), one C(25), and one C(55) atom. The C(54)-C(55) bond length is 1.38 Å. In the forty-ninth C site, C(55) is bonded in a trigonal planar geometry to one C(54), one C(56), and one C(75) atom. The C(55)-C(56) bond length is 1.38 Å. The C(55)-C(75) bond length is 1.48 Å. In the fiftieth C site, C(56) is bonded in a distorted trigonal planar geometry to one C(27), one C(55), and one H(49) atom. The C(56)-H(49) bond length is 1.06 Å. In the fifty-first C site, C(57) is bonded in a trigonal planar geometry to one C(45), one C(62), and one C(64) atom. The C(57)-C(62) bond length is 1.40 Å. The C(57)-C(64) bond length is 1.37 Å. In the fifty-second C site, C(58) is bonded in a trigonal planar geometry to one C(33), one C(61), and one C(63) atom. The C(58)-C(61) bond length is 1.37 Å. The C(58)-C(63) bond length is 1.40 Å. In the fifty-third C site, C(59) is bonded in a trigonal planar geometry to one C(30), one C(65), and one C(68) atom. The C(59)-C(65) bond length is 1.38 Å. The C(59)-C(68) bond length is 1.41 Å. In the fifty-fourth C site, C(60) is bonded in a trigonal planar geometry to one C(27), one C(66), and one C(67) atom. The C(60)-C(66) bond length is 1.41 Å. The C(60)-C(67) bond length is 1.38 Å. In the fifty-fifth C site, C(61) is bonded in a distorted single-bond geometry to one C(58), one C(62), and one H(50) atom. The C(61)-C(62) bond length is 1.38 Å. The C(61)-H(50) bond length is 1.07 Å. In the fifty-sixth C site, C(62) is bonded in a trigonal planar geometry to one C(12), one C(57), and one C(61) atom. In the fifty-seventh C site, C(63) is bonded in a trigonal planar geometry to one C(11), one C(58), and one C(64) atom. The C(63)-C(64) bond length is 1.38 Å. In the fifty-eighth C site, C(64) is bonded in a distorted trigonal planar geometry to one C(57), one C(63), and one H(51) atom. The C(64)-H(51) bond length is 1.07 Å. In the fifty-ninth C site, C(65) is bonded in a distorted trigonal planar geometry to one C(59), one C(66), and one H(52) atom. The C(65)-C(66) bond length is 1.37 Å. The C(65)-H(52) bond length is 1.08 Å. In the sixtieth C site, C(66) is bonded in a trigonal planar geometry to one C(60), one C(65), and one C(7) atom. In the sixty-first C site, C(67) is bonded in a distorted single-bond geometry to one C(60); one C(68); and one H(32,53) atom. The C(67)-C(68) bond length is 1.37 Å. The C(67)-H(32,53) bond length is 1.08 Å. In the sixty-second C site, C(68) is bonded in a trigonal planar geometry to one C(59), one C(67), and one C(8) atom. In the sixty-third C site, C(69) is bonded in a distorted trigonal non-coplanar geometry to one C(19), one H(54), one H(55), and one H(56) atom. The C(69)-H(54) bond length is 1.11 Å. The C(69)-H(55) bond length is 1.09 Å. The C(69)-H(56) bond length is 1.09 Å. In the sixty-fourth C site, C(70) is bonded in a distorted trigonal non-coplanar geometry to one C(18), one H(57), one H(58), and one H(59) atom. The C(70)-H(57) bond length is 1.08 Å. The C(70)-H(58) bond length is 1.10 Å. The C(70)-H(59) bond length is 1.10 Å. In the sixty-fifth C site, C(71) is bonded in a distorted trigonal non-coplanar geometry to one C(53), one H(60), one H(61), and one H(62) atom. The C(71)-H(60) bond length is 1.09 Å. The C(71)-H(61) bond length is 1.08 Å. The C(71)-H(62) bond length is 1.11 Å. In the sixty-sixth C site, C(72) is bonded in a distorted trigonal non-coplanar geometry to one C(31,50); one H(20,65); one H(21,64); and one H(22,63) atom. The C(72)-C(31,50) bond length is 1.48 Å. The C(72)-H(20,65) bond length is 1.10 Å. The C(72)-H(21,64) bond length is 1.10 Å. The C(72)-H(22,63) bond length is 1.08 Å. In the sixty-seventh C site, C(73) is bonded in a distorted trigonal non-coplanar geometry to one C(13); one H(17,68); one H(18,67); and one H(19,66) atom. The C(73)-H(17,68) bond length is 1.09 Å. The C(73)-H(18,67) bond length is 1.09 Å. The C(73)-H(19,66) bond length is 1.09 Å. In the sixty-eighth C site, C(74) is bonded in a distorted trigonal non-coplanar geometry to one C(15), one H(69), one H(70), and one H(71) atom. The C(74)-H(69) bond length is 1.08 Å. The C(74)-H(70) bond length is 1.08 Å. The C(74)-H(71) bond length is 1.10 Å. In the sixty-ninth C site, C(75) is bonded in a distorted water-like geometry to one C(55); one H(12,73); and one H(13,72) atom. The C(75)-H(12,73) bond length is 1.11 Å. The C(75)-H(13,72) bond length is 1.09 Å. There are fifty-two inequivalent H sites. In the first H site, H(12,73) is bonded in a single-bond geometry to one C(6) atom. In the second H site, H(13,72) is bonded in a single-bond geometry to one C(6) atom. In the third H site, H(14) is bonded in a single-bond geometry to one C(7) atom. In the fourth H site, H(15) is bonded in a single-bond geometry to one C(7) atom. In the fifth H site, H(16) is bonded in a single-bond geometry to one C(7) atom. In the sixth H site, H(17,68) is bonded in a single-bond geometry to one C(8) atom. In the seventh H site, H(18,67) is bonded in a single-bond geometry to one C(8) atom. In the eighth H site, H(19,66) is bonded in a single-bond geometry to one C(8) atom. In the ninth H site, H(20,65) is bonded in a single-bond geometry to one C(9) atom. In the tenth H site, H(21,64) is bonded in a single-bond geometry to one C(9) atom. In the eleventh H site, H(22,63) is bonded in a single-bond geometry to one C(9) atom. In the twelfth H site, H(23) is bonded in a single-bond geometry to one C(10) atom. In the thirteenth H site, H(24) is bonded in a single-bond geometry to one C(10) atom. In the fourteenth H site, H(25) is bonded in a single-bond geometry to one C(10) atom. In the fifteenth H site, H(26) is bonded in a single-bond geometry to one C(11) atom. In the sixteenth H site, H(27) is bonded in a single-bond geometry to one C(11) atom. In the seventeenth H site, H(28) is bonded in a single-bond geometry to one C(11) atom. In the eighteenth H site, H(29) is bonded in a single-bond geometry to one C(12) atom. In the nineteenth H site, H(30) is bonded in a single-bond geometry to one C(12) atom. In the twentieth H site, H(31) is bonded in a single-bond geometry to one C(12) atom. In the twenty-first H site, H(32,53) is bonded in a single-bond geometry to one C(14) atom. In the twenty-second H site, H(33) is bonded in a single-bond geometry to one C(16) atom. In the twenty-third H site, H(34) is bonded in a single-bond geometry to one C(17) atom. In the twenty-fourth H site, H(35) is bonded in a single-bond geometry to one C(20) atom. In the twenty-fifth H site, H(36) is bonded in a single-bond geometry to one C(25) atom. In the twenty-sixth H site, H(37) is bonded in a single-bond geometry to one C(29) atom. In the twenty-seventh H site, H(38,47) is bonded in a single-bond geometry to one C(32) atom. In the twenty-eighth H site, H(39) is bonded in a single-bond geometry to one C(35) atom. In the twenty-ninth H site, H(40) is bonded in a single-bond geometry to one C(34) atom. In the thirtieth H site, H(41) is bonded in a single-bond geometry to one C(37) atom. In the thirty-first H site, H(42) is bonded in a single-bond geometry to one O(1) atom. The H(42)-O(1) bond length is 0.98 Å. In the thirty-second H site, H(43) is bonded in a single-bond geometry to one O(8) atom. The H(43)-O(8) bond length is 0.98 Å. In the thirty-third H site, H(44) is bonded in a single-bond geometry to one C(44) atom. In the thirty-fourth H site, H(45) is bonded in a single-bond geometry to one C(47) atom. In the thirty-fifth H site, H(46) is bonded in a single-bond geometry to one C(46) atom. In the thirty-sixth H site, H(48) is bonded in a single-bond geometry to one C(52) atom. In the thirty-seventh H site, H(49) is bonded in a single-bond geometry to one C(56) atom. In the thirty-eighth H site, H(50) is bonded in a single-bond geometry to one C(61) atom. In the thirty-ninth H site, H(51) is bonded in a single-bond geometry to one C(64) atom. In the fortieth H site, H(52) is bonded in a single-bond geometry to one C(65) atom. In the forty-first H site, H(54) is bonded in a single-bond geometry to one C(69) atom. In the forty-second H site, H(55) is bonded in a single-bond geometry to one C(69) atom. In the forty-third H site, H(56) is bonded in a single-bond geometry to one C(69) atom. In the forty-fourth H site, H(57) is bonded in a single-bond geometry to one C(70) atom. In the forty-fifth H site, H(58) is bonded in a single-bond geometry to one C(70) atom. In the forty-sixth H site, H(59) is bonded in a single-bond geometry to one C(70) atom. In the forty-seventh H site, H(60) is bonded in a single-bond geometry to one C(71) atom. In the forty-eighth H site, H(61) is bonded in a single-bond geometry to one C(71) atom. In the forty-ninth H site, H(62) is bonded in a single-bond geometry to one C(71) atom. In the fiftieth H site, H(69) is bonded in a single-bond geometry to one C(74) atom. In the fifty-first H site, H(70) is bonded in a single-bond geometry to one C(74) atom. In the fifty-second H site, H(71) is bonded in a single-bond geometry to one C(74) atom. There are eight inequivalent O sites. In the first O site, O(1) is bonded in a water-like geometry to one Mg(1) and one H(42) atom. In the second O site, O(2) is bonded in a distorted trigonal planar geometry to two equivalent Mg(1) and one C(38) atom. In the third O site, O(3) is bonded in a trigonal planar geometry to two equivalent Mg(1) and one C(40) atom. In the fourth O site, O(4) is bonded in a bent 120 degrees geometry to one Mg(1) and one C(40) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Mg(2) and one C(41) atom. In the sixth O site, O(6) is bonded in a trigonal planar geometry to two equivalent Mg(2) and one C(41) atom. In the seventh O site, O(7) is bonded in a distorted trigonal planar geometry to two equivalent Mg(2) and one C(43) atom. In the eighth O site, O(8) is bonded in a water-like geometry to one Mg(2) and one H(43) atom. Linkers: 1 CCCCCCc1cc(-c2cc(C)c(-c3cc(C)c(-c4cc(C)c(C5=CC(=O)[C](C([O])=O)C=C5)cc4C)cc3C)cc2C)c(CCCCCC)cc1-c1cc(C)c(-c2cc(C)c(-c3cc(C)c(/[C]=C/[C][O])cc3C)cc2C)cc1C ,1 [CH2]/[C]=C(/C=[C]/C)c1cc(C)c(-c2cc(C)c(-c3cc(CCCCCC)c(-c4cc(C)c(-c5cc(C)c(-c6cc(C)c(C7=CC(=O)[C](C([O])=O)C=C7)cc6C)cc5C)cc4C)cc3CCCCCC)cc2C)cc1C ,1 [CH]c1[c]c(C(=[CH])C(=[CH])C)c(C)cc1-c1cc(CCCCCC)c(-c2cc(C)c(-c3cc(C)c(-c4cc(C)c(C5=CC(=O)[C](C([O])=O)C=C5)cc4C)cc3C)cc2C)cc1CCCCCC ,1 CCCCCCc1cc(-c2cc(C)c(-c3cc(C)c(-c4cc(C)c(-c5ccc([C]=O)c([O])c5)cc4C)cc3C)cc2C)c(CCCCCC)cc1-c1cc(C)c(-c2cc(C)c(-c3cc(C)c(C4=CC(=O)[C]([C]=O)C=C4)cc3C)cc2C)cc1C ,1 C/[C]=[C]\c1cc(C)c(C2=CC(=O)[C](C([O])=O)C=C2)cc1C ,1 [CH2][C]/C(=C\[C]C)c1cc(C)c(-c2cc(C)c(-c3cc(CCCCCC)c(-c4cc(C)c(-c5cc(C)c(-c6cc(C)c(-c7ccc(C([O])=O)c([O])c7)cc6C)cc5C)cc4C)cc3CCCCCC)cc2C)cc1C ,1 [CH]c1[c]c(C(=[CH])[C][CH2])c(C)cc1-c1cc(C)c(-c2cc(C)c(C3=CC(=O)[C](C([O])=O)C=C3)cc2C)cc1C ,1 [CH]=C([C][CH2])c1[c][c]c(-c2cc(C)c(-c3cc(C)c(C4=CC(=O)[C](C([O])=O)C=C4)cc3C)cc2C)cc1C ,1 CCCCCCc1cc(-c2cc(C)c(-c3cc(C)c(-c4cc(C)c(-c5ccc(C([O])=O)c([O])c5)cc4C)cc3C)cc2C)c(CCCCCC)cc1-c1cc(C)c(-c2cc(C)c(-c3cc(C)c(/[C]=C/[C]=O)cc3C)cc2C)cc1C ,1 [CH]c1[c]c(C(=[CH])C(=[CH])C)c(C)cc1-c1cc(CCCCCC)c(-c2cc(C)c(-c3cc(C)c(-c4cc(C)c(-c5ccc(C([O])=O)c([O])c5)cc4C)cc3C)cc2C)cc1CCCCCC ,1 [CH]c1[c]c(C(=[CH])[C][CH2])c(C)cc1-c1cc(C)c(-c2cc(C)c(-c3ccc(C([O])=O)c([O])c3)cc2C)cc1C ,1 [CH]=C([C][CH2])c1[c][c]c(-c2cc(C)c(-c3cc(C)c(-c4ccc(C([O])=O)c([O])c4)cc3C)cc2C)cc1C ,1 C/[C]=[C]\c1cc(C)c(-c2ccc(C([O])=O)c([O])c2)cc1C. Metal clusters: 6 [Mg]. The MOF has largest included sphere 53.58 A, density 0.23 g/cm3, surface area 5766.72 m2/g, accessible volume 3.49 cm3/g
DOTWAL_clean
La2(C4H4O5)3 crystallizes in the hexagonal P-62c space group. There are two inequivalent La sites. In the first La site, La(1) is bonded in a distorted pentagonal pyramidal geometry to six equivalent O(1) atoms. All La(1)-O(1) bond lengths are 2.48 Å. In the second La site, La(2) is bonded in a 9-coordinate geometry to three equivalent O(3) and six equivalent O(2) atoms. All La(2)-O(3) bond lengths are 2.60 Å. All La(2)-O(2) bond lengths are 2.51 Å. There are two inequivalent C sites. In the first C site, C(1) is bonded in a distorted trigonal planar geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.51 Å. The C(1)-O(1) bond length is 1.26 Å. The C(1)-O(2) bond length is 1.26 Å. In the second C site, C(2) is bonded in a distorted trigonal non-coplanar geometry to one C(1); two equivalent H(1,2); and one O(3) atom. Both C(2)-H(1,2) bond lengths are 0.97 Å. The C(2)-O(3) bond length is 1.42 Å. H(1,2) is bonded in a single-bond geometry to one C(2) atom. There are three inequivalent O sites. In the first O site, O(3) is bonded in a distorted bent 120 degrees geometry to one La(2) and two equivalent C(2) atoms. In the second O site, O(1) is bonded in a bent 150 degrees geometry to one La(1) and one C(1) atom. In the third O site, O(2) is bonded in a distorted bent 120 degrees geometry to one La(2) and one C(1) atom. Linkers: 6 [O]C(=O)COCC([O])=O. Metal clusters: 4 [La]. The MOF has largest included sphere 6.26 A, density 1.63 g/cm3, surface area 3265.66 m2/g, accessible volume 0.28 cm3/g
DUNXUH06_clean
ZnC8H3SO7 crystallizes in the monoclinic P2_1/c space group. Zn(1) is bonded in a distorted trigonal bipyramidal geometry to one O(1), one O(2), one O(3), one O(4), and one O(5) atom. The Zn(1)-O(1) bond length is 2.22 Å. The Zn(1)-O(2) bond length is 2.09 Å. The Zn(1)-O(3) bond length is 1.96 Å. The Zn(1)-O(4) bond length is 1.97 Å. The Zn(1)-O(5) bond length is 2.01 Å. There are eight inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(2), one C(6), and one C(7) atom. The C(1)-C(2) bond length is 1.39 Å. The C(1)-C(6) bond length is 1.39 Å. The C(1)-C(7) bond length is 1.49 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(1), one C(3), and one H(1) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-H(1) bond length is 0.93 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(8) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-C(8) bond length is 1.50 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3), one C(5), and one H(2) atom. The C(4)-C(5) bond length is 1.38 Å. The C(4)-H(2) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(4), one C(6), and one S(1) atom. The C(5)-C(6) bond length is 1.39 Å. The C(5)-S(1) bond length is 1.78 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(1), one C(5), and one H(3) atom. The C(6)-H(3) bond length is 0.93 Å. In the seventh C site, C(7) is bonded in a bent 120 degrees geometry to one C(1), one O(1), and one O(2) atom. The C(7)-O(1) bond length is 1.24 Å. The C(7)-O(2) bond length is 1.26 Å. In the eighth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one C(3), one O(3), and one O(4) atom. The C(8)-O(3) bond length is 1.25 Å. The C(8)-O(4) bond length is 1.26 Å. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(6) atom. S(1) is bonded in a distorted trigonal non-coplanar geometry to one C(5), one O(5), one O(6), and one O(7) atom. The S(1)-O(5) bond length is 1.48 Å. The S(1)-O(6) bond length is 1.43 Å. The S(1)-O(7) bond length is 1.43 Å. There are seven inequivalent O sites. In the first O site, O(1) is bonded in an L-shaped geometry to one Zn(1) and one C(7) atom. In the second O site, O(2) is bonded in an L-shaped geometry to one Zn(1) and one C(7) atom. In the third O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Zn(1) and one C(8) atom. In the fourth O site, O(4) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(8) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Zn(1) and one S(1) atom. In the sixth O site, O(6) is bonded in a single-bond geometry to one S(1) atom. In the seventh O site, O(7) is bonded in a single-bond geometry to one S(1) atom. Linkers: 2 [O]C(=O)c1cc(C([O])=O)cc(S([O])([O])[O])c1 ,2 [O]C(=O)c1cc([S]=O)cc(C([O])=O)c1. Metal clusters: 1 [O][S@](=O)O[Zn]12(O[C]O1)O[C]O[Zn]1(O[S@]([O])=O)(O[C]O1)O[C]O2 ,1 [O][S@@](=O)O[Zn]12(O[C]O1)O[C]O[Zn]1(O[S@@]([O])=O)(O[C]O1)O[C]O2. RCSR code: rtl. The MOF has largest included sphere 5.05 A, density 1.22 g/cm3, surface area 3611.93 m2/g, accessible volume 0.50 cm3/g
XASFAY_clean
CuH24(C6N)4CuH8(C2N)4(CH)16 is Indium-derived structured and crystallizes in the monoclinic C2/c space group. The structure is zero-dimensional and consists of sixteen isobutylene molecules, four CuH24(C6N)4 clusters, and four CuH8(C2N)4 clusters. In each CuH24(C6N)4 cluster, Cu(1) is bonded in a square co-planar geometry to two equivalent N(1) and two equivalent N(3) atoms. Both Cu(1)-N(1) bond lengths are 2.08 Å. Both Cu(1)-N(3) bond lengths are 2.05 Å. There are twelve inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(1) atom. The C(1)-N(1) bond length is 1.37 Å. The C(1)-H(1) bond length is 0.93 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(3) and one H(2) atom. The C(2)-C(3) bond length is 1.37 Å. The C(2)-H(2) bond length is 0.93 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(6) atom. The C(3)-C(4) bond length is 1.37 Å. The C(3)-C(6) bond length is 1.51 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3), one C(5), and one H(3) atom. The C(4)-C(5) bond length is 1.37 Å. The C(4)-H(3) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a distorted trigonal planar geometry to one C(4), one N(1), and one H(4) atom. The C(5)-N(1) bond length is 1.37 Å. The C(5)-H(4) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a water-like geometry to one C(3) and two equivalent H(5,6) atoms. Both C(6)-H(5,6) bond lengths are 0.97 Å. In the seventh C site, C(13) is bonded in a distorted trigonal planar geometry to one C(14), one N(3), and one H(13) atom. The C(13)-C(14) bond length is 1.38 Å. The C(13)-N(3) bond length is 1.32 Å. The C(13)-H(13) bond length is 0.93 Å. In the eighth C site, C(14) is bonded in a distorted single-bond geometry to one C(13), one C(15), and one H(14) atom. The C(14)-C(15) bond length is 1.39 Å. The C(14)-H(14) bond length is 0.93 Å. In the ninth C site, C(15) is bonded in a trigonal planar geometry to one C(14), one C(16), and one C(18) atom. The C(15)-C(16) bond length is 1.38 Å. The C(15)-C(18) bond length is 1.52 Å. In the tenth C site, C(16) is bonded in a distorted single-bond geometry to one C(15) and one H(15) atom. The C(16)-H(15) bond length is 0.93 Å. In the eleventh C site, C(17) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(16) atom. The C(17)-N(3) bond length is 1.34 Å. The C(17)-H(16) bond length is 0.93 Å. In the twelfth C site, C(18) is bonded in a water-like geometry to one C(15) and two equivalent H(17,18) atoms. Both C(18)-H(17,18) bond lengths are 0.97 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Cu(1), one C(1), and one C(5) atom. In the second N site, N(3) is bonded in a trigonal planar geometry to one Cu(1), one C(13), and one C(17) atom. There are ten inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(4) atom. In the fourth H site, H(2) is bonded in a single-bond geometry to one C(2) atom. In the fifth H site, H(5,6) is bonded in a single-bond geometry to one C(6) atom. In the sixth H site, H(13) is bonded in a single-bond geometry to one C(13) atom. In the seventh H site, H(14) is bonded in a single-bond geometry to one C(14) atom. In the eighth H site, H(15) is bonded in a single-bond geometry to one C(16) atom. In the ninth H site, H(16) is bonded in a single-bond geometry to one C(17) atom. In the tenth H site, H(17,18) is bonded in a single-bond geometry to one C(18) atom. In each CuH8(C2N)4 cluster, Cu(2) is bonded in a square co-planar geometry to two equivalent N(2) and two equivalent N(4) atoms. Both Cu(2)-N(2) bond lengths are 2.02 Å. Both Cu(2)-N(4) bond lengths are 2.08 Å. There are four inequivalent C sites. In the first C site, C(19) is bonded in a distorted bent 120 degrees geometry to one N(4) and one H(19) atom. The C(19)-N(4) bond length is 1.34 Å. The C(19)-H(19) bond length is 0.93 Å. In the second C site, C(7) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(7) atom. The C(7)-N(2) bond length is 1.33 Å. The C(7)-H(7) bond length is 0.93 Å. In the third C site, C(11) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(10) atom. The C(11)-N(2) bond length is 1.34 Å. The C(11)-H(10) bond length is 0.93 Å. In the fourth C site, C(23) is bonded in a distorted bent 120 degrees geometry to one N(4) and one H(22) atom. The C(23)-N(4) bond length is 1.32 Å. The C(23)-H(22) bond length is 0.93 Å. There are two inequivalent N sites. In the first N site, N(2) is bonded in a trigonal planar geometry to one Cu(2), one C(11), and one C(7) atom. In the second N site, N(4) is bonded in a trigonal planar geometry to one Cu(2), one C(19), and one C(23) atom. There are four inequivalent H sites. In the first H site, H(7) is bonded in a single-bond geometry to one C(7) atom. In the second H site, H(10) is bonded in a single-bond geometry to one C(11) atom. In the third H site, H(19) is bonded in a single-bond geometry to one C(19) atom. In the fourth H site, H(22) is bonded in a single-bond geometry to one C(23) atom. Linkers: 8 c1cc(CCc2ccncc2)ccn1. Metal clusters: 4 [Cu]. The MOF has largest included sphere 4.84 A, density 0.99 g/cm3, surface area 5568.47 m2/g, accessible volume 0.49 cm3/g
ACIBOE_clean
Zn3C18H6O13 crystallizes in the tetragonal I4cm space group. There are two inequivalent Zn sites. In the first Zn site, Zn(1) is bonded to one O(1), one O(3), one O(6), and one O(7) atom to form ZnO4 tetrahedra that share a cornercorner with one Zn(2)O5 square pyramid and a cornercorner with one Zn(1)O4 tetrahedra. The Zn(1)-O(1) bond length is 1.98 Å. The Zn(1)-O(3) bond length is 1.94 Å. The Zn(1)-O(6) bond length is 1.95 Å. The Zn(1)-O(7) bond length is 1.96 Å. In the second Zn site, Zn(2) is bonded to one O(7), two equivalent O(2), and two equivalent O(5) atoms to form corner-sharing ZnO5 square pyramids. The Zn(2)-O(7) bond length is 2.11 Å. Both Zn(2)-O(2) bond lengths are 2.11 Å. Both Zn(2)-O(5) bond lengths are 2.10 Å. There are nine inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(2), one C(6), and one C(7) atom. The C(1)-C(2) bond length is 1.39 Å. The C(1)-C(6) bond length is 1.39 Å. The C(1)-C(7) bond length is 1.51 Å. In the second C site, C(2) is bonded in a single-bond geometry to one C(1), one C(3), and one H(1) atom. The C(2)-C(3) bond length is 1.41 Å. The C(2)-H(1) bond length is 0.93 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(8) atom. The C(3)-C(4) bond length is 1.38 Å. The C(3)-C(8) bond length is 1.51 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3), one C(5), and one H(2) atom. The C(4)-C(5) bond length is 1.40 Å. The C(4)-H(2) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(4), one C(6), and one C(9) atom. The C(5)-C(6) bond length is 1.40 Å. The C(5)-C(9) bond length is 1.52 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(1), one C(5), and one H(3) atom. The C(6)-H(3) bond length is 0.93 Å. In the seventh C site, C(7) is bonded in a bent 120 degrees geometry to one C(1), one O(1), and one O(2) atom. The C(7)-O(1) bond length is 1.26 Å. The C(7)-O(2) bond length is 1.25 Å. In the eighth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one C(3), one O(3), and one O(4) atom. The C(8)-O(3) bond length is 1.28 Å. The C(8)-O(4) bond length is 1.21 Å. In the ninth C site, C(9) is bonded in a distorted bent 120 degrees geometry to one C(5), one O(5), and one O(6) atom. The C(9)-O(5) bond length is 1.25 Å. The C(9)-O(6) bond length is 1.28 Å. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(6) atom. There are seven inequivalent O sites. In the first O site, O(7) is bonded in a trigonal non-coplanar geometry to one Zn(2) and two equivalent Zn(1) atoms. In the second O site, O(1) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(7) atom. In the third O site, O(2) is bonded in a distorted bent 120 degrees geometry to one Zn(2) and one C(7) atom. In the fourth O site, O(3) is bonded in a water-like geometry to one Zn(1) and one C(8) atom. In the fifth O site, O(4) is bonded in a single-bond geometry to one C(8) atom. In the sixth O site, O(5) is bonded in a bent 120 degrees geometry to one Zn(2) and one C(9) atom. In the seventh O site, O(6) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(9) atom. Linkers: 8 [O]C(=O)c1cc(C([O])=O)cc(C([O])=O)c1. Metal clusters: 4 O=[C]O[Zn@]12O[C]O[Zn]3(O[C]O[Zn@](O[C]=O)(O[C]O3)O1)O[C]O2. RCSR code: sab. The MOF has largest included sphere 8.26 A, density 1.10 g/cm3, surface area 3615.20 m2/g, accessible volume 0.59 cm3/g
FOJLOH_clean
ZnC13H8O6(CH)5(C5H5O)3 is Indium-derived structured and crystallizes in the monoclinic C2/c space group. The structure is zero-dimensional and consists of forty 02329_fluka molecules, eight schembl9685153 molecules, and eight ZnC13H8O6 clusters. In each ZnC13H8O6 cluster, Zn(1) is bonded in a distorted trigonal non-coplanar geometry to one O(5), one O(6), and one O(8) atom. The Zn(1)-O(5) bond length is 1.94 Å. The Zn(1)-O(6) bond length is 1.95 Å. The Zn(1)-O(8) bond length is 1.97 Å. There are thirteen inequivalent C sites. In the first C site, C(25) is bonded in a bent 120 degrees geometry to one C(22), one O(6), and one O(7) atom. The C(25)-C(22) bond length is 1.52 Å. The C(25)-O(6) bond length is 1.20 Å. The C(25)-O(7) bond length is 1.21 Å. In the second C site, C(29) is bonded in a distorted single-bond geometry to one C(30) and one H(25) atom. The C(29)-C(30) bond length is 1.41 Å. The C(29)-H(25) bond length is 0.93 Å. In the third C site, C(30) is bonded in a trigonal planar geometry to one C(29), one C(31), and one C(33) atom. The C(30)-C(31) bond length is 1.35 Å. The C(30)-C(33) bond length is 1.52 Å. In the fourth C site, C(31) is bonded in a distorted single-bond geometry to one C(30) and one H(26) atom. The C(31)-H(26) bond length is 0.93 Å. In the fifth C site, C(33) is bonded in a distorted bent 120 degrees geometry to one C(30), one O(8), and one O(9) atom. The C(33)-O(8) bond length is 1.24 Å. The C(33)-O(9) bond length is 1.31 Å. In the sixth C site, C(17) is bonded in a bent 120 degrees geometry to one C(14), one O(4), and one O(5) atom. The C(17)-C(14) bond length is 1.53 Å. The C(17)-O(4) bond length is 1.20 Å. The C(17)-O(5) bond length is 1.30 Å. In the seventh C site, C(14) is bonded in a trigonal planar geometry to one C(13), one C(15), and one C(17) atom. The C(14)-C(13) bond length is 1.38 Å. The C(14)-C(15) bond length is 1.39 Å. In the eighth C site, C(13) is bonded in a distorted trigonal planar geometry to one C(12), one C(14), and one H(13) atom. The C(13)-C(12) bond length is 1.38 Å. The C(13)-H(13) bond length is 0.93 Å. In the ninth C site, C(15) is bonded in a distorted single-bond geometry to one C(14) and one H(14) atom. The C(15)-H(14) bond length is 0.93 Å. In the tenth C site, C(12) is bonded in a distorted single-bond geometry to one C(13) and one H(12) atom. The C(12)-H(12) bond length is 0.93 Å. In the eleventh C site, C(21) is bonded in a distorted single-bond geometry to one C(22) and one H(19) atom. The C(21)-C(22) bond length is 1.37 Å. The C(21)-H(19) bond length is 0.93 Å. In the twelfth C site, C(22) is bonded in a trigonal planar geometry to one C(21), one C(23), and one C(25) atom. The C(22)-C(23) bond length is 1.35 Å. In the thirteenth C site, C(23) is bonded in a distorted single-bond geometry to one C(22) and one H(20) atom. The C(23)-H(20) bond length is 0.93 Å. There are eight inequivalent H sites. In the first H site, H(12) is bonded in a single-bond geometry to one C(12) atom. In the second H site, H(13) is bonded in a single-bond geometry to one C(13) atom. In the third H site, H(14) is bonded in a single-bond geometry to one C(15) atom. In the fourth H site, H(19) is bonded in a single-bond geometry to one C(21) atom. In the fifth H site, H(20) is bonded in a single-bond geometry to one C(23) atom. In the sixth H site, H(25) is bonded in a single-bond geometry to one C(29) atom. In the seventh H site, H(26) is bonded in a single-bond geometry to one C(31) atom. In the eighth H site, H(28) is bonded in a single-bond geometry to one O(9) atom. The H(28)-O(9) bond length is 1.00 Å. There are six inequivalent O sites. In the first O site, O(4) is bonded in a single-bond geometry to one C(17) atom. In the second O site, O(5) is bonded in a water-like geometry to one Zn(1) and one C(17) atom. In the third O site, O(8) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(33) atom. In the fourth O site, O(9) is bonded in a bent 120 degrees geometry to one C(33) and one H(28) atom. In the fifth O site, O(6) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(25) atom. In the sixth O site, O(7) is bonded in a single-bond geometry to one C(25) atom. Linkers: 8 Cc1c(COc2ccc(C([O])=O)cc2)c(C)c(COc2ccc(C(=O)O)cc2)c(C)c1COc1ccc(C([O])=O)cc1. Metal clusters: 8 O=[C]O[Zn](O[C]O)O[C]=O. RCSR code: ths. The MOF has largest included sphere 7.21 A, density 0.82 g/cm3, surface area 5202.92 m2/g, accessible volume 0.74 cm3/g
EQETAX_clean
CuC17H11(NO)2 is Indium-like structured and crystallizes in the orthorhombic Pccn space group. The structure is zero-dimensional and consists of four CuC17H11(NO)2 clusters. Cu(1) is bonded in a see-saw-like geometry to one N(1), one N(2), one O(1), and one O(2) atom. The Cu(1)-N(1) bond length is 2.00 Å. The Cu(1)-N(2) bond length is 2.01 Å. The Cu(1)-O(1) bond length is 2.21 Å. The Cu(1)-O(2) bond length is 1.95 Å. There are seventeen inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(10), one C(12), and one C(7) atom. The C(1)-C(10) bond length is 1.39 Å. The C(1)-C(12) bond length is 1.49 Å. The C(1)-C(7) bond length is 1.39 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(11), one C(14), and one C(16) atom. The C(2)-C(11) bond length is 1.39 Å. The C(2)-C(14) bond length is 1.38 Å. The C(2)-C(16) bond length is 1.48 Å. In the third C site, C(3) is bonded in a distorted bent 120 degrees geometry to one C(6), one O(1), and one O(2) atom. The C(3)-C(6) bond length is 1.51 Å. The C(3)-O(1) bond length is 1.24 Å. The C(3)-O(2) bond length is 1.27 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(12), one C(6), and one H(1) atom. The C(4)-C(12) bond length is 1.40 Å. The C(4)-C(6) bond length is 1.39 Å. The C(4)-H(1) bond length is 0.95 Å. In the fifth C site, C(5) is bonded in a single-bond geometry to one C(12), one C(16), and one H(2) atom. The C(5)-C(12) bond length is 1.39 Å. The C(5)-C(16) bond length is 1.40 Å. The C(5)-H(2) bond length is 0.95 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(17), one C(3), and one C(4) atom. The C(6)-C(17) bond length is 1.38 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(1) and one H(3,6) atom. The C(7)-H(3,6) bond length is 0.95 Å. In the eighth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(4) atom. The C(8)-N(2) bond length is 1.33 Å. The C(8)-H(4) bond length is 0.95 Å. In the ninth C site, C(9) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(5,8) atom. The C(9)-N(1) bond length is 1.34 Å. The C(9)-H(5,8) bond length is 0.95 Å. In the tenth C site, C(10) is bonded in a distorted single-bond geometry to one C(1) and one H(3,6) atom. The C(10)-H(3,6) bond length is 0.95 Å. In the eleventh C site, C(11) is bonded in a distorted single-bond geometry to one C(2) and one H(7,9) atom. The C(11)-H(7,9) bond length is 0.95 Å. In the twelfth C site, C(12) is bonded in a trigonal planar geometry to one C(1), one C(4), and one C(5) atom. In the thirteenth C site, C(13) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(5,8) atom. The C(13)-N(1) bond length is 1.34 Å. The C(13)-H(5,8) bond length is 0.95 Å. In the fourteenth C site, C(14) is bonded in a distorted single-bond geometry to one C(2) and one H(7,9) atom. The C(14)-H(7,9) bond length is 0.95 Å. In the fifteenth C site, C(15) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(10) atom. The C(15)-N(2) bond length is 1.34 Å. The C(15)-H(10) bond length is 0.95 Å. In the sixteenth C site, C(16) is bonded in a trigonal planar geometry to one C(17), one C(2), and one C(5) atom. The C(16)-C(17) bond length is 1.40 Å. In the seventeenth C site, C(17) is bonded in a distorted single-bond geometry to one C(16), one C(6), and one H(11) atom. The C(17)-H(11) bond length is 0.95 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Cu(1), one C(13), and one C(9) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one Cu(1), one C(15), and one C(8) atom. There are eight inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(4) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(3,6) is bonded in a single-bond geometry to one C(7) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(8) atom. In the fifth H site, H(5,8) is bonded in a single-bond geometry to one C(9) atom. In the sixth H site, H(7,9) is bonded in a single-bond geometry to one C(11) atom. In the seventh H site, H(10) is bonded in a single-bond geometry to one C(15) atom. In the eighth H site, H(11) is bonded in a single-bond geometry to one C(17) atom. There are two inequivalent O sites. In the first O site, O(1) is bonded in a bent 150 degrees geometry to one Cu(1) and one C(3) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(3) atom. Linkers: 8 [O]C(=O)c1cc(-c2ccncc2)cc(-c2ccncc2)c1. Metal clusters: 4 [C]1O[Cu]O[C]O[Cu]O1. The MOF has largest included sphere 6.08 A, density 0.89 g/cm3, surface area 4454.11 m2/g, accessible volume 0.66 cm3/g
POSFIO_clean
CuC20H14(NO)4 is Indium-like structured and crystallizes in the monoclinic P2_1/c space group. The structure is zero-dimensional and consists of six CuC20H14(NO)4 clusters. In two of the CuC20H14(NO)4 clusters, Cu(2) is bonded in a distorted square co-planar geometry to two equivalent N(2) and two equivalent O(5) atoms. Both Cu(2)-N(2) bond lengths are 1.96 Å. Both Cu(2)-O(5) bond lengths are 1.99 Å. There are ten inequivalent C sites. In the first C site, C(12) is bonded in a distorted single-bond geometry to one C(13) and one H(8) atom. The C(12)-C(13) bond length is 1.39 Å. The C(12)-H(8) bond length is 0.93 Å. In the second C site, C(13) is bonded in a trigonal planar geometry to one C(12), one C(14), and one C(18) atom. The C(13)-C(14) bond length is 1.40 Å. The C(13)-C(18) bond length is 1.47 Å. In the third C site, C(14) is bonded in a single-bond geometry to one C(13) and one H(9) atom. The C(14)-H(9) bond length is 0.93 Å. In the fourth C site, C(18) is bonded in a 3-coordinate geometry to one C(13), one C(20), and one N(5) atom. The C(18)-C(20) bond length is 1.36 Å. The C(18)-N(5) bond length is 1.38 Å. In the fifth C site, C(19) is bonded in a trigonal planar geometry to one N(2), one N(5), and one H(11) atom. The C(19)-N(2) bond length is 1.31 Å. The C(19)-N(5) bond length is 1.34 Å. The C(19)-H(11) bond length is 0.93 Å. In the sixth C site, C(20) is bonded in a distorted bent 120 degrees geometry to one C(18), one N(2), and one H(12) atom. The C(20)-N(2) bond length is 1.37 Å. The C(20)-H(12) bond length is 0.93 Å. In the seventh C site, C(21) is bonded in a distorted single-bond geometry to one C(26) and one H(13) atom. The C(21)-C(26) bond length is 1.38 Å. The C(21)-H(13) bond length is 0.93 Å. In the eighth C site, C(25) is bonded in a distorted single-bond geometry to one C(26) and one H(16) atom. The C(25)-C(26) bond length is 1.38 Å. The C(25)-H(16) bond length is 0.93 Å. In the ninth C site, C(26) is bonded in a trigonal planar geometry to one C(21), one C(25), and one C(27) atom. The C(26)-C(27) bond length is 1.51 Å. In the tenth C site, C(27) is bonded in a distorted bent 120 degrees geometry to one C(26), one O(5), and one O(6) atom. The C(27)-O(5) bond length is 1.27 Å. The C(27)-O(6) bond length is 1.23 Å. There are two inequivalent N sites. In the first N site, N(2) is bonded in a trigonal planar geometry to one Cu(2), one C(19), and one C(20) atom. In the second N site, N(5) is bonded in a distorted trigonal planar geometry to one C(18), one C(19), and one H(20) atom. The N(5)-H(20) bond length is 0.86 Å. There are seven inequivalent H sites. In the first H site, H(8) is bonded in a single-bond geometry to one C(12) atom. In the second H site, H(9) is bonded in a single-bond geometry to one C(14) atom. In the third H site, H(11) is bonded in a single-bond geometry to one C(19) atom. In the fourth H site, H(12) is bonded in a single-bond geometry to one C(20) atom. In the fifth H site, H(13) is bonded in a single-bond geometry to one C(21) atom. In the sixth H site, H(16) is bonded in a single-bond geometry to one C(25) atom. In the seventh H site, H(20) is bonded in a single-bond geometry to one N(5) atom. There are two inequivalent O sites. In the first O site, O(5) is bonded in a water-like geometry to one Cu(2) and one C(27) atom. In the second O site, O(6) is bonded in a single-bond geometry to one C(27) atom. In four of the CuC20H14(NO)4 clusters, Cu(1) is bonded in a 5-coordinate geometry to one N(1), one N(3), one O(1), one O(2), and one O(3) atom. The Cu(1)-N(1) bond length is 1.98 Å. The Cu(1)-N(3) bond length is 1.98 Å. The Cu(1)-O(1) bond length is 1.98 Å. The Cu(1)-O(2) bond length is 2.50 Å. The Cu(1)-O(3) bond length is 1.93 Å. There are twenty inequivalent C sites. In the first C site, C(1) is bonded in a distorted single-bond geometry to one C(6) and one H(1,4) atom. The C(1)-C(6) bond length is 1.38 Å. The C(1)-H(1,4) bond length is 0.93 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(3) and one H(2,3) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-H(2,3) bond length is 0.93 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(8) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-C(8) bond length is 1.48 Å. In the fourth C site, C(4) is bonded in a single-bond geometry to one C(3) and one H(2,3) atom. The C(4)-H(2,3) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(6) and one H(1,4) atom. The C(5)-C(6) bond length is 1.39 Å. The C(5)-H(1,4) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(1), one C(5), and one C(7) atom. The C(6)-C(7) bond length is 1.49 Å. In the seventh C site, C(7) is bonded in a bent 120 degrees geometry to one C(6), one O(1), and one O(2) atom. The C(7)-O(1) bond length is 1.28 Å. The C(7)-O(2) bond length is 1.25 Å. In the eighth C site, C(8) is bonded in a distorted single-bond geometry to one C(3), one C(9), and one N(4) atom. The C(8)-C(9) bond length is 1.36 Å. The C(8)-N(4) bond length is 1.36 Å. In the ninth C site, C(9) is bonded in a distorted bent 120 degrees geometry to one C(8), one N(3), and one H(5) atom. The C(9)-N(3) bond length is 1.37 Å. The C(9)-H(5) bond length is 0.93 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one N(3), one N(4), and one H(6) atom. The C(10)-N(3) bond length is 1.31 Å. The C(10)-N(4) bond length is 1.33 Å. The C(10)-H(6) bond length is 0.93 Å. In the eleventh C site, C(11) is bonded in a single-bond geometry to one C(16) and one H(7) atom. The C(11)-C(16) bond length is 1.38 Å. The C(11)-H(7) bond length is 0.93 Å. In the twelfth C site, C(15) is bonded in a distorted single-bond geometry to one C(16) and one H(10) atom. The C(15)-C(16) bond length is 1.40 Å. The C(15)-H(10) bond length is 0.93 Å. In the thirteenth C site, C(16) is bonded in a trigonal planar geometry to one C(11), one C(15), and one C(17) atom. The C(16)-C(17) bond length is 1.51 Å. In the fourteenth C site, C(17) is bonded in a distorted bent 120 degrees geometry to one C(16), one O(3), and one O(4) atom. The C(17)-O(3) bond length is 1.26 Å. The C(17)-O(4) bond length is 1.24 Å. In the fifteenth C site, C(22) is bonded in a distorted single-bond geometry to one C(23) and one H(14) atom. The C(22)-C(23) bond length is 1.38 Å. The C(22)-H(14) bond length is 0.93 Å. In the sixteenth C site, C(23) is bonded in a trigonal planar geometry to one C(22), one C(24), and one C(28) atom. The C(23)-C(24) bond length is 1.39 Å. The C(23)-C(28) bond length is 1.47 Å. In the seventeenth C site, C(24) is bonded in a distorted single-bond geometry to one C(23) and one H(15) atom. The C(24)-H(15) bond length is 0.93 Å. In the eighteenth C site, C(28) is bonded in a distorted single-bond geometry to one C(23), one C(29), and one N(6) atom. The C(28)-C(29) bond length is 1.32 Å. The C(28)-N(6) bond length is 1.41 Å. In the nineteenth C site, C(29) is bonded in a distorted bent 120 degrees geometry to one C(28), one N(1), and one H(17) atom. The C(29)-N(1) bond length is 1.35 Å. The C(29)-H(17) bond length is 0.93 Å. In the twentieth C site, C(30) is bonded in a trigonal planar geometry to one N(1), one N(6), and one H(18) atom. The C(30)-N(1) bond length is 1.31 Å. The C(30)-N(6) bond length is 1.37 Å. The C(30)-H(18) bond length is 0.93 Å. There are four inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Cu(1), one C(29), and one C(30) atom. In the second N site, N(3) is bonded in a trigonal planar geometry to one Cu(1), one C(10), and one C(9) atom. In the third N site, N(4) is bonded in a trigonal planar geometry to one C(10), one C(8), and one H(19) atom. The N(4)-H(19) bond length is 0.86 Å. In the fourth N site, N(6) is bonded in a distorted trigonal planar geometry to one C(28), one C(30), and one H(21) atom. The N(6)-H(21) bond length is 0.86 Å. There are twelve inequivalent H sites. In the first H site, H(1,4) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2,3) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(5) is bonded in a single-bond geometry to one C(9) atom. In the fourth H site, H(6) is bonded in a single-bond geometry to one C(10) atom. In the fifth H site, H(7) is bonded in a single-bond geometry to one C(11) atom. In the sixth H site, H(10) is bonded in a single-bond geometry to one C(15) atom. In the seventh H site, H(14) is bonded in a single-bond geometry to one C(22) atom. In the eighth H site, H(15) is bonded in a single-bond geometry to one C(24) atom. In the ninth H site, H(17) is bonded in a single-bond geometry to one C(29) atom. In the tenth H site, H(18) is bonded in a single-bond geometry to one C(30) atom. In the eleventh H site, H(19) is bonded in a single-bond geometry to one N(4) atom. In the twelfth H site, H(21) is bonded in a single-bond geometry to one N(6) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a water-like geometry to one Cu(1) and one C(7) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one Cu(1) and one C(7) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(17) atom. In the fourth O site, O(4) is bonded in a single-bond geometry to one C(17) atom. Linkers: 12 [O]C(=O)c1ccc(-c2cnc[nH]2)cc1. Metal clusters: 6 O=[C]O[Cu]O[C]=O. The MOF has largest included sphere 6.81 A, density 1.16 g/cm3, surface area 4855.06 m2/g, accessible volume 0.37 cm3/g
AWUPAL_clean
FeH36(C17N)4(InH8(C2O)8)2 is Fluorite structured and crystallizes in the orthorhombic Pnnm space group. The structure is zero-dimensional and consists of two FeH36(C17N)4 clusters and four InH8(C2O)8 clusters. In each FeH36(C17N)4 cluster, Fe(1) is bonded in a square co-planar geometry to two equivalent N(1) and two equivalent N(2) atoms. Both Fe(1)-N(1) bond lengths are 2.02 Å. Both Fe(1)-N(2) bond lengths are 2.01 Å. There are seventeen inequivalent C sites. In the first C site, C(19) is bonded in a distorted single-bond geometry to one C(8), one C(9), and one H(9) atom. The C(19)-C(8) bond length is 1.40 Å. The C(19)-C(9) bond length is 1.40 Å. The C(19)-H(9) bond length is 0.93 Å. In the second C site, C(20) is bonded in a distorted single-bond geometry to one C(7) and one H(6,10) atom. The C(20)-C(7) bond length is 1.42 Å. The C(20)-H(6,10) bond length is 0.93 Å. In the third C site, C(21) is bonded in a distorted single-bond geometry to one C(5) and one H(11) atom. The C(21)-C(5) bond length is 1.41 Å. The C(21)-H(11) bond length is 0.93 Å. In the fourth C site, C(23) is bonded in a distorted single-bond geometry to one C(14) and one H(13) atom. The C(23)-C(14) bond length is 1.40 Å. The C(23)-H(13) bond length is 0.93 Å. In the fifth C site, C(2) is bonded in a trigonal planar geometry to one C(14), one C(5), and one C(9) atom. The C(2)-C(14) bond length is 1.43 Å. The C(2)-C(5) bond length is 1.35 Å. The C(2)-C(9) bond length is 1.52 Å. In the sixth C site, C(4) is bonded in a trigonal planar geometry to one C(15), one C(18), and one C(8) atom. The C(4)-C(15) bond length is 1.37 Å. The C(4)-C(18) bond length is 1.40 Å. The C(4)-C(8) bond length is 1.48 Å. In the seventh C site, C(5) is bonded in a distorted trigonal planar geometry to one C(2), one C(21), and one N(1) atom. The C(5)-N(1) bond length is 1.39 Å. In the eighth C site, C(7) is bonded in a trigonal planar geometry to one C(10), one C(16), and one C(20) atom. The C(7)-C(10) bond length is 1.49 Å. The C(7)-C(16) bond length is 1.41 Å. In the ninth C site, C(8) is bonded in a trigonal planar geometry to one C(11), one C(19), and one C(4) atom. The C(8)-C(11) bond length is 1.37 Å. In the tenth C site, C(9) is bonded in a trigonal planar geometry to one C(12), one C(19), and one C(2) atom. The C(9)-C(12) bond length is 1.40 Å. In the eleventh C site, C(10) is bonded in a trigonal planar geometry to one C(11), one C(12), and one C(7) atom. The C(10)-C(11) bond length is 1.37 Å. The C(10)-C(12) bond length is 1.40 Å. In the twelfth C site, C(11) is bonded in a distorted trigonal planar geometry to one C(10), one C(8), and one H(2) atom. The C(11)-H(2) bond length is 0.93 Å. In the thirteenth C site, C(12) is bonded in a distorted single-bond geometry to one C(10), one C(9), and one H(3) atom. The C(12)-H(3) bond length is 0.93 Å. In the fourteenth C site, C(14) is bonded in a trigonal planar geometry to one C(2), one C(23), and one N(2) atom. The C(14)-N(2) bond length is 1.37 Å. In the fifteenth C site, C(15) is bonded in a distorted single-bond geometry to one C(4) and one H(5) atom. The C(15)-H(5) bond length is 0.93 Å. In the sixteenth C site, C(16) is bonded in a distorted single-bond geometry to one C(7) and one H(6,10) atom. The C(16)-H(6,10) bond length is 0.93 Å. In the seventeenth C site, C(18) is bonded in a distorted single-bond geometry to one C(4) and one H(8) atom. The C(18)-H(8) bond length is 0.93 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Fe(1) and two equivalent C(5) atoms. In the second N site, N(2) is bonded in a distorted trigonal planar geometry to one Fe(1) and two equivalent C(14) atoms. There are eight inequivalent H sites. In the first H site, H(2) is bonded in a single-bond geometry to one C(11) atom. In the second H site, H(3) is bonded in a single-bond geometry to one C(12) atom. In the third H site, H(5) is bonded in a single-bond geometry to one C(15) atom. In the fourth H site, H(6,10) is bonded in a single-bond geometry to one C(16) atom. In the fifth H site, H(8) is bonded in a single-bond geometry to one C(18) atom. In the sixth H site, H(9) is bonded in a single-bond geometry to one C(19) atom. In the seventh H site, H(11) is bonded in a single-bond geometry to one C(21) atom. In the eighth H site, H(13) is bonded in a single-bond geometry to one C(23) atom. In each InH8(C2O)8 cluster, In(1) is bonded in a distorted hexagonal bipyramidal geometry to two equivalent O(1), two equivalent O(2), two equivalent O(3), and two equivalent O(4) atoms. Both In(1)-O(1) bond lengths are 2.28 Å. Both In(1)-O(2) bond lengths are 2.29 Å. Both In(1)-O(3) bond lengths are 2.28 Å. Both In(1)-O(4) bond lengths are 2.29 Å. There are eight inequivalent C sites. In the first C site, C(22) is bonded in a distorted single-bond geometry to one C(25) and one H(12) atom. The C(22)-C(25) bond length is 1.37 Å. The C(22)-H(12) bond length is 0.93 Å. In the second C site, C(24) is bonded in a bent 120 degrees geometry to one C(25), one O(3), and one O(4) atom. The C(24)-C(25) bond length is 1.54 Å. The C(24)-O(3) bond length is 1.26 Å. The C(24)-O(4) bond length is 1.25 Å. In the third C site, C(25) is bonded in a trigonal planar geometry to one C(13), one C(22), and one C(24) atom. The C(25)-C(13) bond length is 1.41 Å. In the fourth C site, C(1) is bonded in a bent 120 degrees geometry to one C(3), one O(1), and one O(2) atom. The C(1)-C(3) bond length is 1.53 Å. The C(1)-O(1) bond length is 1.25 Å. The C(1)-O(2) bond length is 1.26 Å. In the fifth C site, C(3) is bonded in a trigonal planar geometry to one C(1), one C(17), and one C(6) atom. The C(3)-C(17) bond length is 1.38 Å. The C(3)-C(6) bond length is 1.37 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(3) and one H(1) atom. The C(6)-H(1) bond length is 0.93 Å. In the seventh C site, C(13) is bonded in a distorted single-bond geometry to one C(25) and one H(4) atom. The C(13)-H(4) bond length is 0.93 Å. In the eighth C site, C(17) is bonded in a distorted single-bond geometry to one C(3) and one H(7) atom. The C(17)-H(7) bond length is 0.93 Å. There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(6) atom. In the second H site, H(4) is bonded in a single-bond geometry to one C(13) atom. In the third H site, H(7) is bonded in a single-bond geometry to one C(17) atom. In the fourth H site, H(12) is bonded in a single-bond geometry to one C(22) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in an L-shaped geometry to one In(1) and one C(1) atom. In the second O site, O(3) is bonded in an L-shaped geometry to one In(1) and one C(24) atom. In the third O site, O(4) is bonded in an L-shaped geometry to one In(1) and one C(24) atom. In the fourth O site, O(2) is bonded in an L-shaped geometry to one In(1) and one C(1) atom. Linkers: 4 [O]C(=O)c1ccc(cc1)c1cc(cc(c1)C1=C2C=CC3=[N]2[Fe@]24n5c1ccc5C(=C1[N]2=C(C=C1)C(=c1n4c(=C3c2cc(cc(c2)c2ccc(cc2)C(=O)[O])c2ccc(cc2)C(=O)[O])cc1)c1cc(cc(c1)c1ccc(cc1)C(=O)[O])c1ccc(cc1)C(=O)[O])c1cc(cc(c1)c1ccc(cc1)C(=O)[O])c1ccc(cc1)C(=O)[O])c1ccc(cc1)C(=O)[O]. Metal clusters: 4 O=[C]O[In](O[C]=O)O[C]=O.[O][C]=O. RCSR code: flu. The MOF has largest included sphere 18.42 A, density 0.35 g/cm3, surface area 4447.65 m2/g, accessible volume 2.55 cm3/g
UMODEH20_clean
CuC21H12O5CH3 crystallizes in the trigonal R-3m space group. The structure consists of eighteen 02329_fluka molecules inside a CuC21H12O5 framework. In the CuC21H12O5 framework, Cu(1) is bonded in a square co-planar geometry to two equivalent O(1) and two equivalent O(2) atoms. Both Cu(1)-O(1) bond lengths are 1.95 Å. Both Cu(1)-O(2) bond lengths are 1.95 Å. There are twelve inequivalent C sites. In the first C site, C(10) is bonded in a trigonal planar geometry to one C(10) and two equivalent C(9) atoms. The C(10)-C(10) bond length is 1.48 Å. Both C(10)-C(9) bond lengths are 1.40 Å. In the second C site, C(11) is bonded in a single-bond geometry to two equivalent C(8) and one O(3) atom. Both C(11)-C(8) bond lengths are 1.40 Å. The C(11)-O(3) bond length is 1.43 Å. In the third C site, C(12) is bonded in a distorted trigonal non-coplanar geometry to two equivalent H(6) and one O(3) atom. Both C(12)-H(6) bond lengths are 0.99 Å. The C(12)-O(3) bond length is 1.49 Å. In the fourth C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.52 Å. The C(1)-O(1) bond length is 1.27 Å. The C(1)-O(2) bond length is 1.27 Å. In the fifth C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.43 Å. The C(2)-C(7) bond length is 1.36 Å. In the sixth C site, C(3) is bonded in a distorted single-bond geometry to one C(2) and one H(1) atom. The C(3)-H(1) bond length is 0.95 Å. In the seventh C site, C(4) is bonded in a distorted single-bond geometry to one C(5) and one H(2) atom. The C(4)-C(5) bond length is 1.38 Å. The C(4)-H(2) bond length is 0.95 Å. In the eighth C site, C(5) is bonded in a trigonal planar geometry to one C(4), one C(6), and one C(8) atom. The C(5)-C(6) bond length is 1.43 Å. The C(5)-C(8) bond length is 1.48 Å. In the ninth C site, C(6) is bonded in a distorted single-bond geometry to one C(5), one C(7), and one H(3) atom. The C(6)-C(7) bond length is 1.40 Å. The C(6)-H(3) bond length is 0.95 Å. In the tenth C site, C(7) is bonded in a distorted trigonal planar geometry to one C(2), one C(6), and one H(4) atom. The C(7)-H(4) bond length is 0.95 Å. In the eleventh C site, C(8) is bonded in a trigonal planar geometry to one C(11), one C(5), and one C(9) atom. The C(8)-C(9) bond length is 1.38 Å. In the twelfth C site, C(9) is bonded in a distorted single-bond geometry to one C(10), one C(8), and one H(5) atom. The C(9)-H(5) bond length is 0.95 Å. There are six inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(6) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(7) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(9) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(12) atom. There are three inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(1) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one C(11) and one C(12) atom. Linkers: 9 CCOc1c(-c2ccc(C([O])=O)cc2)cc(-c2cc(-c3ccc(C([O])=O)cc3)c(OCC)c(-c3ccc(C([O])=O)cc3)c2)cc1-c1ccc(C([O])=O)cc1. Metal clusters: 9 [C]1O[Cu]234O[C]O[Cu]2(O1)(O[C]O3)O[C]O4. RCSR code: nbo. The MOF has largest included sphere 9.82 A, density 0.58 g/cm3, surface area 4689.40 m2/g, accessible volume 1.08 cm3/g
LACZIB_clean
Na2ZnC26H10(NO4)2 crystallizes in the tetragonal I4_1/amd space group. Na(1) is bonded in a 6-coordinate geometry to two equivalent O(2) and four equivalent O(1) atoms. Both Na(1)-O(2) bond lengths are 2.45 Å. There are two shorter (2.30 Å) and two longer (2.38 Å) Na(1)-O(1) bond lengths. Zn(1) is bonded in a single-bond geometry to one Zn(1) and four equivalent N(1) atoms. The Zn(1)-Zn(1) bond length is 0.74 Å. There are two shorter (2.06 Å) and two longer (2.08 Å) Zn(1)-N(1) bond lengths. There are eight inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(3) and two equivalent C(5) atoms. The C(1)-C(3) bond length is 1.50 Å. Both C(1)-C(5) bond lengths are 1.37 Å. In the second C site, C(2) is bonded in a distorted trigonal planar geometry to one C(3), one C(7), and one N(1) atom. The C(2)-C(3) bond length is 1.40 Å. The C(2)-C(7) bond length is 1.45 Å. The C(2)-N(1) bond length is 1.37 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(1) and two equivalent C(2) atoms. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to two equivalent C(6) and one H(1) atom. Both C(4)-C(6) bond lengths are 1.38 Å. The C(4)-H(1) bond length is 0.95 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(1), one C(6), and one H(2) atom. The C(5)-C(6) bond length is 1.40 Å. The C(5)-H(2) bond length is 0.95 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(4), one C(5), and one C(8) atom. The C(6)-C(8) bond length is 1.50 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(2) and one H(3) atom. The C(7)-H(3) bond length is 0.95 Å. In the eighth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one C(6), one O(1), and one O(2) atom. The C(8)-O(1) bond length is 1.25 Å. The C(8)-O(2) bond length is 1.24 Å. N(1) is bonded in a 4-coordinate geometry to two equivalent Zn(1) and two equivalent C(2) atoms. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(4) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(7) atom. There are two inequivalent O sites. In the first O site, O(1) is bonded in a T-shaped geometry to two equivalent Na(1) and one C(8) atom. In the second O site, O(2) is bonded in an L-shaped geometry to one Na(1) and one C(8) atom. Linkers: 4 [O]C(=O)c1cc(C([O])=O)cc(/C2=C3\C=C/C(=C(\c4cc(C([O])=O)cc(C([O])=O)c4)C4=N/C(=C(/c5cc(C([O])=O)cc(C([O])=O)c5)C5=CC=C([N]5)/C(c5cc(C([O])=O)cc(C([O])=O)c5)=C5/C=CC2=N5)C=C4)[N]3)c1. Metal clusters: 16 [Na] ,4 [Zn] ,2 [N][Zn]([N])[Zn]([N])[N]. The MOF has largest included sphere 9.36 A, density 0.75 g/cm3, surface area 3685.17 m2/g, accessible volume 0.82 cm3/g
KULRIT_clean
Yb(CO2)3(CH2)3(CH)3 is Indium-derived structured and crystallizes in the monoclinic P2_1/c space group. The structure is zero-dimensional and consists of twelve 02329_fluka molecules, twelve 02329_fluka molecules, and two Yb(CO2)3 clusters. In each Yb(CO2)3 cluster, Yb(1) is bonded to one O(1), one O(3), one O(4), one O(5), one O(6), and two equivalent O(2) atoms to form distorted edge-sharing YbO7 pentagonal bipyramids. The Yb(1)-O(1) bond length is 2.37 Å. The Yb(1)-O(3) bond length is 2.25 Å. The Yb(1)-O(4) bond length is 2.29 Å. The Yb(1)-O(5) bond length is 2.36 Å. The Yb(1)-O(6) bond length is 2.32 Å. There is one shorter (2.27 Å) and one longer (2.44 Å) Yb(1)-O(2) bond length. There are three inequivalent C sites. In the first C site, C(7) is bonded in a distorted bent 120 degrees geometry to one O(1) and one O(2) atom. The C(7)-O(1) bond length is 1.23 Å. The C(7)-O(2) bond length is 1.28 Å. In the second C site, C(8) is bonded in a distorted bent 120 degrees geometry to one O(3) and one O(4) atom. The C(8)-O(3) bond length is 1.26 Å. The C(8)-O(4) bond length is 1.27 Å. In the third C site, C(9) is bonded in a distorted bent 120 degrees geometry to one O(5) and one O(6) atom. The C(9)-O(5) bond length is 1.25 Å. The C(9)-O(6) bond length is 1.27 Å. There are six inequivalent O sites. In the first O site, O(1) is bonded in a distorted L-shaped geometry to one Yb(1) and one C(7) atom. In the second O site, O(2) is bonded in a 3-coordinate geometry to two equivalent Yb(1) and one C(7) atom. In the third O site, O(3) is bonded in a distorted bent 150 degrees geometry to one Yb(1) and one C(8) atom. In the fourth O site, O(4) is bonded in a 2-coordinate geometry to one Yb(1) and one C(8) atom. In the fifth O site, O(5) is bonded in a distorted L-shaped geometry to one Yb(1) and one C(9) atom. In the sixth O site, O(6) is bonded in a distorted L-shaped geometry to one Yb(1) and one C(9) atom. Linkers: 4 [O]C(=O)[C@H]1C[C@@H](C([O])=O)C[C@@H](C([O])=O)C1. Metal clusters: 2 [C]1O[Yb]234(O1)O[C]O[Yb]1(O[C]O1)(O[C]O2)(O[C]O3)O[C]O4. RCSR code: rtl. The MOF has largest included sphere 5.78 A, density 1.47 g/cm3, surface area 2683.10 m2/g, accessible volume 0.39 cm3/g
HANKUE_clean
Cd6In3C63O44 crystallizes in the cubic Fd-3m space group. There are two inequivalent Cd sites. In the first Cd site, Cd(1) is bonded to one O(8), two equivalent O(6), and two equivalent O(7) atoms to form distorted corner-sharing CdO5 square pyramids. The Cd(1)-O(8) bond length is 2.05 Å. Both Cd(1)-O(6) bond lengths are 2.16 Å. Both Cd(1)-O(7) bond lengths are 2.20 Å. In the second Cd site, Cd(2) is bonded in a distorted T-shaped geometry to one O(9) and two equivalent O(3) atoms. The Cd(2)-O(9) bond length is 2.11 Å. Both Cd(2)-O(3) bond lengths are 2.19 Å. In(1) is bonded in a 6-coordinate geometry to two equivalent O(1), two equivalent O(4), and two equivalent O(5) atoms. Both In(1)-O(1) bond lengths are 2.16 Å. Both In(1)-O(4) bond lengths are 2.27 Å. Both In(1)-O(5) bond lengths are 2.23 Å. There are fifteen inequivalent C sites. In the first C site, C(15) is bonded in a bent 120 degrees geometry to two equivalent C(11) atoms. Both C(15)-C(11) bond lengths are 1.42 Å. In the second C site, C(1) is bonded in a bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.47 Å. The C(1)-O(1) bond length is 1.22 Å. The C(1)-O(2) bond length is 1.25 Å. In the third C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.41 Å. The C(2)-C(7) bond length is 1.40 Å. In the fourth C site, C(3) is bonded in a bent 120 degrees geometry to one C(2) and one C(8) atom. The C(3)-C(8) bond length is 1.34 Å. In the fifth C site, C(4) is bonded in a bent 120 degrees geometry to one C(5), one O(4), and one O(5) atom. The C(4)-C(5) bond length is 1.51 Å. The C(4)-O(4) bond length is 1.26 Å. The C(4)-O(5) bond length is 1.24 Å. In the sixth C site, C(5) is bonded in a trigonal planar geometry to one C(12), one C(4), and one C(6) atom. The C(5)-C(12) bond length is 1.35 Å. The C(5)-C(6) bond length is 1.42 Å. In the seventh C site, C(6) is bonded in a bent 120 degrees geometry to one C(13) and one C(5) atom. The C(6)-C(13) bond length is 1.37 Å. In the eighth C site, C(12) is bonded in a bent 120 degrees geometry to two equivalent C(5) atoms. In the ninth C site, C(13) is bonded in a trigonal planar geometry to one C(14) and two equivalent C(6) atoms. The C(13)-C(14) bond length is 1.57 Å. In the tenth C site, C(14) is bonded in a bent 120 degrees geometry to one C(13) and two equivalent O(6) atoms. Both C(14)-O(6) bond lengths are 1.24 Å. In the eleventh C site, C(7) is bonded in a bent 120 degrees geometry to two equivalent C(2) atoms. In the twelfth C site, C(8) is bonded in a single-bond geometry to one C(9) and two equivalent C(3) atoms. The C(8)-C(9) bond length is 1.42 Å. In the thirteenth C site, C(9) is bonded in a bent 120 degrees geometry to one C(8) and two equivalent O(3) atoms. Both C(9)-O(3) bond lengths are 1.33 Å. In the fourteenth C site, C(10) is bonded in a bent 120 degrees geometry to one C(11) and two equivalent O(7) atoms. The C(10)-C(11) bond length is 1.44 Å. Both C(10)-O(7) bond lengths are 1.23 Å. In the fifteenth C site, C(11) is bonded in a trigonal planar geometry to one C(10) and two equivalent C(15) atoms. There are nine inequivalent O sites. In the first O site, O(1) is bonded in a water-like geometry to one In(1) and one C(1) atom. In the second O site, O(2) is bonded in a single-bond geometry to one C(1) atom. In the third O site, O(3) is bonded in a single-bond geometry to one Cd(2) and one C(9) atom. In the fourth O site, O(4) is bonded in an L-shaped geometry to one In(1) and one C(4) atom. In the fifth O site, O(5) is bonded in an L-shaped geometry to one In(1) and one C(4) atom. In the sixth O site, O(6) is bonded in a distorted bent 120 degrees geometry to one Cd(1) and one C(14) atom. In the seventh O site, O(7) is bonded in a distorted single-bond geometry to one Cd(1) and one C(10) atom. In the eighth O site, O(8) is bonded in a trigonal planar geometry to three equivalent Cd(1) atoms. In the ninth O site, O(9) is bonded in a trigonal planar geometry to three equivalent Cd(2) atoms. Linkers: 1 O=[C]O[In].O=[C]O[In].O=[C]O[In].O=[C]O[In].O=[C]O[In].O=[C]O[In].O=[C]O[In].O=[C]O[In].O=[C]O[In](O[C]=O)O[C]=O.O=[C]O[In]O[C]=O.O=[C]O[In]O[C]=O.O=[C]O[In]O[C]=O.[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]/[C]=[C]\[C]=[C].[C]/[C]=[C]\[C]=[C].[C]/[C]=[C]\[C]=[C].[C]/[C]=[C]\[C]=[C].[C]/[C]=[C]\[C]=[C].[C]/[C]=[C]\[C]=[C].[C]/[C]=[C]\[C]=[C].[C]/[C]=[C]\[C]=[C].[C]/[C]=[C]\[C]=[C].[C]/[C]=[C]\[C]=[C].[C]/[C]=[C]\[C]=[C]/[C].[C]1O[In]O1.[C]1O[In]O1.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=[C][C]=[C].[C]=[C][C]=[C].[C]=[C][C]=[C].[C]=[C][C]=[C].[C]=[C][C]=[C].[C]=[C][C]=[C].[C]=[C][C]=[C].[C]=[C][C]=[C].[C]=[C][C]=[C].[C]=[C][C]=[C].[C]=[C][C]=[C].[C]=[C][C]=[C].[C]=[C][C]=[C].[C]=[C][C]=[C].[C]=[C][C]=[C].[C]=[C][C]=[C].[C]=[C][C]=[C].[C]=[C][C]=[C].[C]=[C][C][C]=[C].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In].[C]O[In](O[C]=O)O[C]=O.[C]O[In](O[C]=O)O[C]=O.[C]O[In]([O])O[C]=O.[C]O[In]([O])O[C]=O.[C]O[In]([O])O[C]=O.[C]O[In]([O])[O].[C]O[In]([O])[O].[C]O[In]([O])[O].[C]O[In]O[C]=O.[C]O[In]O[C]=O.[C]O[In][O].[C]O[In][O].[C]O[In][O].[C]O[In][O].[C]O[In][O].[C]O[In][O].[C]O[In][O].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C]/[C]=[C]\[C].[C][C]/[C]=[C]\[C].[C][C]/[C]=[C]\[C].[C][C]/[C]=[C]\[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]=[C].[C][C]O[In](O[C]=O)O[C]=O.[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C].[C][C][C]=[C].[C][C][C]=[C].[C][C][C]=[C].[C][C][C]=[C].[C][C][C]=[C].[C][C][C]=[C].[C][C][C]=[C].[C][C][C]=[C].[C][C][C]=[C].[C][C][C]=[C].[C][C][C]=[C].[C][C][C]=[C].[C][C][C]=[C].[C][C][C]=[C].[C][C][C]=[C].[C][C][C]=[C].[C][C][C]=[C].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[In].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C][O].[O][C][O].[O][C][O].[O][C][O].[O][C][O].[O][C][O].[O][C][O].[O][C][O].[O][C][O].[O][C][O].[O][C][O].[O][C][O].[O][C][O].[O][C][O].[O][C][O].[O][C][O].[O][C][O].[O][C][O].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In].[O][In](O[C]=O)O[C]=O.[O][In](O[C]=O)O[C]=O.[O][In](O[C]=O)O[C]=O.[O][In]([O])O[C]=O.[O][In]O[C]=O.[O][In]O[C]=O.[O][In][O].[O][In][O].[O][In][O].[O][In][O].[O][In][O].[O][In][O].[O][In][O].[c]1[c][c][c][c][c]1.[c]1[c][c][c][c][c]1.[c]1[c][c][c][c][c]1.[c]1[c][c][c][c][c]1.[c]1[c][c][c][c][c]1.[c]1[c][c][c][c][c]1.[c]1[c][c][c][c][c]1 ,32 [O]C(=O)c1[c]c(C([O])=O)[c]c(C([O])=O)[c]1. Metal clusters: 32 [C]1O[Cd]23O[C]O[Cd]45(O1)O[C]O[Cd](O[C]O2)(O[C]O3)(O[C]O4)O5 ,32 [C]1O[Cd]O[C]O[Cd]2O[C]O[Cd](O1)O2. The MOF has largest included sphere 11.05 A, density 1.02 g/cm3, surface area 3040.91 m2/g, accessible volume 0.66 cm3/g
IRAJER_clean
Ga4P5H2(CO12)2 crystallizes in the monoclinic C2/c space group. There are two inequivalent Ga sites. In the first Ga site, Ga(1) is bonded to one H(1), one O(2), one O(3), one O(4), one O(5), and one O(6) atom to form distorted GaHO5 octahedra that share a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(2)O4 tetrahedra, and a cornercorner with one P(3)O4 tetrahedra. The Ga(1)-H(1) bond length is 1.30 Å. The Ga(1)-O(2) bond length is 1.92 Å. The Ga(1)-O(3) bond length is 1.93 Å. The Ga(1)-O(4) bond length is 1.94 Å. The Ga(1)-O(5) bond length is 2.05 Å. The Ga(1)-O(6) bond length is 2.08 Å. In the second Ga site, Ga(2) is bonded to one O(10), one O(7), one O(8), and one O(9) atom to form GaO4 tetrahedra that share corners with two equivalent P(1)O4 tetrahedra and corners with two equivalent P(2)O4 tetrahedra. The Ga(2)-O(10) bond length is 1.81 Å. The Ga(2)-O(7) bond length is 1.80 Å. The Ga(2)-O(8) bond length is 1.80 Å. The Ga(2)-O(9) bond length is 1.80 Å. C(1) is bonded in a distorted bent 120 degrees geometry to one O(5) and one O(6) atom. The C(1)-O(5) bond length is 1.26 Å. The C(1)-O(6) bond length is 1.24 Å. There are three inequivalent P sites. In the first P site, P(1) is bonded to one O(1), one O(3), one O(8), and one O(9) atom to form PO4 tetrahedra that share a cornercorner with one Ga(1)HO5 octahedra and corners with two equivalent Ga(2)O4 tetrahedra. The corner-sharing octahedral tilt angles are 43°. The P(1)-O(1) bond length is 1.52 Å. The P(1)-O(3) bond length is 1.52 Å. The P(1)-O(8) bond length is 1.54 Å. The P(1)-O(9) bond length is 1.54 Å. In the second P site, P(2) is bonded to one O(10), one O(11), one O(4), and one O(7) atom to form PO4 tetrahedra that share a cornercorner with one Ga(1)HO5 octahedra and corners with two equivalent Ga(2)O4 tetrahedra. The corner-sharing octahedral tilt angles are 35°. The P(2)-O(10) bond length is 1.54 Å. The P(2)-O(11) bond length is 1.51 Å. The P(2)-O(4) bond length is 1.50 Å. The P(2)-O(7) bond length is 1.54 Å. In the third P site, P(3) is bonded to two equivalent O(12) and two equivalent O(2) atoms to form PO4 tetrahedra that share corners with two equivalent Ga(1)HO5 octahedra. The corner-sharing octahedral tilt angles are 35°. Both P(3)-O(12) bond lengths are 1.53 Å. Both P(3)-O(2) bond lengths are 1.51 Å. H(1) is bonded in a bent 120 degrees geometry to one Ga(1) and one O(1) atom. The H(1)-O(1) bond length is 0.84 Å. There are twelve inequivalent O sites. In the first O site, O(1) is bonded in a linear geometry to one P(1) and one H(1) atom. In the second O site, O(2) is bonded in a bent 150 degrees geometry to one Ga(1) and one P(3) atom. In the third O site, O(3) is bonded in a distorted bent 150 degrees geometry to one Ga(1) and one P(1) atom. In the fourth O site, O(4) is bonded in a bent 150 degrees geometry to one Ga(1) and one P(2) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Ga(1) and one C(1) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one Ga(1) and one C(1) atom. In the seventh O site, O(7) is bonded in a bent 150 degrees geometry to one Ga(2) and one P(2) atom. In the eighth O site, O(8) is bonded in a bent 120 degrees geometry to one Ga(2) and one P(1) atom. In the ninth O site, O(9) is bonded in a distorted bent 120 degrees geometry to one Ga(2) and one P(1) atom. In the tenth O site, O(10) is bonded in a bent 120 degrees geometry to one Ga(2) and one P(2) atom. In the eleventh O site, O(11) is bonded in a single-bond geometry to one P(2) atom. In the twelfth O site, O(12) is bonded in a single-bond geometry to one P(3) atom. Linkers: 4 [O]C(=O)C([O])=O. Metal clusters: 16 [Ga]. The MOF has largest included sphere 5.46 A, density 2.02 g/cm3, surface area 2458.02 m2/g, accessible volume 0.24 cm3/g
NEYZAU_clean
MgC6H4S2(NO)4(CH)2 crystallizes in the tetragonal I-42d space group. The structure consists of eight 02329_fluka molecules inside a MgC6H4S2(NO)4 framework. In the MgC6H4S2(NO)4 framework, Mg(1) is bonded in a rectangular see-saw-like geometry to four equivalent O(1) atoms. All Mg(1)-O(1) bond lengths are 2.11 Å. There are two inequivalent C sites. In the first C site, C(2) is bonded in a trigonal planar geometry to two equivalent N(1) and one S(1) atom. Both C(2)-N(1) bond lengths are 1.36 Å. The C(2)-S(1) bond length is 1.63 Å. In the second C site, C(1) is bonded in a distorted bent 120 degrees geometry to one N(1) and one O(1) atom. The C(1)-N(1) bond length is 1.37 Å. The C(1)-O(1) bond length is 1.28 Å. N(1) is bonded in a distorted trigonal planar geometry to one C(1), one C(2), and one H(1) atom. The N(1)-H(1) bond length is 0.86 Å. H(1) is bonded in a single-bond geometry to one N(1) atom. S(1) is bonded in a single-bond geometry to one C(2) atom. O(1) is bonded in a distorted bent 150 degrees geometry to one Mg(1) and one C(1) atom. Linkers: 1 O=[C][N]C(=S)N[C]=O.[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH][C]=O.[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]C([N])=O.[C][NH].[C][NH].[C][NH].[C][NH].[C][N].[C][N].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[Mg].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[NH].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O][Mg].[O][Mg].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S].[S]. Metal clusters: 1 [O].[O].[O][Mg][O]. RCSR code: dia. The MOF has largest included sphere 4.66 A, density 0.94 g/cm3, surface area 4456.25 m2/g, accessible volume 0.60 cm3/g
EGATOW_clean
CoZnH2(C5O4)2 crystallizes in the tetragonal P4_2bc space group. Co(1) is bonded in a rectangular see-saw-like geometry to one O(1), one O(4), one O(6), and one O(7) atom. The Co(1)-O(1) bond length is 2.09 Å. The Co(1)-O(4) bond length is 2.05 Å. The Co(1)-O(6) bond length is 2.03 Å. The Co(1)-O(7) bond length is 2.23 Å. Zn(1) is bonded in a tetrahedral geometry to one O(2), one O(3), one O(5), and one O(7) atom. The Zn(1)-O(2) bond length is 1.98 Å. The Zn(1)-O(3) bond length is 1.95 Å. The Zn(1)-O(5) bond length is 1.95 Å. The Zn(1)-O(7) bond length is 1.97 Å. There are ten inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.50 Å. The C(1)-O(1) bond length is 1.23 Å. The C(1)-O(2) bond length is 1.30 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-C(7) bond length is 1.40 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(8) atom. The C(3)-C(4) bond length is 1.41 Å. The C(3)-C(8) bond length is 1.51 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3), one C(5), and one H(1) atom. The C(4)-C(5) bond length is 1.37 Å. The C(4)-H(1) bond length is 0.95 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(4), one C(6), and one C(9) atom. The C(5)-C(6) bond length is 1.42 Å. The C(5)-C(9) bond length is 1.51 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(10), one C(5), and one C(7) atom. The C(6)-C(10) bond length is 1.50 Å. The C(6)-C(7) bond length is 1.40 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(2), one C(6), and one H(2) atom. The C(7)-H(2) bond length is 0.95 Å. In the eighth C site, C(8) is bonded in a bent 120 degrees geometry to one C(3), one O(3), and one O(4) atom. The C(8)-O(3) bond length is 1.24 Å. The C(8)-O(4) bond length is 1.27 Å. In the ninth C site, C(9) is bonded in a distorted bent 120 degrees geometry to one C(5), one O(5), and one O(6) atom. The C(9)-O(5) bond length is 1.27 Å. The C(9)-O(6) bond length is 1.28 Å. In the tenth C site, C(10) is bonded in a distorted bent 120 degrees geometry to one C(6), one O(7), and one O(8) atom. The C(10)-O(7) bond length is 1.30 Å. The C(10)-O(8) bond length is 1.22 Å. There are two inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(4) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(7) atom. There are eight inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 150 degrees geometry to one Co(1) and one C(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(1) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(8) atom. In the fourth O site, O(4) is bonded in a distorted bent 150 degrees geometry to one Co(1) and one C(8) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(9) atom. In the sixth O site, O(6) is bonded in a distorted single-bond geometry to one Co(1) and one C(9) atom. In the seventh O site, O(7) is bonded in a distorted trigonal non-coplanar geometry to one Co(1), one Zn(1), and one C(10) atom. In the eighth O site, O(8) is bonded in a single-bond geometry to one C(10) atom. Linkers: 8 [O]C(=O)c1cc(C([O])=O)c(C([O])=O)cc1C([O])=O. Metal clusters: 8 [Zn] ,8 [Co]. The MOF has largest included sphere 5.97 A, density 1.21 g/cm3, surface area 3145.37 m2/g, accessible volume 0.49 cm3/g
VITZEF_clean
SmH6(C2O)8 crystallizes in the triclinic P-1 space group. There are two inequivalent Sm sites. In the first Sm site, Sm(1) is bonded in a 8-coordinate geometry to one O(1), one O(10), one O(4), one O(5), one O(6), one O(7), one O(8), and one O(9) atom. The Sm(1)-O(1) bond length is 2.44 Å. The Sm(1)-O(10) bond length is 2.41 Å. The Sm(1)-O(4) bond length is 2.67 Å. The Sm(1)-O(5) bond length is 2.35 Å. The Sm(1)-O(6) bond length is 2.43 Å. The Sm(1)-O(7) bond length is 2.50 Å. The Sm(1)-O(8) bond length is 2.49 Å. The Sm(1)-O(9) bond length is 2.49 Å. In the second Sm site, Sm(2) is bonded in a distorted hexagonal bipyramidal geometry to two equivalent O(1), two equivalent O(2), two equivalent O(3), and two equivalent O(4) atoms. Both Sm(2)-O(1) bond lengths are 2.55 Å. Both Sm(2)-O(2) bond lengths are 2.45 Å. Both Sm(2)-O(3) bond lengths are 2.33 Å. Both Sm(2)-O(4) bond lengths are 2.39 Å. There are twenty-four inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(3), one O(1), and one O(2) atom. The C(1)-C(3) bond length is 1.49 Å. The C(1)-O(1) bond length is 1.26 Å. The C(1)-O(2) bond length is 1.25 Å. In the second C site, C(2) is bonded in a bent 120 degrees geometry to one C(4), one O(3), and one O(6) atom. The C(2)-C(4) bond length is 1.49 Å. The C(2)-O(3) bond length is 1.26 Å. The C(2)-O(6) bond length is 1.25 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(1), one C(5), and one C(6) atom. The C(3)-C(5) bond length is 1.39 Å. The C(3)-C(6) bond length is 1.39 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(2), one C(7), and one C(8) atom. The C(4)-C(7) bond length is 1.40 Å. The C(4)-C(8) bond length is 1.40 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(3), one C(9), and one H(1) atom. The C(5)-C(9) bond length is 1.38 Å. The C(5)-H(1) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(10), one C(3), and one H(2) atom. The C(6)-C(10) bond length is 1.39 Å. The C(6)-H(2) bond length is 0.93 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(11), one C(4), and one H(3) atom. The C(7)-C(11) bond length is 1.39 Å. The C(7)-H(3) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a distorted single-bond geometry to one C(12), one C(4), and one H(4) atom. The C(8)-C(12) bond length is 1.37 Å. The C(8)-H(4) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a trigonal planar geometry to one C(13), one C(14), and one C(5) atom. The C(9)-C(13) bond length is 1.39 Å. The C(9)-C(14) bond length is 1.51 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(10), one C(13), and one C(6) atom. The C(10)-C(10) bond length is 1.47 Å. The C(10)-C(13) bond length is 1.41 Å. In the eleventh C site, C(11) is bonded in a trigonal planar geometry to one C(15), one C(16), and one C(7) atom. The C(11)-C(15) bond length is 1.41 Å. The C(11)-C(16) bond length is 1.48 Å. In the twelfth C site, C(12) is bonded in a trigonal planar geometry to one C(15), one C(17), and one C(8) atom. The C(12)-C(15) bond length is 1.38 Å. The C(12)-C(17) bond length is 1.51 Å. In the thirteenth C site, C(13) is bonded in a distorted single-bond geometry to one C(10), one C(9), and one H(5) atom. The C(13)-H(5) bond length is 0.93 Å. In the fourteenth C site, C(14) is bonded in a distorted bent 120 degrees geometry to one C(9), one O(7), and one O(8) atom. The C(14)-O(7) bond length is 1.28 Å. The C(14)-O(8) bond length is 1.26 Å. In the fifteenth C site, C(15) is bonded in a single-bond geometry to one C(11), one C(12), and one H(6) atom. The C(15)-H(6) bond length is 0.93 Å. In the sixteenth C site, C(16) is bonded in a trigonal planar geometry to one C(11), one C(18), and one C(19) atom. The C(16)-C(18) bond length is 1.40 Å. The C(16)-C(19) bond length is 1.39 Å. In the seventeenth C site, C(17) is bonded in a distorted bent 120 degrees geometry to one C(12), one O(10), and one O(11) atom. The C(17)-O(10) bond length is 1.22 Å. The C(17)-O(11) bond length is 1.30 Å. In the eighteenth C site, C(18) is bonded in a distorted single-bond geometry to one C(16), one C(20), and one H(7) atom. The C(18)-C(20) bond length is 1.39 Å. The C(18)-H(7) bond length is 0.93 Å. In the nineteenth C site, C(19) is bonded in a distorted single-bond geometry to one C(16), one C(21), and one H(8) atom. The C(19)-C(21) bond length is 1.39 Å. The C(19)-H(8) bond length is 0.93 Å. In the twentieth C site, C(20) is bonded in a trigonal planar geometry to one C(18), one C(22), and one C(23) atom. The C(20)-C(22) bond length is 1.53 Å. The C(20)-C(23) bond length is 1.37 Å. In the twenty-first C site, C(21) is bonded in a trigonal planar geometry to one C(19), one C(23), and one C(24) atom. The C(21)-C(23) bond length is 1.39 Å. The C(21)-C(24) bond length is 1.51 Å. In the twenty-second C site, C(22) is bonded in a distorted bent 120 degrees geometry to one C(20), one O(12), and one O(5) atom. The C(22)-O(12) bond length is 1.26 Å. The C(22)-O(5) bond length is 1.25 Å. In the twenty-third C site, C(23) is bonded in a distorted single-bond geometry to one C(20), one C(21), and one H(9) atom. The C(23)-H(9) bond length is 0.93 Å. In the twenty-fourth C site, C(24) is bonded in a distorted bent 120 degrees geometry to one C(21), one O(4), and one O(9) atom. The C(24)-O(4) bond length is 1.26 Å. The C(24)-O(9) bond length is 1.25 Å. There are nine inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(5) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(6) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(7) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(8) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(13) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(15) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(18) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(19) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(23) atom. There are twelve inequivalent O sites. In the first O site, O(1) is bonded in a distorted single-bond geometry to one Sm(1), one Sm(2), and one C(1) atom. In the second O site, O(2) is bonded in a distorted water-like geometry to one Sm(2) and one C(1) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Sm(2) and one C(2) atom. In the fourth O site, O(4) is bonded in a 2-coordinate geometry to one Sm(1), one Sm(2), and one C(24) atom. In the fifth O site, O(5) is bonded in a distorted bent 150 degrees geometry to one Sm(1) and one C(22) atom. In the sixth O site, O(6) is bonded in a distorted bent 150 degrees geometry to one Sm(1) and one C(2) atom. In the seventh O site, O(7) is bonded in a distorted L-shaped geometry to one Sm(1) and one C(14) atom. In the eighth O site, O(8) is bonded in a distorted L-shaped geometry to one Sm(1) and one C(14) atom. In the ninth O site, O(9) is bonded in a water-like geometry to one Sm(1) and one C(24) atom. In the tenth O site, O(10) is bonded in a bent 150 degrees geometry to one Sm(1) and one C(17) atom. In the eleventh O site, O(11) is bonded in a single-bond geometry to one C(17) atom. In the twelfth O site, O(12) is bonded in a single-bond geometry to one C(22) atom. Linkers: 3 [O]C(=O)c1cc(C([O])=O)cc(-c2cc(C([O])=O)cc(C([O])=O)c2)c1. Metal clusters: 1 [O][C]O[Sm]12(O[C]=O)(O[C]=O)O[C]O[Sm]34(O[C]O1)(O[C]O2)O[C]O[Sm](O[C][O])(O[C]=O)(O[C]=O)(O[C]O3)O[C]O4. The MOF has largest included sphere 6.98 A, density 1.47 g/cm3, surface area 2969.76 m2/g, accessible volume 0.31 cm3/g
CODFUX_clean
MgPO4 is Low Tridymite-derived structured and crystallizes in the orthorhombic Fddd space group. Mg(1) is bonded to two equivalent O(1) and two equivalent O(2) atoms to form MgO4 tetrahedra that share corners with four equivalent P(1)O4 tetrahedra. Both Mg(1)-O(1) bond lengths are 1.78 Å. Both Mg(1)-O(2) bond lengths are 1.75 Å. P(1) is bonded to two equivalent O(1) and two equivalent O(2) atoms to form PO4 tetrahedra that share corners with four equivalent Mg(1)O4 tetrahedra. Both P(1)-O(1) bond lengths are 1.52 Å. Both P(1)-O(2) bond lengths are 1.53 Å. There are two inequivalent O sites. In the first O site, O(1) is bonded in a bent 150 degrees geometry to one Mg(1) and one P(1) atom. In the second O site, O(2) is bonded in a bent 150 degrees geometry to one Mg(1) and one P(1) atom. Linkers: 16 [O]P([O])([O])=O. Metal clusters: 16 [Mg]. The MOF has largest included sphere 4.77 A, density 1.51 g/cm3, surface area 2938.60 m2/g, accessible volume 0.36 cm3/g
ASALAH_clean
ZnC8H7(NO)2 crystallizes in the orthorhombic P2_12_12_1 space group. Zn(1) is bonded in a distorted trigonal pyramidal geometry to one N(1), one H(5), one O(1), and one O(2) atom. The Zn(1)-N(1) bond length is 2.02 Å. The Zn(1)-H(5) bond length is 1.32 Å. The Zn(1)-O(1) bond length is 2.00 Å. The Zn(1)-O(2) bond length is 1.97 Å. There are eight inequivalent C sites. In the first C site, C(1) is bonded in a distorted trigonal planar geometry to one C(2), one N(1), and one H(1) atom. The C(1)-C(2) bond length is 1.37 Å. The C(1)-N(1) bond length is 1.34 Å. The C(1)-H(1) bond length is 0.93 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(4), and one C(6) atom. The C(2)-C(4) bond length is 1.37 Å. The C(2)-C(6) bond length is 1.49 Å. In the third C site, C(3) is bonded in a distorted trigonal planar geometry to one C(5), one N(1), and one H(2) atom. The C(3)-C(5) bond length is 1.37 Å. The C(3)-N(1) bond length is 1.37 Å. The C(3)-H(2) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(2) and one H(3) atom. The C(4)-H(3) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(3) and one H(4) atom. The C(5)-H(4) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a distorted trigonal planar geometry to one C(2), one C(7), and one N(2) atom. The C(6)-C(7) bond length is 1.37 Å. The C(6)-N(2) bond length is 1.43 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(6) and one H(7) atom. The C(7)-H(7) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one O(1) and one O(2) atom. The C(8)-O(1) bond length is 1.23 Å. The C(8)-O(2) bond length is 1.27 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Zn(1), one C(1), and one C(3) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one C(6), one H(5), and one H(6) atom. The N(2)-H(5) bond length is 0.86 Å. The N(2)-H(6) bond length is 0.86 Å. There are seven inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(4) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the fifth H site, H(5) is bonded in a distorted bent 150 degrees geometry to one Zn(1) and one N(2) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one N(2) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(7) atom. There are two inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(8) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(8) atom. Linkers: 4 N[C]([CH]C([O])=O)c1cccnc1. Metal clusters: 4 [Zn]. The MOF has largest included sphere 4.31 A, density 1.39 g/cm3, surface area 4261.19 m2/g, accessible volume 0.34 cm3/g
XALDIY_clean
Mn3C21N8H11O9(CH)17(CH2)10(CH3)3 crystallizes in the tetragonal I4_1/a space group. The structure is zero-dimensional and consists of one hundred and forty-four 02329_fluka molecules, one hundred and sixty 02329_fluka molecules, forty-eight 02329_fluka molecules, thirty-two isobutylene molecules, and eight Mn3C21N8H11O9 clusters. In each Mn3C21N8H11O9 cluster, there are three inequivalent Mn sites. In the first Mn site, Mn(1) is bonded in a distorted octahedral geometry to one N(1), one N(3), one N(8), one O(1), one O(3), and one O(8) atom. The Mn(1)-N(1) bond length is 1.95 Å. The Mn(1)-N(3) bond length is 2.29 Å. The Mn(1)-N(8) bond length is 2.26 Å. The Mn(1)-O(1) bond length is 1.86 Å. The Mn(1)-O(3) bond length is 1.93 Å. The Mn(1)-O(8) bond length is 1.99 Å. In the second Mn site, Mn(2) is bonded in a distorted octahedral geometry to one N(2), one N(4), one N(6), one O(2), one O(4), and one O(6) atom. The Mn(2)-N(2) bond length is 2.23 Å. The Mn(2)-N(4) bond length is 1.94 Å. The Mn(2)-N(6) bond length is 2.29 Å. The Mn(2)-O(2) bond length is 1.98 Å. The Mn(2)-O(4) bond length is 1.85 Å. The Mn(2)-O(6) bond length is 1.93 Å. In the third Mn site, Mn(3) is bonded in a distorted square pyramidal geometry to one N(5), one N(7), one O(5), one O(7), and one O(9) atom. The Mn(3)-N(5) bond length is 2.24 Å. The Mn(3)-N(7) bond length is 1.94 Å. The Mn(3)-O(5) bond length is 1.97 Å. The Mn(3)-O(7) bond length is 1.86 Å. The Mn(3)-O(9) bond length is 1.93 Å. There are twenty-one inequivalent C sites. In the first C site, C(1) is bonded in a distorted single-bond geometry to one C(6) and one O(1) atom. The C(1)-C(6) bond length is 1.40 Å. The C(1)-O(1) bond length is 1.34 Å. In the second C site, C(5) is bonded in a distorted single-bond geometry to one C(6) and one H(4) atom. The C(5)-C(6) bond length is 1.41 Å. The C(5)-H(4) bond length is 0.95 Å. In the third C site, C(6) is bonded in a trigonal planar geometry to one C(1), one C(5), and one C(7) atom. The C(6)-C(7) bond length is 1.48 Å. In the fourth C site, C(7) is bonded in a distorted bent 120 degrees geometry to one C(6), one N(1), and one O(2) atom. The C(7)-N(1) bond length is 1.31 Å. The C(7)-O(2) bond length is 1.28 Å. In the fifth C site, C(8) is bonded in a distorted trigonal planar geometry to one C(9), one N(2), and one O(3) atom. The C(8)-C(9) bond length is 1.50 Å. The C(8)-N(2) bond length is 1.29 Å. The C(8)-O(3) bond length is 1.31 Å. In the sixth C site, C(9) is bonded in a water-like geometry to one C(8), one H(5), and one H(6) atom. The C(9)-H(5) bond length is 0.99 Å. The C(9)-H(6) bond length is 0.99 Å. In the seventh C site, C(14) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(16) atom. The C(14)-N(3) bond length is 1.32 Å. The C(14)-H(16) bond length is 0.95 Å. In the eighth C site, C(18) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(19) atom. The C(18)-N(3) bond length is 1.33 Å. The C(18)-H(19) bond length is 0.95 Å. In the ninth C site, C(20) is bonded in a distorted single-bond geometry to one C(25) and one O(4) atom. The C(20)-C(25) bond length is 1.41 Å. The C(20)-O(4) bond length is 1.33 Å. In the tenth C site, C(24) is bonded in a distorted single-bond geometry to one C(25) and one H(25) atom. The C(24)-C(25) bond length is 1.40 Å. The C(24)-H(25) bond length is 0.95 Å. In the eleventh C site, C(25) is bonded in a trigonal planar geometry to one C(20), one C(24), and one C(26) atom. The C(25)-C(26) bond length is 1.48 Å. In the twelfth C site, C(26) is bonded in a distorted bent 120 degrees geometry to one C(25), one N(4), and one O(5) atom. The C(26)-N(4) bond length is 1.33 Å. The C(26)-O(5) bond length is 1.28 Å. In the thirteenth C site, C(27) is bonded in a distorted bent 120 degrees geometry to one N(5) and one O(6) atom. The C(27)-N(5) bond length is 1.29 Å. The C(27)-O(6) bond length is 1.31 Å. In the fourteenth C site, C(31) is bonded in a distorted bent 120 degrees geometry to one N(6) and one H(32) atom. The C(31)-N(6) bond length is 1.32 Å. The C(31)-H(32) bond length is 0.95 Å. In the fifteenth C site, C(37) is bonded in a distorted bent 120 degrees geometry to one N(6) and one H(40) atom. The C(37)-N(6) bond length is 1.34 Å. The C(37)-H(40) bond length is 0.95 Å. In the sixteenth C site, C(39) is bonded in a distorted single-bond geometry to one C(44) and one O(7) atom. The C(39)-C(44) bond length is 1.42 Å. The C(39)-O(7) bond length is 1.33 Å. In the seventeenth C site, C(43) is bonded in a distorted single-bond geometry to one C(44) and one H(46) atom. The C(43)-C(44) bond length is 1.39 Å. The C(43)-H(46) bond length is 0.95 Å. In the eighteenth C site, C(44) is bonded in a trigonal planar geometry to one C(39), one C(43), and one C(45) atom. The C(44)-C(45) bond length is 1.46 Å. In the nineteenth C site, C(45) is bonded in a distorted trigonal planar geometry to one C(44), one N(7), and one O(8) atom. The C(45)-N(7) bond length is 1.31 Å. The C(45)-O(8) bond length is 1.28 Å. In the twentieth C site, C(46) is bonded in a distorted trigonal planar geometry to one C(47), one N(8), and one O(9) atom. The C(46)-C(47) bond length is 1.50 Å. The C(46)-N(8) bond length is 1.30 Å. The C(46)-O(9) bond length is 1.30 Å. In the twenty-first C site, C(47) is bonded in a water-like geometry to one C(46) and two equivalent H(47,48) atoms. Both C(47)-H(47,48) bond lengths are 0.99 Å. There are eight inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one Mn(1), one C(7), and one N(2) atom. The N(1)-N(2) bond length is 1.42 Å. In the second N site, N(2) is bonded in a 3-coordinate geometry to one Mn(2), one C(8), and one N(1) atom. In the third N site, N(3) is bonded in a trigonal planar geometry to one Mn(1), one C(14), and one C(18) atom. In the fourth N site, N(4) is bonded in a distorted trigonal planar geometry to one Mn(2), one C(26), and one N(5) atom. The N(4)-N(5) bond length is 1.41 Å. In the fifth N site, N(5) is bonded in a 3-coordinate geometry to one Mn(3), one C(27), and one N(4) atom. In the sixth N site, N(6) is bonded in a trigonal planar geometry to one Mn(2), one C(31), and one C(37) atom. In the seventh N site, N(7) is bonded in a distorted trigonal planar geometry to one Mn(3), one C(45), and one N(8) atom. The N(7)-N(8) bond length is 1.41 Å. In the eighth N site, N(8) is bonded in a 3-coordinate geometry to one Mn(1), one C(46), and one N(7) atom. There are ten inequivalent H sites. In the first H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the second H site, H(5) is bonded in a single-bond geometry to one C(9) atom. In the third H site, H(6) is bonded in a single-bond geometry to one C(9) atom. In the fourth H site, H(16) is bonded in a single-bond geometry to one C(14) atom. In the fifth H site, H(19) is bonded in a single-bond geometry to one C(18) atom. In the sixth H site, H(25) is bonded in a single-bond geometry to one C(24) atom. In the seventh H site, H(32) is bonded in a single-bond geometry to one C(31) atom. In the eighth H site, H(40) is bonded in a single-bond geometry to one C(37) atom. In the ninth H site, H(46) is bonded in a single-bond geometry to one C(43) atom. In the tenth H site, H(47,48) is bonded in a single-bond geometry to one C(47) atom. There are nine inequivalent O sites. In the first O site, O(8) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(45) atom. In the second O site, O(9) is bonded in a bent 120 degrees geometry to one Mn(3) and one C(46) atom. In the third O site, O(1) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(1) atom. In the fourth O site, O(2) is bonded in a bent 120 degrees geometry to one Mn(2) and one C(7) atom. In the fifth O site, O(3) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(8) atom. In the sixth O site, O(4) is bonded in a bent 120 degrees geometry to one Mn(2) and one C(20) atom. In the seventh O site, O(5) is bonded in a bent 120 degrees geometry to one Mn(3) and one C(26) atom. In the eighth O site, O(6) is bonded in a bent 120 degrees geometry to one Mn(2) and one C(27) atom. In the ninth O site, O(7) is bonded in a bent 120 degrees geometry to one Mn(3) and one C(39) atom. Linkers: 24 CCCCCC(=O)[N][N]C(=O)c1ccccc1[O] ,8 c1cc(CCc2ccncc2)ccn1. Metal clusters: 24 [Mn]. The MOF has largest included sphere 8.51 A, density 1.01 g/cm3, surface area 5048.97 m2/g, accessible volume 0.60 cm3/g
XAFFUH_clean
CuC20NH12O4 crystallizes in the tetragonal P4/mnc space group. There are two inequivalent Cu sites. In the first Cu site, Cu(1) is bonded in a distorted rectangular see-saw-like geometry to two equivalent O(1) and two equivalent O(4) atoms. Both Cu(1)-O(1) bond lengths are 1.96 Å. Both Cu(1)-O(4) bond lengths are 1.96 Å. In the second Cu site, Cu(2) is bonded in a distorted rectangular see-saw-like geometry to two equivalent O(2) and two equivalent O(3) atoms. Both Cu(2)-O(2) bond lengths are 1.96 Å. Both Cu(2)-O(3) bond lengths are 1.97 Å. There are twenty-two inequivalent C sites. In the first C site, C(1) is bonded in a distorted trigonal planar geometry to one C(14), one C(21), and one H(1) atom. The C(1)-C(14) bond length is 1.35 Å. The C(1)-C(21) bond length is 1.38 Å. The C(1)-H(1) bond length is 0.93 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(17), one C(4), and one C(9) atom. The C(2)-C(17) bond length is 1.49 Å. The C(2)-C(4) bond length is 1.38 Å. The C(2)-C(9) bond length is 1.38 Å. In the third C site, C(3) is bonded in a distorted trigonal planar geometry to one C(12), one C(16), and one N(2) atom. The C(3)-C(12) bond length is 1.35 Å. The C(3)-C(16) bond length is 1.39 Å. The C(3)-N(2) bond length is 1.42 Å. In the fourth C site, C(4) is bonded in a distorted trigonal planar geometry to one C(12), one C(2), and one H(2) atom. The C(4)-C(12) bond length is 1.39 Å. The C(4)-H(2) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(15), one C(7), and one N(1) atom. The C(5)-C(15) bond length is 1.38 Å. The C(5)-C(7) bond length is 1.36 Å. The C(5)-N(1) bond length is 1.43 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(11), one C(18), and one C(8) atom. The C(6)-C(11) bond length is 1.37 Å. The C(6)-C(18) bond length is 1.48 Å. The C(6)-C(8) bond length is 1.39 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(5), one C(8), and one H(3) atom. The C(7)-C(8) bond length is 1.38 Å. The C(7)-H(3) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a distorted trigonal planar geometry to one C(6), one C(7), and one H(4) atom. The C(8)-H(4) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a distorted trigonal planar geometry to one C(16), one C(2), and one H(5) atom. The C(9)-C(16) bond length is 1.37 Å. The C(9)-H(5) bond length is 0.93 Å. In the tenth C site, C(10) is bonded in a distorted trigonal planar geometry to one C(13), one C(20), and one H(6) atom. The C(10)-C(13) bond length is 1.41 Å. The C(10)-C(20) bond length is 1.36 Å. The C(10)-H(6) bond length is 0.93 Å. In the eleventh C site, C(11) is bonded in a distorted trigonal planar geometry to one C(15), one C(6), and one H(7) atom. The C(11)-C(15) bond length is 1.39 Å. The C(11)-H(7) bond length is 0.93 Å. In the twelfth C site, C(12) is bonded in a distorted single-bond geometry to one C(3), one C(4), and one H(8) atom. The C(12)-H(8) bond length is 0.93 Å. In the thirteenth C site, C(13) is bonded in a distorted single-bond geometry to one C(10), one C(19), and one H(9) atom. The C(13)-C(19) bond length is 1.33 Å. The C(13)-H(9) bond length is 0.93 Å. In the fourteenth C site, C(14) is bonded in a distorted single-bond geometry to one C(1), one C(22), and one H(10) atom. The C(14)-C(22) bond length is 1.36 Å. The C(14)-H(10) bond length is 0.93 Å. In the fifteenth C site, C(15) is bonded in a distorted single-bond geometry to one C(11), one C(5), and one H(11) atom. The C(15)-H(11) bond length is 0.93 Å. In the sixteenth C site, C(16) is bonded in a distorted single-bond geometry to one C(3), one C(9), and one H(12) atom. The C(16)-H(12) bond length is 0.93 Å. In the seventeenth C site, C(17) is bonded in a bent 120 degrees geometry to one C(2), one O(1), and one O(3) atom. The C(17)-O(1) bond length is 1.26 Å. The C(17)-O(3) bond length is 1.25 Å. In the eighteenth C site, C(18) is bonded in a bent 120 degrees geometry to one C(6), one O(2), and one O(4) atom. The C(18)-O(2) bond length is 1.24 Å. The C(18)-O(4) bond length is 1.27 Å. In the nineteenth C site, C(19) is bonded in a distorted trigonal planar geometry to two equivalent C(13) and one N(1) atom. The C(19)-N(1) bond length is 1.43 Å. In the twentieth C site, C(20) is bonded in a trigonal planar geometry to one C(21) and two equivalent C(10) atoms. The C(20)-C(21) bond length is 1.46 Å. In the twenty-first C site, C(21) is bonded in a trigonal planar geometry to one C(20) and two equivalent C(1) atoms. In the twenty-second C site, C(22) is bonded in a distorted trigonal planar geometry to two equivalent C(14) and one N(2) atom. The C(22)-N(2) bond length is 1.41 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one C(19) and two equivalent C(5) atoms. In the second N site, N(2) is bonded in a trigonal planar geometry to one C(22) and two equivalent C(3) atoms. There are twelve inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(7) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(8) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(9) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(10) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(11) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(12) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(13) atom. In the tenth H site, H(10) is bonded in a single-bond geometry to one C(14) atom. In the eleventh H site, H(11) is bonded in a single-bond geometry to one C(15) atom. In the twelfth H site, H(12) is bonded in a single-bond geometry to one C(16) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Cu(1) and one C(17) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one Cu(2) and one C(18) atom. In the third O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Cu(2) and one C(17) atom. In the fourth O site, O(4) is bonded in a distorted bent 120 degrees geometry to one Cu(1) and one C(18) atom. Linkers: 8 [O]C(=O)c1ccc(N(c2ccc(C([O])=O)cc2)c2ccc(-c3ccc(N(c4ccc(C([O])=O)cc4)c4ccc(C([O])=O)cc4)cc3)cc2)cc1. Metal clusters: 8 [C]1O[Cu]234O[C]O[Cu]2(O1)(O[C]O3)O[C]O4. RCSR code: ssb. The MOF has largest included sphere 23.73 A, density 0.33 g/cm3, surface area 4344.81 m2/g, accessible volume 2.55 cm3/g
JUVWUU_clean
MnH4(C5O2)2(CH)2 crystallizes in the monoclinic P2_1/c space group. The structure consists of eight 02329_fluka molecules inside a MnH4(C5O2)2 framework. In the MnH4(C5O2)2 framework, Mn(1) is bonded in a trigonal pyramidal geometry to one O(1), one O(2), one O(3), and one O(4) atom. The Mn(1)-O(1) bond length is 2.10 Å. The Mn(1)-O(2) bond length is 2.14 Å. The Mn(1)-O(3) bond length is 2.10 Å. The Mn(1)-O(4) bond length is 2.13 Å. There are ten inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(2), one C(6), and one C(7) atom. The C(1)-C(2) bond length is 1.42 Å. The C(1)-C(6) bond length is 1.43 Å. The C(1)-C(7) bond length is 1.43 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(5), and one C(8) atom. The C(2)-C(5) bond length is 1.51 Å. The C(2)-C(8) bond length is 1.38 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(10), one C(4), and one C(6) atom. The C(3)-C(10) bond length is 1.51 Å. The C(3)-C(4) bond length is 1.37 Å. The C(3)-C(6) bond length is 1.43 Å. In the fourth C site, C(4) is bonded in a single-bond geometry to one C(3) and one H(1) atom. The C(4)-H(1) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(2), and one O(4) atom. The C(5)-O(2) bond length is 1.26 Å. The C(5)-O(4) bond length is 1.26 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(9) atom. The C(6)-C(9) bond length is 1.42 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(1) and one H(2) atom. The C(7)-H(2) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a single-bond geometry to one C(2) and one H(3) atom. The C(8)-H(3) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a distorted single-bond geometry to one C(6) and one H(4) atom. The C(9)-H(4) bond length is 0.93 Å. In the tenth C site, C(10) is bonded in a distorted bent 120 degrees geometry to one C(3), one O(1), and one O(3) atom. The C(10)-O(1) bond length is 1.25 Å. The C(10)-O(3) bond length is 1.27 Å. There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(4) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(7) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(8) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(9) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 150 degrees geometry to one Mn(1) and one C(10) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(5) atom. In the third O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Mn(1) and one C(10) atom. In the fourth O site, O(4) is bonded in a distorted bent 120 degrees geometry to one Mn(1) and one C(5) atom. Linkers: 4 [O]C(=O)c1ccc(C([O])=O)c2ccccc12. Metal clusters: 4 [Mn]. The MOF has largest included sphere 4.05 A, density 1.23 g/cm3, surface area 4200.34 m2/g, accessible volume 0.39 cm3/g
HELDEJ_SL
Zn3C30H26(N6O7)2(CH2)6(C2NH2O)6 is Indium-derived structured and crystallizes in the triclinic P-1 space group. The structure is zero-dimensional and consists of six 02329_fluka molecules, two trimethyl isocyanurate molecules, and one Zn3C30H26(N6O7)2 cluster. In the Zn3C30H26(N6O7)2 cluster, there are two inequivalent Zn sites. In the first Zn site, Zn(1) is bonded in a 5-coordinate geometry to one N(4), one O(1), one O(2), one O(3), and one O(6) atom. The Zn(1)-N(4) bond length is 2.08 Å. The Zn(1)-O(1) bond length is 2.02 Å. The Zn(1)-O(2) bond length is 2.51 Å. The Zn(1)-O(3) bond length is 1.94 Å. The Zn(1)-O(6) bond length is 1.96 Å. In the second Zn site, Zn(2) is bonded in an octahedral geometry to two equivalent N(7), two equivalent O(10), and two equivalent O(5) atoms. Both Zn(2)-N(7) bond lengths are 2.10 Å. Both Zn(2)-O(10) bond lengths are 2.14 Å. Both Zn(2)-O(5) bond lengths are 2.12 Å. There are fifteen inequivalent C sites. In the first C site, C(1) is bonded in a distorted single-bond geometry to one C(2) and one H(2) atom. The C(1)-C(2) bond length is 1.39 Å. The C(1)-H(2) bond length is 0.93 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(4) atom. The C(2)-C(3) bond length is 1.38 Å. The C(2)-C(4) bond length is 1.48 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2) and one H(3) atom. The C(3)-H(3) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a 3-coordinate geometry to one C(2); one N(9); and two equivalent H(4,5) atoms. The C(4)-N(9) bond length is 1.48 Å. Both C(4)-H(4,5) bond lengths are 0.97 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one N(7), one N(8), and one H(25) atom. The C(5)-N(7) bond length is 1.36 Å. The C(5)-N(8) bond length is 1.30 Å. The C(5)-H(25) bond length is 1.14 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one N(7), one N(9), and one H(6) atom. The C(6)-N(7) bond length is 1.33 Å. The C(6)-N(9) bond length is 1.33 Å. The C(6)-H(6) bond length is 0.93 Å. In the seventh C site, C(7) is bonded in a trigonal planar geometry to one N(4), one N(5), and one H(24) atom. The C(7)-N(4) bond length is 1.34 Å. The C(7)-N(5) bond length is 1.32 Å. The C(7)-H(24) bond length is 1.14 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one N(4), one N(6), and one H(7) atom. The C(8)-N(4) bond length is 1.31 Å. The C(8)-N(6) bond length is 1.31 Å. The C(8)-H(7) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a 3-coordinate geometry to one C(10); one N(6); and two equivalent H(8,9) atoms. The C(9)-C(10) bond length is 1.51 Å. The C(9)-N(6) bond length is 1.47 Å. Both C(9)-H(8,9) bond lengths are 0.97 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(11), one C(12), and one C(9) atom. The C(10)-C(11) bond length is 1.38 Å. The C(10)-C(12) bond length is 1.37 Å. In the eleventh C site, C(11) is bonded in a distorted single-bond geometry to one C(10) and one H(10) atom. The C(11)-H(10) bond length is 0.93 Å. In the twelfth C site, C(12) is bonded in a distorted single-bond geometry to one C(10) and one H(11) atom. The C(12)-H(11) bond length is 0.93 Å. In the thirteenth C site, C(13) is bonded in a distorted bent 120 degrees geometry to one O(5) and one O(6) atom. The C(13)-O(5) bond length is 1.24 Å. The C(13)-O(6) bond length is 1.26 Å. In the fourteenth C site, C(21) is bonded in a distorted bent 120 degrees geometry to one O(1) and one O(2) atom. The C(21)-O(1) bond length is 1.26 Å. The C(21)-O(2) bond length is 1.19 Å. In the fifteenth C site, C(24) is bonded in a distorted bent 120 degrees geometry to one O(3) and one O(4) atom. The C(24)-O(3) bond length is 1.23 Å. The C(24)-O(4) bond length is 1.23 Å. There are six inequivalent N sites. In the first N site, N(4) is bonded in a trigonal planar geometry to one Zn(1), one C(7), and one C(8) atom. In the second N site, N(5) is bonded in a distorted water-like geometry to one C(7) and one N(6) atom. The N(5)-N(6) bond length is 1.35 Å. In the third N site, N(6) is bonded in a distorted trigonal planar geometry to one C(8), one C(9), and one N(5) atom. In the fourth N site, N(7) is bonded in a distorted trigonal planar geometry to one Zn(2), one C(5), and one C(6) atom. In the fifth N site, N(8) is bonded in a distorted water-like geometry to one C(5) and one N(9) atom. The N(8)-N(9) bond length is 1.34 Å. In the sixth N site, N(9) is bonded in a distorted trigonal planar geometry to one C(4), one C(6), and one N(8) atom. There are eleven inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one O(10) atom. The H(1)-O(10) bond length is 0.82 Å. In the second H site, H(2) is bonded in a single-bond geometry to one C(1) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(3) atom. In the fourth H site, H(4,5) is bonded in a single-bond geometry to one C(4) atom. In the fifth H site, H(6) is bonded in a single-bond geometry to one C(6) atom. In the sixth H site, H(7) is bonded in a single-bond geometry to one C(8) atom. In the seventh H site, H(8,9) is bonded in a single-bond geometry to one C(9) atom. In the eighth H site, H(10) is bonded in a single-bond geometry to one C(11) atom. In the ninth H site, H(11) is bonded in a single-bond geometry to one C(12) atom. In the tenth H site, H(24) is bonded in a single-bond geometry to one C(7) atom. In the eleventh H site, H(25) is bonded in a single-bond geometry to one C(5) atom. There are seven inequivalent O sites. In the first O site, O(10) is bonded in a distorted water-like geometry to one Zn(2) and one H(1) atom. In the second O site, O(1) is bonded in a water-like geometry to one Zn(1) and one C(21) atom. In the third O site, O(2) is bonded in a single-bond geometry to one Zn(1) and one C(21) atom. In the fourth O site, O(3) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(24) atom. In the fifth O site, O(4) is bonded in a single-bond geometry to one C(24) atom. In the sixth O site, O(5) is bonded in a distorted bent 150 degrees geometry to one Zn(2) and one C(13) atom. In the seventh O site, O(6) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(13) atom. Linkers: 1 [CH]1N=C[N]N1Cc1ccc(CN2[CH]N=C[N]2)cc1 ,2 [O]C(=O)CCn1c(=O)n(CCC([O])=O)c(=O)n(CCC([O])=O)c1=O ,2 [c]1ncn(Cc2ccc(CN3[CH]N=C[N]3)cc2)n1 ,1 [CH]1N=C[N]N1Cc1ccc(Cn2cncn2)cc1. Metal clusters: 1 O=[C]O[Zn](O[C]O[Zn](O)(O)O[C]O[Zn](O[C]=O)O[C]=O)O[C]=O. The MOF has largest included sphere 5.22 A, density 1.40 g/cm3, surface area 4673.65 m2/g, accessible volume 0.21 cm3/g
ZECKID_clean
CuC6H6(NO)2 crystallizes in the tetragonal I4_1md space group. Cu(1) is bonded in a distorted rectangular see-saw-like geometry to two equivalent N(1) and two equivalent O(1) atoms. Both Cu(1)-N(1) bond lengths are 1.97 Å. Both Cu(1)-O(1) bond lengths are 2.01 Å. There are four inequivalent C sites. In the first C site, C(3) is bonded in a trigonal planar geometry to one C(4) and two equivalent C(1) atoms. The C(3)-C(4) bond length is 1.43 Å. Both C(3)-C(1) bond lengths are 1.40 Å. In the second C site, C(4) is bonded in a distorted bent 120 degrees geometry to one C(3) and two equivalent O(1) atoms. Both C(4)-O(1) bond lengths are 1.27 Å. In the third C site, C(1) is bonded in a 3-coordinate geometry to one C(2), one C(3), and one N(1) atom. The C(1)-C(2) bond length is 1.50 Å. The C(1)-N(1) bond length is 1.33 Å. In the fourth C site, C(2) is bonded in a trigonal non-coplanar geometry to one C(1) and three equivalent H(1,2,3) atoms. All C(2)-H(1,2,3) bond lengths are 0.97 Å. N(1) is bonded in a 2-coordinate geometry to one Cu(1) and one C(1) atom. H(1,2,3) is bonded in a single-bond geometry to one C(2) atom. O(1) is bonded in an L-shaped geometry to one Cu(1) and one C(4) atom. Linkers: 3 CC1=N[N]C(C)=C1C([O])=O ,1 CC1=NN=C(C)[C]1C([O])=O. Metal clusters: 2 [C]1O[Cu]2(N=N[Cu]3(N=N2)O[C]O3)O1. The MOF has largest included sphere 10.34 A, density 0.63 g/cm3, surface area 3913.72 m2/g, accessible volume 1.20 cm3/g
HEGNUD_clean
CrGa3C6P4H22(N3O8)2(CH2)2 crystallizes in the trigonal R3 space group. The structure consists of eighteen 02329_fluka molecules inside a CrGa3C6P4H22(N3O8)2 framework. In the CrGa3C6P4H22(N3O8)2 framework, Cr(1) is bonded to one N(1), one N(2), one N(3), one O(1), one O(15), and one O(16) atom to form CrN3O3 octahedra that share a cornercorner with one P(1)O4 tetrahedra and corners with two equivalent P(4)O4 tetrahedra. The Cr(1)-N(1) bond length is 2.06 Å. The Cr(1)-N(2) bond length is 2.05 Å. The Cr(1)-N(3) bond length is 2.06 Å. The Cr(1)-O(1) bond length is 1.94 Å. The Cr(1)-O(15) bond length is 2.00 Å. The Cr(1)-O(16) bond length is 1.90 Å. There are two inequivalent Ga sites. In the first Ga site, Ga(1,3) is bonded to one O(11), one O(2), one O(5), and one O(6) atom to form GaO4 tetrahedra that share a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(3)O4 tetrahedra, and corners with two equivalent P(2)O4 tetrahedra. The Ga(1,3)-O(11) bond length is 1.83 Å. The Ga(1,3)-O(2) bond length is 1.82 Å. The Ga(1,3)-O(5) bond length is 1.84 Å. The Ga(1,3)-O(6) bond length is 1.84 Å. In the second Ga site, Ga(2) is bonded to one N(4), one N(5), one N(6), one O(7), one O(8), and one O(9) atom to form GaN3O3 octahedra that share a cornercorner with one P(3)O4 tetrahedra and corners with two equivalent P(2)O4 tetrahedra. The Ga(2)-N(4) bond length is 2.06 Å. The Ga(2)-N(5) bond length is 2.05 Å. The Ga(2)-N(6) bond length is 2.06 Å. The Ga(2)-O(7) bond length is 2.00 Å. The Ga(2)-O(8) bond length is 1.90 Å. The Ga(2)-O(9) bond length is 1.94 Å. There are six inequivalent C sites. In the first C site, C(1) is bonded in a 3-coordinate geometry to one N(1), one H(6), and one H(7) atom. The C(1)-N(1) bond length is 1.49 Å. The C(1)-H(6) bond length is 1.03 Å. The C(1)-H(7) bond length is 0.92 Å. In the second C site, C(2) is bonded in a 3-coordinate geometry to one N(2); one H(8,21); and one H(9,22) atom. The C(2)-N(2) bond length is 1.45 Å. The C(2)-H(8,21) bond length is 1.02 Å. The C(2)-H(9,22) bond length is 0.96 Å. In the third C site, C(3) is bonded in a 3-coordinate geometry to one N(2); one H(10,23); and one H(11,24) atom. The C(3)-N(2) bond length is 1.46 Å. The C(3)-H(10,23) bond length is 0.95 Å. The C(3)-H(11,24) bond length is 1.00 Å. In the fourth C site, C(5) is bonded in a 3-coordinate geometry to one N(4), one H(19), and one H(20) atom. The C(5)-N(4) bond length is 1.49 Å. The C(5)-H(19) bond length is 1.03 Å. The C(5)-H(20) bond length is 0.92 Å. In the fifth C site, C(6) is bonded in a 3-coordinate geometry to one N(5); one H(8,21); and one H(9,22) atom. The C(6)-N(5) bond length is 1.45 Å. The C(6)-H(8,21) bond length is 1.02 Å. The C(6)-H(9,22) bond length is 0.96 Å. In the sixth C site, C(7) is bonded in a 3-coordinate geometry to one N(5); one H(10,23); and one H(11,24) atom. The C(7)-N(5) bond length is 1.46 Å. The C(7)-H(10,23) bond length is 0.95 Å. The C(7)-H(11,24) bond length is 1.00 Å. There are four inequivalent P sites. In the first P site, P(1) is bonded to one O(1), one O(2), one O(3), and one O(4) atom to form PO4 tetrahedra that share a cornercorner with one Cr(1)N3O3 octahedra and corners with two equivalent Ga(1,3)O4 tetrahedra. The corner-sharing octahedral tilt angles are 43°. The P(1)-O(1) bond length is 1.53 Å. The P(1)-O(2) bond length is 1.56 Å. The P(1)-O(3) bond length is 1.57 Å. The P(1)-O(4) bond length is 1.48 Å. In the second P site, P(2) is bonded to one O(5), one O(6), one O(7), and one O(8) atom to form PO4 tetrahedra that share corners with two equivalent Ga(2)N3O3 octahedra and corners with two equivalent Ga(1,3)O4 tetrahedra. The corner-sharing octahedral tilt angles range from 34-41°. The P(2)-O(5) bond length is 1.54 Å. The P(2)-O(6) bond length is 1.56 Å. The P(2)-O(7) bond length is 1.50 Å. The P(2)-O(8) bond length is 1.52 Å. In the third P site, P(3) is bonded to one O(10), one O(11), one O(12), and one O(9) atom to form PO4 tetrahedra that share a cornercorner with one Ga(2)N3O3 octahedra and corners with two equivalent Ga(1,3)O4 tetrahedra. The corner-sharing octahedral tilt angles are 43°. The P(3)-O(10) bond length is 1.56 Å. The P(3)-O(11) bond length is 1.57 Å. The P(3)-O(12) bond length is 1.48 Å. The P(3)-O(9) bond length is 1.53 Å. In the fourth P site, P(4) is bonded to one O(13), one O(14), one O(15), and one O(16) atom to form PO4 tetrahedra that share corners with two equivalent Cr(1)N3O3 octahedra and corners with two equivalent Ga(1,3)O4 tetrahedra. The corner-sharing octahedral tilt angles range from 34-41°. The P(4)-O(13) bond length is 1.54 Å. The P(4)-O(14) bond length is 1.56 Å. The P(4)-O(15) bond length is 1.50 Å. The P(4)-O(16) bond length is 1.52 Å. There are six inequivalent N sites. In the first N site, N(4) is bonded in a 2-coordinate geometry to one Ga(2), one C(5), one H(14), and one H(15) atom. The N(4)-H(14) bond length is 1.01 Å. The N(4)-H(15) bond length is 0.86 Å. In the second N site, N(5) is bonded in a 4-coordinate geometry to one Ga(2), one C(6), one C(7), and one H(16) atom. The N(5)-H(16) bond length is 0.99 Å. In the third N site, N(6) is bonded in a 2-coordinate geometry to one Ga(2), one H(17), and one H(18) atom. The N(6)-H(17) bond length is 0.82 Å. The N(6)-H(18) bond length is 1.05 Å. In the fourth N site, N(1) is bonded in a 4-coordinate geometry to one Cr(1), one C(1), one H(1), and one H(2) atom. The N(1)-H(1) bond length is 1.01 Å. The N(1)-H(2) bond length is 0.86 Å. In the fifth N site, N(2) is bonded in a 4-coordinate geometry to one Cr(1), one C(2), one C(3), and one H(3) atom. The N(2)-H(3) bond length is 0.99 Å. In the sixth N site, N(3) is bonded in a 2-coordinate geometry to one Cr(1), one H(4), and one H(5) atom. The N(3)-H(4) bond length is 0.82 Å. The N(3)-H(5) bond length is 1.05 Å. There are eighteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one N(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one N(1) atom. In the third H site, H(3) is bonded in a single-bond geometry to one N(2) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one N(3) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one N(3) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(1) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(1) atom. In the eighth H site, H(8,21) is bonded in a single-bond geometry to one C(2) atom. In the ninth H site, H(9,22) is bonded in a single-bond geometry to one C(2) atom. In the tenth H site, H(10,23) is bonded in a single-bond geometry to one C(3) atom. In the eleventh H site, H(11,24) is bonded in a single-bond geometry to one C(3) atom. In the twelfth H site, H(14) is bonded in a single-bond geometry to one N(4) atom. In the thirteenth H site, H(15) is bonded in a single-bond geometry to one N(4) atom. In the fourteenth H site, H(16) is bonded in a single-bond geometry to one N(5) atom. In the fifteenth H site, H(17) is bonded in a single-bond geometry to one N(6) atom. In the sixteenth H site, H(18) is bonded in a single-bond geometry to one N(6) atom. In the seventeenth H site, H(19) is bonded in a single-bond geometry to one C(5) atom. In the eighteenth H site, H(20) is bonded in a single-bond geometry to one C(5) atom. There are sixteen inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 150 degrees geometry to one Cr(1) and one P(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Ga(1,3) and one P(1) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Ga(1,3) and one P(1) atom. The O(3)-Ga(1,3) bond length is 1.83 Å. In the fourth O site, O(4) is bonded in a single-bond geometry to one P(1) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Ga(1,3) and one P(2) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one Ga(1,3) and one P(2) atom. In the seventh O site, O(7) is bonded in a bent 150 degrees geometry to one Ga(2) and one P(2) atom. In the eighth O site, O(8) is bonded in a bent 150 degrees geometry to one Ga(2) and one P(2) atom. In the ninth O site, O(11) is bonded in a bent 120 degrees geometry to one Ga(1,3) and one P(3) atom. In the tenth O site, O(12) is bonded in a single-bond geometry to one P(3) atom. In the eleventh O site, O(13) is bonded in a bent 120 degrees geometry to one Ga(1,3) and one P(4) atom. The O(13)-Ga(1,3) bond length is 1.84 Å. In the twelfth O site, O(14) is bonded in a bent 120 degrees geometry to one Ga(1,3) and one P(4) atom. The O(14)-Ga(1,3) bond length is 1.84 Å. In the thirteenth O site, O(15) is bonded in a bent 150 degrees geometry to one Cr(1) and one P(4) atom. In the fourteenth O site, O(16) is bonded in a bent 150 degrees geometry to one Cr(1) and one P(4) atom. In the fifteenth O site, O(10) is bonded in a bent 120 degrees geometry to one Ga(1,3) and one P(3) atom. The O(10)-Ga(1,3) bond length is 1.82 Å. In the sixteenth O site, O(9) is bonded in a distorted bent 150 degrees geometry to one Ga(2) and one P(3) atom. Linkers: 36 [O]P([O])([O])=O ,3 NCCNCCN. Metal clusters: 9 [Cr] ,27 [Ga]. The MOF has largest included sphere 5.95 A, density 1.93 g/cm3, surface area 2837.18 m2/g, accessible volume 0.21 cm3/g
YIGFIF_clean
Na2Mo6C5P3NH6O23 crystallizes in the monoclinic P2_1/m space group. Na(1) is bonded to one O(1), one O(7), one O(9), and two equivalent O(10) atoms to form distorted NaO5 square pyramids that share a cornercorner with one P(1)CO3 tetrahedra and an edgeedge with one Na(1)O5 square pyramid. The Na(1)-O(1) bond length is 2.44 Å. The Na(1)-O(7) bond length is 2.38 Å. The Na(1)-O(9) bond length is 2.37 Å. There is one shorter (2.37 Å) and one longer (2.44 Å) Na(1)-O(10) bond length. There are three inequivalent Mo sites. In the first Mo site, Mo(1) is bonded in a 5-coordinate geometry to one O(1), one O(11), one O(2), one O(3), and one O(4) atom. The Mo(1)-O(1) bond length is 1.70 Å. The Mo(1)-O(11) bond length is 1.93 Å. The Mo(1)-O(2) bond length is 1.94 Å. The Mo(1)-O(3) bond length is 2.36 Å. The Mo(1)-O(4) bond length is 2.18 Å. In the second Mo site, Mo(2) is bonded in a 4-coordinate geometry to one O(2), one O(3), one O(5), and one O(6) atom. The Mo(2)-O(2) bond length is 1.94 Å. The Mo(2)-O(3) bond length is 2.30 Å. The Mo(2)-O(5) bond length is 1.92 Å. The Mo(2)-O(6) bond length is 2.30 Å. In the third Mo site, Mo(3) is bonded in a 5-coordinate geometry to one O(12), one O(13), one O(5), one O(7), and one O(8) atom. The Mo(3)-O(12) bond length is 1.94 Å. The Mo(3)-O(13) bond length is 2.33 Å. The Mo(3)-O(5) bond length is 1.90 Å. The Mo(3)-O(7) bond length is 1.72 Å. The Mo(3)-O(8) bond length is 2.29 Å. There are four inequivalent C sites. In the first C site, C(1) is bonded to one P(1); one N(1); and two equivalent H(1,2) atoms to form distorted corner-sharing CPH2N tetrahedra. The C(1)-P(1) bond length is 1.83 Å. The C(1)-N(1) bond length is 1.51 Å. Both C(1)-H(1,2) bond lengths are 0.97 Å. In the second C site, C(2) is bonded to one P(2), one N(1), and two equivalent H(3) atoms to form distorted corner-sharing CPH2N tetrahedra. The C(2)-P(2) bond length is 1.81 Å. The C(2)-N(1) bond length is 1.53 Å. Both C(2)-H(3) bond lengths are 1.08 Å. In the third C site, C(3) is bonded in a bent 120 degrees geometry to one C(4) and two equivalent O(8) atoms. The C(3)-C(4) bond length is 1.49 Å. Both C(3)-O(8) bond lengths are 1.28 Å. In the fourth C site, C(4) is bonded in a single-bond geometry to one C(3) atom. There are two inequivalent P sites. In the first P site, P(1) is bonded to one C(1), one O(4), one O(6), and one O(9) atom to form PCO3 tetrahedra that share a cornercorner with one Na(1)O5 square pyramid. The P(1)-O(4) bond length is 1.53 Å. The P(1)-O(6) bond length is 1.52 Å. The P(1)-O(9) bond length is 1.51 Å. In the second P site, P(2) is bonded in a tetrahedral geometry to one C(2), one O(13), and two equivalent O(3) atoms. The P(2)-O(13) bond length is 1.54 Å. Both P(2)-O(3) bond lengths are 1.52 Å. N(1) is bonded in a trigonal non-coplanar geometry to one C(2) and two equivalent C(1) atoms. There are two inequivalent H sites. In the first H site, H(1,2) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(3) is bonded in a single-bond geometry to one C(2) atom. There are thirteen inequivalent O sites. In the first O site, O(1) is bonded in a bent 150 degrees geometry to one Na(1) and one Mo(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Mo(1) and one Mo(2) atom. In the third O site, O(3) is bonded in a distorted single-bond geometry to one Mo(1), one Mo(2), and one P(2) atom. In the fourth O site, O(4) is bonded in a 2-coordinate geometry to one Mo(1) and one P(1) atom. In the fifth O site, O(5) is bonded in a bent 150 degrees geometry to one Mo(2) and one Mo(3) atom. In the sixth O site, O(6) is bonded in a single-bond geometry to one Mo(2) and one P(1) atom. In the seventh O site, O(7) is bonded in a bent 120 degrees geometry to one Na(1) and one Mo(3) atom. In the eighth O site, O(8) is bonded in a distorted single-bond geometry to one Mo(3) and one C(3) atom. In the ninth O site, O(9) is bonded in a distorted bent 120 degrees geometry to one Na(1) and one P(1) atom. In the tenth O site, O(10) is bonded in an L-shaped geometry to two equivalent Na(1) atoms. In the eleventh O site, O(11) is bonded in a bent 150 degrees geometry to two equivalent Mo(1) atoms. In the twelfth O site, O(12) is bonded in a bent 120 degrees geometry to two equivalent Mo(3) atoms. In the thirteenth O site, O(13) is bonded in a distorted single-bond geometry to two equivalent Mo(3) and one P(2) atom. Linkers: 2 [O]P([O])(=O)CN(CP([O])([O])=O)CP([O])([O])=O. Metal clusters: 4 [Na] ,12 [Mo]. The MOF has largest included sphere 4.44 A, density 1.97 g/cm3, surface area 2435.87 m2/g, accessible volume 0.19 cm3/g
QEBKUF_SL
(Zn3H16(C12O7)2)4(C7H4)21 is Indium-derived structured and crystallizes in the tetragonal I-42d space group. The structure is zero-dimensional and consists of twelve C7H4 clusters and sixteen Zn3H16(C12O7)2 clusters. In four of the C7H4 clusters, there are thirteen inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(11), one C(2), and one C(6) atom. The C(1)-C(11) bond length is 1.50 Å. The C(1)-C(2) bond length is 1.39 Å. The C(1)-C(6) bond length is 1.39 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(1) and one H(1,4) atom. The C(2)-H(1,4) bond length is 0.93 Å. In the third C site, C(6) is bonded in a distorted single-bond geometry to one C(1) and one H(1,4) atom. The C(6)-H(1,4) bond length is 0.93 Å. In the fourth C site, C(7) is bonded in a trigonal planar geometry to one C(12), one C(16), and one C(8) atom. The C(7)-C(12) bond length is 1.39 Å. The C(7)-C(16) bond length is 1.52 Å. The C(7)-C(8) bond length is 1.39 Å. In the fifth C site, C(8) is bonded in a distorted single-bond geometry to one C(7), one C(9), and one H(5) atom. The C(8)-C(9) bond length is 1.39 Å. The C(8)-H(5) bond length is 0.93 Å. In the sixth C site, C(9) is bonded in a trigonal planar geometry to one C(10), one C(62), and one C(8) atom. The C(9)-C(10) bond length is 1.39 Å. The C(9)-C(62) bond length is 1.56 Å. In the seventh C site, C(10) is bonded in a distorted single-bond geometry to one C(11), one C(9), and one H(6) atom. The C(10)-C(11) bond length is 1.39 Å. The C(10)-H(6) bond length is 0.93 Å. In the eighth C site, C(11) is bonded in a trigonal planar geometry to one C(1), one C(10), and one C(12) atom. The C(11)-C(12) bond length is 1.39 Å. In the ninth C site, C(12) is bonded in a distorted single-bond geometry to one C(11), one C(7), and one H(7) atom. The C(12)-H(7) bond length is 0.93 Å. In the tenth C site, C(15) is bonded in a single-bond geometry to one C(16) and one H(9) atom. The C(15)-C(16) bond length is 1.39 Å. The C(15)-H(9) bond length is 0.93 Å. In the eleventh C site, C(16) is bonded in a trigonal planar geometry to one C(15), one C(17), and one C(7) atom. The C(16)-C(17) bond length is 1.39 Å. In the twelfth C site, C(17) is bonded in a distorted single-bond geometry to one C(16) and one H(10) atom. The C(17)-H(10) bond length is 0.93 Å. In the thirteenth C site, C(62) is bonded in a tetrahedral geometry to four equivalent C(9) atoms. There are six inequivalent H sites. In the first H site, H(1,4) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(5) is bonded in a single-bond geometry to one C(8) atom. In the third H site, H(6) is bonded in a single-bond geometry to one C(10) atom. In the fourth H site, H(7) is bonded in a single-bond geometry to one C(12) atom. In the fifth H site, H(9) is bonded in a single-bond geometry to one C(15) atom. In the sixth H site, H(10) is bonded in a single-bond geometry to one C(17) atom. In eight of the C7H4 clusters, there are twenty-five inequivalent C sites. In the first C site, C(19) is bonded in a trigonal planar geometry to one C(20), one C(24), and one C(27) atom. The C(19)-C(20) bond length is 1.39 Å. The C(19)-C(24) bond length is 1.39 Å. The C(19)-C(27) bond length is 1.53 Å. In the second C site, C(20) is bonded in a distorted single-bond geometry to one C(19) and one H(12,15) atom. The C(20)-H(12,15) bond length is 0.93 Å. In the third C site, C(24) is bonded in a distorted single-bond geometry to one C(19) and one H(12,15) atom. The C(24)-H(12,15) bond length is 0.93 Å. In the fourth C site, C(25) is bonded in a trigonal planar geometry to one C(26), one C(30), and one C(61) atom. The C(25)-C(26) bond length is 1.39 Å. The C(25)-C(30) bond length is 1.39 Å. The C(25)-C(61) bond length is 1.57 Å. In the fifth C site, C(26) is bonded in a distorted single-bond geometry to one C(25), one C(27), and one H(16) atom. The C(26)-C(27) bond length is 1.39 Å. The C(26)-H(16) bond length is 0.93 Å. In the sixth C site, C(27) is bonded in a trigonal planar geometry to one C(19), one C(26), and one C(28) atom. The C(27)-C(28) bond length is 1.39 Å. In the seventh C site, C(28) is bonded in a distorted single-bond geometry to one C(27), one C(29), and one H(17) atom. The C(28)-C(29) bond length is 1.39 Å. The C(28)-H(17) bond length is 0.93 Å. In the eighth C site, C(29) is bonded in a trigonal planar geometry to one C(28), one C(30), and one C(37) atom. The C(29)-C(30) bond length is 1.39 Å. The C(29)-C(37) bond length is 1.49 Å. In the ninth C site, C(30) is bonded in a distorted single-bond geometry to one C(25), one C(29), and one H(18) atom. The C(30)-H(18) bond length is 0.93 Å. In the tenth C site, C(31) is bonded in a trigonal planar geometry to one C(32), one C(36), and one C(55) atom. The C(31)-C(32) bond length is 1.39 Å. The C(31)-C(36) bond length is 1.39 Å. The C(31)-C(55) bond length is 1.50 Å. In the eleventh C site, C(32) is bonded in a distorted single-bond geometry to one C(31), one C(33), and one H(19) atom. The C(32)-C(33) bond length is 1.39 Å. The C(32)-H(19) bond length is 0.93 Å. In the twelfth C site, C(33) is bonded in a trigonal planar geometry to one C(32), one C(34), and one C(42) atom. The C(33)-C(34) bond length is 1.39 Å. The C(33)-C(42) bond length is 1.53 Å. In the thirteenth C site, C(34) is bonded in a distorted single-bond geometry to one C(33), one C(35), and one H(20) atom. The C(34)-C(35) bond length is 1.39 Å. The C(34)-H(20) bond length is 0.93 Å. In the fourteenth C site, C(35) is bonded in a trigonal planar geometry to one C(34), one C(36), and one C(61) atom. The C(35)-C(36) bond length is 1.39 Å. The C(35)-C(61) bond length is 1.56 Å. In the fifteenth C site, C(36) is bonded in a distorted single-bond geometry to one C(31), one C(35), and one H(21) atom. The C(36)-H(21) bond length is 0.93 Å. In the sixteenth C site, C(37) is bonded in a trigonal planar geometry to one C(29), one C(48), and one C(49) atom. The C(37)-C(48) bond length is 1.35 Å. The C(37)-C(49) bond length is 1.39 Å. In the seventeenth C site, C(42) is bonded in a trigonal planar geometry to one C(33), one C(43), and one C(59) atom. The C(42)-C(43) bond length is 1.40 Å. The C(42)-C(59) bond length is 1.29 Å. In the eighteenth C site, C(43) is bonded in a distorted single-bond geometry to one C(42) and one H(23) atom. The C(43)-H(23) bond length is 0.93 Å. In the nineteenth C site, C(48) is bonded in a distorted single-bond geometry to one C(37) and one H(26) atom. The C(48)-H(26) bond length is 0.93 Å. In the twentieth C site, C(49) is bonded in a distorted single-bond geometry to one C(37) and one H(27) atom. The C(49)-H(27) bond length is 0.93 Å. In the twenty-first C site, C(55) is bonded in a trigonal planar geometry to one C(31), one C(56), and one C(58) atom. The C(55)-C(56) bond length is 1.35 Å. The C(55)-C(58) bond length is 1.42 Å. In the twenty-second C site, C(56) is bonded in a distorted single-bond geometry to one C(55) and one H(30) atom. The C(56)-H(30) bond length is 0.93 Å. In the twenty-third C site, C(58) is bonded in a distorted single-bond geometry to one C(55) and one H(32) atom. The C(58)-H(32) bond length is 0.93 Å. In the twenty-fourth C site, C(59) is bonded in a distorted single-bond geometry to one C(42) and one H(34) atom. The C(59)-H(34) bond length is 0.93 Å. In the twenty-fifth C site, C(61) is bonded in a tetrahedral geometry to two equivalent C(25) and two equivalent C(35) atoms. There are thirteen inequivalent H sites. In the first H site, H(12,15) is bonded in a single-bond geometry to one C(20) atom. In the second H site, H(16) is bonded in a single-bond geometry to one C(26) atom. In the third H site, H(17) is bonded in a single-bond geometry to one C(28) atom. In the fourth H site, H(18) is bonded in a single-bond geometry to one C(30) atom. In the fifth H site, H(19) is bonded in a single-bond geometry to one C(32) atom. In the sixth H site, H(20) is bonded in a single-bond geometry to one C(34) atom. In the seventh H site, H(21) is bonded in a single-bond geometry to one C(36) atom. In the eighth H site, H(23) is bonded in a single-bond geometry to one C(43) atom. In the ninth H site, H(26) is bonded in a single-bond geometry to one C(48) atom. In the tenth H site, H(27) is bonded in a single-bond geometry to one C(49) atom. In the eleventh H site, H(30) is bonded in a single-bond geometry to one C(56) atom. In the twelfth H site, H(32) is bonded in a single-bond geometry to one C(58) atom. In the thirteenth H site, H(34) is bonded in a single-bond geometry to one C(59) atom. In each Zn3H16(C12O7)2 cluster, there are three inequivalent Zn sites. In the first Zn site, Zn(1) is bonded to one O(11), one O(2), one O(4), one O(5), one O(6), and one O(7) atom to form ZnO6 octahedra that share a cornercorner with one Zn(3)O4 tetrahedra and a cornercorner with one Zn(2)O5 trigonal bipyramid. The Zn(1)-O(11) bond length is 2.15 Å. The Zn(1)-O(2) bond length is 2.19 Å. The Zn(1)-O(4) bond length is 2.00 Å. The Zn(1)-O(5) bond length is 2.10 Å. The Zn(1)-O(6) bond length is 2.29 Å. The Zn(1)-O(7) bond length is 2.03 Å. In the second Zn site, Zn(2) is bonded to one O(1), one O(10), one O(3), one O(4), and one O(8) atom to form ZnO5 trigonal bipyramids that share a cornercorner with one Zn(1)O6 octahedra and a cornercorner with one Zn(3)O4 tetrahedra. The corner-sharing octahedral tilt angles are 76°. The Zn(2)-O(1) bond length is 2.14 Å. The Zn(2)-O(10) bond length is 1.97 Å. The Zn(2)-O(3) bond length is 1.96 Å. The Zn(2)-O(4) bond length is 2.12 Å. The Zn(2)-O(8) bond length is 1.97 Å. In the third Zn site, Zn(3) is bonded to one O(12), one O(13), one O(4), and one O(9) atom to form ZnO4 tetrahedra that share a cornercorner with one Zn(1)O6 octahedra and a cornercorner with one Zn(2)O5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 62°. The Zn(3)-O(12) bond length is 1.95 Å. The Zn(3)-O(13) bond length is 1.92 Å. The Zn(3)-O(4) bond length is 1.94 Å. The Zn(3)-O(9) bond length is 1.94 Å. There are twenty-four inequivalent C sites. In the first C site, C(3) is bonded in a distorted single-bond geometry to one C(4) and one H(2) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-H(2) bond length is 0.93 Å. In the second C site, C(4) is bonded in a trigonal planar geometry to one C(3), one C(5), and one C(60) atom. The C(4)-C(5) bond length is 1.39 Å. The C(4)-C(60) bond length is 1.49 Å. In the third C site, C(5) is bonded in a distorted single-bond geometry to one C(4) and one H(3) atom. The C(5)-H(3) bond length is 0.93 Å. In the fourth C site, C(13) is bonded in a trigonal planar geometry to one C(14), one C(18), and one C(39) atom. The C(13)-C(14) bond length is 1.39 Å. The C(13)-C(18) bond length is 1.39 Å. The C(13)-C(39) bond length is 1.54 Å. In the fifth C site, C(14) is bonded in a distorted single-bond geometry to one C(13) and one H(8,11) atom. The C(14)-H(8,11) bond length is 0.93 Å. In the sixth C site, C(18) is bonded in a distorted single-bond geometry to one C(13) and one H(8,11) atom. The C(18)-H(8,11) bond length is 0.93 Å. In the seventh C site, C(21) is bonded in a distorted single-bond geometry to one C(22) and one H(13,14) atom. The C(21)-C(22) bond length is 1.39 Å. The C(21)-H(13,14) bond length is 0.93 Å. In the eighth C site, C(22) is bonded in a trigonal planar geometry to one C(21), one C(23), and one C(38) atom. The C(22)-C(23) bond length is 1.39 Å. The C(22)-C(38) bond length is 1.53 Å. In the ninth C site, C(23) is bonded in a distorted single-bond geometry to one C(22) and one H(13,14) atom. The C(23)-H(13,14) bond length is 0.93 Å. In the tenth C site, C(38) is bonded in a distorted bent 120 degrees geometry to one C(22), one O(11), and one O(12) atom. The C(38)-O(11) bond length is 1.27 Å. The C(38)-O(12) bond length is 1.21 Å. In the eleventh C site, C(39) is bonded in a distorted bent 120 degrees geometry to one C(13), one O(2), and one O(3) atom. The C(39)-O(2) bond length is 1.20 Å. The C(39)-O(3) bond length is 1.24 Å. In the twelfth C site, C(40) is bonded in a trigonal planar geometry to one C(41), one C(44), and one C(45) atom. The C(40)-C(41) bond length is 1.24 Å. The C(40)-C(44) bond length is 1.28 Å. The C(40)-C(45) bond length is 1.50 Å. In the thirteenth C site, C(41) is bonded in a distorted single-bond geometry to one C(40) and one H(22) atom. The C(41)-H(22) bond length is 0.93 Å. In the fourteenth C site, C(44) is bonded in a distorted single-bond geometry to one C(40) and one H(24) atom. The C(44)-H(24) bond length is 0.93 Å. In the fifteenth C site, C(45) is bonded in a bent 120 degrees geometry to one C(40), one O(5), and one O(6) atom. The C(45)-O(5) bond length is 1.24 Å. The C(45)-O(6) bond length is 1.26 Å. In the sixteenth C site, C(46) is bonded in a trigonal planar geometry to one C(47), one C(50), and one C(51) atom. The C(46)-C(47) bond length is 1.36 Å. The C(46)-C(50) bond length is 1.36 Å. The C(46)-C(51) bond length is 1.44 Å. In the seventeenth C site, C(47) is bonded in a distorted single-bond geometry to one C(46) and one H(25) atom. The C(47)-H(25) bond length is 0.93 Å. In the eighteenth C site, C(52) is bonded in a distorted single-bond geometry to one C(53) and one H(29) atom. The C(52)-C(53) bond length is 1.39 Å. The C(52)-H(29) bond length is 0.93 Å. In the nineteenth C site, C(53) is bonded in a trigonal planar geometry to one C(52), one C(54), and one C(57) atom. The C(53)-C(54) bond length is 1.47 Å. The C(53)-C(57) bond length is 1.36 Å. In the twentieth C site, C(54) is bonded in a distorted bent 120 degrees geometry to one C(53), one O(10), and one O(9) atom. The C(54)-O(10) bond length is 1.24 Å. The C(54)-O(9) bond length is 1.27 Å. In the twenty-first C site, C(50) is bonded in a distorted single-bond geometry to one C(46) and one H(28) atom. The C(50)-H(28) bond length is 0.93 Å. In the twenty-second C site, C(57) is bonded in a distorted single-bond geometry to one C(53) and one H(31) atom. The C(57)-H(31) bond length is 0.93 Å. In the twenty-third C site, C(51) is bonded in a bent 120 degrees geometry to one C(46), one O(7), and one O(8) atom. The C(51)-O(7) bond length is 1.26 Å. The C(51)-O(8) bond length is 1.25 Å. In the twenty-fourth C site, C(60) is bonded in a bent 120 degrees geometry to one C(4), one O(13), and one O(14) atom. The C(60)-O(13) bond length is 1.25 Å. The C(60)-O(14) bond length is 1.23 Å. There are fourteen inequivalent H sites. In the first H site, H(33) is bonded in a single-bond geometry to one O(1) atom. The H(33)-O(1) bond length is 1.11 Å. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(5) atom. In the fourth H site, H(8,11) is bonded in a single-bond geometry to one C(14) atom. In the fifth H site, H(13,14) is bonded in a single-bond geometry to one C(21) atom. In the sixth H site, H(22) is bonded in a single-bond geometry to one C(41) atom. In the seventh H site, H(24) is bonded in a single-bond geometry to one C(44) atom. In the eighth H site, H(25) is bonded in a single-bond geometry to one C(47) atom. In the ninth H site, H(28) is bonded in a single-bond geometry to one C(50) atom. In the tenth H site, H(29) is bonded in a single-bond geometry to one C(52) atom. In the eleventh H site, H(31) is bonded in a single-bond geometry to one C(57) atom. In the twelfth H site, H(35) is bonded in a single-bond geometry to one O(14) atom. The H(35)-O(14) bond length is 0.82 Å. In the thirteenth H site, H(37) is bonded in a single-bond geometry to one O(1) atom. The H(37)-O(1) bond length is 1.11 Å. In the fourteenth H site, H(36) is bonded in a single-bond geometry to one O(4) atom. The H(36)-O(4) bond length is 1.00 Å. There are fourteen inequivalent O sites. In the first O site, O(3) is bonded in a bent 120 degrees geometry to one Zn(2) and one C(39) atom. In the second O site, O(4) is bonded in a distorted tetrahedral geometry to one Zn(1), one Zn(2), one Zn(3), and one H(36) atom. In the third O site, O(1) is bonded in a 3-coordinate geometry to one Zn(2), one H(33), and one H(37) atom. In the fourth O site, O(2) is bonded in a bent 150 degrees geometry to one Zn(1) and one C(39) atom. In the fifth O site, O(5) is bonded in an L-shaped geometry to one Zn(1) and one C(45) atom. In the sixth O site, O(6) is bonded in a distorted L-shaped geometry to one Zn(1) and one C(45) atom. In the seventh O site, O(7) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(51) atom. In the eighth O site, O(8) is bonded in a distorted bent 150 degrees geometry to one Zn(2) and one C(51) atom. In the ninth O site, O(11) is bonded in a distorted bent 120 degrees geometry to one Zn(1) and one C(38) atom. In the tenth O site, O(12) is bonded in a bent 120 degrees geometry to one Zn(3) and one C(38) atom. In the eleventh O site, O(13) is bonded in a bent 120 degrees geometry to one Zn(3) and one C(60) atom. In the twelfth O site, O(14) is bonded in a water-like geometry to one C(60) and one H(35) atom. In the thirteenth O site, O(9) is bonded in a bent 120 degrees geometry to one Zn(3) and one C(54) atom. In the fourteenth O site, O(10) is bonded in a distorted bent 120 degrees geometry to one Zn(2) and one C(54) atom. Linkers: 6 [O]C(=O)c1ccc(-c2cc(-c3ccc(C(=O)O)cc3)cc(C(c3cc(-c4ccc(C([O])=O)cc4)cc(-c4ccc(C(=O)O)cc4)c3)(c3cc(-c4ccc(C([O])=O)cc4)cc(-c4ccc(C(=O)O)cc4)c3)c3cc(-c4ccc(C([O])=O)cc4)cc(-c4ccc(C(=O)O)cc4)c3)c2)cc1 ,4 [O]C(=O)c1ccc(-c2cc(-c3ccc(C([O])=O)cc3)cc(C(c3cc(-c4ccc(C([O])=O)cc4)cc(-c4ccc(C([O])=O)cc4)c3)(c3cc(-c4ccc(C([O])=O)cc4)cc(-c4ccc(C([O])=O)cc4)c3)c3cc(-c4ccc(C([O])=O)cc4)cc(-c4ccc(C([O])=O)cc4)c3)c2)cc1. Metal clusters: 4 O.O[C]O[Zn@@]1(O)O[C]O[Zn]2O[C]O[Zn]3(O[C]O2)(O[C]O1)O[C]O3 ,4 O.O[C]O[Zn@]1(O)O[C]O[Zn]2O[C]O[Zn]3(O[C]O2)(O[C]O1)O[C]O3. RCSR code: tph. The MOF has largest included sphere 9.82 A, density 0.69 g/cm3, surface area 4410.97 m2/g, accessible volume 1.01 cm3/g
MIFTUS_clean
Gd2CoC43H19(NO2)8(CH)5 crystallizes in the tetragonal I4_1/a space group. The structure consists of eighty 02329_fluka molecules inside a Gd2CoC43H19(NO2)8 framework. In the Gd2CoC43H19(NO2)8 framework, there are two inequivalent Gd sites. In the first Gd site, Gd(1) is bonded in a 6-coordinate geometry to one O(12), one O(13), one O(14), one O(3), one O(7), and one O(8) atom. The Gd(1)-O(12) bond length is 2.29 Å. The Gd(1)-O(13) bond length is 2.35 Å. The Gd(1)-O(14) bond length is 2.66 Å. The Gd(1)-O(3) bond length is 2.32 Å. The Gd(1)-O(7) bond length is 2.45 Å. The Gd(1)-O(8) bond length is 2.64 Å. In the second Gd site, Gd(2) is bonded in a 6-coordinate geometry to one O(11), one O(15), one O(16), one O(4), one O(5), and one O(6) atom. The Gd(2)-O(11) bond length is 2.32 Å. The Gd(2)-O(15) bond length is 2.39 Å. The Gd(2)-O(16) bond length is 2.54 Å. The Gd(2)-O(4) bond length is 2.31 Å. The Gd(2)-O(5) bond length is 2.34 Å. The Gd(2)-O(6) bond length is 2.74 Å. Co(1) is bonded in an octahedral geometry to one N(1), one N(2), one N(3), one N(4), one N(5), and one N(6) atom. The Co(1)-N(1) bond length is 2.08 Å. The Co(1)-N(2) bond length is 2.13 Å. The Co(1)-N(3) bond length is 2.10 Å. The Co(1)-N(4) bond length is 2.13 Å. The Co(1)-N(5) bond length is 2.13 Å. The Co(1)-N(6) bond length is 2.06 Å. There are forty-three inequivalent C sites. In the first C site, C(1) is bonded in a distorted trigonal planar geometry to one C(4), one N(1), and one H(1) atom. The C(1)-C(4) bond length is 1.36 Å. The C(1)-N(1) bond length is 1.33 Å. The C(1)-H(1) bond length is 0.93 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one C(11), one O(3), and one O(4) atom. The C(2)-C(11) bond length is 1.49 Å. The C(2)-O(3) bond length is 1.25 Å. The C(2)-O(4) bond length is 1.21 Å. In the third C site, C(3) is bonded in a distorted bent 120 degrees geometry to one C(42), one O(15), and one O(16) atom. The C(3)-C(42) bond length is 1.44 Å. The C(3)-O(15) bond length is 1.25 Å. The C(3)-O(16) bond length is 1.24 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(1) and one H(2) atom. The C(4)-H(2) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(6) and one H(3) atom. The C(5)-C(6) bond length is 1.37 Å. The C(5)-H(3) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(5), one C(7), and one C(8) atom. The C(6)-C(7) bond length is 1.52 Å. The C(6)-C(8) bond length is 1.37 Å. In the seventh C site, C(7) is bonded in a distorted bent 120 degrees geometry to one C(6), one O(1), and one O(2) atom. The C(7)-O(1) bond length is 1.23 Å. The C(7)-O(2) bond length is 1.23 Å. In the eighth C site, C(8) is bonded in a distorted trigonal planar geometry to one C(6), one C(9), and one N(1) atom. The C(8)-C(9) bond length is 1.46 Å. The C(8)-N(1) bond length is 1.32 Å. In the ninth C site, C(9) is bonded in a distorted trigonal planar geometry to one C(11), one C(8), and one N(2) atom. The C(9)-C(11) bond length is 1.37 Å. The C(9)-N(2) bond length is 1.33 Å. In the tenth C site, C(10) is bonded in a distorted bent 120 degrees geometry to one C(45), one O(13), and one O(14) atom. The C(10)-C(45) bond length is 1.56 Å. The C(10)-O(13) bond length is 1.10 Å. The C(10)-O(14) bond length is 1.25 Å. In the eleventh C site, C(11) is bonded in a trigonal planar geometry to one C(12), one C(2), and one C(9) atom. The C(11)-C(12) bond length is 1.36 Å. In the twelfth C site, C(12) is bonded in a distorted single-bond geometry to one C(11) and one H(4) atom. The C(12)-H(4) bond length is 0.93 Å. In the thirteenth C site, C(14) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(6) atom. The C(14)-N(2) bond length is 1.33 Å. The C(14)-H(6) bond length is 0.93 Å. In the fourteenth C site, C(15) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(7) atom. The C(15)-N(3) bond length is 1.32 Å. The C(15)-H(7) bond length is 0.93 Å. In the fifteenth C site, C(17) is bonded in a distorted single-bond geometry to one C(18) and one H(9) atom. The C(17)-C(18) bond length is 1.36 Å. The C(17)-H(9) bond length is 0.93 Å. In the sixteenth C site, C(18) is bonded in a trigonal planar geometry to one C(17), one C(19), and one C(26) atom. The C(18)-C(19) bond length is 1.37 Å. The C(18)-C(26) bond length is 1.50 Å. In the seventeenth C site, C(19) is bonded in a distorted trigonal planar geometry to one C(18), one C(20), and one N(3) atom. The C(19)-C(20) bond length is 1.46 Å. The C(19)-N(3) bond length is 1.34 Å. In the eighteenth C site, C(20) is bonded in a distorted trigonal planar geometry to one C(19), one C(21), and one N(4) atom. The C(20)-C(21) bond length is 1.37 Å. The C(20)-N(4) bond length is 1.34 Å. In the nineteenth C site, C(21) is bonded in a trigonal planar geometry to one C(20), one C(22), and one C(25) atom. The C(21)-C(22) bond length is 1.36 Å. The C(21)-C(25) bond length is 1.49 Å. In the twentieth C site, C(22) is bonded in a distorted single-bond geometry to one C(21) and one H(10) atom. The C(22)-H(10) bond length is 0.93 Å. In the twenty-first C site, C(24) is bonded in a distorted bent 120 degrees geometry to one N(4) and one H(12) atom. The C(24)-N(4) bond length is 1.31 Å. The C(24)-H(12) bond length is 0.93 Å. In the twenty-second C site, C(25) is bonded in a distorted bent 120 degrees geometry to one C(21), one O(7), and one O(8) atom. The C(25)-O(7) bond length is 1.24 Å. The C(25)-O(8) bond length is 1.24 Å. In the twenty-third C site, C(26) is bonded in a distorted bent 120 degrees geometry to one C(18), one O(5), and one O(6) atom. The C(26)-O(5) bond length is 1.26 Å. The C(26)-O(6) bond length is 1.22 Å. In the twenty-fourth C site, C(27) is bonded in a distorted bent 120 degrees geometry to one N(5) and one H(13) atom. The C(27)-N(5) bond length is 1.33 Å. The C(27)-H(13) bond length is 0.93 Å. In the twenty-fifth C site, C(29) is bonded in a distorted single-bond geometry to one C(30) and one H(15) atom. The C(29)-C(30) bond length is 1.38 Å. The C(29)-H(15) bond length is 0.93 Å. In the twenty-sixth C site, C(30) is bonded in a trigonal planar geometry to one C(29), one C(31), and one C(38) atom. The C(30)-C(31) bond length is 1.38 Å. The C(30)-C(38) bond length is 1.47 Å. In the twenty-seventh C site, C(31) is bonded in a distorted trigonal planar geometry to one C(30), one C(32), and one N(5) atom. The C(31)-C(32) bond length is 1.47 Å. The C(31)-N(5) bond length is 1.32 Å. In the twenty-eighth C site, C(32) is bonded in a distorted trigonal planar geometry to one C(31), one C(33), and one N(6) atom. The C(32)-C(33) bond length is 1.36 Å. The C(32)-N(6) bond length is 1.33 Å. In the twenty-ninth C site, C(33) is bonded in a trigonal planar geometry to one C(32), one C(34), and one C(37) atom. The C(33)-C(34) bond length is 1.35 Å. The C(33)-C(37) bond length is 1.50 Å. In the thirtieth C site, C(34) is bonded in a distorted single-bond geometry to one C(33) and one H(16) atom. The C(34)-H(16) bond length is 0.93 Å. In the thirty-first C site, C(35) is bonded in a distorted single-bond geometry to one C(36) and one H(17) atom. The C(35)-C(36) bond length is 1.35 Å. The C(35)-H(17) bond length is 0.93 Å. In the thirty-second C site, C(36) is bonded in a distorted trigonal planar geometry to one C(35), one N(6), and one H(18) atom. The C(36)-N(6) bond length is 1.33 Å. The C(36)-H(18) bond length is 0.93 Å. In the thirty-third C site, C(37) is bonded in a distorted bent 120 degrees geometry to one C(33), one O(10), and one O(9) atom. The C(37)-O(10) bond length is 1.24 Å. The C(37)-O(9) bond length is 1.25 Å. In the thirty-fourth C site, C(38) is bonded in a distorted bent 120 degrees geometry to one C(30), one O(11), and one O(12) atom. The C(38)-O(11) bond length is 1.22 Å. The C(38)-O(12) bond length is 1.23 Å. In the thirty-fifth C site, C(39) is bonded in a 3-coordinate geometry to one C(40), one N(8), and one H(19) atom. The C(39)-C(40) bond length is 1.23 Å. The C(39)-N(8) bond length is 1.36 Å. The C(39)-H(19) bond length is 0.93 Å. In the thirty-sixth C site, C(40) is bonded in a distorted single-bond geometry to one C(39) and one H(20) atom. The C(40)-H(20) bond length is 0.93 Å. In the thirty-seventh C site, C(41) is bonded in a distorted single-bond geometry to one C(42) and one H(21) atom. The C(41)-C(42) bond length is 1.38 Å. The C(41)-H(21) bond length is 0.93 Å. In the thirty-eighth C site, C(42) is bonded in a trigonal planar geometry to one C(3), one C(41), and one C(43) atom. The C(42)-C(43) bond length is 1.33 Å. In the thirty-ninth C site, C(43) is bonded in a distorted trigonal planar geometry to one C(42), one C(44), and one N(8) atom. The C(43)-C(44) bond length is 1.44 Å. The C(43)-N(8) bond length is 1.55 Å. In the fortieth C site, C(44) is bonded in a distorted trigonal planar geometry to one C(43), one C(45), and one N(7) atom. The C(44)-C(45) bond length is 1.31 Å. The C(44)-N(7) bond length is 1.36 Å. In the forty-first C site, C(45) is bonded in a trigonal planar geometry to one C(10), one C(44), and one C(46) atom. The C(45)-C(46) bond length is 1.50 Å. In the forty-second C site, C(46) is bonded in a distorted single-bond geometry to one C(45) and one H(22) atom. The C(46)-H(22) bond length is 0.93 Å. In the forty-third C site, C(48) is bonded in a distorted bent 120 degrees geometry to one N(7) and one H(24) atom. The C(48)-N(7) bond length is 1.31 Å. The C(48)-H(24) bond length is 0.93 Å. There are eight inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Co(1), one C(1), and one C(8) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one Co(1), one C(14), and one C(9) atom. In the third N site, N(3) is bonded in a trigonal planar geometry to one Co(1), one C(15), and one C(19) atom. In the fourth N site, N(4) is bonded in a trigonal planar geometry to one Co(1), one C(20), and one C(24) atom. In the fifth N site, N(5) is bonded in a trigonal planar geometry to one Co(1), one C(27), and one C(31) atom. In the sixth N site, N(6) is bonded in a trigonal planar geometry to one Co(1), one C(32), and one C(36) atom. In the seventh N site, N(7) is bonded in a bent 120 degrees geometry to one C(44) and one C(48) atom. In the eighth N site, N(8) is bonded in a water-like geometry to one C(39) and one C(43) atom. There are nineteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(5) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(12) atom. In the fifth H site, H(6) is bonded in a single-bond geometry to one C(14) atom. In the sixth H site, H(7) is bonded in a single-bond geometry to one C(15) atom. In the seventh H site, H(9) is bonded in a single-bond geometry to one C(17) atom. In the eighth H site, H(10) is bonded in a single-bond geometry to one C(22) atom. In the ninth H site, H(12) is bonded in a single-bond geometry to one C(24) atom. In the tenth H site, H(13) is bonded in a single-bond geometry to one C(27) atom. In the eleventh H site, H(15) is bonded in a single-bond geometry to one C(29) atom. In the twelfth H site, H(16) is bonded in a single-bond geometry to one C(34) atom. In the thirteenth H site, H(17) is bonded in a single-bond geometry to one C(35) atom. In the fourteenth H site, H(18) is bonded in a single-bond geometry to one C(36) atom. In the fifteenth H site, H(19) is bonded in a single-bond geometry to one C(39) atom. In the sixteenth H site, H(20) is bonded in a single-bond geometry to one C(40) atom. In the seventeenth H site, H(21) is bonded in a single-bond geometry to one C(41) atom. In the eighteenth H site, H(22) is bonded in a single-bond geometry to one C(46) atom. In the nineteenth H site, H(24) is bonded in a single-bond geometry to one C(48) atom. There are sixteen inequivalent O sites. In the first O site, O(1) is bonded in a single-bond geometry to one C(7) atom. In the second O site, O(2) is bonded in a single-bond geometry to one C(7) atom. In the third O site, O(3) is bonded in a distorted bent 150 degrees geometry to one Gd(1) and one C(2) atom. In the fourth O site, O(4) is bonded in a distorted linear geometry to one Gd(2) and one C(2) atom. In the fifth O site, O(5) is bonded in a distorted water-like geometry to one Gd(2) and one C(26) atom. In the sixth O site, O(6) is bonded in a single-bond geometry to one Gd(2) and one C(26) atom. In the seventh O site, O(7) is bonded in a distorted single-bond geometry to one Gd(1) and one C(25) atom. In the eighth O site, O(8) is bonded in a single-bond geometry to one Gd(1) and one C(25) atom. In the ninth O site, O(9) is bonded in a single-bond geometry to one C(37) atom. In the tenth O site, O(10) is bonded in a single-bond geometry to one C(37) atom. In the eleventh O site, O(11) is bonded in a bent 150 degrees geometry to one Gd(2) and one C(38) atom. In the twelfth O site, O(12) is bonded in a bent 150 degrees geometry to one Gd(1) and one C(38) atom. In the thirteenth O site, O(13) is bonded in a distorted single-bond geometry to one Gd(1) and one C(10) atom. In the fourteenth O site, O(14) is bonded in a single-bond geometry to one Gd(1) and one C(10) atom. In the fifteenth O site, O(15) is bonded in a distorted single-bond geometry to one Gd(2) and one C(3) atom. In the sixteenth O site, O(16) is bonded in a single-bond geometry to one Gd(2) and one C(3) atom. Linkers: 32 [O]C(=O)c1cccnc1-c1ncccc1C([O])=O. Metal clusters: 16 [Gd] ,8 [Co]. The MOF has largest included sphere 6.05 A, density 1.62 g/cm3, surface area 3333.02 m2/g, accessible volume 0.20 cm3/g
GAJTOC_clean
GdC18H9S3(NO2)3 crystallizes in the monoclinic C2/c space group. The structure consists of a GdC18H9S3(NO2)3 framework. There are two inequivalent Gd sites. In the first Gd site, Gd(1) is bonded in a 6-coordinate geometry to one O(11), one O(3), one O(4), one O(6), one O(7), and one O(9) atom. The Gd(1)-O(11) bond length is 2.44 Å. The Gd(1)-O(3) bond length is 2.33 Å. The Gd(1)-O(4) bond length is 2.34 Å. The Gd(1)-O(6) bond length is 2.58 Å. The Gd(1)-O(7) bond length is 2.34 Å. The Gd(1)-O(9) bond length is 2.32 Å. In the second Gd site, Gd(2) is bonded in a distorted pentagonal planar geometry to one O(1), one O(10), one O(2), one O(5), and one O(8) atom. The Gd(2)-O(1) bond length is 2.31 Å. The Gd(2)-O(10) bond length is 2.34 Å. The Gd(2)-O(2) bond length is 2.34 Å. The Gd(2)-O(5) bond length is 2.36 Å. The Gd(2)-O(8) bond length is 2.31 Å. There are thirty-six inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(3), and one O(5) atom. The C(1)-C(2) bond length is 1.51 Å. The C(1)-O(3) bond length is 1.24 Å. The C(1)-O(5) bond length is 1.25 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(21), and one C(22) atom. The C(2)-C(21) bond length is 1.38 Å. The C(2)-C(22) bond length is 1.37 Å. In the third C site, C(3) is bonded in a distorted bent 120 degrees geometry to one C(4), one O(1), and one O(4) atom. The C(3)-C(4) bond length is 1.50 Å. The C(3)-O(1) bond length is 1.25 Å. The C(3)-O(4) bond length is 1.25 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(16), one C(23), and one C(3) atom. The C(4)-C(16) bond length is 1.38 Å. The C(4)-C(23) bond length is 1.39 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one C(6), one O(12), and one O(2) atom. The C(5)-C(6) bond length is 1.50 Å. The C(5)-O(12) bond length is 1.26 Å. The C(5)-O(2) bond length is 1.25 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(32), one C(5), and one C(9) atom. The C(6)-C(32) bond length is 1.38 Å. The C(6)-C(9) bond length is 1.39 Å. In the seventh C site, C(7) is bonded in a distorted trigonal planar geometry to one C(36), one N(6), and one S(1) atom. The C(7)-C(36) bond length is 1.37 Å. The C(7)-N(6) bond length is 1.33 Å. The C(7)-S(1) bond length is 1.78 Å. In the eighth C site, C(8) is bonded in a distorted trigonal planar geometry to one C(30), one N(4), and one S(5) atom. The C(8)-C(30) bond length is 1.37 Å. The C(8)-N(4) bond length is 1.32 Å. The C(8)-S(5) bond length is 1.78 Å. In the ninth C site, C(9) is bonded in a distorted bent 120 degrees geometry to one C(6), one N(1), and one H(1) atom. The C(9)-N(1) bond length is 1.34 Å. The C(9)-H(1) bond length is 0.93 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(17), one C(27), and one C(28) atom. The C(10)-C(17) bond length is 1.49 Å. The C(10)-C(27) bond length is 1.38 Å. The C(10)-C(28) bond length is 1.37 Å. In the eleventh C site, C(11) is bonded in a distorted single-bond geometry to one C(12) and one H(2) atom. The C(11)-C(12) bond length is 1.38 Å. The C(11)-H(2) bond length is 0.93 Å. In the twelfth C site, C(12) is bonded in a trigonal planar geometry to one C(11), one C(13), and one C(20) atom. The C(12)-C(13) bond length is 1.37 Å. The C(12)-C(20) bond length is 1.50 Å. In the thirteenth C site, C(13) is bonded in a distorted trigonal planar geometry to one C(12), one N(6), and one H(3) atom. The C(13)-N(6) bond length is 1.34 Å. The C(13)-H(3) bond length is 0.93 Å. In the fourteenth C site, C(14) is bonded in a distorted trigonal planar geometry to one C(24), one N(3), and one S(6) atom. The C(14)-C(24) bond length is 1.37 Å. The C(14)-N(3) bond length is 1.33 Å. The C(14)-S(6) bond length is 1.79 Å. In the fifteenth C site, C(15) is bonded in a distorted trigonal planar geometry to one C(31), one N(5), and one S(2) atom. The C(15)-C(31) bond length is 1.34 Å. The C(15)-N(5) bond length is 1.35 Å. The C(15)-S(2) bond length is 1.79 Å. In the sixteenth C site, C(16) is bonded in a distorted trigonal planar geometry to one C(4), one N(3), and one H(4) atom. The C(16)-N(3) bond length is 1.35 Å. The C(16)-H(4) bond length is 0.93 Å. In the seventeenth C site, C(17) is bonded in a distorted bent 120 degrees geometry to one C(10), one O(10), and one O(9) atom. The C(17)-O(10) bond length is 1.25 Å. The C(17)-O(9) bond length is 1.24 Å. In the eighteenth C site, C(18) is bonded in a distorted trigonal planar geometry to one C(34), one N(2), and one S(4) atom. The C(18)-C(34) bond length is 1.34 Å. The C(18)-N(2) bond length is 1.33 Å. The C(18)-S(4) bond length is 1.80 Å. In the nineteenth C site, C(19) is bonded in a distorted single-bond geometry to one C(33), one N(1), and one S(3) atom. The C(19)-C(33) bond length is 1.38 Å. The C(19)-N(1) bond length is 1.33 Å. The C(19)-S(3) bond length is 1.78 Å. In the twentieth C site, C(20) is bonded in a distorted bent 120 degrees geometry to one C(12), one O(7), and one O(8) atom. The C(20)-O(7) bond length is 1.26 Å. The C(20)-O(8) bond length is 1.24 Å. In the twenty-first C site, C(21) is bonded in a distorted bent 120 degrees geometry to one C(2), one N(5), and one H(5) atom. The C(21)-N(5) bond length is 1.37 Å. The C(21)-H(5) bond length is 0.93 Å. In the twenty-second C site, C(22) is bonded in a distorted single-bond geometry to one C(2) and one H(6) atom. The C(22)-H(6) bond length is 0.93 Å. In the twenty-third C site, C(23) is bonded in a distorted single-bond geometry to one C(4) and one H(7) atom. The C(23)-H(7) bond length is 0.93 Å. In the twenty-fourth C site, C(24) is bonded in a distorted single-bond geometry to one C(14) and one H(8) atom. The C(24)-H(8) bond length is 0.93 Å. In the twenty-fifth C site, C(25) is bonded in a bent 120 degrees geometry to one C(26), one O(11), and one O(6) atom. The C(25)-C(26) bond length is 1.48 Å. The C(25)-O(11) bond length is 1.26 Å. The C(25)-O(6) bond length is 1.25 Å. In the twenty-sixth C site, C(26) is bonded in a trigonal planar geometry to one C(25), one C(29), and one C(35) atom. The C(26)-C(29) bond length is 1.37 Å. The C(26)-C(35) bond length is 1.39 Å. In the twenty-seventh C site, C(27) is bonded in a distorted single-bond geometry to one C(10) and one H(9) atom. The C(27)-H(9) bond length is 0.93 Å. In the twenty-eighth C site, C(28) is bonded in a distorted trigonal planar geometry to one C(10), one N(4), and one H(10) atom. The C(28)-N(4) bond length is 1.34 Å. The C(28)-H(10) bond length is 0.93 Å. In the twenty-ninth C site, C(29) is bonded in a distorted bent 120 degrees geometry to one C(26), one N(2), and one H(11) atom. The C(29)-N(2) bond length is 1.36 Å. The C(29)-H(11) bond length is 0.93 Å. In the thirtieth C site, C(30) is bonded in a distorted single-bond geometry to one C(8) and one H(12) atom. The C(30)-H(12) bond length is 0.93 Å. In the thirty-first C site, C(31) is bonded in a distorted single-bond geometry to one C(15) and one H(13) atom. The C(31)-H(13) bond length is 0.93 Å. In the thirty-second C site, C(32) is bonded in a distorted single-bond geometry to one C(6) and one H(14) atom. The C(32)-H(14) bond length is 0.93 Å. In the thirty-third C site, C(33) is bonded in a distorted single-bond geometry to one C(19) and one H(15) atom. The C(33)-H(15) bond length is 0.93 Å. In the thirty-fourth C site, C(34) is bonded in a distorted single-bond geometry to one C(18) and one H(16) atom. The C(34)-H(16) bond length is 0.93 Å. In the thirty-fifth C site, C(35) is bonded in a distorted single-bond geometry to one C(26) and one H(17) atom. The C(35)-H(17) bond length is 0.93 Å. In the thirty-sixth C site, C(36) is bonded in a distorted single-bond geometry to one C(7) and one H(18) atom. The C(36)-H(18) bond length is 0.93 Å. There are six inequivalent N sites. In the first N site, N(1) is bonded in a bent 120 degrees geometry to one C(19) and one C(9) atom. In the second N site, N(2) is bonded in a bent 120 degrees geometry to one C(18) and one C(29) atom. In the third N site, N(3) is bonded in a bent 120 degrees geometry to one C(14) and one C(16) atom. In the fourth N site, N(4) is bonded in a bent 120 degrees geometry to one C(28) and one C(8) atom. In the fifth N site, N(5) is bonded in a bent 120 degrees geometry to one C(15) and one C(21) atom. In the sixth N site, N(6) is bonded in a bent 120 degrees geometry to one C(13) and one C(7) atom. There are eighteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(9) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(11) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(13) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(16) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(21) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(22) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(23) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(24) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(27) atom. In the tenth H site, H(10) is bonded in a single-bond geometry to one C(28) atom. In the eleventh H site, H(11) is bonded in a single-bond geometry to one C(29) atom. In the twelfth H site, H(12) is bonded in a single-bond geometry to one C(30) atom. In the thirteenth H site, H(13) is bonded in a single-bond geometry to one C(31) atom. In the fourteenth H site, H(14) is bonded in a single-bond geometry to one C(32) atom. In the fifteenth H site, H(15) is bonded in a single-bond geometry to one C(33) atom. In the sixteenth H site, H(16) is bonded in a single-bond geometry to one C(34) atom. In the seventeenth H site, H(17) is bonded in a single-bond geometry to one C(35) atom. In the eighteenth H site, H(18) is bonded in a single-bond geometry to one C(36) atom. There are six inequivalent S sites. In the first S site, S(1) is bonded in a water-like geometry to one C(7) and one S(6) atom. The S(1)-S(6) bond length is 2.02 Å. In the second S site, S(2) is bonded in a water-like geometry to one C(15) and one S(5) atom. The S(2)-S(5) bond length is 2.02 Å. In the third S site, S(3) is bonded in a water-like geometry to one C(19) and one S(4) atom. The S(3)-S(4) bond length is 2.02 Å. In the fourth S site, S(4) is bonded in a water-like geometry to one C(18) and one S(3) atom. In the fifth S site, S(5) is bonded in a water-like geometry to one C(8) and one S(2) atom. In the sixth S site, S(6) is bonded in a water-like geometry to one C(14) and one S(1) atom. There are twelve inequivalent O sites. In the first O site, O(3) is bonded in a bent 150 degrees geometry to one Gd(1) and one C(1) atom. In the second O site, O(4) is bonded in a distorted bent 150 degrees geometry to one Gd(1) and one C(3) atom. In the third O site, O(5) is bonded in a distorted bent 150 degrees geometry to one Gd(2) and one C(1) atom. In the fourth O site, O(6) is bonded in a distorted single-bond geometry to one Gd(1) and one C(25) atom. In the fifth O site, O(7) is bonded in a distorted bent 120 degrees geometry to one Gd(1) and one C(20) atom. In the sixth O site, O(8) is bonded in a distorted linear geometry to one Gd(2) and one C(20) atom. In the seventh O site, O(9) is bonded in a bent 150 degrees geometry to one Gd(1) and one C(17) atom. In the eighth O site, O(2) is bonded in a distorted bent 150 degrees geometry to one Gd(2) and one C(5) atom. In the ninth O site, O(10) is bonded in a distorted bent 150 degrees geometry to one Gd(2) and one C(17) atom. In the tenth O site, O(11) is bonded in a distorted L-shaped geometry to one Gd(1) and one C(25) atom. In the eleventh O site, O(12) is bonded in a single-bond geometry to one C(5) atom. In the twelfth O site, O(1) is bonded in a distorted bent 150 degrees geometry to one Gd(2) and one C(3) atom. Linkers: 12 [O]C(=O)c1ccc(SSc2ccc(C([O])=O)cn2)nc1. Metal clusters: 4 O=[C]O[Gd]123O[C]O[Gd]4(O[C]O1)(O[C]O2)(O[C]O3)O[C]O4. RCSR code: cds. The MOF has largest included sphere 4.47 A, density 1.61 g/cm3, surface area 3685.35 m2/g, accessible volume 0.22 cm3/g
TUMDAI_clean
ZnC14N5H8O4CH crystallizes in the monoclinic P2_1/c space group. The structure consists of four 02329_fluka molecules inside a ZnC14N5H8O4 framework. In the ZnC14N5H8O4 framework, Zn(1) is bonded in a distorted trigonal bipyramidal geometry to one N(2), one N(3), one N(4), one O(2), and one O(3) atom. The Zn(1)-N(2) bond length is 2.11 Å. The Zn(1)-N(3) bond length is 2.13 Å. The Zn(1)-N(4) bond length is 2.23 Å. The Zn(1)-O(2) bond length is 1.98 Å. The Zn(1)-O(3) bond length is 2.03 Å. There are fourteen inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(4), one O(1), and one O(2) atom. The C(1)-C(4) bond length is 1.51 Å. The C(1)-O(1) bond length is 1.25 Å. The C(1)-O(2) bond length is 1.26 Å. In the second C site, C(2) is bonded in a bent 120 degrees geometry to one C(5), one O(3), and one O(4) atom. The C(2)-C(5) bond length is 1.50 Å. The C(2)-O(3) bond length is 1.26 Å. The C(2)-O(4) bond length is 1.23 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(4), one C(5), and one H(1) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-C(5) bond length is 1.39 Å. The C(3)-H(1) bond length is 0.95 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(6) atom. The C(4)-C(6) bond length is 1.40 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(2), one C(3), and one C(7) atom. The C(5)-C(7) bond length is 1.40 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(4), one C(8), and one H(2) atom. The C(6)-C(8) bond length is 1.37 Å. The C(6)-H(2) bond length is 0.95 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(5), one C(8), and one H(3) atom. The C(7)-C(8) bond length is 1.38 Å. The C(7)-H(3) bond length is 0.95 Å. In the eighth C site, C(8) is bonded in a distorted trigonal planar geometry to one C(6), one C(7), and one N(1) atom. The C(8)-N(1) bond length is 1.45 Å. In the ninth C site, C(9) is bonded in a trigonal non-coplanar geometry to one C(10) and three equivalent H(4,5,6) atoms. The C(9)-C(10) bond length is 1.48 Å. All C(9)-H(4,5,6) bond lengths are 0.98 Å. In the tenth C site, C(10) is bonded in a distorted trigonal planar geometry to one C(9), one N(1), and one N(2) atom. The C(10)-N(1) bond length is 1.37 Å. The C(10)-N(2) bond length is 1.31 Å. In the eleventh C site, C(11) is bonded in a distorted water-like geometry to one N(1) and one N(3) atom. The C(11)-N(1) bond length is 1.36 Å. The C(11)-N(3) bond length is 1.31 Å. In the twelfth C site, C(12) is bonded in a distorted bent 120 degrees geometry to one N(4) and one N(5) atom. The C(12)-N(4) bond length is 1.34 Å. The C(12)-N(5) bond length is 1.32 Å. In the thirteenth C site, C(13) is bonded in a distorted bent 120 degrees geometry to one N(5) and one H(7) atom. The C(13)-N(5) bond length is 1.34 Å. The C(13)-H(7) bond length is 0.95 Å. In the fourteenth C site, C(15) is bonded in a distorted bent 120 degrees geometry to one N(4) and one H(9) atom. The C(15)-N(4) bond length is 1.34 Å. The C(15)-H(9) bond length is 0.95 Å. There are five inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one C(10), one C(11), and one C(8) atom. In the second N site, N(2) is bonded in a distorted trigonal planar geometry to one Zn(1), one C(10), and one N(3) atom. The N(2)-N(3) bond length is 1.38 Å. In the third N site, N(3) is bonded in a 3-coordinate geometry to one Zn(1), one C(11), and one N(2) atom. In the fourth N site, N(4) is bonded in a trigonal planar geometry to one Zn(1), one C(12), and one C(15) atom. In the fifth N site, N(5) is bonded in a bent 120 degrees geometry to one C(12) and one C(13) atom. There are six inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(6) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(7) atom. In the fourth H site, H(4,5,6) is bonded in a single-bond geometry to one C(9) atom. In the fifth H site, H(7) is bonded in a single-bond geometry to one C(13) atom. In the sixth H site, H(9) is bonded in a single-bond geometry to one C(15) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a single-bond geometry to one C(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(1) atom. In the third O site, O(3) is bonded in a water-like geometry to one Zn(1) and one C(2) atom. In the fourth O site, O(4) is bonded in a single-bond geometry to one C(2) atom. Linkers: 4 Cc1nnc(-c2ncccn2)n1-c1cc(C([O])=O)cc(C([O])=O)c1. Metal clusters: 4 [Zn]. The MOF has largest included sphere 4.53 A, density 1.25 g/cm3, surface area 4129.06 m2/g, accessible volume 0.37 cm3/g
ZETQEW_clean
Eu2C12H15(NO4)3 crystallizes in the tetragonal I4_1/a space group. There are two inequivalent Eu sites. In the first Eu site, Eu(1) is bonded in a 9-coordinate geometry to one N(1), one O(1), one O(10), one O(4), one O(5), one O(6), one O(9), and two equivalent O(3) atoms. The Eu(1)-N(1) bond length is 2.57 Å. The Eu(1)-O(1) bond length is 2.48 Å. The Eu(1)-O(10) bond length is 2.37 Å. The Eu(1)-O(4) bond length is 2.59 Å. The Eu(1)-O(5) bond length is 2.62 Å. The Eu(1)-O(6) bond length is 2.38 Å. The Eu(1)-O(9) bond length is 2.41 Å. There is one shorter (2.35 Å) and one longer (2.47 Å) Eu(1)-O(3) bond length. In the second Eu site, Eu(2) is bonded in a 9-coordinate geometry to one N(2), one N(3), one O(1), one O(2), one O(5), one O(7), one O(9), and two equivalent O(11) atoms. The Eu(2)-N(2) bond length is 2.61 Å. The Eu(2)-N(3) bond length is 2.59 Å. The Eu(2)-O(1) bond length is 2.49 Å. The Eu(2)-O(2) bond length is 2.40 Å. The Eu(2)-O(5) bond length is 2.45 Å. The Eu(2)-O(7) bond length is 2.40 Å. The Eu(2)-O(9) bond length is 2.45 Å. There is one shorter (2.44 Å) and one longer (2.49 Å) Eu(2)-O(11) bond length. There are twelve inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one O(1) and one O(2) atom. The C(1)-O(1) bond length is 1.27 Å. The C(1)-O(2) bond length is 1.25 Å. In the second C site, C(2) is bonded in a 3-coordinate geometry to one N(1), one H(1), and one H(2) atom. The C(2)-N(1) bond length is 1.48 Å. The C(2)-H(1) bond length is 0.97 Å. The C(2)-H(2) bond length is 0.97 Å. In the third C site, C(3) is bonded in a 3-coordinate geometry to one N(1) and two equivalent H(3,4) atoms. The C(3)-N(1) bond length is 1.48 Å. Both C(3)-H(3,4) bond lengths are 0.97 Å. In the fourth C site, C(4) is bonded in a distorted bent 120 degrees geometry to one O(3) and one O(4) atom. The C(4)-O(3) bond length is 1.28 Å. The C(4)-O(4) bond length is 1.23 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one O(5) and one O(6) atom. The C(5)-O(5) bond length is 1.28 Å. The C(5)-O(6) bond length is 1.24 Å. In the sixth C site, C(6) is bonded in a 3-coordinate geometry to one N(2) and two equivalent H(5,6) atoms. The C(6)-N(2) bond length is 1.48 Å. Both C(6)-H(5,6) bond lengths are 0.97 Å. In the seventh C site, C(7) is bonded in a 3-coordinate geometry to one N(2), one H(7), and one H(8) atom. The C(7)-N(2) bond length is 1.47 Å. The C(7)-H(7) bond length is 0.97 Å. The C(7)-H(8) bond length is 0.97 Å. In the eighth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one O(7) and one O(8) atom. The C(8)-O(7) bond length is 1.24 Å. The C(8)-O(8) bond length is 1.26 Å. In the ninth C site, C(9) is bonded in a distorted bent 120 degrees geometry to one O(10) and one O(9) atom. The C(9)-O(10) bond length is 1.23 Å. The C(9)-O(9) bond length is 1.28 Å. In the tenth C site, C(10) is bonded in a 3-coordinate geometry to one N(3), one H(10), and one H(9) atom. The C(10)-N(3) bond length is 1.48 Å. The C(10)-H(10) bond length is 0.97 Å. The C(10)-H(9) bond length is 0.97 Å. In the eleventh C site, C(11) is bonded in a 3-coordinate geometry to one N(3) and two equivalent H(11,12) atoms. The C(11)-N(3) bond length is 1.45 Å. Both C(11)-H(11,12) bond lengths are 0.97 Å. In the twelfth C site, C(12) is bonded in a distorted bent 120 degrees geometry to one O(11) and one O(12) atom. The C(12)-O(11) bond length is 1.29 Å. The C(12)-O(12) bond length is 1.22 Å. There are three inequivalent N sites. In the first N site, N(1) is bonded in a distorted single-bond geometry to one Eu(1), one C(2), one C(3), and one H(13) atom. The N(1)-H(13) bond length is 0.91 Å. In the second N site, N(2) is bonded in a 1-coordinate geometry to one Eu(2), one C(6), one C(7), and one H(14) atom. The N(2)-H(14) bond length is 0.91 Å. In the third N site, N(3) is bonded in a distorted single-bond geometry to one Eu(2), one C(10), one C(11), and one H(15) atom. The N(3)-H(15) bond length is 0.91 Å. There are twelve inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(3,4) is bonded in a single-bond geometry to one C(3) atom. In the fourth H site, H(5,6) is bonded in a single-bond geometry to one C(6) atom. In the fifth H site, H(7) is bonded in a single-bond geometry to one C(7) atom. In the sixth H site, H(8) is bonded in a single-bond geometry to one C(7) atom. In the seventh H site, H(9) is bonded in a single-bond geometry to one C(10) atom. In the eighth H site, H(10) is bonded in a single-bond geometry to one C(10) atom. In the ninth H site, H(11,12) is bonded in a single-bond geometry to one C(11) atom. In the tenth H site, H(13) is bonded in a single-bond geometry to one N(1) atom. In the eleventh H site, H(14) is bonded in a single-bond geometry to one N(2) atom. In the twelfth H site, H(15) is bonded in a single-bond geometry to one N(3) atom. There are twelve inequivalent O sites. In the first O site, O(1) is bonded in a distorted single-bond geometry to one Eu(1), one Eu(2), and one C(1) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one Eu(2) and one C(1) atom. In the third O site, O(3) is bonded in a distorted single-bond geometry to two equivalent Eu(1) and one C(4) atom. In the fourth O site, O(4) is bonded in a single-bond geometry to one Eu(1) and one C(4) atom. In the fifth O site, O(5) is bonded in a distorted single-bond geometry to one Eu(1), one Eu(2), and one C(5) atom. In the sixth O site, O(6) is bonded in a distorted bent 150 degrees geometry to one Eu(1) and one C(5) atom. In the seventh O site, O(7) is bonded in a distorted bent 120 degrees geometry to one Eu(2) and one C(8) atom. In the eighth O site, O(8) is bonded in a single-bond geometry to one C(8) atom. In the ninth O site, O(9) is bonded in a distorted single-bond geometry to one Eu(1), one Eu(2), and one C(9) atom. In the tenth O site, O(10) is bonded in a distorted bent 150 degrees geometry to one Eu(1) and one C(9) atom. In the eleventh O site, O(11) is bonded in a distorted single-bond geometry to two equivalent Eu(2) and one C(12) atom. In the twelfth O site, O(12) is bonded in a single-bond geometry to one C(12) atom. Linkers: 24 [O]C(=O)CNCC([O])=O. Metal clusters: 16 [Eu]. The MOF has largest included sphere 4.43 A, density 2.28 g/cm3, surface area 2438.57 m2/g, accessible volume 0.13 cm3/g
NIJVAF_clean
CdH13(C8N3)2(C3H2)3(CH)2 is Indium-derived structured and crystallizes in the monoclinic P2_1/c space group. The structure is zero-dimensional and consists of eight 02329_fluka molecules; six 2,3-dimethyl-1,3-butadiene molecules; and four CdH13(C8N3)2 clusters. In each CdH13(C8N3)2 cluster, Cd(1) is bonded in a T-shaped geometry to one N(1), one N(3), and one N(5) atom. The Cd(1)-N(1) bond length is 2.31 Å. The Cd(1)-N(3) bond length is 2.37 Å. The Cd(1)-N(5) bond length is 2.32 Å. There are sixteen inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one N(1), and one H(1) atom. The C(1)-C(2) bond length is 1.36 Å. The C(1)-N(1) bond length is 1.36 Å. The C(1)-H(1) bond length is 0.93 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one C(1), one N(2), and one H(2) atom. The C(2)-N(2) bond length is 1.37 Å. The C(2)-H(2) bond length is 0.93 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one N(1), one N(2), and one H(3) atom. The C(3)-N(1) bond length is 1.31 Å. The C(3)-N(2) bond length is 1.36 Å. The C(3)-H(3) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a distorted trigonal planar geometry to one C(5), one C(9), and one N(2) atom. The C(4)-C(5) bond length is 1.39 Å. The C(4)-C(9) bond length is 1.39 Å. The C(4)-N(2) bond length is 1.43 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(4) and one H(4) atom. The C(5)-H(4) bond length is 0.93 Å. In the sixth C site, C(9) is bonded in a distorted single-bond geometry to one C(4) and one H(7) atom. The C(9)-H(7) bond length is 0.93 Å. In the seventh C site, C(10) is bonded in a trigonal planar geometry to one N(3), one N(4), and one H(8) atom. The C(10)-N(3) bond length is 1.31 Å. The C(10)-N(4) bond length is 1.36 Å. The C(10)-H(8) bond length is 0.93 Å. In the eighth C site, C(11) is bonded in a distorted bent 120 degrees geometry to one C(12), one N(3), and one H(9) atom. The C(11)-C(12) bond length is 1.34 Å. The C(11)-N(3) bond length is 1.38 Å. The C(11)-H(9) bond length is 0.93 Å. In the ninth C site, C(12) is bonded in a 3-coordinate geometry to one C(11), one N(4), and one H(10) atom. The C(12)-N(4) bond length is 1.38 Å. The C(12)-H(10) bond length is 0.93 Å. In the tenth C site, C(13) is bonded in a distorted trigonal planar geometry to one C(14), one C(18), and one N(4) atom. The C(13)-C(14) bond length is 1.38 Å. The C(13)-C(18) bond length is 1.36 Å. The C(13)-N(4) bond length is 1.43 Å. In the eleventh C site, C(14) is bonded in a distorted single-bond geometry to one C(13) and one H(11) atom. The C(14)-H(11) bond length is 0.93 Å. In the twelfth C site, C(18) is bonded in a single-bond geometry to one C(13) and one H(14) atom. The C(18)-H(14) bond length is 0.93 Å. In the thirteenth C site, C(19) is bonded in a distorted bent 120 degrees geometry to one C(20), one N(5), and one H(15) atom. The C(19)-C(20) bond length is 1.35 Å. The C(19)-N(5) bond length is 1.37 Å. The C(19)-H(15) bond length is 0.93 Å. In the fourteenth C site, C(20) is bonded in a distorted bent 120 degrees geometry to one C(19), one N(6), and one H(16) atom. The C(20)-N(6) bond length is 1.37 Å. The C(20)-H(16) bond length is 0.93 Å. In the fifteenth C site, C(21) is bonded in a trigonal planar geometry to one N(5), one N(6), and one H(17) atom. The C(21)-N(5) bond length is 1.31 Å. The C(21)-N(6) bond length is 1.36 Å. The C(21)-H(17) bond length is 0.93 Å. In the sixteenth C site, C(22) is bonded in a distorted single-bond geometry to one N(6) atom. The C(22)-N(6) bond length is 1.43 Å. There are six inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one Cd(1), one C(1), and one C(3) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one C(2), one C(3), and one C(4) atom. In the third N site, N(3) is bonded in a distorted trigonal planar geometry to one Cd(1), one C(10), and one C(11) atom. In the fourth N site, N(4) is bonded in a trigonal planar geometry to one C(10), one C(12), and one C(13) atom. In the fifth N site, N(5) is bonded in a distorted trigonal planar geometry to one Cd(1), one C(19), and one C(21) atom. In the sixth N site, N(6) is bonded in a trigonal planar geometry to one C(20), one C(21), and one C(22) atom. There are thirteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(3) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the fifth H site, H(7) is bonded in a single-bond geometry to one C(9) atom. In the sixth H site, H(8) is bonded in a single-bond geometry to one C(10) atom. In the seventh H site, H(9) is bonded in a single-bond geometry to one C(11) atom. In the eighth H site, H(10) is bonded in a single-bond geometry to one C(12) atom. In the ninth H site, H(11) is bonded in a single-bond geometry to one C(14) atom. In the tenth H site, H(14) is bonded in a single-bond geometry to one C(18) atom. In the eleventh H site, H(15) is bonded in a single-bond geometry to one C(19) atom. In the twelfth H site, H(16) is bonded in a single-bond geometry to one C(20) atom. In the thirteenth H site, H(17) is bonded in a single-bond geometry to one C(21) atom. Linkers: 6 c1cn(-c2ccc(-c3ccc(-n4ccnc4)cc3)cc2)cn1. Metal clusters: 4 [Cd]. The MOF has largest included sphere 6.21 A, density 0.98 g/cm3, surface area 4804.94 m2/g, accessible volume 0.54 cm3/g
WEFZIS_clean
GdC5H4O6 crystallizes in the orthorhombic Fddd space group. Gd(1) is bonded in a 6-coordinate geometry to two equivalent O(1), two equivalent O(2), and two equivalent O(3) atoms. Both Gd(1)-O(1) bond lengths are 2.49 Å. Both Gd(1)-O(2) bond lengths are 2.35 Å. Both Gd(1)-O(3) bond lengths are 2.44 Å. There are three inequivalent C sites. In the first C site, C(3) is bonded in a distorted bent 120 degrees geometry to two equivalent O(3) atoms. Both C(3)-O(3) bond lengths are 1.25 Å. In the second C site, C(1) is bonded in a distorted trigonal planar geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.49 Å. The C(1)-O(1) bond length is 1.25 Å. The C(1)-O(2) bond length is 1.26 Å. In the third C site, C(2) is bonded in a distorted water-like geometry to one C(1), one H(1), and one H(2) atom. The C(2)-H(1) bond length is 0.97 Å. The C(2)-H(2) bond length is 0.97 Å. There are two inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(2) atom. There are three inequivalent O sites. In the first O site, O(1) is bonded in a distorted water-like geometry to one Gd(1) and one C(1) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one Gd(1) and one C(1) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Gd(1) and one C(3) atom. Linkers: 4 [O]C(=O)CCC([O])=O ,2 [O]C(=O)C([O])=O. Metal clusters: 4 [Gd]. The MOF has largest included sphere 4.31 A, density 2.06 g/cm3, surface area 2426.06 m2/g, accessible volume 0.24 cm3/g
MOGYAI_clean
Ag15(C2O3)8(CF2)12 crystallizes in the orthorhombic Pmn2_1 space group. The structure consists of twenty-four difluoromethane molecules inside a Ag15(C2O3)8 framework. In the Ag15(C2O3)8 framework, there are eleven inequivalent Ag sites. In the first Ag site, Ag(1) is bonded in a 4-coordinate geometry to one C(13), one O(3), one O(6), and one O(9) atom. The Ag(1)-C(13) bond length is 2.37 Å. The Ag(1)-O(3) bond length is 2.40 Å. The Ag(1)-O(6) bond length is 2.46 Å. The Ag(1)-O(9) bond length is 2.39 Å. In the second Ag site, Ag(2) is bonded in a 3-coordinate geometry to one C(14), one O(12), and one O(7) atom. The Ag(2)-C(14) bond length is 2.15 Å. The Ag(2)-O(12) bond length is 2.64 Å. The Ag(2)-O(7) bond length is 2.46 Å. In the third Ag site, Ag(3) is bonded in a 4-coordinate geometry to one C(15), one O(12), one O(2), and one O(7) atom. The Ag(3)-C(15) bond length is 2.34 Å. The Ag(3)-O(12) bond length is 2.40 Å. The Ag(3)-O(2) bond length is 2.45 Å. The Ag(3)-O(7) bond length is 2.35 Å. In the fourth Ag site, Ag(4) is bonded in a 3-coordinate geometry to one C(16), one O(3), and one O(9) atom. The Ag(4)-C(16) bond length is 2.28 Å. The Ag(4)-O(3) bond length is 2.33 Å. The Ag(4)-O(9) bond length is 2.60 Å. In the fifth Ag site, Ag(5) is bonded in a 3-coordinate geometry to one C(13) and two equivalent O(5) atoms. The Ag(5)-C(13) bond length is 2.11 Å. Both Ag(5)-O(5) bond lengths are 2.28 Å. In the sixth Ag site, Ag(6) is bonded in a 6-coordinate geometry to one C(13), one C(14), two equivalent O(10), and two equivalent O(8) atoms. The Ag(6)-C(13) bond length is 2.61 Å. The Ag(6)-C(14) bond length is 2.55 Å. Both Ag(6)-O(10) bond lengths are 2.48 Å. Both Ag(6)-O(8) bond lengths are 2.49 Å. In the seventh Ag site, Ag(7) is bonded in a 3-coordinate geometry to one C(13) and two equivalent O(1) atoms. The Ag(7)-C(13) bond length is 2.24 Å. Both Ag(7)-O(1) bond lengths are 2.49 Å. In the eighth Ag site, Ag(8) is bonded in a 3-coordinate geometry to one C(15) and two equivalent O(1) atoms. The Ag(8)-C(15) bond length is 2.16 Å. Both Ag(8)-O(1) bond lengths are 2.31 Å. In the ninth Ag site, Ag(9) is bonded in a 5-coordinate geometry to one C(15), two equivalent O(11), and two equivalent O(4) atoms. The Ag(9)-C(15) bond length is 2.49 Å. Both Ag(9)-O(11) bond lengths are 2.58 Å. Both Ag(9)-O(4) bond lengths are 2.40 Å. In the tenth Ag site, Ag(10) is bonded in a 3-coordinate geometry to one C(15) and two equivalent O(5) atoms. The Ag(10)-C(15) bond length is 2.36 Å. Both Ag(10)-O(5) bond lengths are 2.42 Å. In the eleventh Ag site, Ag(11) is bonded in a single-bond geometry to one C(16) atom. The Ag(11)-C(16) bond length is 2.20 Å. There are ten inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one O(1) and one O(2) atom. The C(1)-O(1) bond length is 1.28 Å. The C(1)-O(2) bond length is 1.24 Å. In the second C site, C(4) is bonded in a distorted bent 120 degrees geometry to one O(3) and one O(4) atom. The C(4)-O(3) bond length is 1.26 Å. The C(4)-O(4) bond length is 1.22 Å. In the third C site, C(5) is bonded in a distorted bent 120 degrees geometry to one O(5) and one O(6) atom. The C(5)-O(5) bond length is 1.25 Å. The C(5)-O(6) bond length is 1.23 Å. In the fourth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one O(7) and one O(8) atom. The C(8)-O(7) bond length is 1.23 Å. The C(8)-O(8) bond length is 1.26 Å. In the fifth C site, C(9) is bonded in a distorted bent 120 degrees geometry to one O(10) and one O(9) atom. The C(9)-O(10) bond length is 1.23 Å. The C(9)-O(9) bond length is 1.27 Å. In the sixth C site, C(12) is bonded in a distorted bent 120 degrees geometry to one O(11) and one O(12) atom. The C(12)-O(11) bond length is 1.24 Å. The C(12)-O(12) bond length is 1.23 Å. In the seventh C site, C(13) is bonded in a 6-coordinate geometry to one Ag(5), one Ag(6), one Ag(7), two equivalent Ag(1), and one C(14) atom. The C(13)-C(14) bond length is 1.21 Å. In the eighth C site, C(14) is bonded in a 3-coordinate geometry to one Ag(6), two equivalent Ag(2), and one C(13) atom. In the ninth C site, C(15) is bonded in a distorted octahedral geometry to one Ag(10), one Ag(8), one Ag(9), two equivalent Ag(3), and one C(16) atom. The C(15)-C(16) bond length is 1.22 Å. In the tenth C site, C(16) is bonded in a 4-coordinate geometry to one Ag(11), two equivalent Ag(4), and one C(15) atom. There are twelve inequivalent O sites. In the first O site, O(1) is bonded in a distorted single-bond geometry to one Ag(7), one Ag(8), and one C(1) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one Ag(3) and one C(1) atom. In the third O site, O(3) is bonded in a distorted single-bond geometry to one Ag(1), one Ag(4), and one C(4) atom. In the fourth O site, O(4) is bonded in a distorted single-bond geometry to one Ag(9) and one C(4) atom. In the fifth O site, O(5) is bonded in a distorted single-bond geometry to one Ag(10), one Ag(5), and one C(5) atom. In the sixth O site, O(6) is bonded in a distorted single-bond geometry to one Ag(1) and one C(5) atom. In the seventh O site, O(7) is bonded in a 3-coordinate geometry to one Ag(2), one Ag(3), and one C(8) atom. In the eighth O site, O(8) is bonded in a distorted single-bond geometry to one Ag(6) and one C(8) atom. In the ninth O site, O(9) is bonded in a distorted single-bond geometry to one Ag(1), one Ag(4), and one C(9) atom. In the tenth O site, O(10) is bonded in a distorted single-bond geometry to one Ag(6) and one C(9) atom. In the eleventh O site, O(11) is bonded in a distorted single-bond geometry to one Ag(9) and one C(12) atom. In the twelfth O site, O(12) is bonded in a distorted single-bond geometry to one Ag(2), one Ag(3), and one C(12) atom. Linkers: 12 [O]C(=O)C(F)(F)C(F)(F)C([O])=O. Metal clusters: 30 [Ag]. The MOF has largest included sphere 4.73 A, density 3.11 g/cm3, surface area 1837.46 m2/g, accessible volume 0.10 cm3/g
ROCZOA_clean
Cd3H16(C12N13)2 is Hg_xSn structured and crystallizes in the monoclinic P2_1/c space group. The structure is zero-dimensional and consists of two Cd3H16(C12N13)2 clusters. There are two inequivalent Cd sites. In the first Cd site, Cd(1) is bonded to one N(1), one N(11), one N(4), one N(6), and one N(9) atom to form corner-sharing CdN5 square pyramids. The corner-sharing octahedral tilt angles are 72°. The Cd(1)-N(1) bond length is 2.37 Å. The Cd(1)-N(11) bond length is 2.28 Å. The Cd(1)-N(4) bond length is 2.40 Å. The Cd(1)-N(6) bond length is 2.28 Å. The Cd(1)-N(9) bond length is 2.38 Å. In the second Cd site, Cd(2) is bonded to two equivalent N(11), two equivalent N(3), and two equivalent N(8) atoms to form corner-sharing CdN6 octahedra. Both Cd(2)-N(11) bond lengths are 2.29 Å. Both Cd(2)-N(3) bond lengths are 2.32 Å. Both Cd(2)-N(8) bond lengths are 2.31 Å. There are twelve inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(1) atom. The C(1)-N(1) bond length is 1.33 Å. The C(1)-H(1) bond length is 0.93 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(3) and one H(2) atom. The C(2)-C(3) bond length is 1.37 Å. The C(2)-H(2) bond length is 0.93 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(6) atom. The C(3)-C(4) bond length is 1.38 Å. The C(3)-C(6) bond length is 1.45 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3) and one H(3) atom. The C(4)-H(3) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(4) atom. The C(5)-N(1) bond length is 1.32 Å. The C(5)-H(4) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one C(3), one N(2), and one N(5) atom. The C(6)-N(2) bond length is 1.34 Å. The C(6)-N(5) bond length is 1.34 Å. In the seventh C site, C(7) is bonded in a distorted bent 120 degrees geometry to one N(6) and one H(5) atom. The C(7)-N(6) bond length is 1.32 Å. The C(7)-H(5) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a distorted single-bond geometry to one C(9) and one H(6) atom. The C(8)-C(9) bond length is 1.38 Å. The C(8)-H(6) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a trigonal planar geometry to one C(10), one C(12), and one C(8) atom. The C(9)-C(10) bond length is 1.37 Å. The C(9)-C(12) bond length is 1.46 Å. In the tenth C site, C(10) is bonded in a distorted single-bond geometry to one C(9) and one H(7) atom. The C(10)-H(7) bond length is 0.93 Å. In the eleventh C site, C(11) is bonded in a distorted bent 120 degrees geometry to one N(6) and one H(8) atom. The C(11)-N(6) bond length is 1.32 Å. The C(11)-H(8) bond length is 0.93 Å. In the twelfth C site, C(12) is bonded in a distorted bent 120 degrees geometry to one C(9), one N(10), and one N(7) atom. The C(12)-N(10) bond length is 1.33 Å. The C(12)-N(7) bond length is 1.33 Å. There are thirteen inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Cd(1), one C(1), and one C(5) atom. In the second N site, N(2) is bonded in a water-like geometry to one C(6) and one N(3) atom. The N(2)-N(3) bond length is 1.32 Å. In the third N site, N(3) is bonded in a distorted trigonal planar geometry to one Cd(2), one N(2), and one N(4) atom. The N(3)-N(4) bond length is 1.33 Å. In the fourth N site, N(4) is bonded in a distorted trigonal planar geometry to one Cd(1), one N(3), and one N(5) atom. The N(4)-N(5) bond length is 1.32 Å. In the fifth N site, N(5) is bonded in a distorted water-like geometry to one C(6) and one N(4) atom. In the sixth N site, N(6) is bonded in a trigonal planar geometry to one Cd(1), one C(11), and one C(7) atom. In the seventh N site, N(7) is bonded in a water-like geometry to one C(12) and one N(8) atom. The N(7)-N(8) bond length is 1.33 Å. In the eighth N site, N(8) is bonded in a distorted trigonal planar geometry to one Cd(2), one N(7), and one N(9) atom. The N(8)-N(9) bond length is 1.32 Å. In the ninth N site, N(9) is bonded in a trigonal planar geometry to one Cd(1), one N(10), and one N(8) atom. The N(9)-N(10) bond length is 1.33 Å. In the tenth N site, N(10) is bonded in a water-like geometry to one C(12) and one N(9) atom. In the eleventh N site, N(11) is bonded in a trigonal planar geometry to one Cd(1), one Cd(2), and one N(12) atom. The N(11)-N(12) bond length is 1.17 Å. In the twelfth N site, N(12) is bonded in a linear geometry to one N(11) and one N(13) atom. The N(12)-N(13) bond length is 1.12 Å. In the thirteenth N site, N(13) is bonded in a single-bond geometry to one N(12) atom. There are eight inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(4) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(7) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(8) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(10) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(11) atom. Linkers: 6 c1cc(C2=NN=N[N]2)ccn1 ,2 c1cc(C2=N[N]N=N2)ccn1. Metal clusters: 6 [Cd]. The MOF has largest included sphere 6.50 A, density 0.96 g/cm3, surface area 3712.22 m2/g, accessible volume 0.63 cm3/g
ATOGEV_clean
Zn3P4(HO3)4 crystallizes in the monoclinic P2_1/c space group. There are three inequivalent Zn sites. In the first Zn site, Zn(1) is bonded to one O(1), one O(2), one O(3), and one O(4) atom to form ZnO4 tetrahedra that share a cornercorner with one P(1)HO3 tetrahedra, a cornercorner with one P(2)HO3 tetrahedra, a cornercorner with one P(3)HO3 tetrahedra, and a cornercorner with one P(4)HO3 tetrahedra. The Zn(1)-O(1) bond length is 1.95 Å. The Zn(1)-O(2) bond length is 1.96 Å. The Zn(1)-O(3) bond length is 1.91 Å. The Zn(1)-O(4) bond length is 1.91 Å. In the second Zn site, Zn(2) is bonded to one O(5), one O(6), one O(7), and one O(8) atom to form ZnO4 tetrahedra that share a cornercorner with one P(1)HO3 tetrahedra, a cornercorner with one P(2)HO3 tetrahedra, a cornercorner with one P(3)HO3 tetrahedra, and a cornercorner with one P(4)HO3 tetrahedra. The Zn(2)-O(5) bond length is 1.97 Å. The Zn(2)-O(6) bond length is 1.93 Å. The Zn(2)-O(7) bond length is 1.96 Å. The Zn(2)-O(8) bond length is 1.91 Å. In the third Zn site, Zn(3) is bonded to one O(10), one O(11), one O(12), and one O(9) atom to form ZnO4 tetrahedra that share a cornercorner with one P(1)HO3 tetrahedra, a cornercorner with one P(2)HO3 tetrahedra, a cornercorner with one P(3)HO3 tetrahedra, and a cornercorner with one P(4)HO3 tetrahedra. The Zn(3)-O(10) bond length is 1.93 Å. The Zn(3)-O(11) bond length is 1.93 Å. The Zn(3)-O(12) bond length is 1.91 Å. The Zn(3)-O(9) bond length is 1.94 Å. There are four inequivalent P sites. In the first P site, P(1) is bonded to one H(1), one O(1), one O(11), and one O(6) atom to form distorted PHO3 tetrahedra that share a cornercorner with one Zn(1)O4 tetrahedra, a cornercorner with one Zn(2)O4 tetrahedra, and a cornercorner with one Zn(3)O4 tetrahedra. The P(1)-H(1) bond length is 1.38 Å. The P(1)-O(1) bond length is 1.52 Å. The P(1)-O(11) bond length is 1.52 Å. The P(1)-O(6) bond length is 1.51 Å. In the second P site, P(2) is bonded to one H(2), one O(3), one O(5), and one O(9) atom to form PHO3 tetrahedra that share a cornercorner with one Zn(1)O4 tetrahedra, a cornercorner with one Zn(2)O4 tetrahedra, and a cornercorner with one Zn(3)O4 tetrahedra. The P(2)-H(2) bond length is 1.27 Å. The P(2)-O(3) bond length is 1.52 Å. The P(2)-O(5) bond length is 1.53 Å. The P(2)-O(9) bond length is 1.50 Å. In the third P site, P(3) is bonded to one H(3), one O(12), one O(2), and one O(8) atom to form distorted PHO3 tetrahedra that share a cornercorner with one Zn(1)O4 tetrahedra, a cornercorner with one Zn(2)O4 tetrahedra, and a cornercorner with one Zn(3)O4 tetrahedra. The P(3)-H(3) bond length is 1.37 Å. The P(3)-O(12) bond length is 1.48 Å. The P(3)-O(2) bond length is 1.52 Å. The P(3)-O(8) bond length is 1.50 Å. In the fourth P site, P(4) is bonded to one H(4), one O(10), one O(4), and one O(7) atom to form distorted PHO3 tetrahedra that share a cornercorner with one Zn(1)O4 tetrahedra, a cornercorner with one Zn(2)O4 tetrahedra, and a cornercorner with one Zn(3)O4 tetrahedra. The P(4)-H(4) bond length is 1.43 Å. The P(4)-O(10) bond length is 1.51 Å. The P(4)-O(4) bond length is 1.51 Å. The P(4)-O(7) bond length is 1.52 Å. There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one P(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one P(2) atom. In the third H site, H(3) is bonded in a single-bond geometry to one P(3) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one P(4) atom. There are twelve inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Zn(1) and one P(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Zn(1) and one P(3) atom. In the third O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Zn(1) and one P(2) atom. In the fourth O site, O(4) is bonded in a bent 150 degrees geometry to one Zn(1) and one P(4) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Zn(2) and one P(2) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one Zn(2) and one P(1) atom. In the seventh O site, O(7) is bonded in a bent 120 degrees geometry to one Zn(2) and one P(4) atom. In the eighth O site, O(8) is bonded in a bent 150 degrees geometry to one Zn(2) and one P(3) atom. In the ninth O site, O(9) is bonded in a bent 120 degrees geometry to one Zn(3) and one P(2) atom. In the tenth O site, O(10) is bonded in a bent 120 degrees geometry to one Zn(3) and one P(4) atom. In the eleventh O site, O(11) is bonded in a distorted bent 150 degrees geometry to one Zn(3) and one P(1) atom. In the twelfth O site, O(12) is bonded in a bent 150 degrees geometry to one Zn(3) and one P(3) atom. Linkers: 16 [O][PH]([O])=O. Metal clusters: 12 [Zn]. The MOF has largest included sphere 5.55 A, density 1.62 g/cm3, surface area 3122.44 m2/g, accessible volume 0.30 cm3/g
LIVLUZ_clean
CdC14H8(N3O2)2(CH)4 is Indium-derived structured and crystallizes in the orthorhombic Pca2_1 space group. The structure is zero-dimensional and consists of sixteen 02329_fluka molecules and four CdC14H8(N3O2)2 clusters. In each CdC14H8(N3O2)2 cluster, Cd(1) is bonded in a distorted octahedral geometry to one N(1), one N(4), one O(1), one O(2), one O(3), and one O(4) atom. The Cd(1)-N(1) bond length is 2.26 Å. The Cd(1)-N(4) bond length is 2.25 Å. The Cd(1)-O(1) bond length is 2.33 Å. The Cd(1)-O(2) bond length is 2.36 Å. The Cd(1)-O(3) bond length is 2.34 Å. The Cd(1)-O(4) bond length is 2.35 Å. There are fourteen inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one N(1), one N(3), and one H(1) atom. The C(1)-N(1) bond length is 1.39 Å. The C(1)-N(3) bond length is 1.38 Å. The C(1)-H(1) bond length is 0.93 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one N(1), one N(2), and one H(2) atom. The C(2)-N(1) bond length is 1.31 Å. The C(2)-N(2) bond length is 1.36 Å. The C(2)-H(2) bond length is 0.93 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one N(2) atom. The C(3)-N(2) bond length is 1.42 Å. In the fourth C site, C(5) is bonded in a distorted single-bond geometry to one C(6) and one H(4) atom. The C(5)-C(6) bond length is 1.40 Å. The C(5)-H(4) bond length is 0.93 Å. In the fifth C site, C(6) is bonded in a trigonal planar geometry to one C(5), one C(7), and one C(9) atom. The C(6)-C(7) bond length is 1.40 Å. The C(6)-C(9) bond length is 1.50 Å. In the sixth C site, C(7) is bonded in a single-bond geometry to one C(6) and one H(5) atom. The C(7)-H(5) bond length is 0.93 Å. In the seventh C site, C(9) is bonded in a distorted bent 120 degrees geometry to one C(6), one O(1), and one O(2) atom. The C(9)-O(1) bond length is 1.28 Å. The C(9)-O(2) bond length is 1.26 Å. In the eighth C site, C(10) is bonded in a trigonal planar geometry to one N(4), one N(6), and one H(7) atom. The C(10)-N(4) bond length is 1.40 Å. The C(10)-N(6) bond length is 1.37 Å. The C(10)-H(7) bond length is 0.93 Å. In the ninth C site, C(11) is bonded in a trigonal planar geometry to one N(4), one N(5), and one H(8) atom. The C(11)-N(4) bond length is 1.31 Å. The C(11)-N(5) bond length is 1.36 Å. The C(11)-H(8) bond length is 0.93 Å. In the tenth C site, C(12) is bonded in a distorted single-bond geometry to one N(5) atom. The C(12)-N(5) bond length is 1.42 Å. In the eleventh C site, C(14) is bonded in a single-bond geometry to one C(15) and one H(10) atom. The C(14)-C(15) bond length is 1.39 Å. The C(14)-H(10) bond length is 0.93 Å. In the twelfth C site, C(15) is bonded in a trigonal planar geometry to one C(14), one C(16), and one C(18) atom. The C(15)-C(16) bond length is 1.40 Å. The C(15)-C(18) bond length is 1.51 Å. In the thirteenth C site, C(16) is bonded in a distorted single-bond geometry to one C(15) and one H(11) atom. The C(16)-H(11) bond length is 0.93 Å. In the fourteenth C site, C(18) is bonded in a distorted bent 120 degrees geometry to one C(15), one O(3), and one O(4) atom. The C(18)-O(3) bond length is 1.27 Å. The C(18)-O(4) bond length is 1.27 Å. There are six inequivalent N sites. In the first N site, N(6) is bonded in a distorted single-bond geometry to one C(10) and one N(5) atom. The N(6)-N(5) bond length is 1.40 Å. In the second N site, N(5) is bonded in a distorted trigonal planar geometry to one C(11), one C(12), and one N(6) atom. In the third N site, N(1) is bonded in a trigonal planar geometry to one Cd(1), one C(1), and one C(2) atom. In the fourth N site, N(2) is bonded in a distorted trigonal planar geometry to one C(2), one C(3), and one N(3) atom. The N(2)-N(3) bond length is 1.38 Å. In the fifth N site, N(3) is bonded in a distorted water-like geometry to one C(1) and one N(2) atom. In the sixth N site, N(4) is bonded in a trigonal planar geometry to one Cd(1), one C(10), and one C(11) atom. There are eight inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the fourth H site, H(5) is bonded in a single-bond geometry to one C(7) atom. In the fifth H site, H(7) is bonded in a single-bond geometry to one C(10) atom. In the sixth H site, H(8) is bonded in a single-bond geometry to one C(11) atom. In the seventh H site, H(10) is bonded in a single-bond geometry to one C(14) atom. In the eighth H site, H(11) is bonded in a single-bond geometry to one C(16) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in an L-shaped geometry to one Cd(1) and one C(9) atom. In the second O site, O(2) is bonded in a distorted L-shaped geometry to one Cd(1) and one C(9) atom. In the third O site, O(3) is bonded in a distorted L-shaped geometry to one Cd(1) and one C(18) atom. In the fourth O site, O(4) is bonded in an L-shaped geometry to one Cd(1) and one C(18) atom. Linkers: 1 [CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH]=[CH].[CH]=[N].[CH]=[N].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C]#N.[C]#N.[C]/[C]=[C]\[C].[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][N].[C][N].[C][N].[C][N][N].[Cd].[Cd].[Cd].[Cd].[Cd].[Cd].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N][Cd].[N][N].[N][N].[N][N].[N][N].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O][C]=O ,1 [CH][C]=C1O[Cd]2(N3[CH]N(/C([CH])=C/[CH])N=C3)(N3[CH]N(c4ccc(C([O])=O)cc4)N=C3)(O[C](c3ccc(N4[CH]N=C[N]4)cc3)O2)O1 ,1 [CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH][N].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C]/[C]=C\[C].[C]/[C]=C\[C].[C]=N[Cd].[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C][CH].[C][CH].[C][CH].[C][C].[C][C]=[CH].[C][N][C][N][N]/[C]=[C]/[CH].[C][N][N].[Cd].[Cd].[Cd].[Cd].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N][Cd].[N][N].[N][N].[N][N].[N][N]/C=N/[Cd]([N])([O])[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O][C]=O ,1 [CH]/C=[C]/N1[CH]N([Cd]23(N4[CH]N(c5ccc(C([O])=O)cc5)N=C4)(O[C](c4ccc(N5[CH]N=C[N]5)cc4)O2)OC(=[C]C=[CH])O3)C=N1. Metal clusters: 1 [C]1O[Cd]2(O1)O[C]O2. The MOF has largest included sphere 5.91 A, density 1.16 g/cm3, surface area 4510.93 m2/g, accessible volume 0.53 cm3/g
WUTBUI_clean
La2Cu3C24H30(NO4)6 crystallizes in the trigonal P-3c1 space group. La(1) is bonded in a 9-coordinate geometry to three equivalent O(1), three equivalent O(2), and three equivalent O(4) atoms. All La(1)-O(1) bond lengths are 2.52 Å. All La(1)-O(2) bond lengths are 2.79 Å. All La(1)-O(4) bond lengths are 2.46 Å. Cu(1) is bonded in a distorted octahedral geometry to two equivalent N(1), two equivalent O(1), and two equivalent O(3) atoms. Both Cu(1)-N(1) bond lengths are 2.03 Å. Both Cu(1)-O(1) bond lengths are 2.39 Å. Both Cu(1)-O(3) bond lengths are 1.98 Å. There are four inequivalent C sites. In the first C site, C(1) is bonded in a 3-coordinate geometry to one N(1) and two equivalent H(2,3) atoms. The C(1)-N(1) bond length is 1.48 Å. Both C(1)-H(2,3) bond lengths are 0.97 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one O(3) and one O(4) atom. The C(2)-O(3) bond length is 1.25 Å. The C(2)-O(4) bond length is 1.24 Å. In the third C site, C(3) is bonded in a distorted bent 120 degrees geometry to one O(1) and one O(2) atom. The C(3)-O(1) bond length is 1.28 Å. The C(3)-O(2) bond length is 1.23 Å. In the fourth C site, C(4) is bonded in a 3-coordinate geometry to one N(1) and two equivalent H(4,5) atoms. The C(4)-N(1) bond length is 1.49 Å. Both C(4)-H(4,5) bond lengths are 0.97 Å. N(1) is bonded in a distorted single-bond geometry to one Cu(1), one C(1), one C(4), and one H(1) atom. The N(1)-H(1) bond length is 0.91 Å. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one N(1) atom. In the second H site, H(2,3) is bonded in a single-bond geometry to one C(1) atom. In the third H site, H(4,5) is bonded in a single-bond geometry to one C(4) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a distorted single-bond geometry to one La(1), one Cu(1), and one C(3) atom. In the second O site, O(2) is bonded in a single-bond geometry to one La(1) and one C(3) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(2) atom. In the fourth O site, O(4) is bonded in a distorted bent 150 degrees geometry to one La(1) and one C(2) atom. Linkers: 12 [O]C(=O)CNCC([O])=O. Metal clusters: 4 [La] ,6 [Cu]. The MOF has largest included sphere 7.47 A, density 1.75 g/cm3, surface area 3179.24 m2/g, accessible volume 0.23 cm3/g
RUCGOM_clean
(PtAuC8H18(NS)2)2Zn(CO2)4 is Indium-derived structured and crystallizes in the hexagonal P6_422 space group. The structure is zero-dimensional and consists of three PtAuC8H18(NS)2 clusters and three Zn(CO2)4 clusters. In each PtAuC8H18(NS)2 cluster, Pt(1) is bonded in a distorted square co-planar geometry to two equivalent N(1) and two equivalent S(1) atoms. Both Pt(1)-N(1) bond lengths are 2.05 Å. Both Pt(1)-S(1) bond lengths are 2.30 Å. Au(1) is bonded in a linear geometry to two equivalent S(1) atoms. Both Au(1)-S(1) bond lengths are 2.29 Å. There are four inequivalent C sites. In the first C site, C(1) is bonded in a tetrahedral geometry to one C(2), one C(3), one C(4), and one S(1) atom. The C(1)-C(2) bond length is 1.53 Å. The C(1)-C(3) bond length is 1.51 Å. The C(1)-C(4) bond length is 1.54 Å. The C(1)-S(1) bond length is 1.87 Å. In the second C site, C(2) is bonded in a 2-coordinate geometry to one C(1), one N(1), and one H(3) atom. The C(2)-N(1) bond length is 1.50 Å. The C(2)-H(3) bond length is 1.00 Å. In the third C site, C(3) is bonded in a trigonal non-coplanar geometry to one C(1); one H(4,7); and two equivalent H(5,6) atoms. The C(3)-H(4,7) bond length is 0.98 Å. Both C(3)-H(5,6) bond lengths are 0.98 Å. In the fourth C site, C(4) is bonded in a trigonal non-coplanar geometry to one C(1); one H(4,7); and two equivalent H(8,9) atoms. The C(4)-H(4,7) bond length is 0.98 Å. Both C(4)-H(8,9) bond lengths are 0.98 Å. N(1) is bonded in a distorted water-like geometry to one Pt(1); one C(2); and two equivalent H(1,2) atoms. Both N(1)-H(1,2) bond lengths are 0.92 Å. There are five inequivalent H sites. In the first H site, H(1,2) is bonded in a single-bond geometry to one N(1) atom. In the second H site, H(3) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(4,7) is bonded in a single-bond geometry to one C(3) atom. In the fourth H site, H(5,6) is bonded in a single-bond geometry to one C(3) atom. In the fifth H site, H(8,9) is bonded in a single-bond geometry to one C(4) atom. S(1) is bonded in a distorted trigonal non-coplanar geometry to one Pt(1), one Au(1), and one C(1) atom. In each Zn(CO2)4 cluster, Zn(1) is bonded in a distorted tetrahedral geometry to four equivalent O(1) atoms. All Zn(1)-O(1) bond lengths are 1.93 Å. C(5) is bonded in a distorted bent 120 degrees geometry to one O(1) and one O(2) atom. The C(5)-O(1) bond length is 1.27 Å. The C(5)-O(2) bond length is 1.22 Å. There are two inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(5) atom. In the second O site, O(2) is bonded in a single-bond geometry to one C(5) atom. Linkers: 12 CC(C)([S])[C@@H](N)C([O])=O. Metal clusters: 3 [Zn] ,6 [Pt] ,6 [Au]. The MOF has largest included sphere 4.40 A, density 2.16 g/cm3, surface area 2610.40 m2/g, accessible volume 0.18 cm3/g
TOHYUM_clean
Zn4C21H9O13(CH)3 crystallizes in the monoclinic Cc space group. The structure consists of twelve 02329_fluka molecules inside a Zn4C21H9O13 framework. In the Zn4C21H9O13 framework, there are four inequivalent Zn sites. In the first Zn site, Zn(1) is bonded to one O(1), one O(11), one O(13), and one O(4) atom to form corner-sharing ZnO4 tetrahedra. The Zn(1)-O(1) bond length is 1.98 Å. The Zn(1)-O(11) bond length is 1.95 Å. The Zn(1)-O(13) bond length is 1.97 Å. The Zn(1)-O(4) bond length is 1.98 Å. In the second Zn site, Zn(2) is bonded in a distorted see-saw-like geometry to one O(11), one O(3), one O(5), and one O(7) atom. The Zn(2)-O(11) bond length is 1.96 Å. The Zn(2)-O(3) bond length is 2.02 Å. The Zn(2)-O(5) bond length is 2.12 Å. The Zn(2)-O(7) bond length is 2.09 Å. In the third Zn site, Zn(3) is bonded to one O(11), one O(2), one O(6), and one O(9) atom to form corner-sharing ZnO4 tetrahedra. The Zn(3)-O(11) bond length is 1.93 Å. The Zn(3)-O(2) bond length is 1.97 Å. The Zn(3)-O(6) bond length is 1.94 Å. The Zn(3)-O(9) bond length is 1.95 Å. In the fourth Zn site, Zn(4) is bonded in a distorted see-saw-like geometry to one O(10), one O(11), one O(12), and one O(8) atom. The Zn(4)-O(10) bond length is 2.09 Å. The Zn(4)-O(11) bond length is 1.94 Å. The Zn(4)-O(12) bond length is 2.34 Å. The Zn(4)-O(8) bond length is 1.96 Å. There are twenty-one inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(3), one O(1), and one O(2) atom. The C(1)-C(3) bond length is 1.50 Å. The C(1)-O(1) bond length is 1.24 Å. The C(1)-O(2) bond length is 1.25 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one C(5), one O(3), and one O(4) atom. The C(2)-C(5) bond length is 1.50 Å. The C(2)-O(3) bond length is 1.23 Å. The C(2)-O(4) bond length is 1.28 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(1), one C(4), and one C(8) atom. The C(3)-C(4) bond length is 1.40 Å. The C(3)-C(8) bond length is 1.37 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3), one C(5), and one H(1) atom. The C(4)-C(5) bond length is 1.39 Å. The C(4)-H(1) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(6) atom. The C(5)-C(6) bond length is 1.39 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(5) and one H(2) atom. The C(6)-H(2) bond length is 0.93 Å. In the seventh C site, C(8) is bonded in a distorted single-bond geometry to one C(3) and one H(4) atom. The C(8)-H(4) bond length is 0.93 Å. In the eighth C site, C(9) is bonded in a distorted bent 120 degrees geometry to one C(11), one O(5), and one O(6) atom. The C(9)-C(11) bond length is 1.50 Å. The C(9)-O(5) bond length is 1.23 Å. The C(9)-O(6) bond length is 1.28 Å. In the ninth C site, C(10) is bonded in a distorted bent 120 degrees geometry to one C(13), one O(7), and one O(8) atom. The C(10)-C(13) bond length is 1.50 Å. The C(10)-O(7) bond length is 1.25 Å. The C(10)-O(8) bond length is 1.27 Å. In the tenth C site, C(11) is bonded in a trigonal planar geometry to one C(12), one C(16), and one C(9) atom. The C(11)-C(12) bond length is 1.39 Å. The C(11)-C(16) bond length is 1.38 Å. In the eleventh C site, C(12) is bonded in a single-bond geometry to one C(11), one C(13), and one H(5) atom. The C(12)-C(13) bond length is 1.39 Å. The C(12)-H(5) bond length is 0.93 Å. In the twelfth C site, C(13) is bonded in a trigonal planar geometry to one C(10), one C(12), and one C(14) atom. The C(13)-C(14) bond length is 1.38 Å. In the thirteenth C site, C(14) is bonded in a distorted single-bond geometry to one C(13) and one H(6) atom. The C(14)-H(6) bond length is 0.93 Å. In the fourteenth C site, C(16) is bonded in a distorted single-bond geometry to one C(11) and one H(8) atom. The C(16)-H(8) bond length is 0.93 Å. In the fifteenth C site, C(17) is bonded in a distorted bent 120 degrees geometry to one C(19), one O(10), and one O(9) atom. The C(17)-C(19) bond length is 1.50 Å. The C(17)-O(10) bond length is 1.25 Å. The C(17)-O(9) bond length is 1.26 Å. In the sixteenth C site, C(18) is bonded in a distorted bent 120 degrees geometry to one C(21), one O(12), and one O(13) atom. The C(18)-C(21) bond length is 1.50 Å. The C(18)-O(12) bond length is 1.25 Å. The C(18)-O(13) bond length is 1.25 Å. In the seventeenth C site, C(19) is bonded in a trigonal planar geometry to one C(17), one C(20), and one C(24) atom. The C(19)-C(20) bond length is 1.40 Å. The C(19)-C(24) bond length is 1.38 Å. In the eighteenth C site, C(20) is bonded in a distorted single-bond geometry to one C(19), one C(21), and one H(9) atom. The C(20)-C(21) bond length is 1.40 Å. The C(20)-H(9) bond length is 0.93 Å. In the nineteenth C site, C(21) is bonded in a trigonal planar geometry to one C(18), one C(20), and one C(22) atom. The C(21)-C(22) bond length is 1.39 Å. In the twentieth C site, C(22) is bonded in a distorted single-bond geometry to one C(21) and one H(10) atom. The C(22)-H(10) bond length is 0.93 Å. In the twenty-first C site, C(24) is bonded in a single-bond geometry to one C(19) and one H(12) atom. The C(24)-H(12) bond length is 0.93 Å. There are nine inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(4) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(6) atom. In the third H site, H(4) is bonded in a single-bond geometry to one C(8) atom. In the fourth H site, H(5) is bonded in a single-bond geometry to one C(12) atom. In the fifth H site, H(6) is bonded in a single-bond geometry to one C(14) atom. In the sixth H site, H(8) is bonded in a single-bond geometry to one C(16) atom. In the seventh H site, H(9) is bonded in a single-bond geometry to one C(20) atom. In the eighth H site, H(10) is bonded in a single-bond geometry to one C(22) atom. In the ninth H site, H(12) is bonded in a single-bond geometry to one C(24) atom. There are thirteen inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Zn(3) and one C(1) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Zn(2) and one C(2) atom. In the fourth O site, O(4) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(2) atom. In the fifth O site, O(5) is bonded in a distorted bent 150 degrees geometry to one Zn(2) and one C(9) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one Zn(3) and one C(9) atom. In the seventh O site, O(7) is bonded in a distorted bent 120 degrees geometry to one Zn(2) and one C(10) atom. In the eighth O site, O(8) is bonded in a bent 120 degrees geometry to one Zn(4) and one C(10) atom. In the ninth O site, O(9) is bonded in a bent 120 degrees geometry to one Zn(3) and one C(17) atom. In the tenth O site, O(10) is bonded in a distorted bent 150 degrees geometry to one Zn(4) and one C(17) atom. In the eleventh O site, O(11) is bonded in a tetrahedral geometry to one Zn(1), one Zn(2), one Zn(3), and one Zn(4) atom. In the twelfth O site, O(12) is bonded in a distorted bent 150 degrees geometry to one Zn(4) and one C(18) atom. In the thirteenth O site, O(13) is bonded in a water-like geometry to one Zn(1) and one C(18) atom. Linkers: 12 [O]C(=O)c1cccc(C([O])=O)c1. Metal clusters: 2 O=[C]O[Zn]1O[C]O[Zn]2O[C]O[Zn]3O[C]O[Zn@](O[C]O2)(O[C]O1)O3 ,2 O=[C]O[Zn]1O[C]O[Zn]2O[C]O[Zn]3O[C]O[Zn@@](O[C]O2)(O[C]O1)O3. RCSR code: sxb. The MOF has largest included sphere 6.17 A, density 1.23 g/cm3, surface area 3684.71 m2/g, accessible volume 0.45 cm3/g
HAPNOE_clean
ErC12H5(NO3)2(CH)2 crystallizes in the monoclinic C2/c space group. The structure consists of sixteen 02329_fluka molecules inside a ErC12H5(NO3)2 framework. In the ErC12H5(NO3)2 framework, Er(1) is bonded in a 6-coordinate geometry to one O(1), one O(3), one O(4), one O(5), and two equivalent O(2) atoms. The Er(1)-O(1) bond length is 2.40 Å. The Er(1)-O(3) bond length is 2.30 Å. The Er(1)-O(4) bond length is 2.24 Å. The Er(1)-O(5) bond length is 2.32 Å. There is one shorter (2.28 Å) and one longer (2.41 Å) Er(1)-O(2) bond length. There are twelve inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.48 Å. The C(1)-O(1) bond length is 1.25 Å. The C(1)-O(2) bond length is 1.30 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.40 Å. The C(2)-C(7) bond length is 1.40 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2), one C(4), and one H(1) atom. The C(3)-C(4) bond length is 1.37 Å. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3), one C(5), and one N(1) atom. The C(4)-C(5) bond length is 1.40 Å. The C(4)-N(1) bond length is 1.42 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(4) and one H(2) atom. The C(5)-H(2) bond length is 0.93 Å. In the sixth C site, C(7) is bonded in a distorted single-bond geometry to one C(2) and one O(4) atom. The C(7)-O(4) bond length is 1.32 Å. In the seventh C site, C(8) is bonded in a distorted bent 120 degrees geometry to one C(9), one O(3), and one O(5) atom. The C(8)-C(9) bond length is 1.50 Å. The C(8)-O(3) bond length is 1.26 Å. The C(8)-O(5) bond length is 1.25 Å. In the eighth C site, C(9) is bonded in a trigonal planar geometry to one C(10), one C(14), and one C(8) atom. The C(9)-C(10) bond length is 1.41 Å. The C(9)-C(14) bond length is 1.38 Å. In the ninth C site, C(10) is bonded in a distorted single-bond geometry to one C(9) and one O(6) atom. The C(10)-O(6) bond length is 1.36 Å. In the tenth C site, C(12) is bonded in a distorted single-bond geometry to one C(13) and one H(5) atom. The C(12)-C(13) bond length is 1.39 Å. The C(12)-H(5) bond length is 0.93 Å. In the eleventh C site, C(13) is bonded in a distorted trigonal planar geometry to one C(12), one C(14), and one N(2) atom. The C(13)-C(14) bond length is 1.39 Å. The C(13)-N(2) bond length is 1.43 Å. In the twelfth C site, C(14) is bonded in a distorted single-bond geometry to one C(13), one C(9), and one H(6) atom. The C(14)-H(6) bond length is 0.93 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a distorted bent 120 degrees geometry to one C(4) and one N(1) atom. The N(1)-N(1) bond length is 1.26 Å. In the second N site, N(2) is bonded in a distorted bent 120 degrees geometry to one C(13) and one N(2) atom. The N(2)-N(2) bond length is 1.24 Å. There are five inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(5) is bonded in a single-bond geometry to one C(12) atom. In the fourth H site, H(6) is bonded in a single-bond geometry to one C(14) atom. In the fifth H site, H(7) is bonded in a single-bond geometry to one O(6) atom. The H(7)-O(6) bond length is 0.85 Å. There are six inequivalent O sites. In the first O site, O(1) is bonded in a distorted L-shaped geometry to one Er(1) and one C(1) atom. In the second O site, O(2) is bonded in a 3-coordinate geometry to two equivalent Er(1) and one C(1) atom. In the third O site, O(6) is bonded in a water-like geometry to one C(10) and one H(7) atom. In the fourth O site, O(3) is bonded in a distorted bent 150 degrees geometry to one Er(1) and one C(8) atom. In the fifth O site, O(4) is bonded in a bent 120 degrees geometry to one Er(1) and one C(7) atom. In the sixth O site, O(5) is bonded in a distorted bent 120 degrees geometry to one Er(1) and one C(8) atom. Linkers: 6 [O]C(=O)c1cc([N][N]c2ccc([O])c(C([O])=O)c2)ccc1[O] ,4 [O]C(=O)c1cc(/N=N/c2ccc(O)c(C([O])=O)c2)ccc1O. Metal clusters: 8 [Er]. The MOF has largest included sphere 5.80 A, density 1.49 g/cm3, surface area 3122.31 m2/g, accessible volume 0.34 cm3/g
HEXNUU_clean
CdC12N5H11(CH)2C6NH5 is Indium-derived structured and crystallizes in the orthorhombic Pbca space group. The structure is zero-dimensional and consists of sixteen 02329_fluka molecules, eight C6NH5 clusters, and eight CdC12N5H11 clusters. In each C6NH5 cluster, there are six inequivalent C sites. In the first C site, C(9) is bonded in a single-bond geometry to one C(8) and one H(7) atom. The C(9)-C(8) bond length is 1.40 Å. The C(9)-H(7) bond length is 0.93 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(3) and one H(2,3) atom. The C(2)-C(3) bond length is 1.41 Å. The C(2)-H(2,3) bond length is 0.93 Å. In the third C site, C(3) is bonded in a distorted trigonal planar geometry to one C(2), one C(4), and one N(2) atom. The C(3)-C(4) bond length is 1.40 Å. The C(3)-N(2) bond length is 1.37 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3) and one H(2,3) atom. The C(4)-H(2,3) bond length is 0.93 Å. In the fifth C site, C(7) is bonded in a single-bond geometry to one C(8) and one H(6) atom. The C(7)-C(8) bond length is 1.40 Å. The C(7)-H(6) bond length is 0.93 Å. In the sixth C site, C(8) is bonded in a distorted trigonal planar geometry to one C(7), one C(9), and one N(2) atom. The C(8)-N(2) bond length is 1.39 Å. N(2) is bonded in a distorted trigonal planar geometry to one C(3), one C(8), and one H(17) atom. The N(2)-H(17) bond length is 0.86 Å. There are four inequivalent H sites. In the first H site, H(2,3) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(6) is bonded in a single-bond geometry to one C(7) atom. In the third H site, H(7) is bonded in a single-bond geometry to one C(9) atom. In the fourth H site, H(17) is bonded in a single-bond geometry to one N(2) atom. In each CdC12N5H11 cluster, Cd(1) is bonded in a rectangular see-saw-like geometry to one N(1), one N(3), one N(4), and one N(6) atom. The Cd(1)-N(1) bond length is 2.35 Å. The Cd(1)-N(3) bond length is 2.34 Å. The Cd(1)-N(4) bond length is 2.32 Å. The Cd(1)-N(6) bond length is 2.34 Å. There are twelve inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(1) atom. The C(1)-N(1) bond length is 1.35 Å. The C(1)-H(1) bond length is 0.93 Å. In the second C site, C(5) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(4) atom. The C(5)-N(1) bond length is 1.34 Å. The C(5)-H(4) bond length is 0.93 Å. In the third C site, C(6) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(5) atom. The C(6)-N(3) bond length is 1.34 Å. The C(6)-H(5) bond length is 0.93 Å. In the fourth C site, C(10) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(8) atom. The C(10)-N(3) bond length is 1.35 Å. The C(10)-H(8) bond length is 0.93 Å. In the fifth C site, C(11) is bonded in a distorted bent 120 degrees geometry to one N(4) and one H(9) atom. The C(11)-N(4) bond length is 1.35 Å. The C(11)-H(9) bond length is 0.93 Å. In the sixth C site, C(13) is bonded in a distorted single-bond geometry to one N(5) atom. The C(13)-N(5) bond length is 1.37 Å. In the seventh C site, C(15) is bonded in a distorted bent 120 degrees geometry to one N(4) and one H(12) atom. The C(15)-N(4) bond length is 1.34 Å. The C(15)-H(12) bond length is 0.93 Å. In the eighth C site, C(16) is bonded in a distorted trigonal planar geometry to one C(17), one N(6), and one H(13) atom. The C(16)-C(17) bond length is 1.38 Å. The C(16)-N(6) bond length is 1.34 Å. The C(16)-H(13) bond length is 0.93 Å. In the ninth C site, C(17) is bonded in a distorted single-bond geometry to one C(16), one C(18), and one H(14) atom. The C(17)-C(18) bond length is 1.39 Å. The C(17)-H(14) bond length is 0.93 Å. In the tenth C site, C(18) is bonded in a distorted trigonal planar geometry to one C(17), one C(19), and one N(5) atom. The C(18)-C(19) bond length is 1.39 Å. The C(18)-N(5) bond length is 1.40 Å. In the eleventh C site, C(19) is bonded in a distorted single-bond geometry to one C(18), one C(20), and one H(15) atom. The C(19)-C(20) bond length is 1.39 Å. The C(19)-H(15) bond length is 0.93 Å. In the twelfth C site, C(20) is bonded in a distorted trigonal planar geometry to one C(19), one N(6), and one H(16) atom. The C(20)-N(6) bond length is 1.34 Å. The C(20)-H(16) bond length is 0.93 Å. There are five inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Cd(1), one C(1), and one C(5) atom. In the second N site, N(3) is bonded in a trigonal planar geometry to one Cd(1), one C(10), and one C(6) atom. In the third N site, N(4) is bonded in a trigonal planar geometry to one Cd(1), one C(11), and one C(15) atom. In the fourth N site, N(5) is bonded in a trigonal planar geometry to one C(13), one C(18), and one H(18) atom. The N(5)-H(18) bond length is 0.86 Å. In the fifth N site, N(6) is bonded in a trigonal planar geometry to one Cd(1), one C(16), and one C(20) atom. There are eleven inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(5) is bonded in a single-bond geometry to one C(6) atom. In the fourth H site, H(8) is bonded in a single-bond geometry to one C(10) atom. In the fifth H site, H(9) is bonded in a single-bond geometry to one C(11) atom. In the sixth H site, H(12) is bonded in a single-bond geometry to one C(15) atom. In the seventh H site, H(13) is bonded in a single-bond geometry to one C(16) atom. In the eighth H site, H(14) is bonded in a single-bond geometry to one C(17) atom. In the ninth H site, H(15) is bonded in a single-bond geometry to one C(19) atom. In the tenth H site, H(16) is bonded in a single-bond geometry to one C(20) atom. In the eleventh H site, H(18) is bonded in a single-bond geometry to one N(5) atom. Linkers: 16 c1cc(Nc2ccncc2)ccn1. Metal clusters: 8 [Cd]. The MOF has largest included sphere 4.28 A, density 1.26 g/cm3, surface area 4693.82 m2/g, accessible volume 0.36 cm3/g
HOXKUB_clean
Yb2C18H6(SO4)3 crystallizes in the monoclinic P2_1/c space group. There are two inequivalent Yb sites. In the first Yb site, Yb(1) is bonded in a 7-coordinate geometry to one O(1), one O(10), one O(11), one O(7), one O(9), and two equivalent O(2) atoms. The Yb(1)-O(1) bond length is 2.35 Å. The Yb(1)-O(10) bond length is 2.27 Å. The Yb(1)-O(11) bond length is 2.24 Å. The Yb(1)-O(7) bond length is 2.22 Å. The Yb(1)-O(9) bond length is 2.29 Å. There is one shorter (2.35 Å) and one longer (2.66 Å) Yb(1)-O(2) bond length. In the second Yb site, Yb(2) is bonded in a distorted pentagonal pyramidal geometry to one O(12), one O(3), one O(4), one O(5), one O(6), and one O(8) atom. The Yb(2)-O(12) bond length is 2.22 Å. The Yb(2)-O(3) bond length is 2.28 Å. The Yb(2)-O(4) bond length is 2.29 Å. The Yb(2)-O(5) bond length is 2.33 Å. The Yb(2)-O(6) bond length is 2.21 Å. The Yb(2)-O(8) bond length is 2.28 Å. There are eighteen inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.49 Å. The C(1)-O(1) bond length is 1.22 Å. The C(1)-O(2) bond length is 1.27 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one S(1) atom. The C(2)-C(3) bond length is 1.36 Å. The C(2)-S(1) bond length is 1.71 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2) and one H(1) atom. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(5) and one H(2) atom. The C(4)-C(5) bond length is 1.35 Å. The C(4)-H(2) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(4), one C(6), and one S(1) atom. The C(5)-C(6) bond length is 1.51 Å. The C(5)-S(1) bond length is 1.70 Å. In the sixth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one C(5), one O(3), and one O(4) atom. The C(6)-O(3) bond length is 1.26 Å. The C(6)-O(4) bond length is 1.25 Å. In the seventh C site, C(7) is bonded in a bent 120 degrees geometry to one C(8), one O(5), and one O(6) atom. The C(7)-C(8) bond length is 1.51 Å. The C(7)-O(5) bond length is 1.25 Å. The C(7)-O(6) bond length is 1.24 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one C(7), one C(9), and one S(2) atom. The C(8)-C(9) bond length is 1.34 Å. The C(8)-S(2) bond length is 1.70 Å. In the ninth C site, C(9) is bonded in a distorted single-bond geometry to one C(8) and one H(3) atom. The C(9)-H(3) bond length is 0.93 Å. In the tenth C site, C(10) is bonded in a distorted single-bond geometry to one C(11) and one H(4) atom. The C(10)-C(11) bond length is 1.37 Å. The C(10)-H(4) bond length is 0.93 Å. In the eleventh C site, C(11) is bonded in a trigonal planar geometry to one C(10), one C(12), and one S(2) atom. The C(11)-C(12) bond length is 1.47 Å. The C(11)-S(2) bond length is 1.70 Å. In the twelfth C site, C(12) is bonded in a bent 120 degrees geometry to one C(11), one O(7), and one O(8) atom. The C(12)-O(7) bond length is 1.28 Å. The C(12)-O(8) bond length is 1.24 Å. In the thirteenth C site, C(13) is bonded in a bent 120 degrees geometry to one C(14), one O(10), and one O(9) atom. The C(13)-C(14) bond length is 1.48 Å. The C(13)-O(10) bond length is 1.26 Å. The C(13)-O(9) bond length is 1.28 Å. In the fourteenth C site, C(14) is bonded in a trigonal planar geometry to one C(13), one C(15), and one S(3) atom. The C(14)-C(15) bond length is 1.33 Å. The C(14)-S(3) bond length is 1.73 Å. In the fifteenth C site, C(15) is bonded in a distorted single-bond geometry to one C(14) and one H(5) atom. The C(15)-H(5) bond length is 0.93 Å. In the sixteenth C site, C(16) is bonded in a distorted single-bond geometry to one C(17) and one H(6) atom. The C(16)-C(17) bond length is 1.34 Å. The C(16)-H(6) bond length is 0.93 Å. In the seventeenth C site, C(17) is bonded in a trigonal planar geometry to one C(16), one C(18), and one S(3) atom. The C(17)-C(18) bond length is 1.47 Å. The C(17)-S(3) bond length is 1.71 Å. In the eighteenth C site, C(18) is bonded in a bent 120 degrees geometry to one C(17), one O(11), and one O(12) atom. The C(18)-O(11) bond length is 1.23 Å. The C(18)-O(12) bond length is 1.23 Å. There are six inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(9) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(10) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(15) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(16) atom. There are three inequivalent S sites. In the first S site, S(1) is bonded in an L-shaped geometry to one C(2) and one C(5) atom. In the second S site, S(2) is bonded in an L-shaped geometry to one C(11) and one C(8) atom. In the third S site, S(3) is bonded in an L-shaped geometry to one C(14) and one C(17) atom. There are twelve inequivalent O sites. In the first O site, O(1) is bonded in a distorted water-like geometry to one Yb(1) and one C(1) atom. In the second O site, O(2) is bonded in a 3-coordinate geometry to two equivalent Yb(1) and one C(1) atom. In the third O site, O(3) is bonded in a distorted bent 150 degrees geometry to one Yb(2) and one C(6) atom. In the fourth O site, O(4) is bonded in a distorted bent 150 degrees geometry to one Yb(2) and one C(6) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Yb(2) and one C(7) atom. In the sixth O site, O(6) is bonded in a linear geometry to one Yb(2) and one C(7) atom. In the seventh O site, O(7) is bonded in a distorted bent 150 degrees geometry to one Yb(1) and one C(12) atom. In the eighth O site, O(8) is bonded in a bent 150 degrees geometry to one Yb(2) and one C(12) atom. In the ninth O site, O(9) is bonded in a distorted bent 120 degrees geometry to one Yb(1) and one C(13) atom. In the tenth O site, O(10) is bonded in a distorted bent 150 degrees geometry to one Yb(1) and one C(13) atom. In the eleventh O site, O(11) is bonded in a linear geometry to one Yb(1) and one C(18) atom. In the twelfth O site, O(12) is bonded in a bent 150 degrees geometry to one Yb(2) and one C(18) atom. Linkers: 12 [O]C(=O)c1ccc(C([O])=O)s1. Metal clusters: 8 [Yb]. The MOF has largest included sphere 6.32 A, density 1.72 g/cm3, surface area 2631.44 m2/g, accessible volume 0.31 cm3/g
MIFKUJ_clean
ZnH18(C11O2)3 crystallizes in the triclinic P-1 space group. Zn(1) is bonded in a distorted tetrahedral geometry to one O(2), one O(3), one O(4), and one O(6) atom. The Zn(1)-O(2) bond length is 1.97 Å. The Zn(1)-O(3) bond length is 1.96 Å. The Zn(1)-O(4) bond length is 1.97 Å. The Zn(1)-O(6) bond length is 2.02 Å. There are thirty-three inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(2), one C(6), and one C(7) atom. The C(1)-C(2) bond length is 1.37 Å. The C(1)-C(6) bond length is 1.38 Å. The C(1)-C(7) bond length is 1.50 Å. In the second C site, C(2) is bonded in a distorted trigonal planar geometry to one C(1), one C(3), and one H(1) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-H(1) bond length is 0.95 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2), one C(4), and one H(2) atom. The C(3)-C(4) bond length is 1.37 Å. The C(3)-H(2) bond length is 0.95 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(3), one C(5), and one C(8) atom. The C(4)-C(5) bond length is 1.41 Å. The C(4)-C(8) bond length is 1.50 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(4), one C(6), and one H(3) atom. The C(5)-C(6) bond length is 1.37 Å. The C(5)-H(3) bond length is 0.95 Å. In the sixth C site, C(6) is bonded in a distorted trigonal planar geometry to one C(1), one C(5), and one H(4) atom. The C(6)-H(4) bond length is 0.95 Å. In the seventh C site, C(7) is bonded in a bent 120 degrees geometry to one C(1), one O(1), and one O(2) atom. The C(7)-O(1) bond length is 1.23 Å. The C(7)-O(2) bond length is 1.27 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one C(10), one C(4), and one C(9) atom. The C(8)-C(10) bond length is 1.39 Å. The C(8)-C(9) bond length is 1.37 Å. In the ninth C site, C(9) is bonded in a distorted single-bond geometry to one C(10), one C(8), and one H(5) atom. The C(9)-C(10) bond length is 1.38 Å. The C(9)-H(5) bond length is 0.95 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(11), one C(8), and one C(9) atom. The C(10)-C(11) bond length is 1.52 Å. In the eleventh C site, C(11) is bonded in a trigonal planar geometry to one C(10), one C(12), and one C(16) atom. The C(11)-C(12) bond length is 1.40 Å. The C(11)-C(16) bond length is 1.36 Å. In the twelfth C site, C(12) is bonded in a distorted single-bond geometry to one C(11), one C(13), and one H(6) atom. The C(12)-C(13) bond length is 1.33 Å. The C(12)-H(6) bond length is 0.95 Å. In the thirteenth C site, C(13) is bonded in a distorted trigonal planar geometry to one C(12), one C(14), and one H(7) atom. The C(13)-C(14) bond length is 1.29 Å. The C(13)-H(7) bond length is 0.95 Å. In the fourteenth C site, C(14) is bonded in a bent 120 degrees geometry to one C(13) and one C(15) atom. The C(14)-C(15) bond length is 1.52 Å. In the fifteenth C site, C(15) is bonded in a distorted single-bond geometry to one C(14) and one H(8) atom. The C(15)-H(8) bond length is 0.95 Å. In the sixteenth C site, C(16) is bonded in a distorted single-bond geometry to one C(11) and one H(9) atom. The C(16)-H(9) bond length is 0.95 Å. In the seventeenth C site, C(17) is bonded in a trigonal planar geometry to one C(18), one C(22), and one C(24) atom. The C(17)-C(18) bond length is 1.38 Å. The C(17)-C(22) bond length is 1.39 Å. The C(17)-C(24) bond length is 1.48 Å. In the eighteenth C site, C(18) is bonded in a distorted single-bond geometry to one C(17), one C(19), and one H(10) atom. The C(18)-C(19) bond length is 1.40 Å. The C(18)-H(10) bond length is 0.95 Å. In the nineteenth C site, C(19) is bonded in a distorted trigonal planar geometry to one C(18), one C(20), and one H(11) atom. The C(19)-C(20) bond length is 1.39 Å. The C(19)-H(11) bond length is 0.95 Å. In the twentieth C site, C(20) is bonded in a trigonal planar geometry to one C(19), one C(21), and one C(23) atom. The C(20)-C(21) bond length is 1.41 Å. The C(20)-C(23) bond length is 1.49 Å. In the twenty-first C site, C(21) is bonded in a distorted single-bond geometry to one C(20) and one H(12) atom. The C(21)-H(12) bond length is 0.95 Å. In the twenty-second C site, C(22) is bonded in a distorted single-bond geometry to one C(17) and one H(13) atom. The C(22)-H(13) bond length is 0.95 Å. In the twenty-third C site, C(23) is bonded in a distorted bent 120 degrees geometry to one C(20), one O(3), and one O(4) atom. The C(23)-O(3) bond length is 1.26 Å. The C(23)-O(4) bond length is 1.26 Å. In the twenty-fourth C site, C(24) is bonded in a trigonal planar geometry to one C(17), one C(25), and one C(26) atom. The C(24)-C(25) bond length is 1.38 Å. The C(24)-C(26) bond length is 1.40 Å. In the twenty-fifth C site, C(25) is bonded in a single-bond geometry to one C(24), one C(26), and one H(14) atom. The C(25)-C(26) bond length is 1.41 Å. The C(25)-H(14) bond length is 0.95 Å. In the twenty-sixth C site, C(26) is bonded in a trigonal planar geometry to one C(24), one C(25), and one C(27) atom. The C(26)-C(27) bond length is 1.49 Å. In the twenty-seventh C site, C(27) is bonded in a trigonal planar geometry to one C(26), one C(28), and one C(32) atom. The C(27)-C(28) bond length is 1.38 Å. The C(27)-C(32) bond length is 1.38 Å. In the twenty-eighth C site, C(28) is bonded in a distorted single-bond geometry to one C(27), one C(29), and one H(15) atom. The C(28)-C(29) bond length is 1.40 Å. The C(28)-H(15) bond length is 0.95 Å. In the twenty-ninth C site, C(29) is bonded in a distorted trigonal planar geometry to one C(28), one C(30), and one H(16) atom. The C(29)-C(30) bond length is 1.29 Å. The C(29)-H(16) bond length is 0.95 Å. In the thirtieth C site, C(30) is bonded in a trigonal planar geometry to one C(29), one C(31), and one C(33) atom. The C(30)-C(31) bond length is 1.39 Å. The C(30)-C(33) bond length is 1.66 Å. In the thirty-first C site, C(31) is bonded in a distorted trigonal planar geometry to one C(30), one C(32), and one H(17) atom. The C(31)-C(32) bond length is 1.39 Å. The C(31)-H(17) bond length is 0.95 Å. In the thirty-second C site, C(32) is bonded in a distorted single-bond geometry to one C(27), one C(31), and one H(18) atom. The C(32)-H(18) bond length is 0.95 Å. In the thirty-third C site, C(33) is bonded in a 2-coordinate geometry to one C(30), one O(5), and one O(6) atom. The C(33)-O(5) bond length is 1.23 Å. The C(33)-O(6) bond length is 1.06 Å. There are eighteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(5) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(6) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(9) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(12) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(13) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(15) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(16) atom. In the tenth H site, H(10) is bonded in a single-bond geometry to one C(18) atom. In the eleventh H site, H(11) is bonded in a single-bond geometry to one C(19) atom. In the twelfth H site, H(12) is bonded in a single-bond geometry to one C(21) atom. In the thirteenth H site, H(13) is bonded in a single-bond geometry to one C(22) atom. In the fourteenth H site, H(14) is bonded in a single-bond geometry to one C(25) atom. In the fifteenth H site, H(15) is bonded in a single-bond geometry to one C(28) atom. In the sixteenth H site, H(16) is bonded in a single-bond geometry to one C(29) atom. In the seventeenth H site, H(17) is bonded in a single-bond geometry to one C(31) atom. In the eighteenth H site, H(18) is bonded in a single-bond geometry to one C(32) atom. There are six inequivalent O sites. In the first O site, O(1) is bonded in a single-bond geometry to one C(7) atom. In the second O site, O(2) is bonded in a water-like geometry to one Zn(1) and one C(7) atom. In the third O site, O(3) is bonded in a bent 150 degrees geometry to one Zn(1) and one C(23) atom. In the fourth O site, O(4) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(23) atom. In the fifth O site, O(5) is bonded in a single-bond geometry to one C(33) atom. In the sixth O site, O(6) is bonded in a water-like geometry to one Zn(1) and one C(33) atom. Linkers: 1 [O]C(=O)c1ccc(-c2cc(-c3cc[c]cc3)c(-c3ccc(C([O])=O)cc3)cc2-c2cc[c]cc2)cc1 ,2 [O]C(=O)c1ccc(-c2cc(-c3ccc(C([O])=O)cc3)c(-c3ccc(C([O])=O)cc3)cc2-c2ccc(C([O])=O)cc2)cc1. Metal clusters: 1 O=[C]O[Zn]1(O[C]=O)O[C]O[Zn](O[C]=O)(O[C]=O)O[C]O1. RCSR code: fsc. The MOF has largest included sphere 6.05 A, density 0.92 g/cm3, surface area 4951.67 m2/g, accessible volume 0.59 cm3/g
IYEQUA_clean
CdC10H10(NO)4(CH2)8 is Indium-derived structured and crystallizes in the orthorhombic Pbcn space group. The structure is zero-dimensional and consists of sixty-four 02329_fluka molecules and eight CdC10H10(NO)4 clusters. In each CdC10H10(NO)4 cluster, Cd(1) is bonded in a distorted pentagonal pyramidal geometry to one N(1), one N(3), one O(1), one O(2), one O(3), and one O(4) atom. The Cd(1)-N(1) bond length is 2.25 Å. The Cd(1)-N(3) bond length is 2.25 Å. The Cd(1)-O(1) bond length is 2.32 Å. The Cd(1)-O(2) bond length is 2.45 Å. The Cd(1)-O(3) bond length is 2.30 Å. The Cd(1)-O(4) bond length is 2.46 Å. There are ten inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one O(1) and one O(2) atom. The C(1)-O(1) bond length is 1.26 Å. The C(1)-O(2) bond length is 1.24 Å. In the second C site, C(8) is bonded in a distorted bent 120 degrees geometry to one O(3) and one O(4) atom. The C(8)-O(3) bond length is 1.26 Å. The C(8)-O(4) bond length is 1.24 Å. In the third C site, C(9) is bonded in a distorted trigonal planar geometry to one C(10), one N(1), and one H(13) atom. The C(9)-C(10) bond length is 1.35 Å. The C(9)-N(1) bond length is 1.37 Å. The C(9)-H(13) bond length is 0.93 Å. In the fourth C site, C(10) is bonded in a 3-coordinate geometry to one C(9), one N(2), and one H(14) atom. The C(10)-N(2) bond length is 1.37 Å. The C(10)-H(14) bond length is 0.93 Å. In the fifth C site, C(11) is bonded in a trigonal planar geometry to one N(1), one N(2), and one H(15) atom. The C(11)-N(1) bond length is 1.33 Å. The C(11)-N(2) bond length is 1.34 Å. The C(11)-H(15) bond length is 0.93 Å. In the sixth C site, C(12) is bonded in a 3-coordinate geometry to one N(2), one H(16), and one H(17) atom. The C(12)-N(2) bond length is 1.47 Å. The C(12)-H(16) bond length is 0.97 Å. The C(12)-H(17) bond length is 0.97 Å. In the seventh C site, C(14) is bonded in a distorted trigonal planar geometry to one C(15), one N(3), and one H(20) atom. The C(14)-C(15) bond length is 1.34 Å. The C(14)-N(3) bond length is 1.36 Å. The C(14)-H(20) bond length is 0.93 Å. In the eighth C site, C(15) is bonded in a 3-coordinate geometry to one C(14), one N(4), and one H(21) atom. The C(15)-N(4) bond length is 1.35 Å. The C(15)-H(21) bond length is 0.93 Å. In the ninth C site, C(16) is bonded in a trigonal planar geometry to one N(3), one N(4), and one H(22) atom. The C(16)-N(3) bond length is 1.33 Å. The C(16)-N(4) bond length is 1.35 Å. The C(16)-H(22) bond length is 0.93 Å. In the tenth C site, C(17) is bonded in a 3-coordinate geometry to one N(4) and two equivalent H(23,24) atoms. The C(17)-N(4) bond length is 1.47 Å. Both C(17)-H(23,24) bond lengths are 0.97 Å. There are four inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one Cd(1), one C(11), and one C(9) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one C(10), one C(11), and one C(12) atom. In the third N site, N(3) is bonded in a distorted trigonal planar geometry to one Cd(1), one C(14), and one C(16) atom. In the fourth N site, N(4) is bonded in a trigonal planar geometry to one C(15), one C(16), and one C(17) atom. There are nine inequivalent H sites. In the first H site, H(13) is bonded in a single-bond geometry to one C(9) atom. In the second H site, H(14) is bonded in a single-bond geometry to one C(10) atom. In the third H site, H(15) is bonded in a single-bond geometry to one C(11) atom. In the fourth H site, H(16) is bonded in a single-bond geometry to one C(12) atom. In the fifth H site, H(17) is bonded in a single-bond geometry to one C(12) atom. In the sixth H site, H(20) is bonded in a single-bond geometry to one C(14) atom. In the seventh H site, H(21) is bonded in a single-bond geometry to one C(15) atom. In the eighth H site, H(22) is bonded in a single-bond geometry to one C(16) atom. In the ninth H site, H(23,24) is bonded in a single-bond geometry to one C(17) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a distorted L-shaped geometry to one Cd(1) and one C(1) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one Cd(1) and one C(1) atom. In the third O site, O(3) is bonded in a distorted L-shaped geometry to one Cd(1) and one C(8) atom. In the fourth O site, O(4) is bonded in a distorted single-bond geometry to one Cd(1) and one C(8) atom. Linkers: 9 c1cn(CCCCn2ccnc2)cn1 ,8 [O]C(=O)CCCCCCC([O])=O. Metal clusters: 8 [C]1O[Cd]2(O1)O[C]O2. The MOF has largest included sphere 4.07 A, density 1.31 g/cm3, surface area 5124.60 m2/g, accessible volume 0.33 cm3/g
YAGJOI_clean
Mn3C26H16(N3O2)4(C3H2)4 crystallizes in the triclinic P-1 space group. The structure consists of two 2,3-dimethyl-1,3-butadiene molecules inside a Mn3C26H16(N3O2)4 framework. In the Mn3C26H16(N3O2)4 framework, there are three inequivalent Mn sites. In the first Mn site, Mn(1) is bonded in an octahedral geometry to two equivalent N(1), two equivalent N(4), and two equivalent O(1) atoms. Both Mn(1)-N(1) bond lengths are 2.18 Å. Both Mn(1)-N(4) bond lengths are 2.29 Å. Both Mn(1)-O(1) bond lengths are 2.17 Å. In the second Mn site, Mn(2) is bonded in an octahedral geometry to two equivalent N(3), two equivalent N(5), and two equivalent O(3) atoms. Both Mn(2)-N(3) bond lengths are 2.18 Å. Both Mn(2)-N(5) bond lengths are 2.30 Å. Both Mn(2)-O(3) bond lengths are 2.19 Å. In the third Mn site, Mn(3) is bonded in an octahedral geometry to two equivalent N(6), two equivalent O(2), and two equivalent O(4) atoms. Both Mn(3)-N(6) bond lengths are 2.29 Å. Both Mn(3)-O(2) bond lengths are 2.13 Å. Both Mn(3)-O(4) bond lengths are 2.16 Å. There are thirteen inequivalent C sites. In the first C site, C(1) is bonded in a distorted single-bond geometry to one N(1) atom. The C(1)-N(1) bond length is 1.37 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one N(3) atom. The C(2)-N(3) bond length is 1.35 Å. In the third C site, C(3) is bonded in a distorted bent 120 degrees geometry to one O(1) and one O(2) atom. The C(3)-O(1) bond length is 1.26 Å. The C(3)-O(2) bond length is 1.23 Å. In the fourth C site, C(4) is bonded in a distorted bent 120 degrees geometry to one O(3) and one O(4) atom. The C(4)-O(3) bond length is 1.26 Å. The C(4)-O(4) bond length is 1.25 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one N(4) and one H(1) atom. The C(5)-N(4) bond length is 1.32 Å. The C(5)-H(1) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(7) and one H(2) atom. The C(6)-C(7) bond length is 1.38 Å. The C(6)-H(2) bond length is 0.93 Å. In the seventh C site, C(7) is bonded in a trigonal planar geometry to one C(6), one C(7), and one C(8) atom. The C(7)-C(7) bond length is 1.47 Å. The C(7)-C(8) bond length is 1.37 Å. In the eighth C site, C(8) is bonded in a distorted single-bond geometry to one C(7), one C(9), and one H(3) atom. The C(8)-C(9) bond length is 1.38 Å. The C(8)-H(3) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a distorted trigonal planar geometry to one C(8), one N(4), and one H(4) atom. The C(9)-N(4) bond length is 1.31 Å. The C(9)-H(4) bond length is 0.93 Å. In the tenth C site, C(10) is bonded in a distorted bent 120 degrees geometry to one N(5) and one H(5) atom. The C(10)-N(5) bond length is 1.32 Å. The C(10)-H(5) bond length is 0.93 Å. In the eleventh C site, C(14) is bonded in a distorted bent 120 degrees geometry to one N(5) and one H(8) atom. The C(14)-N(5) bond length is 1.31 Å. The C(14)-H(8) bond length is 0.93 Å. In the twelfth C site, C(17) is bonded in a distorted bent 120 degrees geometry to one N(6) and one H(10) atom. The C(17)-N(6) bond length is 1.35 Å. The C(17)-H(10) bond length is 0.93 Å. In the thirteenth C site, C(18) is bonded in a distorted bent 120 degrees geometry to one N(6) and one H(11) atom. The C(18)-N(6) bond length is 1.31 Å. The C(18)-H(11) bond length is 0.93 Å. There are six inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one Mn(1), one C(1), and one N(2) atom. The N(1)-N(2) bond length is 1.32 Å. In the second N site, N(2) is bonded in a water-like geometry to one N(1) and one N(3) atom. The N(2)-N(3) bond length is 1.32 Å. In the third N site, N(3) is bonded in a distorted trigonal planar geometry to one Mn(2), one C(2), and one N(2) atom. In the fourth N site, N(4) is bonded in a trigonal planar geometry to one Mn(1), one C(5), and one C(9) atom. In the fifth N site, N(5) is bonded in a trigonal planar geometry to one Mn(2), one C(10), and one C(14) atom. In the sixth N site, N(6) is bonded in a trigonal planar geometry to one Mn(3), one C(17), and one C(18) atom. There are eight inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(5) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(6) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(8) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(9) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(10) atom. In the sixth H site, H(8) is bonded in a single-bond geometry to one C(14) atom. In the seventh H site, H(10) is bonded in a single-bond geometry to one C(17) atom. In the eighth H site, H(11) is bonded in a single-bond geometry to one C(18) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(3) atom. In the second O site, O(2) is bonded in a bent 150 degrees geometry to one Mn(3) and one C(3) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Mn(2) and one C(4) atom. In the fourth O site, O(4) is bonded in a bent 120 degrees geometry to one Mn(3) and one C(4) atom. Linkers: 1 [O]C(=O)[C]1N=NN=C1C([O])=O ,2 c1cc(-c2ccncc2)ccn1. Metal clusters: 3 [Mn]. The MOF has largest included sphere 5.63 A, density 1.08 g/cm3, surface area 4377.10 m2/g, accessible volume 0.52 cm3/g
COKQIE_clean
FeC4HO3 crystallizes in the trigonal R-3 space group. Fe(1) is bonded to one O(3), two equivalent O(1), and two equivalent O(2) atoms to form distorted edge-sharing FeO5 square pyramids. The Fe(1)-O(3) bond length is 1.97 Å. There is one shorter (2.08 Å) and one longer (2.25 Å) Fe(1)-O(1) bond length. There is one shorter (2.17 Å) and one longer (2.22 Å) Fe(1)-O(2) bond length. There are four inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(3), one O(1), and one O(3) atom. The C(1)-C(3) bond length is 1.49 Å. The C(1)-O(1) bond length is 1.22 Å. The C(1)-O(3) bond length is 1.27 Å. In the second C site, C(2) is bonded in a 3-coordinate geometry to one C(3), one C(4), and one O(2) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-C(4) bond length is 1.37 Å. The C(2)-O(2) bond length is 1.38 Å. In the third C site, C(3) is bonded in a trigonal non-coplanar geometry to one C(1), one C(2), and one C(4) atom. The C(3)-C(4) bond length is 1.39 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(2), one C(3), and one H(1) atom. The C(4)-H(1) bond length is 1.02 Å. H(1) is bonded in a single-bond geometry to one C(4) atom. There are three inequivalent O sites. In the first O site, O(1) is bonded in a 3-coordinate geometry to two equivalent Fe(1) and one C(1) atom. In the second O site, O(2) is bonded in a 3-coordinate geometry to two equivalent Fe(1) and one C(2) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Fe(1) and one C(1) atom. Linkers: 9 [O]C(=O)c1cc([O])c(C([O])=O)cc1[O]. Metal clusters: 18 [Fe]. The MOF has largest included sphere 11.52 A, density 1.13 g/cm3, surface area 2510.99 m2/g, accessible volume 0.60 cm3/g
ARAGOR_clean
CaCuC12H4(SO4)2 crystallizes in the monoclinic C2/c space group. There are two inequivalent Ca sites. In the first Ca site, Ca(1) is bonded in a square co-planar geometry to two equivalent O(7) and two equivalent O(8) atoms. Both Ca(1)-O(7) bond lengths are 2.28 Å. Both Ca(1)-O(8) bond lengths are 2.28 Å. In the second Ca site, Ca(2) is bonded in a square co-planar geometry to two equivalent O(4) and two equivalent O(6) atoms. Both Ca(2)-O(4) bond lengths are 2.30 Å. Both Ca(2)-O(6) bond lengths are 2.31 Å. Cu(1) is bonded in a distorted rectangular see-saw-like geometry to one O(1), one O(2), one O(3), one O(4), and one O(5) atom. The Cu(1)-O(1) bond length is 1.95 Å. The Cu(1)-O(2) bond length is 1.96 Å. The Cu(1)-O(3) bond length is 1.97 Å. The Cu(1)-O(4) bond length is 2.54 Å. The Cu(1)-O(5) bond length is 1.96 Å. There are twelve inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(6), one O(1), and one O(7) atom. The C(1)-C(6) bond length is 1.46 Å. The C(1)-O(1) bond length is 1.24 Å. The C(1)-O(7) bond length is 1.23 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one C(5), one O(2), and one O(6) atom. The C(2)-C(5) bond length is 1.51 Å. The C(2)-O(2) bond length is 1.25 Å. The C(2)-O(6) bond length is 1.23 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(4), one C(9), and one S(2) atom. The C(3)-C(4) bond length is 1.47 Å. The C(3)-C(9) bond length is 1.33 Å. The C(3)-S(2) bond length is 1.72 Å. In the fourth C site, C(4) is bonded in a bent 120 degrees geometry to one C(3), one O(4), and one O(5) atom. The C(4)-O(4) bond length is 1.26 Å. The C(4)-O(5) bond length is 1.29 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(11), one C(2), and one S(1) atom. The C(5)-C(11) bond length is 1.35 Å. The C(5)-S(1) bond length is 1.72 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(1), one C(7), and one S(2) atom. The C(6)-C(7) bond length is 1.37 Å. The C(6)-S(2) bond length is 1.76 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(6) and one H(1) atom. The C(7)-H(1) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one C(10), one O(3), and one O(8) atom. The C(8)-C(10) bond length is 1.51 Å. The C(8)-O(3) bond length is 1.17 Å. The C(8)-O(8) bond length is 1.29 Å. In the ninth C site, C(9) is bonded in a distorted single-bond geometry to one C(3) and one H(2) atom. The C(9)-H(2) bond length is 0.93 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(12), one C(8), and one S(1) atom. The C(10)-C(12) bond length is 1.38 Å. The C(10)-S(1) bond length is 1.71 Å. In the eleventh C site, C(11) is bonded in a distorted single-bond geometry to one C(5) and one H(3) atom. The C(11)-H(3) bond length is 0.93 Å. In the twelfth C site, C(12) is bonded in a distorted single-bond geometry to one C(10) and one H(4) atom. The C(12)-H(4) bond length is 0.93 Å. There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(7) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(9) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(11) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(12) atom. There are two inequivalent S sites. In the first S site, S(1) is bonded in an L-shaped geometry to one C(10) and one C(5) atom. In the second S site, S(2) is bonded in an L-shaped geometry to one C(3) and one C(6) atom. There are eight inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(2) atom. In the third O site, O(3) is bonded in a water-like geometry to one Cu(1) and one C(8) atom. In the fourth O site, O(4) is bonded in a 3-coordinate geometry to one Ca(2), one Cu(1), and one C(4) atom. In the fifth O site, O(5) is bonded in a water-like geometry to one Cu(1) and one C(4) atom. In the sixth O site, O(6) is bonded in a bent 150 degrees geometry to one Ca(2) and one C(2) atom. In the seventh O site, O(7) is bonded in a bent 150 degrees geometry to one Ca(1) and one C(1) atom. In the eighth O site, O(8) is bonded in a bent 150 degrees geometry to one Ca(1) and one C(8) atom. Linkers: 16 [O]C(=O)c1ccc(C([O])=O)s1. Metal clusters: 8 [Ca] ,8 [Cu]. The MOF has largest included sphere 6.00 A, density 1.16 g/cm3, surface area 3906.51 m2/g, accessible volume 0.43 cm3/g
LEVDIB_clean
CuC18H7O5Cl crystallizes in the trigonal R32 space group. Cu(1) is bonded in a distorted rectangular see-saw-like geometry to one O(1), one O(2), one O(3), and one O(4) atom. The Cu(1)-O(1) bond length is 1.93 Å. The Cu(1)-O(2) bond length is 1.97 Å. The Cu(1)-O(3) bond length is 1.97 Å. The Cu(1)-O(4) bond length is 1.97 Å. There are eighteen inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.53 Å. The C(1)-O(1) bond length is 1.23 Å. The C(1)-O(2) bond length is 1.27 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(8) atom. The C(2)-C(3) bond length is 1.43 Å. The C(2)-C(8) bond length is 1.37 Å. In the third C site, C(9) is bonded in a trigonal planar geometry to one C(10), one C(14), and one C(7) atom. The C(9)-C(10) bond length is 1.39 Å. The C(9)-C(14) bond length is 1.39 Å. The C(9)-C(7) bond length is 1.49 Å. In the fourth C site, C(10) is bonded in a distorted single-bond geometry to one C(11), one C(9), and one H(4) atom. The C(10)-C(11) bond length is 1.39 Å. The C(10)-H(4) bond length is 0.93 Å. In the fifth C site, C(11) is bonded in a distorted trigonal planar geometry to one C(10), one C(12), and one O(5) atom. The C(11)-C(12) bond length is 1.39 Å. The C(11)-O(5) bond length is 1.50 Å. In the sixth C site, C(4) is bonded in a trigonal planar geometry to one C(3), one C(5), and one C(6) atom. The C(4)-C(3) bond length is 1.34 Å. The C(4)-C(5) bond length is 1.45 Å. The C(4)-C(6) bond length is 1.49 Å. In the seventh C site, C(5) is bonded in a bent 120 degrees geometry to one C(4), one O(3), and one O(4) atom. The C(5)-O(3) bond length is 1.17 Å. The C(5)-O(4) bond length is 1.33 Å. In the eighth C site, C(6) is bonded in a distorted single-bond geometry to one C(4), one C(7), and one H(2) atom. The C(6)-C(7) bond length is 1.36 Å. The C(6)-H(2) bond length is 0.93 Å. In the ninth C site, C(7) is bonded in a trigonal planar geometry to one C(6), one C(8), and one C(9) atom. The C(7)-C(8) bond length is 1.41 Å. In the tenth C site, C(8) is bonded in a distorted single-bond geometry to one C(2), one C(7), and one H(3) atom. The C(8)-H(3) bond length is 0.93 Å. In the eleventh C site, C(12) is bonded in a trigonal planar geometry to one C(11), one C(12), and one C(13) atom. The C(12)-C(12) bond length is 1.57 Å. The C(12)-C(13) bond length is 1.39 Å. In the twelfth C site, C(13) is bonded in a trigonal planar geometry to one C(12), one C(14), and one C(18) atom. The C(13)-C(14) bond length is 1.39 Å. The C(13)-C(18) bond length is 1.39 Å. In the thirteenth C site, C(14) is bonded in a trigonal planar geometry to one C(13), one C(15), and one C(9) atom. The C(14)-C(15) bond length is 1.39 Å. In the fourteenth C site, C(15) is bonded in a single-bond geometry to one C(14), one C(16), and one H(5) atom. The C(15)-C(16) bond length is 1.39 Å. The C(15)-H(5) bond length is 0.93 Å. In the fifteenth C site, C(16) is bonded in a trigonal planar geometry to one C(15), one C(17), and one Cl(1) atom. The C(16)-C(17) bond length is 1.39 Å. The C(16)-Cl(1) bond length is 1.93 Å. In the sixteenth C site, C(17) is bonded in a distorted trigonal planar geometry to one C(16), one C(18), and one H(6) atom. The C(17)-C(18) bond length is 1.39 Å. The C(17)-H(6) bond length is 0.93 Å. In the seventeenth C site, C(18) is bonded in a distorted single-bond geometry to one C(13), one C(17), and one H(7) atom. The C(18)-H(7) bond length is 0.93 Å. In the eighteenth C site, C(3) is bonded in a distorted trigonal planar geometry to one C(2), one C(4), and one H(1) atom. The C(3)-H(1) bond length is 0.93 Å. There are seven inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(6) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(8) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(10) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(15) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(17) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(18) atom. There are five inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Cu(1) and one C(1) atom. In the second O site, O(2) is bonded in a distorted bent 120 degrees geometry to one Cu(1) and one C(1) atom. In the third O site, O(3) is bonded in a distorted single-bond geometry to one Cu(1) and one C(5) atom. In the fourth O site, O(4) is bonded in a distorted bent 120 degrees geometry to one Cu(1) and one C(5) atom. In the fifth O site, O(5) is bonded in a single-bond geometry to one C(11) atom. Cl(1) is bonded in a single-bond geometry to one C(16) atom. Linkers: 3 [O]C(=O)c1cc(C([O])=O)cc(-c2cc([O])c(-c3c([O])cc(-c4cc(C([O])=O)cc(C([O])=O)c4)c4cc(Cl)ccc34)c3ccc(Cl)cc23)c1 ,6 [O][C]c1cc([C]=O)cc(-c2cc([O])c(-c3c([O])cc(-c4cc(C([O])=O)cc(C([O])=O)c4)c4cc(Cl)ccc34)c3ccc(Cl)cc23)c1. Metal clusters: 3 [C]1O[Cu]234O[C]O[Cu]2(O1)(O[C]O3)O[C]O4. The MOF has largest included sphere 12.81 A, density 0.77 g/cm3, surface area 4088.35 m2/g, accessible volume 0.86 cm3/g
XIDBUJ_clean
ZnC17N3H10O4 is Indium-like structured and crystallizes in the monoclinic C2/m space group. The structure is zero-dimensional and consists of four ZnC17N3H10O4 clusters. Zn(1) is bonded in a distorted octahedral geometry to one N(1), one N(3), one O(1), one O(2), one O(3), and one O(4) atom. The Zn(1)-N(1) bond length is 2.08 Å. The Zn(1)-N(3) bond length is 2.12 Å. The Zn(1)-O(1) bond length is 2.26 Å. The Zn(1)-O(2) bond length is 2.15 Å. The Zn(1)-O(3) bond length is 2.11 Å. The Zn(1)-O(4) bond length is 2.10 Å. There are eighteen inequivalent C sites. In the first C site, C(17) is bonded in a distorted bent 120 degrees geometry to two equivalent O(3) atoms. Both C(17)-O(3) bond lengths are 1.24 Å. In the second C site, C(1) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(1) atom. The C(1)-N(1) bond length is 1.33 Å. The C(1)-H(1) bond length is 0.93 Å. In the third C site, C(2) is bonded in a distorted single-bond geometry to one C(3) and one H(2) atom. The C(2)-C(3) bond length is 1.38 Å. The C(2)-H(2) bond length is 0.93 Å. In the fourth C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(6) atom. The C(3)-C(4) bond length is 1.37 Å. The C(3)-C(6) bond length is 1.49 Å. In the fifth C site, C(4) is bonded in a distorted single-bond geometry to one C(3) and one H(3) atom. The C(4)-H(3) bond length is 0.93 Å. In the sixth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(4) atom. The C(5)-N(1) bond length is 1.33 Å. The C(5)-H(4) bond length is 0.93 Å. In the seventh C site, C(6) is bonded in a distorted single-bond geometry to one C(3) and one N(2) atom. The C(6)-N(2) bond length is 1.33 Å. In the eighth C site, C(7) is bonded in a distorted single-bond geometry to one C(8) and one H(5) atom. The C(7)-C(8) bond length is 1.38 Å. The C(7)-H(5) bond length is 0.93 Å. In the ninth C site, C(8) is bonded in a trigonal planar geometry to one C(16), one C(7), and one C(9) atom. The C(8)-C(16) bond length is 1.52 Å. The C(8)-C(9) bond length is 1.38 Å. In the tenth C site, C(9) is bonded in a distorted single-bond geometry to one C(10), one C(8), and one H(6) atom. The C(9)-C(10) bond length is 1.39 Å. The C(9)-H(6) bond length is 0.93 Å. In the eleventh C site, C(10) is bonded in a trigonal planar geometry to one C(13), one C(9), and one N(2) atom. The C(10)-C(13) bond length is 1.48 Å. The C(10)-N(2) bond length is 1.34 Å. In the twelfth C site, C(12) is bonded in a distorted single-bond geometry to one C(13) and one H(8) atom. The C(12)-C(13) bond length is 1.39 Å. The C(12)-H(8) bond length is 0.93 Å. In the thirteenth C site, C(13) is bonded in a trigonal planar geometry to one C(10), one C(12), and one C(14) atom. The C(13)-C(14) bond length is 1.39 Å. In the fourteenth C site, C(14) is bonded in a distorted single-bond geometry to one C(13) and one H(9) atom. The C(14)-H(9) bond length is 0.93 Å. In the fifteenth C site, C(11) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(7) atom. The C(11)-N(3) bond length is 1.34 Å. The C(11)-H(7) bond length is 0.93 Å. In the sixteenth C site, C(15) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(10) atom. The C(15)-N(3) bond length is 1.34 Å. The C(15)-H(10) bond length is 0.93 Å. In the seventeenth C site, C(16) is bonded in a bent 120 degrees geometry to one C(8), one O(1), and one O(2) atom. The C(16)-O(1) bond length is 1.24 Å. The C(16)-O(2) bond length is 1.25 Å. In the eighteenth C site, C(18) is bonded in a distorted bent 120 degrees geometry to two equivalent O(4) atoms. Both C(18)-O(4) bond lengths are 1.26 Å. There are three inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Zn(1), one C(1), and one C(5) atom. In the second N site, N(3) is bonded in a trigonal planar geometry to one Zn(1), one C(11), and one C(15) atom. In the third N site, N(2) is bonded in a bent 120 degrees geometry to one C(10) and one C(6) atom. There are ten inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(4) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(7) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(9) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(11) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(12) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(14) atom. In the tenth H site, H(10) is bonded in a single-bond geometry to one C(15) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a distorted L-shaped geometry to one Zn(1) and one C(16) atom. In the second O site, O(2) is bonded in an L-shaped geometry to one Zn(1) and one C(16) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(17) atom. In the fourth O site, O(4) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(18) atom. Linkers: 4 [O]C(=O)c1cc(-c2ccncc2)nc(-c2ccncc2)c1 ,2 [O]C(=O)C([O])=O. Metal clusters: 2 [C]1O[Zn]2(O1)OC1=C(O2)O[Zn]2(O[C]O2)O1. The MOF has largest included sphere 7.40 A, density 1.10 g/cm3, surface area 4492.46 m2/g, accessible volume 0.52 cm3/g
IKOKEA_clean
Al3P3O12F crystallizes in the triclinic P-1 space group. There are three inequivalent Al sites. In the first Al site, Al(1) is bonded to one O(1), one O(3), one O(4), one O(6), and two equivalent F(1) atoms to form AlO4F2 octahedra that share a cornercorner with one P(2)O4 tetrahedra, a cornercorner with one P(3)O4 tetrahedra, corners with two equivalent P(1)O4 tetrahedra, and an edgeedge with one Al(1)O4F2 octahedra. The Al(1)-O(1) bond length is 1.79 Å. The Al(1)-O(3) bond length is 1.83 Å. The Al(1)-O(4) bond length is 1.90 Å. The Al(1)-O(6) bond length is 1.85 Å. There is one shorter (1.84 Å) and one longer (1.91 Å) Al(1)-F(1) bond length. In the second Al site, Al(2) is bonded to one O(10), one O(11), one O(5), and one O(8) atom to form AlO4 tetrahedra that share a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(2)O4 tetrahedra, and corners with two equivalent P(3)O4 tetrahedra. The Al(2)-O(10) bond length is 1.74 Å. The Al(2)-O(11) bond length is 1.76 Å. The Al(2)-O(5) bond length is 1.68 Å. The Al(2)-O(8) bond length is 1.73 Å. In the third Al site, Al(3) is bonded to one O(12), one O(2), one O(7), and one O(9) atom to form AlO4 tetrahedra that share a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(3)O4 tetrahedra, and corners with two equivalent P(2)O4 tetrahedra. The Al(3)-O(12) bond length is 1.75 Å. The Al(3)-O(2) bond length is 1.73 Å. The Al(3)-O(7) bond length is 1.72 Å. The Al(3)-O(9) bond length is 1.76 Å. There are three inequivalent P sites. In the first P site, P(1) is bonded to one O(10), one O(4), one O(6), and one O(9) atom to form PO4 tetrahedra that share corners with two equivalent Al(1)O4F2 octahedra, a cornercorner with one Al(2)O4 tetrahedra, and a cornercorner with one Al(3)O4 tetrahedra. The corner-sharing octahedral tilt angles range from 54-56°. The P(1)-O(10) bond length is 1.54 Å. The P(1)-O(4) bond length is 1.54 Å. The P(1)-O(6) bond length is 1.51 Å. The P(1)-O(9) bond length is 1.55 Å. In the second P site, P(2) is bonded to one O(11), one O(2), one O(3), and one O(7) atom to form PO4 tetrahedra that share a cornercorner with one Al(1)O4F2 octahedra, a cornercorner with one Al(2)O4 tetrahedra, and corners with two equivalent Al(3)O4 tetrahedra. The corner-sharing octahedral tilt angles are 33°. The P(2)-O(11) bond length is 1.51 Å. The P(2)-O(2) bond length is 1.52 Å. The P(2)-O(3) bond length is 1.51 Å. The P(2)-O(7) bond length is 1.55 Å. In the third P site, P(3) is bonded to one O(1), one O(12), one O(5), and one O(8) atom to form PO4 tetrahedra that share a cornercorner with one Al(1)O4F2 octahedra, a cornercorner with one Al(3)O4 tetrahedra, and corners with two equivalent Al(2)O4 tetrahedra. The corner-sharing octahedral tilt angles are 33°. The P(3)-O(1) bond length is 1.57 Å. The P(3)-O(12) bond length is 1.53 Å. The P(3)-O(5) bond length is 1.59 Å. The P(3)-O(8) bond length is 1.56 Å. There are twelve inequivalent O sites. In the first O site, O(1) is bonded in a bent 150 degrees geometry to one Al(1) and one P(3) atom. In the second O site, O(2) is bonded in a bent 150 degrees geometry to one Al(3) and one P(2) atom. In the third O site, O(3) is bonded in a bent 150 degrees geometry to one Al(1) and one P(2) atom. In the fourth O site, O(4) is bonded in a bent 120 degrees geometry to one Al(1) and one P(1) atom. In the fifth O site, O(5) is bonded in a bent 150 degrees geometry to one Al(2) and one P(3) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one Al(1) and one P(1) atom. In the seventh O site, O(7) is bonded in a bent 150 degrees geometry to one Al(3) and one P(2) atom. In the eighth O site, O(8) is bonded in a bent 150 degrees geometry to one Al(2) and one P(3) atom. In the ninth O site, O(9) is bonded in a bent 150 degrees geometry to one Al(3) and one P(1) atom. In the tenth O site, O(10) is bonded in a distorted bent 150 degrees geometry to one Al(2) and one P(1) atom. In the eleventh O site, O(11) is bonded in a bent 150 degrees geometry to one Al(2) and one P(2) atom. In the twelfth O site, O(12) is bonded in a bent 150 degrees geometry to one Al(3) and one P(3) atom. F(1) is bonded in a water-like geometry to two equivalent Al(1) atoms. Linkers: 6 [O]P([O])([O])=O. Metal clusters: 6 [Al]. The MOF has largest included sphere 6.09 A, density 1.64 g/cm3, surface area 2633.37 m2/g, accessible volume 0.28 cm3/g
HAJLIO_clean
FeC22H28(N5S)2 crystallizes in the trigonal R-3 space group. Fe(1) is bonded in an octahedral geometry to two equivalent N(1), two equivalent N(2), and two equivalent N(4) atoms. Both Fe(1)-N(1) bond lengths are 2.08 Å. Both Fe(1)-N(2) bond lengths are 2.26 Å. Both Fe(1)-N(4) bond lengths are 2.38 Å. There are eleven inequivalent C sites. In the first C site, C(1) is bonded in a distorted single-bond geometry to one N(1) and one S(1) atom. The C(1)-N(1) bond length is 1.17 Å. The C(1)-S(1) bond length is 1.63 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(3), one C(5), and one N(2) atom. The C(2)-C(3) bond length is 1.42 Å. The C(2)-C(5) bond length is 1.50 Å. The C(2)-N(2) bond length is 1.34 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(8) atom. The C(3)-C(4) bond length is 1.38 Å. The C(3)-C(8) bond length is 1.48 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3), one C(6), and one N(3) atom. The C(4)-C(6) bond length is 1.48 Å. The C(4)-N(3) bond length is 1.35 Å. In the fifth C site, C(5) is bonded in a trigonal non-coplanar geometry to one C(2) and three equivalent H(2,3,4) atoms. All C(5)-H(2,3,4) bond lengths are 0.98 Å. In the sixth C site, C(6) is bonded in a trigonal non-coplanar geometry to one C(4) and three equivalent H(5,6,7) atoms. All C(6)-H(5,6,7) bond lengths are 0.98 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(10), one C(8), and one N(5) atom. The C(7)-C(10) bond length is 1.49 Å. The C(7)-C(8) bond length is 1.38 Å. The C(7)-N(5) bond length is 1.35 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one C(3), one C(7), and one C(9) atom. The C(8)-C(9) bond length is 1.42 Å. In the ninth C site, C(9) is bonded in a distorted single-bond geometry to one C(11), one C(8), and one N(4) atom. The C(9)-C(11) bond length is 1.49 Å. The C(9)-N(4) bond length is 1.34 Å. In the tenth C site, C(10) is bonded in a trigonal non-coplanar geometry to one C(7); one H(10); and two equivalent H(8,9) atoms. The C(10)-H(10) bond length is 0.98 Å. Both C(10)-H(8,9) bond lengths are 0.98 Å. In the eleventh C site, C(11) is bonded in a trigonal non-coplanar geometry to one C(9) and three equivalent H(11,12,13) atoms. All C(11)-H(11,12,13) bond lengths are 0.98 Å. There are five inequivalent N sites. In the first N site, N(1) is bonded in a distorted linear geometry to one Fe(1) and one C(1) atom. In the second N site, N(2) is bonded in a 3-coordinate geometry to one Fe(1), one C(2), and one N(3) atom. The N(2)-N(3) bond length is 1.36 Å. In the third N site, N(3) is bonded in a 2-coordinate geometry to one C(4), one N(2), and one H(1) atom. The N(3)-H(1) bond length is 0.88 Å. In the fourth N site, N(4) is bonded in a distorted trigonal planar geometry to one Fe(1), one C(9), and one N(5) atom. The N(4)-N(5) bond length is 1.36 Å. In the fifth N site, N(5) is bonded in a 1-coordinate geometry to one C(7), one N(4), and one H(14) atom. The N(5)-H(14) bond length is 0.88 Å. There are seven inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one N(3) atom. In the second H site, H(2,3,4) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(5,6,7) is bonded in a single-bond geometry to one C(6) atom. In the fourth H site, H(8,9) is bonded in a single-bond geometry to one C(10) atom. In the fifth H site, H(10) is bonded in a single-bond geometry to one C(10) atom. In the sixth H site, H(11,12,13) is bonded in a single-bond geometry to one C(11) atom. In the seventh H site, H(14) is bonded in a single-bond geometry to one N(5) atom. S(1) is bonded in a single-bond geometry to one C(1) atom. Linkers: 6 Cc1n[nH]c(C)c1-c1c(C)n[nH]c1C. Metal clusters: 3 [Fe]. The MOF has largest included sphere 5.88 A, density 1.36 g/cm3, surface area 4549.70 m2/g, accessible volume 0.24 cm3/g
RUHFUX_clean
NdCu3(CO2)9 crystallizes in the cubic P2_13 space group. Nd(1) is bonded in a distorted q6 geometry to three equivalent O(2), three equivalent O(4), and three equivalent O(5) atoms. All Nd(1)-O(2) bond lengths are 2.50 Å. All Nd(1)-O(4) bond lengths are 2.61 Å. All Nd(1)-O(5) bond lengths are 2.55 Å. Cu(1) is bonded in a rectangular see-saw-like geometry to one O(1), one O(6), and two equivalent O(3) atoms. The Cu(1)-O(1) bond length is 1.94 Å. The Cu(1)-O(6) bond length is 1.95 Å. There is one shorter (1.94 Å) and one longer (1.95 Å) Cu(1)-O(3) bond length. There are three inequivalent C sites. In the first C site, C(1) is bonded in a distorted trigonal planar geometry to one C(2), one O(5), and one O(6) atom. The C(1)-C(2) bond length is 1.54 Å. The C(1)-O(5) bond length is 1.26 Å. The C(1)-O(6) bond length is 1.23 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one C(1), one C(3), one O(3), and one O(4) atom. The C(2)-C(3) bond length is 1.57 Å. The C(2)-O(3) bond length is 1.38 Å. The C(2)-O(4) bond length is 1.40 Å. In the third C site, C(3) is bonded in a distorted trigonal planar geometry to one C(2), one O(1), and one O(2) atom. The C(3)-O(1) bond length is 1.25 Å. The C(3)-O(2) bond length is 1.24 Å. There are six inequivalent O sites. In the first O site, O(1) is bonded in a distorted water-like geometry to one Cu(1) and one C(3) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Nd(1) and one C(3) atom. In the third O site, O(3) is bonded in a trigonal non-coplanar geometry to two equivalent Cu(1) and one C(2) atom. In the fourth O site, O(4) is bonded in a distorted single-bond geometry to one Nd(1) and one C(2) atom. In the fifth O site, O(5) is bonded in a distorted bent 120 degrees geometry to one Nd(1) and one C(1) atom. In the sixth O site, O(6) is bonded in a water-like geometry to one Cu(1) and one C(1) atom. Linkers: 12 [O]C(=O)C([O])([O])C([O])=O. Metal clusters: 4 [Nd] ,12 [Cu]. The MOF has largest included sphere 9.94 A, density 0.90 g/cm3, surface area 2432.61 m2/g, accessible volume 0.70 cm3/g
FISGOF_clean
CuC15H7O4 crystallizes in the trigonal R3m space group. There are two inequivalent Cu sites. In the first Cu site, Cu(1) is bonded in a distorted square co-planar geometry to two equivalent O(1) and two equivalent O(2) atoms. Both Cu(1)-O(1) bond lengths are 1.93 Å. Both Cu(1)-O(2) bond lengths are 1.88 Å. In the second Cu site, Cu(2) is bonded in a distorted square co-planar geometry to two equivalent O(3) and two equivalent O(4) atoms. Both Cu(2)-O(3) bond lengths are 1.94 Å. Both Cu(2)-O(4) bond lengths are 1.91 Å. There are eighteen inequivalent C sites. In the first C site, C(1) is bonded in a distorted single-bond geometry to one C(15), one C(6), and one H(8) atom. The C(1)-C(15) bond length is 1.38 Å. The C(1)-C(6) bond length is 1.41 Å. The C(1)-H(8) bond length is 0.93 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(12) and one H(6) atom. The C(2)-C(12) bond length is 1.36 Å. The C(2)-H(6) bond length is 0.93 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(12), one C(16), and one C(5) atom. The C(3)-C(12) bond length is 1.57 Å. The C(3)-C(16) bond length is 1.41 Å. The C(3)-C(5) bond length is 1.42 Å. In the fourth C site, C(8) is bonded in a distorted trigonal planar geometry to one C(12), one C(7), and one H(3) atom. The C(8)-C(12) bond length is 1.31 Å. The C(8)-C(7) bond length is 1.46 Å. The C(8)-H(3) bond length is 0.93 Å. In the fifth C site, C(9) is bonded in a bent 120 degrees geometry to one C(18), one O(1), and one O(4) atom. The C(9)-C(18) bond length is 1.53 Å. The C(9)-O(1) bond length is 1.26 Å. The C(9)-O(4) bond length is 1.31 Å. In the sixth C site, C(4) is bonded in a distorted single-bond geometry to one C(18) and one H(2) atom. The C(4)-C(18) bond length is 1.33 Å. The C(4)-H(2) bond length is 0.93 Å. In the seventh C site, C(5) is bonded in a distorted single-bond geometry to two equivalent C(3) and one H(5) atom. The C(5)-H(5) bond length is 0.93 Å. In the eighth C site, C(7) is bonded in a distorted single-bond geometry to one C(18), one C(8), and one H(7) atom. The C(7)-C(18) bond length is 1.31 Å. The C(7)-H(7) bond length is 0.93 Å. In the ninth C site, C(6) is bonded in a trigonal planar geometry to one C(1), one C(14), and one C(17) atom. The C(6)-C(14) bond length is 1.59 Å. The C(6)-C(17) bond length is 1.46 Å. In the tenth C site, C(10) is bonded in a linear geometry to one C(11) and one C(15) atom. The C(10)-C(11) bond length is 1.09 Å. The C(10)-C(15) bond length is 1.30 Å. In the eleventh C site, C(11) is bonded in a linear geometry to one C(10) and one C(13) atom. The C(11)-C(13) bond length is 1.52 Å. In the twelfth C site, C(12) is bonded in a trigonal planar geometry to one C(2), one C(3), and one C(8) atom. In the thirteenth C site, C(13) is bonded in a trigonal planar geometry to one C(11) and two equivalent C(16) atoms. Both C(13)-C(16) bond lengths are 1.39 Å. In the fourteenth C site, C(14) is bonded in a distorted bent 120 degrees geometry to one C(6), one O(2), and one O(3) atom. The C(14)-O(2) bond length is 1.21 Å. The C(14)-O(3) bond length is 1.37 Å. In the fifteenth C site, C(15) is bonded in a trigonal planar geometry to one C(10) and two equivalent C(1) atoms. In the sixteenth C site, C(16) is bonded in a distorted single-bond geometry to one C(13), one C(3), and one H(1) atom. The C(16)-H(1) bond length is 0.93 Å. In the seventeenth C site, C(17) is bonded in a distorted single-bond geometry to two equivalent C(6) and one H(4) atom. The C(17)-H(4) bond length is 0.93 Å. In the eighteenth C site, C(18) is bonded in a trigonal planar geometry to one C(4), one C(7), and one C(9) atom. There are eight inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(16) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(8) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(17) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(5) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(2) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(7) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(1) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Cu(1) and one C(9) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one Cu(1) and one C(14) atom. In the third O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Cu(2) and one C(14) atom. In the fourth O site, O(4) is bonded in a distorted bent 120 degrees geometry to one Cu(2) and one C(9) atom. Linkers: 3 [O]C(=O)c1ccc(-c2cc(C#Cc3cc(C([O])=O)cc(C([O])=O)c3)cc(-c3ccc(C([O])=O)cc3)c2)cc1. Metal clusters: 3 [C]1O[Cu]234O[C]O[Cu]2(O1)(O[C]O3)O[C]O4. RCSR code: nbo. The MOF has largest included sphere 15.81 A, density 0.43 g/cm3, surface area 4105.27 m2/g, accessible volume 1.82 cm3/g
YIXFIW_clean
SmC16H9O8Cl is Indium-like structured and crystallizes in the monoclinic P2_1/c space group. The structure is zero-dimensional and consists of two SmC16H9O8Cl clusters. Sm(1) is bonded in a 9-coordinate geometry to one O(1), one O(2), one O(3), one O(5), one O(7), one O(8), two equivalent O(4), and one Cl(1) atom. The Sm(1)-O(1) bond length is 2.39 Å. The Sm(1)-O(2) bond length is 2.43 Å. The Sm(1)-O(3) bond length is 2.53 Å. The Sm(1)-O(5) bond length is 2.61 Å. The Sm(1)-O(7) bond length is 2.40 Å. The Sm(1)-O(8) bond length is 2.45 Å. There is one shorter (2.39 Å) and one longer (2.63 Å) Sm(1)-O(4) bond length. The Sm(1)-Cl(1) bond length is 2.95 Å. There are sixteen inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(11), one O(1), and one O(7) atom. The C(1)-C(11) bond length is 1.50 Å. The C(1)-O(1) bond length is 1.26 Å. The C(1)-O(7) bond length is 1.25 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(6), one C(8), and one C(9) atom. The C(2)-C(6) bond length is 1.51 Å. The C(2)-C(8) bond length is 1.39 Å. The C(2)-C(9) bond length is 1.37 Å. In the third C site, C(3) is bonded in a distorted bent 120 degrees geometry to one C(14), one O(5), and one O(6) atom. The C(3)-C(14) bond length is 1.50 Å. The C(3)-O(5) bond length is 1.22 Å. The C(3)-O(6) bond length is 1.30 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(12), one C(13), and one C(5) atom. The C(4)-C(12) bond length is 1.49 Å. The C(4)-C(13) bond length is 1.38 Å. The C(4)-C(5) bond length is 1.39 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(4) and one H(1) atom. The C(5)-H(1) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(2), and one O(3) atom. The C(6)-O(2) bond length is 1.25 Å. The C(6)-O(3) bond length is 1.25 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(11) and one H(3) atom. The C(7)-C(11) bond length is 1.39 Å. The C(7)-H(3) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a distorted single-bond geometry to one C(2) and one H(4) atom. The C(8)-H(4) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a distorted single-bond geometry to one C(2) and one H(5) atom. The C(9)-H(5) bond length is 0.93 Å. In the tenth C site, C(10) is bonded in a distorted single-bond geometry to one C(11) and one H(6) atom. The C(10)-C(11) bond length is 1.38 Å. The C(10)-H(6) bond length is 0.93 Å. In the eleventh C site, C(11) is bonded in a trigonal planar geometry to one C(1), one C(10), and one C(7) atom. In the twelfth C site, C(12) is bonded in a distorted bent 120 degrees geometry to one C(4), one O(4), and one O(8) atom. The C(12)-O(4) bond length is 1.26 Å. The C(12)-O(8) bond length is 1.25 Å. In the thirteenth C site, C(13) is bonded in a distorted single-bond geometry to one C(4) and one H(7) atom. The C(13)-H(7) bond length is 0.93 Å. In the fourteenth C site, C(14) is bonded in a trigonal planar geometry to one C(15), one C(16), and one C(3) atom. The C(14)-C(15) bond length is 1.38 Å. The C(14)-C(16) bond length is 1.38 Å. In the fifteenth C site, C(15) is bonded in a distorted single-bond geometry to one C(14) and one H(8) atom. The C(15)-H(8) bond length is 0.93 Å. In the sixteenth C site, C(16) is bonded in a single-bond geometry to one C(14) and one H(9) atom. The C(16)-H(9) bond length is 0.93 Å. There are nine inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(5) atom. In the second H site, H(2) is bonded in a single-bond geometry to one O(6) and one Cl(1) atom. The H(2)-O(6) bond length is 0.82 Å. The H(2)-Cl(1) bond length is 2.15 Å. In the third H site, H(3) is bonded in a single-bond geometry to one C(7) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(8) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(9) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(10) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(13) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(15) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(16) atom. There are eight inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 150 degrees geometry to one Sm(1) and one C(1) atom. In the second O site, O(2) is bonded in a distorted L-shaped geometry to one Sm(1) and one C(6) atom. In the third O site, O(3) is bonded in a distorted L-shaped geometry to one Sm(1) and one C(6) atom. In the fourth O site, O(4) is bonded in a 1-coordinate geometry to two equivalent Sm(1) and one C(12) atom. In the fifth O site, O(5) is bonded in a distorted single-bond geometry to one Sm(1) and one C(3) atom. In the sixth O site, O(6) is bonded in a distorted water-like geometry to one C(3) and one H(2) atom. In the seventh O site, O(7) is bonded in a distorted bent 150 degrees geometry to one Sm(1) and one C(1) atom. In the eighth O site, O(8) is bonded in a distorted water-like geometry to one Sm(1) and one C(12) atom. Cl(1) is bonded in a 2-coordinate geometry to one Sm(1) and one H(2) atom. Linkers: 7 [O]C(=O)c1ccc(C([O])=O)cc1 ,2 O=C(O)c1ccc(C(=O)O)cc1. Metal clusters: 2 O=[C]O.O=[C]O.[C]1O[Sm]234(O1)O[C]O[Sm]1(O[C]O1)(O[C]O2)(O[C]O3)O[C]O4.[Cl].[Cl]. RCSR code: hex. The MOF has largest included sphere 4.72 A, density 1.47 g/cm3, surface area 3388.04 m2/g, accessible volume 0.27 cm3/g
MECVOG_clean
Fe2Ga(PO4)4 crystallizes in the cubic I-43m space group. Fe(1) is bonded to four equivalent O(1) atoms to form FeO4 tetrahedra that share corners with four equivalent P(1)O4 tetrahedra. All Fe(1)-O(1) bond lengths are 1.87 Å. Ga(1) is bonded to four equivalent O(3) atoms to form GaO4 tetrahedra that share corners with four equivalent P(1)O4 tetrahedra. All Ga(1)-O(3) bond lengths are 1.84 Å. P(1) is bonded to one O(2), one O(3), and two equivalent O(1) atoms to form PO4 tetrahedra that share a cornercorner with one Ga(1)O4 tetrahedra and corners with two equivalent Fe(1)O4 tetrahedra. The P(1)-O(2) bond length is 1.50 Å. The P(1)-O(3) bond length is 1.54 Å. Both P(1)-O(1) bond lengths are 1.54 Å. There are three inequivalent O sites. In the first O site, O(2) is bonded in a single-bond geometry to one P(1) atom. In the second O site, O(3) is bonded in a bent 150 degrees geometry to one Ga(1) and one P(1) atom. In the third O site, O(1) is bonded in a bent 150 degrees geometry to one Fe(1) and one P(1) atom. Linkers: 24 [O]P([O])([O])=O. Metal clusters: 6 [Ga] ,12 [Fe]. RCSR code: nju. The MOF has largest included sphere 10.72 A, density 1.16 g/cm3, surface area 2893.77 m2/g, accessible volume 0.59 cm3/g
UGELIB_clean
Ga2P2O8F crystallizes in the orthorhombic Pbcn space group. There are four inequivalent Ga sites. In the first Ga site, Ga(1) is bonded to one O(1), one O(11), one O(2), one O(9), one F(1), and one F(2) atom to form GaO4F2 octahedra that share a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(2)O4 tetrahedra, corners with two equivalent P(4)O4 tetrahedra, a cornercorner with one Ga(2)O4F trigonal bipyramid, and a cornercorner with one Ga(4)O4F trigonal bipyramid. The Ga(1)-O(1) bond length is 1.94 Å. The Ga(1)-O(11) bond length is 1.95 Å. The Ga(1)-O(2) bond length is 1.93 Å. The Ga(1)-O(9) bond length is 1.91 Å. The Ga(1)-F(1) bond length is 1.98 Å. The Ga(1)-F(2) bond length is 2.01 Å. In the second Ga site, Ga(2) is bonded to one O(12), one O(13), one O(14), one O(3), and one F(1) atom to form GaO4F trigonal bipyramids that share a cornercorner with one Ga(1)O4F2 octahedra, a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(2)O4 tetrahedra, a cornercorner with one P(3)O4 tetrahedra, and a cornercorner with one P(4)O4 tetrahedra. The corner-sharing octahedral tilt angles are 53°. The Ga(2)-O(12) bond length is 1.85 Å. The Ga(2)-O(13) bond length is 1.85 Å. The Ga(2)-O(14) bond length is 1.85 Å. The Ga(2)-O(3) bond length is 1.94 Å. The Ga(2)-F(1) bond length is 2.00 Å. In the third Ga site, Ga(3) is bonded to one O(15), one O(16), one O(5), and one O(6) atom to form GaO4 tetrahedra that share a cornercorner with one P(1)O4 tetrahedra and corners with three equivalent P(3)O4 tetrahedra. The Ga(3)-O(15) bond length is 1.83 Å. The Ga(3)-O(16) bond length is 1.82 Å. The Ga(3)-O(5) bond length is 1.79 Å. The Ga(3)-O(6) bond length is 1.81 Å. In the fourth Ga site, Ga(4) is bonded to one O(10), one O(4), one O(7), one O(8), and one F(2) atom to form GaO4F trigonal bipyramids that share a cornercorner with one Ga(1)O4F2 octahedra, a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(4)O4 tetrahedra, and corners with two equivalent P(2)O4 tetrahedra. The corner-sharing octahedral tilt angles are 59°. The Ga(4)-O(10) bond length is 2.00 Å. The Ga(4)-O(4) bond length is 1.87 Å. The Ga(4)-O(7) bond length is 1.84 Å. The Ga(4)-O(8) bond length is 1.84 Å. The Ga(4)-F(2) bond length is 2.02 Å. There are four inequivalent P sites. In the first P site, P(1) is bonded to one O(11), one O(14), one O(4), and one O(6) atom to form PO4 tetrahedra that share a cornercorner with one Ga(1)O4F2 octahedra, a cornercorner with one Ga(3)O4 tetrahedra, a cornercorner with one Ga(2)O4F trigonal bipyramid, and a cornercorner with one Ga(4)O4F trigonal bipyramid. The corner-sharing octahedral tilt angles are 46°. The P(1)-O(11) bond length is 1.51 Å. The P(1)-O(14) bond length is 1.54 Å. The P(1)-O(4) bond length is 1.53 Å. The P(1)-O(6) bond length is 1.56 Å. In the second P site, P(2) is bonded to one O(1), one O(10), one O(13), and one O(8) atom to form PO4 tetrahedra that share a cornercorner with one Ga(1)O4F2 octahedra, a cornercorner with one Ga(2)O4F trigonal bipyramid, and corners with two equivalent Ga(4)O4F trigonal bipyramids. The corner-sharing octahedral tilt angles are 47°. The P(2)-O(1) bond length is 1.52 Å. The P(2)-O(10) bond length is 1.54 Å. The P(2)-O(13) bond length is 1.55 Å. The P(2)-O(8) bond length is 1.53 Å. In the third P site, P(3) is bonded to one O(15), one O(16), one O(3), and one O(5) atom to form PO4 tetrahedra that share corners with three equivalent Ga(3)O4 tetrahedra and a cornercorner with one Ga(2)O4F trigonal bipyramid. The P(3)-O(15) bond length is 1.54 Å. The P(3)-O(16) bond length is 1.54 Å. The P(3)-O(3) bond length is 1.50 Å. The P(3)-O(5) bond length is 1.51 Å. In the fourth P site, P(4) is bonded to one O(12), one O(2), one O(7), and one O(9) atom to form PO4 tetrahedra that share corners with two equivalent Ga(1)O4F2 octahedra, a cornercorner with one Ga(2)O4F trigonal bipyramid, and a cornercorner with one Ga(4)O4F trigonal bipyramid. The corner-sharing octahedral tilt angles are 50°. The P(4)-O(12) bond length is 1.54 Å. The P(4)-O(2) bond length is 1.52 Å. The P(4)-O(7) bond length is 1.53 Å. The P(4)-O(9) bond length is 1.53 Å. There are sixteen inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Ga(1) and one P(2) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Ga(1) and one P(4) atom. In the third O site, O(3) is bonded in a distorted bent 150 degrees geometry to one Ga(2) and one P(3) atom. In the fourth O site, O(4) is bonded in a bent 150 degrees geometry to one Ga(4) and one P(1) atom. In the fifth O site, O(5) is bonded in a linear geometry to one Ga(3) and one P(3) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one Ga(3) and one P(1) atom. In the seventh O site, O(7) is bonded in a bent 120 degrees geometry to one Ga(4) and one P(4) atom. In the eighth O site, O(8) is bonded in a bent 150 degrees geometry to one Ga(4) and one P(2) atom. In the ninth O site, O(9) is bonded in a bent 120 degrees geometry to one Ga(1) and one P(4) atom. In the tenth O site, O(10) is bonded in a distorted bent 120 degrees geometry to one Ga(4) and one P(2) atom. In the eleventh O site, O(11) is bonded in a distorted bent 120 degrees geometry to one Ga(1) and one P(1) atom. In the twelfth O site, O(12) is bonded in a bent 120 degrees geometry to one Ga(2) and one P(4) atom. In the thirteenth O site, O(13) is bonded in a distorted bent 120 degrees geometry to one Ga(2) and one P(2) atom. In the fourteenth O site, O(14) is bonded in a bent 120 degrees geometry to one Ga(2) and one P(1) atom. In the fifteenth O site, O(15) is bonded in a bent 150 degrees geometry to one Ga(3) and one P(3) atom. In the sixteenth O site, O(16) is bonded in a distorted bent 150 degrees geometry to one Ga(3) and one P(3) atom. There are two inequivalent F sites. In the first F site, F(1) is bonded in a bent 120 degrees geometry to one Ga(1) and one Ga(2) atom. In the second F site, F(2) is bonded in a bent 120 degrees geometry to one Ga(1) and one Ga(4) atom. Linkers: 32 [O]P([O])([O])=O. Metal clusters: 32 [Ga]. The MOF has largest included sphere 9.36 A, density 1.90 g/cm3, surface area 1981.98 m2/g, accessible volume 0.28 cm3/g
CIFDOM_clean
MnH6(C3O)4 crystallizes in the monoclinic P2_1/c space group. There are two inequivalent Mn sites. In the first Mn site, Mn(1) is bonded in a 4-coordinate geometry to one O(2), one O(4), one O(5), and one O(6) atom. The Mn(1)-O(2) bond length is 2.08 Å. The Mn(1)-O(4) bond length is 2.07 Å. The Mn(1)-O(5) bond length is 2.28 Å. The Mn(1)-O(6) bond length is 2.27 Å. In the second Mn site, Mn(2) is bonded in an octahedral geometry to two equivalent O(1), two equivalent O(3), and two equivalent O(5) atoms. Both Mn(2)-O(1) bond lengths are 2.12 Å. Both Mn(2)-O(3) bond lengths are 2.15 Å. Both Mn(2)-O(5) bond lengths are 2.26 Å. There are eighteen inequivalent C sites. In the first C site, C(1) is bonded in a distorted single-bond geometry to one C(2), one C(9), and one H(1) atom. The C(1)-C(2) bond length is 1.36 Å. The C(1)-C(9) bond length is 1.41 Å. The C(1)-H(1) bond length is 0.93 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(11), and one C(3) atom. The C(2)-C(11) bond length is 1.51 Å. The C(2)-C(3) bond length is 1.40 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2) and one H(2,5) atom. The C(3)-H(2,5) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(10) and one H(3) atom. The C(4)-C(10) bond length is 1.41 Å. The C(4)-H(3) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(10), one C(6), and one H(4) atom. The C(5)-C(10) bond length is 1.41 Å. The C(5)-C(6) bond length is 1.36 Å. The C(5)-H(4) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(12), one C(5), and one C(7) atom. The C(6)-C(12) bond length is 1.51 Å. The C(6)-C(7) bond length is 1.40 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(6) and one H(2,5) atom. The C(7)-H(2,5) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a distorted single-bond geometry to one C(9) and one H(6) atom. The C(8)-C(9) bond length is 1.41 Å. The C(8)-H(6) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a trigonal planar geometry to one C(1), one C(10), and one C(8) atom. The C(9)-C(10) bond length is 1.41 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(4), one C(5), and one C(9) atom. In the eleventh C site, C(11) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(11)-O(1) bond length is 1.23 Å. The C(11)-O(2) bond length is 1.25 Å. In the twelfth C site, C(12) is bonded in a distorted bent 120 degrees geometry to one C(6), one O(3), and one O(4) atom. The C(12)-O(3) bond length is 1.24 Å. The C(12)-O(4) bond length is 1.24 Å. In the thirteenth C site, C(13) is bonded in a distorted single-bond geometry to one C(17) and one H(7) atom. The C(13)-C(17) bond length is 1.41 Å. The C(13)-H(7) bond length is 0.93 Å. In the fourteenth C site, C(14) is bonded in a distorted single-bond geometry to one C(15) and one H(8) atom. The C(14)-C(15) bond length is 1.41 Å. The C(14)-H(8) bond length is 0.93 Å. In the fifteenth C site, C(15) is bonded in a trigonal planar geometry to one C(14), one C(16), and one C(18) atom. The C(15)-C(16) bond length is 1.36 Å. The C(15)-C(18) bond length is 1.50 Å. In the sixteenth C site, C(16) is bonded in a distorted single-bond geometry to one C(15), one C(17), and one H(9) atom. The C(16)-C(17) bond length is 1.42 Å. The C(16)-H(9) bond length is 0.93 Å. In the seventeenth C site, C(17) is bonded in a trigonal planar geometry to one C(13), one C(16), and one C(17) atom. The C(17)-C(17) bond length is 1.42 Å. In the eighteenth C site, C(18) is bonded in a distorted bent 120 degrees geometry to one C(15), one O(5), and one O(6) atom. The C(18)-O(5) bond length is 1.27 Å. The C(18)-O(6) bond length is 1.24 Å. There are eight inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2,5) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(4) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the fifth H site, H(6) is bonded in a single-bond geometry to one C(8) atom. In the sixth H site, H(7) is bonded in a single-bond geometry to one C(13) atom. In the seventh H site, H(8) is bonded in a single-bond geometry to one C(14) atom. In the eighth H site, H(9) is bonded in a single-bond geometry to one C(16) atom. There are six inequivalent O sites. In the first O site, O(1) is bonded in a bent 150 degrees geometry to one Mn(2) and one C(11) atom. In the second O site, O(2) is bonded in a distorted bent 120 degrees geometry to one Mn(1) and one C(11) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Mn(2) and one C(12) atom. In the fourth O site, O(4) is bonded in a bent 150 degrees geometry to one Mn(1) and one C(12) atom. In the fifth O site, O(5) is bonded in a 3-coordinate geometry to one Mn(1), one Mn(2), and one C(18) atom. In the sixth O site, O(6) is bonded in a single-bond geometry to one Mn(1) and one C(18) atom. Linkers: 7 [O]C(=O)c1ccc2cc(C([O])=O)ccc2c1. Metal clusters: 2 [C]1O[Mn]2O[C]O[Mn]34(O1)(O[C]O2)O[C]O[Mn](O[C]O3)O[C]O4. RCSR code: pcu. The MOF has largest included sphere 5.56 A, density 0.98 g/cm3, surface area 4206.13 m2/g, accessible volume 0.51 cm3/g
IYUHEQ_clean
In2C26N5H12O11(CH)4 crystallizes in the hexagonal P6_5 space group. The structure consists of twenty-four 02329_fluka molecules inside a In2C26N5H12O11 framework. In the In2C26N5H12O11 framework, In(1,2) is bonded to one N(1,4); one N(3,5); one O(1,6); one O(11); one O(2,7); and one O(5,10) atom to form corner-sharing InN2O4 octahedra. The corner-sharing octahedral tilt angles are 46°. The In(1,2)-N(1,4) bond length is 2.32 Å. The In(1,2)-N(3,5) bond length is 2.27 Å. The In(1,2)-O(1,6) bond length is 2.12 Å. The In(1,2)-O(11) bond length is 2.07 Å. The In(1,2)-O(2,7) bond length is 2.14 Å. The In(1,2)-O(5,10) bond length is 2.20 Å. There are sixteen inequivalent C sites. In the first C site, C(28) is bonded in a distorted bent 120 degrees geometry to one C(30) and two equivalent O(5,10) atoms. The C(28)-C(30) bond length is 1.48 Å. Both C(28)-O(5,10) bond lengths are 1.27 Å. In the second C site, C(29) is bonded in a distorted bent 120 degrees geometry to one C(1) and one N(2) atom. The C(29)-C(1) bond length is 1.38 Å. The C(29)-N(2) bond length is 1.38 Å. In the third C site, C(30) is bonded in a trigonal planar geometry to one C(13), one C(26), and one C(28) atom. The C(30)-C(13) bond length is 1.41 Å. The C(30)-C(26) bond length is 1.41 Å. In the fourth C site, C(26) is bonded in a bent 120 degrees geometry to one C(1) and one C(30) atom. The C(26)-C(1) bond length is 1.37 Å. In the fifth C site, C(1) is bonded in a bent 120 degrees geometry to one C(26) and one C(29) atom. In the sixth C site, C(2,15) is bonded in a distorted bent 120 degrees geometry to one C(14,27); one N(3,5); and one H(1,9) atom. The C(2,15)-C(14,27) bond length is 1.41 Å. The C(2,15)-N(3,5) bond length is 1.32 Å. The C(2,15)-H(1,9) bond length is 0.93 Å. In the seventh C site, C(3,16) is bonded in a distorted bent 120 degrees geometry to one C(4,17); one N(1,4); and one H(2,10) atom. The C(3,16)-C(4,17) bond length is 1.38 Å. The C(3,16)-N(1,4) bond length is 1.34 Å. The C(3,16)-H(2,10) bond length is 0.93 Å. In the eighth C site, C(4,17) is bonded in a trigonal planar geometry to one C(3,16); one C(6,19); and one C(9,22) atom. The C(4,17)-C(6,19) bond length is 1.54 Å. The C(4,17)-C(9,22) bond length is 1.38 Å. In the ninth C site, C(5,18) is bonded in a distorted single-bond geometry to one C(14,27) and one H(3,11) atom. The C(5,18)-C(14,27) bond length is 1.37 Å. The C(5,18)-H(3,11) bond length is 0.93 Å. In the tenth C site, C(6,19) is bonded in a distorted bent 120 degrees geometry to one C(4,17); one O(1,6); and one O(3,8) atom. The C(6,19)-O(1,6) bond length is 1.30 Å. The C(6,19)-O(3,8) bond length is 1.21 Å. In the eleventh C site, C(7,20) is bonded in a distorted bent 120 degrees geometry to one N(3,5) and one H(4,12) atom. The C(7,20)-N(3,5) bond length is 1.34 Å. The C(7,20)-H(4,12) bond length is 0.93 Å. In the twelfth C site, C(8,21) is bonded in a distorted bent 120 degrees geometry to one N(1,4) and one H(5,13) atom. The C(8,21)-N(1,4) bond length is 1.36 Å. The C(8,21)-H(5,13) bond length is 0.93 Å. In the thirteenth C site, C(9,22) is bonded in a distorted single-bond geometry to one C(4,17) and one H(6,14) atom. The C(9,22)-H(6,14) bond length is 0.93 Å. In the fourteenth C site, C(11,24) is bonded in a bent 120 degrees geometry to one C(14,27); one O(2,7); and one O(4,9) atom. The C(11,24)-C(14,27) bond length is 1.51 Å. The C(11,24)-O(2,7) bond length is 1.28 Å. The C(11,24)-O(4,9) bond length is 1.23 Å. In the fifteenth C site, C(13) is bonded in a bent 120 degrees geometry to one C(30) and one N(2) atom. The C(13)-N(2) bond length is 1.37 Å. In the sixteenth C site, C(14,27) is bonded in a trigonal planar geometry to one C(11,24); one C(2,15); and one C(5,18) atom. There are three inequivalent N sites. In the first N site, N(1,4) is bonded in a trigonal planar geometry to one In(1,2); one C(3,16); and one C(8,21) atom. In the second N site, N(2) is bonded in a bent 120 degrees geometry to one C(13) and one C(29) atom. In the third N site, N(3,5) is bonded in a trigonal planar geometry to one In(1,2); one C(2,15); and one C(7,20) atom. There are six inequivalent H sites. In the first H site, H(1,9) is bonded in a single-bond geometry to one C(2,15) atom. In the second H site, H(2,10) is bonded in a single-bond geometry to one C(3,16) atom. In the third H site, H(3,11) is bonded in a single-bond geometry to one C(5,18) atom. In the fourth H site, H(4,12) is bonded in a single-bond geometry to one C(7,20) atom. In the fifth H site, H(5,13) is bonded in a single-bond geometry to one C(8,21) atom. In the sixth H site, H(6,14) is bonded in a single-bond geometry to one C(9,22) atom. There are six inequivalent O sites. In the first O site, O(1,6) is bonded in a bent 120 degrees geometry to one In(1,2) and one C(6,19) atom. In the second O site, O(2,7) is bonded in a bent 120 degrees geometry to one In(1,2) and one C(11,24) atom. In the third O site, O(3,8) is bonded in a single-bond geometry to one C(6,19) atom. In the fourth O site, O(4,9) is bonded in a single-bond geometry to one C(11,24) atom. In the fifth O site, O(5,10) is bonded in a 2-coordinate geometry to one In(1,2) and one C(28) atom. In the sixth O site, O(11) is bonded in a distorted bent 120 degrees geometry to two equivalent In(1,2) atoms. Linkers: 12 [O]C(=O)c1cccnc1. Metal clusters: 12 [In]. The MOF has largest included sphere 4.02 A, density 1.71 g/cm3, surface area 3647.21 m2/g, accessible volume 0.21 cm3/g
QAJKAO_clean
V4P7(HO3)7 crystallizes in the trigonal P-3c1 space group. There are three inequivalent V sites. In the first V site, V(1) is bonded to one O(1), one O(2), one O(3), one O(4), and one O(5) atom to form VO5 square pyramids that share a cornercorner with one P(1)HO3 tetrahedra, a cornercorner with one P(3)HO3 tetrahedra, and corners with three equivalent P(2)HO3 tetrahedra. The V(1)-O(1) bond length is 2.00 Å. The V(1)-O(2) bond length is 2.00 Å. The V(1)-O(3) bond length is 1.97 Å. The V(1)-O(4) bond length is 2.00 Å. The V(1)-O(5) bond length is 1.96 Å. In the second V site, V(2) is bonded to six equivalent O(6) atoms to form VO6 octahedra that share corners with six equivalent P(1)HO3 tetrahedra. All V(2)-O(6) bond lengths are 2.01 Å. In the third V site, V(3) is bonded to six equivalent O(7) atoms to form VO6 octahedra that share corners with six equivalent P(1)HO3 tetrahedra. All V(3)-O(7) bond lengths are 2.01 Å. There are three inequivalent P sites. In the first P site, P(3) is bonded to one H(3) and three equivalent O(5) atoms to form distorted PHO3 tetrahedra that share corners with three equivalent V(1)O5 square pyramids. The P(3)-H(3) bond length is 1.32 Å. All P(3)-O(5) bond lengths are 1.53 Å. In the second P site, P(1) is bonded to one H(1), one O(1), one O(6), and one O(7) atom to form distorted PHO3 tetrahedra that share a cornercorner with one V(2)O6 octahedra, a cornercorner with one V(3)O6 octahedra, and a cornercorner with one V(1)O5 square pyramid. The corner-sharing octahedral tilt angles range from 39-47°. The P(1)-H(1) bond length is 1.41 Å. The P(1)-O(1) bond length is 1.53 Å. The P(1)-O(6) bond length is 1.53 Å. The P(1)-O(7) bond length is 1.52 Å. In the third P site, P(2) is bonded to one H(2), one O(2), one O(3), and one O(4) atom to form distorted PHO3 tetrahedra that share corners with three equivalent V(1)O5 square pyramids. The P(2)-H(2) bond length is 1.44 Å. The P(2)-O(2) bond length is 1.53 Å. The P(2)-O(3) bond length is 1.51 Å. The P(2)-O(4) bond length is 1.52 Å. There are three inequivalent H sites. In the first H site, H(3) is bonded in a single-bond geometry to one P(3) atom. In the second H site, H(1) is bonded in a single-bond geometry to one P(1) atom. In the third H site, H(2) is bonded in a single-bond geometry to one P(2) atom. There are seven inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 150 degrees geometry to one V(1) and one P(1) atom. In the second O site, O(2) is bonded in a distorted bent 120 degrees geometry to one V(1) and one P(2) atom. In the third O site, O(3) is bonded in a distorted bent 150 degrees geometry to one V(1) and one P(2) atom. In the fourth O site, O(4) is bonded in a distorted bent 150 degrees geometry to one V(1) and one P(2) atom. In the fifth O site, O(5) is bonded in a bent 150 degrees geometry to one V(1) and one P(3) atom. In the sixth O site, O(6) is bonded in a bent 150 degrees geometry to one V(2) and one P(1) atom. In the seventh O site, O(7) is bonded in a distorted bent 120 degrees geometry to one V(3) and one P(1) atom. Linkers: 28 [O][PH]([O])=O. Metal clusters: 16 [V]. The MOF has largest included sphere 5.04 A, density 1.76 g/cm3, surface area 2956.94 m2/g, accessible volume 0.27 cm3/g
YUKCAJ_clean
CuH20(C3N)8 is Indium-like structured and crystallizes in the tetragonal P4_2/n space group. The structure is zero-dimensional and consists of two CuH20(C3N)8 clusters. Cu(1) is bonded in a tetrahedral geometry to four equivalent N(1) atoms. All Cu(1)-N(1) bond lengths are 2.03 Å. There are six inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(1) atom. The C(1)-N(1) bond length is 1.33 Å. The C(1)-H(1) bond length is 0.93 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(3) and one H(2) atom. The C(2)-C(3) bond length is 1.34 Å. The C(2)-H(2) bond length is 0.93 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(6) atom. The C(3)-C(4) bond length is 1.38 Å. The C(3)-C(6) bond length is 1.46 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3), one C(5), and one H(3) atom. The C(4)-C(5) bond length is 1.35 Å. The C(4)-H(3) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a distorted trigonal planar geometry to one C(4), one N(1), and one H(4) atom. The C(5)-N(1) bond length is 1.33 Å. The C(5)-H(4) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one C(3), one N(2), and one H(5) atom. The C(6)-N(2) bond length is 1.27 Å. The C(6)-H(5) bond length is 0.93 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Cu(1), one C(1), and one C(5) atom. In the second N site, N(2) is bonded in a distorted single-bond geometry to one C(6) atom. There are five inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(4) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(6) atom. Linkers: 6 [CH]([N][N][CH]c1ccncc1)c1ccncc1. Metal clusters: 2 [Cu]. The MOF has largest included sphere 4.62 A, density 1.16 g/cm3, surface area 5448.72 m2/g, accessible volume 0.39 cm3/g
FUNGAY_clean
CoC19N9H14O2C3H2C9H6N is Indium-derived structured and crystallizes in the monoclinic C2/c space group. The structure is zero-dimensional and consists of four 2,3-dimethyl-1,3-butadiene molecules; eight schembl1705614 molecules; and eight CoC19N9H14O2 clusters. In each CoC19N9H14O2 cluster, Co(1) is bonded in a square pyramidal geometry to one N(1), one N(4), one N(7), one O(1), and one O(2) atom. The Co(1)-N(1) bond length is 2.13 Å. The Co(1)-N(4) bond length is 2.11 Å. The Co(1)-N(7) bond length is 2.12 Å. The Co(1)-O(1) bond length is 2.18 Å. The Co(1)-O(2) bond length is 2.23 Å. There are nineteen inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one N(1), one N(3), and one H(1) atom. The C(1)-N(1) bond length is 1.34 Å. The C(1)-N(3) bond length is 1.31 Å. The C(1)-H(1) bond length is 0.93 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one N(1), one N(2), and one H(2) atom. The C(2)-N(1) bond length is 1.32 Å. The C(2)-N(2) bond length is 1.33 Å. The C(2)-H(2) bond length is 0.93 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one N(4), one N(5), and one H(3) atom. The C(3)-N(4) bond length is 1.32 Å. The C(3)-N(5) bond length is 1.33 Å. The C(3)-H(3) bond length is 0.93 Å. In the fourth C site, C(5) is bonded in a trigonal planar geometry to one N(7), one N(8), and one H(5) atom. The C(5)-N(7) bond length is 1.34 Å. The C(5)-N(8) bond length is 1.31 Å. The C(5)-H(5) bond length is 0.93 Å. In the fifth C site, C(6) is bonded in a trigonal planar geometry to one N(7), one N(9), and one H(6) atom. The C(6)-N(7) bond length is 1.32 Å. The C(6)-N(9) bond length is 1.33 Å. The C(6)-H(6) bond length is 0.93 Å. In the sixth C site, C(7) is bonded in a distorted trigonal planar geometry to one C(12), one C(8), and one N(2) atom. The C(7)-C(12) bond length is 1.38 Å. The C(7)-C(8) bond length is 1.38 Å. The C(7)-N(2) bond length is 1.43 Å. In the seventh C site, C(8) is bonded in a distorted single-bond geometry to one C(7) and one H(7) atom. The C(8)-H(7) bond length is 0.93 Å. In the eighth C site, C(4) is bonded in a trigonal planar geometry to one N(4), one N(6), and one H(4) atom. The C(4)-N(4) bond length is 1.34 Å. The C(4)-N(6) bond length is 1.32 Å. The C(4)-H(4) bond length is 0.93 Å. In the ninth C site, C(12) is bonded in a distorted single-bond geometry to one C(7) and one H(10) atom. The C(12)-H(10) bond length is 0.93 Å. In the tenth C site, C(13) is bonded in a distorted trigonal planar geometry to one C(14), one C(18), and one N(5) atom. The C(13)-C(14) bond length is 1.37 Å. The C(13)-C(18) bond length is 1.38 Å. The C(13)-N(5) bond length is 1.43 Å. In the eleventh C site, C(14) is bonded in a distorted single-bond geometry to one C(13) and one H(11,14) atom. The C(14)-H(11,14) bond length is 0.93 Å. In the twelfth C site, C(18) is bonded in a distorted single-bond geometry to one C(13) and one H(11,14) atom. The C(18)-H(11,14) bond length is 0.93 Å. In the thirteenth C site, C(21) is bonded in a distorted single-bond geometry to one C(22) and one H(16) atom. The C(21)-C(22) bond length is 1.37 Å. The C(21)-H(16) bond length is 0.93 Å. In the fourteenth C site, C(22) is bonded in a distorted trigonal planar geometry to one C(21), one C(23), and one N(9) atom. The C(22)-C(23) bond length is 1.36 Å. The C(22)-N(9) bond length is 1.43 Å. In the fifteenth C site, C(23) is bonded in a distorted single-bond geometry to one C(22) and one H(17) atom. The C(23)-H(17) bond length is 0.93 Å. In the sixteenth C site, C(25) is bonded in a bent 120 degrees geometry to one C(26), one O(1), and one O(2) atom. The C(25)-C(26) bond length is 1.50 Å. The C(25)-O(1) bond length is 1.26 Å. The C(25)-O(2) bond length is 1.26 Å. In the seventeenth C site, C(26) is bonded in a trigonal planar geometry to one C(25), one C(27), and one C(31) atom. The C(26)-C(27) bond length is 1.37 Å. The C(26)-C(31) bond length is 1.37 Å. In the eighteenth C site, C(27) is bonded in a distorted single-bond geometry to one C(26) and one H(19,22) atom. The C(27)-H(19,22) bond length is 0.93 Å. In the nineteenth C site, C(31) is bonded in a distorted single-bond geometry to one C(26) and one H(19,22) atom. The C(31)-H(19,22) bond length is 0.93 Å. There are nine inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one Co(1), one C(1), and one C(2) atom. In the second N site, N(2) is bonded in a distorted trigonal planar geometry to one C(2), one C(7), and one N(3) atom. The N(2)-N(3) bond length is 1.37 Å. In the third N site, N(3) is bonded in a distorted single-bond geometry to one C(1) and one N(2) atom. In the fourth N site, N(4) is bonded in a distorted trigonal planar geometry to one Co(1), one C(3), and one C(4) atom. In the fifth N site, N(5) is bonded in a distorted bent 120 degrees geometry to one C(13) and one C(3) atom. In the sixth N site, N(6) is bonded in a distorted single-bond geometry to one C(4) atom. In the seventh N site, N(7) is bonded in a distorted trigonal planar geometry to one Co(1), one C(5), and one C(6) atom. In the eighth N site, N(8) is bonded in a distorted water-like geometry to one C(5) and one N(9) atom. The N(8)-N(9) bond length is 1.36 Å. In the ninth N site, N(9) is bonded in a 3-coordinate geometry to one C(22), one C(6), and one N(8) atom. There are twelve inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(3) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(4) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(5) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(6) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(8) atom. In the eighth H site, H(10) is bonded in a single-bond geometry to one C(12) atom. In the ninth H site, H(11,14) is bonded in a single-bond geometry to one C(14) atom. In the tenth H site, H(16) is bonded in a single-bond geometry to one C(21) atom. In the eleventh H site, H(17) is bonded in a single-bond geometry to one C(23) atom. In the twelfth H site, H(19,22) is bonded in a single-bond geometry to one C(27) atom. There are two inequivalent O sites. In the first O site, O(1) is bonded in a distorted L-shaped geometry to one Co(1) and one C(25) atom. In the second O site, O(2) is bonded in a distorted L-shaped geometry to one Co(1) and one C(25) atom. Linkers: 3 [CH]1N=C[N]N1c1ccc(N(c2ccc(N3[CH]N=C[N]3)cc2)c2ccc(N3[CH]N=C[N]3)cc2)cc1 ,3 [CH]1N=C[N]N1c1ccc(N(c2ccc(N3[CH]N=C[N]3)cc2)c2ccc(-n3cncn3)cc2)cc1 ,1 c1ncn(-c2ccc(N(c3ccc(-n4cncn4)cc3)c3ccc(-n4cncn4)cc3)cc2)n1 ,1 [CH]1N=C[N]N1c1ccc(N(c2ccc(-n3cncn3)cc2)c2ccc(-n3cncn3)cc2)cc1 ,4 [O]C(=O)c1ccc(-c2ccc(C([O])=O)cc2)cc1. Metal clusters: 8 [C]1O[Co]O1. The MOF has largest included sphere 5.62 A, density 1.10 g/cm3, surface area 4856.80 m2/g, accessible volume 0.41 cm3/g
EPEWAY_clean
CoC11N2H10O5 crystallizes in the tetragonal P4_322 space group. There are two inequivalent Co sites. In the first Co site, Co(1) is bonded to two equivalent O(1), two equivalent O(2), and two equivalent O(5) atoms to form corner-sharing CoO6 octahedra. The corner-sharing octahedral tilt angles are 70°. Both Co(1)-O(1) bond lengths are 2.06 Å. Both Co(1)-O(2) bond lengths are 2.03 Å. Both Co(1)-O(5) bond lengths are 2.21 Å. In the second Co site, Co(2) is bonded to two equivalent O(3), two equivalent O(4), and two equivalent O(5) atoms to form corner-sharing CoO6 octahedra. The corner-sharing octahedral tilt angles are 70°. Both Co(2)-O(3) bond lengths are 2.05 Å. Both Co(2)-O(4) bond lengths are 2.07 Å. Both Co(2)-O(5) bond lengths are 2.14 Å. There are eleven inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one N(1), one N(2), and one O(5) atom. The C(1)-N(1) bond length is 1.35 Å. The C(1)-N(2) bond length is 1.33 Å. The C(1)-O(5) bond length is 1.27 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(4), one C(7), and one C(8) atom. The C(2)-C(4) bond length is 1.51 Å. The C(2)-C(7) bond length is 1.37 Å. The C(2)-C(8) bond length is 1.40 Å. In the third C site, C(3) is bonded in a distorted bent 120 degrees geometry to one C(6), one O(1), and one O(4) atom. The C(3)-C(6) bond length is 1.52 Å. The C(3)-O(1) bond length is 1.25 Å. The C(3)-O(4) bond length is 1.26 Å. In the fourth C site, C(4) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(2), and one O(3) atom. The C(4)-O(2) bond length is 1.25 Å. The C(4)-O(3) bond length is 1.27 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(6) and one H(2) atom. The C(5)-C(6) bond length is 1.41 Å. The C(5)-H(2) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(3), one C(5), and one C(9) atom. The C(6)-C(9) bond length is 1.38 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(2) and one H(3) atom. The C(7)-H(3) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a distorted single-bond geometry to one C(2), one C(9), and one H(4) atom. The C(8)-C(9) bond length is 1.37 Å. The C(8)-H(4) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a distorted trigonal planar geometry to one C(6), one C(8), and one H(6) atom. The C(9)-H(6) bond length is 0.93 Å. In the tenth C site, C(10) is bonded in a 3-coordinate geometry to one N(2), one H(7), and one H(8) atom. The C(10)-N(2) bond length is 1.46 Å. The C(10)-H(7) bond length is 0.97 Å. The C(10)-H(8) bond length is 0.97 Å. In the eleventh C site, C(11) is bonded in a distorted trigonal non-coplanar geometry to one N(1) and two equivalent H(9,10) atoms. The C(11)-N(1) bond length is 1.44 Å. Both C(11)-H(9,10) bond lengths are 0.97 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one C(1), one C(11), and one H(1) atom. The N(1)-H(1) bond length is 0.86 Å. In the second N site, N(2) is bonded in a trigonal planar geometry to one C(1), one C(10), and one H(5) atom. The N(2)-H(5) bond length is 0.86 Å. There are nine inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one N(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(7) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(8) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one N(2) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(9) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(10) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(10) atom. In the ninth H site, H(9,10) is bonded in a single-bond geometry to one C(11) atom. There are five inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Co(1) and one C(3) atom. In the second O site, O(2) is bonded in a distorted bent 120 degrees geometry to one Co(1) and one C(4) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Co(2) and one C(4) atom. In the fourth O site, O(4) is bonded in a distorted bent 150 degrees geometry to one Co(2) and one C(3) atom. In the fifth O site, O(5) is bonded in a distorted trigonal planar geometry to one Co(1), one Co(2), and one C(1) atom. Linkers: 8 [O]C(=O)c1ccc(C([O])=O)cc1. Metal clusters: 8 [Co]. The MOF has largest included sphere 5.86 A, density 1.27 g/cm3, surface area 3808.51 m2/g, accessible volume 0.31 cm3/g
PIZRAT_clean
Cu2C17H18(NO)6(CH3)2 crystallizes in the orthorhombic P2_12_12_1 space group. The structure consists of eight 02329_fluka molecules inside a Cu2C17H18(NO)6 framework. In the Cu2C17H18(NO)6 framework, there are two inequivalent Cu sites. In the first Cu site, Cu(1) is bonded in a square pyramidal geometry to one N(3), one N(6), one O(2), one O(4), and one O(5) atom. The Cu(1)-N(3) bond length is 1.90 Å. The Cu(1)-N(6) bond length is 1.95 Å. The Cu(1)-O(2) bond length is 2.23 Å. The Cu(1)-O(4) bond length is 2.03 Å. The Cu(1)-O(5) bond length is 2.01 Å. In the second Cu site, Cu(2) is bonded in a square pyramidal geometry to one N(2), one N(5), one O(1), one O(3), and one O(6) atom. The Cu(2)-N(2) bond length is 1.91 Å. The Cu(2)-N(5) bond length is 1.98 Å. The Cu(2)-O(1) bond length is 2.02 Å. The Cu(2)-O(3) bond length is 2.02 Å. The Cu(2)-O(6) bond length is 2.23 Å. There are seventeen inequivalent C sites. In the first C site, C(17) is bonded in a distorted bent 120 degrees geometry to one N(3) and one O(1) atom. The C(17)-N(3) bond length is 1.30 Å. The C(17)-O(1) bond length is 1.26 Å. In the second C site, C(18) is bonded in a trigonal non-coplanar geometry to one C(7); one H(5); and two equivalent H(1,4) atoms. The C(18)-C(7) bond length is 1.49 Å. The C(18)-H(5) bond length is 0.97 Å. Both C(18)-H(1,4) bond lengths are 0.97 Å. In the third C site, C(19) is bonded in a distorted bent 120 degrees geometry to one O(5) and one O(6) atom. The C(19)-O(5) bond length is 1.30 Å. The C(19)-O(6) bond length is 1.22 Å. In the fourth C site, C(1) is bonded in a distorted bent 120 degrees geometry to one N(2) and one O(4) atom. The C(1)-N(2) bond length is 1.30 Å. The C(1)-O(4) bond length is 1.28 Å. In the fifth C site, C(2) is bonded in a trigonal planar geometry to one C(3), one C(4), and one C(7) atom. The C(2)-C(3) bond length is 1.38 Å. The C(2)-C(4) bond length is 1.51 Å. The C(2)-C(7) bond length is 1.41 Å. In the sixth C site, C(3) is bonded in a 3-coordinate geometry to one C(2), one C(8), and one N(1) atom. The C(3)-C(8) bond length is 1.49 Å. The C(3)-N(1) bond length is 1.35 Å. In the seventh C site, C(4) is bonded in a 2-coordinate geometry to one C(2), one C(9), one H(12), and one H(24) atom. The C(4)-C(9) bond length is 1.52 Å. The C(4)-H(12) bond length is 0.95 Å. The C(4)-H(24) bond length is 0.95 Å. In the eighth C site, C(5) is bonded in a distorted trigonal planar geometry to one C(11), one C(9), and one N(4) atom. The C(5)-C(11) bond length is 1.51 Å. The C(5)-C(9) bond length is 1.37 Å. The C(5)-N(4) bond length is 1.36 Å. In the ninth C site, C(6) is bonded in a 2-coordinate geometry to one N(3) and one H(16) atom. The C(6)-N(3) bond length is 1.46 Å. The C(6)-H(16) bond length is 0.99 Å. In the tenth C site, C(7) is bonded in a distorted trigonal planar geometry to one C(18), one C(2), and one N(5) atom. The C(7)-N(5) bond length is 1.33 Å. In the eleventh C site, C(8) is bonded in a trigonal non-coplanar geometry to one C(3); one H(11); and two equivalent H(17,18) atoms. The C(8)-H(11) bond length is 0.97 Å. Both C(8)-H(17,18) bond lengths are 0.97 Å. In the twelfth C site, C(9) is bonded in a trigonal planar geometry to one C(15), one C(4), and one C(5) atom. The C(9)-C(15) bond length is 1.40 Å. In the thirteenth C site, C(10) is bonded in a distorted bent 120 degrees geometry to one O(2) and one O(3) atom. The C(10)-O(2) bond length is 1.23 Å. The C(10)-O(3) bond length is 1.27 Å. In the fourteenth C site, C(11) is bonded in a trigonal non-coplanar geometry to one C(5); one H(14); and two equivalent H(10,21) atoms. The C(11)-H(14) bond length is 0.97 Å. Both C(11)-H(10,21) bond lengths are 0.97 Å. In the fifteenth C site, C(13) is bonded in a trigonal non-coplanar geometry to one C(15); one H(9); and two equivalent H(13,20) atoms. The C(13)-C(15) bond length is 1.47 Å. The C(13)-H(9) bond length is 0.97 Å. Both C(13)-H(13,20) bond lengths are 0.97 Å. In the sixteenth C site, C(14) is bonded in a 2-coordinate geometry to one N(2) and one H(23) atom. The C(14)-N(2) bond length is 1.45 Å. The C(14)-H(23) bond length is 0.99 Å. In the seventeenth C site, C(15) is bonded in a distorted trigonal planar geometry to one C(13), one C(9), and one N(6) atom. The C(15)-N(6) bond length is 1.34 Å. There are six inequivalent N sites. In the first N site, N(1) is bonded in a 1-coordinate geometry to one C(3), one N(5), and one H(15) atom. The N(1)-N(5) bond length is 1.34 Å. The N(1)-H(15) bond length is 0.87 Å. In the second N site, N(2) is bonded in a trigonal planar geometry to one Cu(2), one C(1), and one C(14) atom. In the third N site, N(3) is bonded in a trigonal planar geometry to one Cu(1), one C(17), and one C(6) atom. In the fourth N site, N(4) is bonded in a 1-coordinate geometry to one C(5), one N(6), and one H(3) atom. The N(4)-N(6) bond length is 1.34 Å. The N(4)-H(3) bond length is 0.87 Å. In the fifth N site, N(5) is bonded in a distorted trigonal planar geometry to one Cu(2), one C(7), and one N(1) atom. In the sixth N site, N(6) is bonded in a distorted trigonal planar geometry to one Cu(1), one C(15), and one N(4) atom. There are fourteen inequivalent H sites. In the first H site, H(1,4) is bonded in a single-bond geometry to one C(18) atom. In the second H site, H(3) is bonded in a single-bond geometry to one N(4) atom. In the third H site, H(5) is bonded in a single-bond geometry to one C(18) atom. In the fourth H site, H(9) is bonded in a single-bond geometry to one C(13) atom. In the fifth H site, H(10,21) is bonded in a single-bond geometry to one C(11) atom. In the sixth H site, H(11) is bonded in a single-bond geometry to one C(8) atom. In the seventh H site, H(12) is bonded in a single-bond geometry to one C(4) atom. In the eighth H site, H(13,20) is bonded in a single-bond geometry to one C(13) atom. In the ninth H site, H(14) is bonded in a single-bond geometry to one C(11) atom. In the tenth H site, H(15) is bonded in a single-bond geometry to one N(1) atom. In the eleventh H site, H(16) is bonded in a single-bond geometry to one C(6) atom. In the twelfth H site, H(17,18) is bonded in a single-bond geometry to one C(8) atom. In the thirteenth H site, H(23) is bonded in a single-bond geometry to one C(14) atom. In the fourteenth H site, H(24) is bonded in a single-bond geometry to one C(4) atom. There are six inequivalent O sites. In the first O site, O(1) is bonded in a water-like geometry to one Cu(2) and one C(17) atom. In the second O site, O(2) is bonded in a distorted bent 150 degrees geometry to one Cu(1) and one C(10) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Cu(2) and one C(10) atom. In the fourth O site, O(4) is bonded in a water-like geometry to one Cu(1) and one C(1) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(19) atom. In the sixth O site, O(6) is bonded in a distorted bent 120 degrees geometry to one Cu(2) and one C(19) atom. Linkers: 4 C[C@@H]([N]C(=O)C(=O)[N][C@H](C)C([O])=O)C([O])=O ,4 Cc1n[nH]c(C)c1Cc1c(C)n[nH]c1C. Metal clusters: 8 [Cu]. The MOF has largest included sphere 5.69 A, density 1.18 g/cm3, surface area 4442.07 m2/g, accessible volume 0.45 cm3/g
TETZEX_clean
Ga2P2O8F crystallizes in the orthorhombic Pbcn space group. There are four inequivalent Ga sites. In the first Ga site, Ga(1) is bonded to one O(12), one O(16), one O(2), one O(5), and one F(2) atom to form GaO4F trigonal bipyramids that share a cornercorner with one Ga(2)O4F2 octahedra, a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(2)O4 tetrahedra, a cornercorner with one P(3)O4 tetrahedra, and a cornercorner with one P(4)O4 tetrahedra. The corner-sharing octahedral tilt angles are 54°. The Ga(1)-O(12) bond length is 1.85 Å. The Ga(1)-O(16) bond length is 1.84 Å. The Ga(1)-O(2) bond length is 1.85 Å. The Ga(1)-O(5) bond length is 1.94 Å. The Ga(1)-F(2) bond length is 2.00 Å. In the second Ga site, Ga(2) is bonded to one O(1), one O(13), one O(15), one O(9), one F(1), and one F(2) atom to form GaO4F2 octahedra that share a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(3)O4 tetrahedra, corners with two equivalent P(4)O4 tetrahedra, a cornercorner with one Ga(1)O4F trigonal bipyramid, and a cornercorner with one Ga(3)O4F trigonal bipyramid. The Ga(2)-O(1) bond length is 1.94 Å. The Ga(2)-O(13) bond length is 1.93 Å. The Ga(2)-O(15) bond length is 1.91 Å. The Ga(2)-O(9) bond length is 1.94 Å. The Ga(2)-F(1) bond length is 2.01 Å. The Ga(2)-F(2) bond length is 1.97 Å. In the third Ga site, Ga(3) is bonded to one O(10), one O(11), one O(14), one O(4), and one F(1) atom to form GaO4F trigonal bipyramids that share a cornercorner with one Ga(2)O4F2 octahedra, a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(4)O4 tetrahedra, and corners with two equivalent P(3)O4 tetrahedra. The corner-sharing octahedral tilt angles are 58°. The Ga(3)-O(10) bond length is 1.84 Å. The Ga(3)-O(11) bond length is 2.00 Å. The Ga(3)-O(14) bond length is 1.83 Å. The Ga(3)-O(4) bond length is 1.85 Å. The Ga(3)-F(1) bond length is 2.00 Å. In the fourth Ga site, Ga(4) is bonded to one O(3), one O(6), one O(7), and one O(8) atom to form GaO4 tetrahedra that share a cornercorner with one P(1)O4 tetrahedra and corners with three equivalent P(2)O4 tetrahedra. The Ga(4)-O(3) bond length is 1.80 Å. The Ga(4)-O(6) bond length is 1.79 Å. The Ga(4)-O(7) bond length is 1.81 Å. The Ga(4)-O(8) bond length is 1.83 Å. There are four inequivalent P sites. In the first P site, P(1) is bonded to one O(1), one O(2), one O(3), and one O(4) atom to form PO4 tetrahedra that share a cornercorner with one Ga(2)O4F2 octahedra, a cornercorner with one Ga(4)O4 tetrahedra, a cornercorner with one Ga(1)O4F trigonal bipyramid, and a cornercorner with one Ga(3)O4F trigonal bipyramid. The corner-sharing octahedral tilt angles are 45°. The P(1)-O(1) bond length is 1.51 Å. The P(1)-O(2) bond length is 1.54 Å. The P(1)-O(3) bond length is 1.56 Å. The P(1)-O(4) bond length is 1.54 Å. In the second P site, P(2) is bonded to one O(5), one O(6), one O(7), and one O(8) atom to form PO4 tetrahedra that share corners with three equivalent Ga(4)O4 tetrahedra and a cornercorner with one Ga(1)O4F trigonal bipyramid. The P(2)-O(5) bond length is 1.50 Å. The P(2)-O(6) bond length is 1.51 Å. The P(2)-O(7) bond length is 1.54 Å. The P(2)-O(8) bond length is 1.55 Å. In the third P site, P(3) is bonded to one O(10), one O(11), one O(12), and one O(9) atom to form PO4 tetrahedra that share a cornercorner with one Ga(2)O4F2 octahedra, a cornercorner with one Ga(1)O4F trigonal bipyramid, and corners with two equivalent Ga(3)O4F trigonal bipyramids. The corner-sharing octahedral tilt angles are 46°. The P(3)-O(10) bond length is 1.53 Å. The P(3)-O(11) bond length is 1.54 Å. The P(3)-O(12) bond length is 1.55 Å. The P(3)-O(9) bond length is 1.51 Å. In the fourth P site, P(4) is bonded to one O(13), one O(14), one O(15), and one O(16) atom to form PO4 tetrahedra that share corners with two equivalent Ga(2)O4F2 octahedra, a cornercorner with one Ga(1)O4F trigonal bipyramid, and a cornercorner with one Ga(3)O4F trigonal bipyramid. The corner-sharing octahedral tilt angles range from 50-52°. The P(4)-O(13) bond length is 1.53 Å. The P(4)-O(14) bond length is 1.54 Å. The P(4)-O(15) bond length is 1.54 Å. The P(4)-O(16) bond length is 1.56 Å. There are sixteen inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 150 degrees geometry to one Ga(2) and one P(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Ga(1) and one P(1) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Ga(4) and one P(1) atom. In the fourth O site, O(4) is bonded in a bent 150 degrees geometry to one Ga(3) and one P(1) atom. In the fifth O site, O(5) is bonded in a bent 150 degrees geometry to one Ga(1) and one P(2) atom. In the sixth O site, O(6) is bonded in a linear geometry to one Ga(4) and one P(2) atom. In the seventh O site, O(7) is bonded in a distorted bent 120 degrees geometry to one Ga(4) and one P(2) atom. In the eighth O site, O(8) is bonded in a distorted bent 120 degrees geometry to one Ga(4) and one P(2) atom. In the ninth O site, O(9) is bonded in a distorted bent 120 degrees geometry to one Ga(2) and one P(3) atom. In the tenth O site, O(10) is bonded in a bent 150 degrees geometry to one Ga(3) and one P(3) atom. In the eleventh O site, O(11) is bonded in a distorted bent 120 degrees geometry to one Ga(3) and one P(3) atom. In the twelfth O site, O(12) is bonded in a distorted bent 150 degrees geometry to one Ga(1) and one P(3) atom. In the thirteenth O site, O(13) is bonded in a bent 120 degrees geometry to one Ga(2) and one P(4) atom. In the fourteenth O site, O(14) is bonded in a bent 120 degrees geometry to one Ga(3) and one P(4) atom. In the fifteenth O site, O(15) is bonded in a bent 120 degrees geometry to one Ga(2) and one P(4) atom. In the sixteenth O site, O(16) is bonded in a bent 120 degrees geometry to one Ga(1) and one P(4) atom. There are two inequivalent F sites. In the first F site, F(1) is bonded in a bent 120 degrees geometry to one Ga(2) and one Ga(3) atom. In the second F site, F(2) is bonded in a bent 120 degrees geometry to one Ga(1) and one Ga(2) atom. Linkers: 32 [O]P([O])([O])=O. Metal clusters: 32 [Ga]. The MOF has largest included sphere 9.39 A, density 1.91 g/cm3, surface area 1979.03 m2/g, accessible volume 0.30 cm3/g
KIBDIJ_clean
Tb(CO2)3(CH)2 crystallizes in the orthorhombic Fddd space group. The structure consists of thirty-two 02329_fluka molecules inside a Tb(CO2)3 framework. In the Tb(CO2)3 framework, Tb(1) is bonded in a 6-coordinate geometry to two equivalent O(1), two equivalent O(2), and two equivalent O(3) atoms. Both Tb(1)-O(1) bond lengths are 2.33 Å. Both Tb(1)-O(2) bond lengths are 2.46 Å. Both Tb(1)-O(3) bond lengths are 2.43 Å. There are two inequivalent C sites. In the first C site, C(3) is bonded in a distorted bent 120 degrees geometry to two equivalent O(3) atoms. Both C(3)-O(3) bond lengths are 1.25 Å. In the second C site, C(1) is bonded in a bent 120 degrees geometry to one O(1) and one O(2) atom. The C(1)-O(1) bond length is 1.24 Å. The C(1)-O(2) bond length is 1.26 Å. There are three inequivalent O sites. In the first O site, O(2) is bonded in a distorted water-like geometry to one Tb(1) and one C(1) atom. In the second O site, O(1) is bonded in a 2-coordinate geometry to one Tb(1) and one C(1) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Tb(1) and one C(3) atom. Linkers: 4 [O]C(=O)/C=C/C([O])=O ,2 [O]C(=O)C([O])=O. Metal clusters: 4 [Tb]. The MOF has largest included sphere 4.31 A, density 2.07 g/cm3, surface area 2404.10 m2/g, accessible volume 0.21 cm3/g
FONQIJ_clean
NaMnC8H2(NO2)2(CH)2(CH3)4 crystallizes in the tetragonal P4_1 space group. The structure consists of eight 02329_fluka molecules and sixteen 02329_fluka molecules inside a NaMnC8H2(NO2)2 framework. In the NaMnC8H2(NO2)2 framework, Na(1) is bonded in a 3-coordinate geometry to one O(1), one O(2), and one O(4) atom. The Na(1)-O(1) bond length is 2.30 Å. The Na(1)-O(2) bond length is 2.22 Å. The Na(1)-O(4) bond length is 2.28 Å. Mn(1) is bonded in a distorted square co-planar geometry to one N(1), one N(2), one O(1), and one O(3) atom. The Mn(1)-N(1) bond length is 1.91 Å. The Mn(1)-N(2) bond length is 1.92 Å. The Mn(1)-O(1) bond length is 1.86 Å. The Mn(1)-O(3) bond length is 1.86 Å. There are eight inequivalent C sites. In the first C site, C(1) is bonded in a distorted single-bond geometry to one C(2), one C(6), and one N(2) atom. The C(1)-C(2) bond length is 1.41 Å. The C(1)-C(6) bond length is 1.38 Å. The C(1)-N(2) bond length is 1.41 Å. In the second C site, C(2) is bonded in a distorted trigonal planar geometry to one C(1), one C(3), and one N(1) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-N(1) bond length is 1.41 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2) and one H(1) atom. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(6) is bonded in a distorted single-bond geometry to one C(1) and one H(4) atom. The C(6)-H(4) bond length is 0.93 Å. In the fifth C site, C(7) is bonded in a distorted trigonal planar geometry to one C(8), one N(1), and one O(2) atom. The C(7)-C(8) bond length is 1.51 Å. The C(7)-N(1) bond length is 1.33 Å. The C(7)-O(2) bond length is 1.24 Å. In the sixth C site, C(8) is bonded in a distorted single-bond geometry to one C(7) and one O(1) atom. The C(8)-O(1) bond length is 1.43 Å. In the seventh C site, C(11) is bonded in a distorted bent 120 degrees geometry to one N(2) and one O(4) atom. The C(11)-N(2) bond length is 1.34 Å. The C(11)-O(4) bond length is 1.24 Å. In the eighth C site, C(12) is bonded in a distorted single-bond geometry to one O(3) atom. The C(12)-O(3) bond length is 1.42 Å. There are two inequivalent N sites. In the first N site, N(2) is bonded in a trigonal planar geometry to one Mn(1), one C(1), and one C(11) atom. In the second N site, N(1) is bonded in a trigonal planar geometry to one Mn(1), one C(2), and one C(7) atom. There are two inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(4) is bonded in a single-bond geometry to one C(6) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a distorted trigonal planar geometry to one Na(1), one Mn(1), and one C(8) atom. In the second O site, O(2) is bonded in a bent 150 degrees geometry to one Na(1) and one C(7) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(12) atom. In the fourth O site, O(4) is bonded in a distorted single-bond geometry to one Na(1) and one C(11) atom. Linkers: 4 CC(C)([O])C(=O)[N]c1ccccc1[N]C(=O)C(C)(C)[O]. Metal clusters: 4 [Na] ,4 [Mn]. The MOF has largest included sphere 4.71 A, density 1.05 g/cm3, surface area 4794.73 m2/g, accessible volume 0.42 cm3/g