File size: 4,766 Bytes
8b735a8
 
 
 
 
2b93314
8b735a8
2b93314
8b735a8
 
 
 
a06b9c5
8b735a8
 
 
3488023
8b735a8
 
7c07b43
3aa5f0b
af3f2fa
3aa5f0b
 
 
 
 
 
 
8016dcb
 
3aa5f0b
 
af3f2fa
3aa5f0b
af3f2fa
 
 
 
 
 
 
 
8b735a8
 
7c07b43
8b735a8
 
7c07b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b735a8
 
 
7c07b43
8b735a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c07b43
 
8b735a8
 
 
c47d0af
8b735a8
c47d0af
 
 
8b735a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c07b43
8b735a8
7c07b43
 
 
 
 
8b735a8
 
 
7c07b43
8b735a8
 
 
 
 
 
 
 
 
 
 
 
 
7c07b43
 
 
 
 
 
 
 
 
 
6e53ec0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
---
annotations_creators:
- found
language_creators:
- found
language:
- ar
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: Arabic Jordanian General Tweets
dataset_info:
  config_name: plain_text
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': Negative
          '1': Positive
  splits:
  - name: train
    num_bytes: 175420
    num_examples: 1800
  download_size: 91857
  dataset_size: 175420
configs:
- config_name: plain_text
  data_files:
  - split: train
    path: plain_text/train-*
  default: true
---

# Dataset Card for Arabic Jordanian General Tweets

## Table of Contents
- [Dataset Card for Arabic Jordanian General Tweets](#dataset-card-for-arabic-jordanian-general-tweets)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [|split|num examples|](#splitnum-examples)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)
    - [Annotations](#annotations)
      - [Annotation process](#annotation-process)
      - [Who are the annotators?](#who-are-the-annotators)
    - [Personal and Sensitive Information](#personal-and-sensitive-information)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)

## Dataset Description

- **Repository:** [Arabic Jordanian General Tweets](https://github.com/komari6/Arabic-twitter-corpus-AJGT)
- **Paper:** [Arabic Tweets Sentimental Analysis Using Machine Learning](https://link.springer.com/chapter/10.1007/978-3-319-60042-0_66)
- **Point of Contact:** [Khaled Alomari]([email protected])

### Dataset Summary

Arabic Jordanian General Tweets (AJGT) Corpus consisted of 1,800 tweets annotated as positive and negative. Modern Standard Arabic (MSA) or Jordanian dialect.

### Supported Tasks and Leaderboards

The dataset was published on this [paper](https://link.springer.com/chapter/10.1007/978-3-319-60042-0_66). 

### Languages

The dataset is based on Arabic.

## Dataset Structure

### Data Instances

A binary datset with with negative and positive sentiments.  

### Data Fields

- `text` (str): Tweet text.
- `label` (int): Sentiment.

### Data Splits

The dataset is not split.

|          | train |
|----------|------:|
| no split | 1,800 | 

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

[More Information Needed]

#### Initial Data Collection and Normalization

Contains 1,800 tweets collected from twitter. 

#### Who are the source language producers?

From tweeter.  

### Annotations

The dataset does not contain any additional annotations.

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[Needs More Information]

### Discussion of Biases

[Needs More Information]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```
@inproceedings{alomari2017arabic,
  title={Arabic tweets sentimental analysis using machine learning},
  author={Alomari, Khaled Mohammad and ElSherif, Hatem M and Shaalan, Khaled},
  booktitle={International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems},
  pages={602--610},
  year={2017},
  organization={Springer}
}
```

### Contributions

Thanks to [@zaidalyafeai](https://github.com/zaidalyafeai), [@lhoestq](https://github.com/lhoestq) for adding this dataset.