albertvillanova HF staff commited on
Commit
af3f2fa
1 Parent(s): 8016dcb

Convert dataset to Parquet (#2)

Browse files

- Convert dataset to Parquet (b759b14f8e3f64ea0471b38fad3943f12c59b27c)
- Delete loading script (97632ecc766c612b0e4ce16c191527a55962ea02)
- Delete legacy dataset_infos.json (2a5e63e8936fd767d3d9a6d30599868cad6bbc11)

README.md CHANGED
@@ -19,6 +19,7 @@ task_ids:
19
  - sentiment-classification
20
  pretty_name: Arabic Jordanian General Tweets
21
  dataset_info:
 
22
  features:
23
  - name: text
24
  dtype: string
@@ -28,13 +29,18 @@ dataset_info:
28
  names:
29
  '0': Negative
30
  '1': Positive
31
- config_name: plain_text
32
  splits:
33
  - name: train
34
- num_bytes: 175424
35
  num_examples: 1800
36
- download_size: 107395
37
- dataset_size: 175424
 
 
 
 
 
 
38
  ---
39
 
40
  # Dataset Card for Arabic Jordanian General Tweets
 
19
  - sentiment-classification
20
  pretty_name: Arabic Jordanian General Tweets
21
  dataset_info:
22
+ config_name: plain_text
23
  features:
24
  - name: text
25
  dtype: string
 
29
  names:
30
  '0': Negative
31
  '1': Positive
 
32
  splits:
33
  - name: train
34
+ num_bytes: 175420
35
  num_examples: 1800
36
+ download_size: 91857
37
+ dataset_size: 175420
38
+ configs:
39
+ - config_name: plain_text
40
+ data_files:
41
+ - split: train
42
+ path: plain_text/train-*
43
+ default: true
44
  ---
45
 
46
  # Dataset Card for Arabic Jordanian General Tweets
ajgt_twitter_ar.py DELETED
@@ -1,105 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """Arabic Jordanian General Tweets."""
18
-
19
-
20
- import os
21
-
22
- import openpyxl # noqa: requires this pandas optional dependency for reading xlsx files
23
- import pandas as pd
24
-
25
- import datasets
26
- from datasets.tasks import TextClassification
27
-
28
-
29
- _DESCRIPTION = """\
30
- Arabic Jordanian General Tweets (AJGT) Corpus consisted of 1,800 tweets \
31
- annotated as positive and negative. Modern Standard Arabic (MSA) or Jordanian dialect.
32
- """
33
-
34
- _CITATION = """\
35
- @inproceedings{alomari2017arabic,
36
- title={Arabic tweets sentimental analysis using machine learning},
37
- author={Alomari, Khaled Mohammad and ElSherif, Hatem M and Shaalan, Khaled},
38
- booktitle={International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems},
39
- pages={602--610},
40
- year={2017},
41
- organization={Springer}
42
- }
43
- """
44
-
45
- _URL = "https://raw.githubusercontent.com/komari6/Arabic-twitter-corpus-AJGT/master/"
46
-
47
-
48
- class AjgtConfig(datasets.BuilderConfig):
49
- """BuilderConfig for Ajgt."""
50
-
51
- def __init__(self, **kwargs):
52
- """BuilderConfig for Ajgt.
53
-
54
- Args:
55
- **kwargs: keyword arguments forwarded to super.
56
- """
57
- super(AjgtConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
58
-
59
-
60
- class AjgtTwitterAr(datasets.GeneratorBasedBuilder):
61
- """Ajgt dataset."""
62
-
63
- BUILDER_CONFIGS = [
64
- AjgtConfig(
65
- name="plain_text",
66
- description="Plain text",
67
- )
68
- ]
69
-
70
- def _info(self):
71
- return datasets.DatasetInfo(
72
- description=_DESCRIPTION,
73
- features=datasets.Features(
74
- {
75
- "text": datasets.Value("string"),
76
- "label": datasets.features.ClassLabel(
77
- names=[
78
- "Negative",
79
- "Positive",
80
- ]
81
- ),
82
- }
83
- ),
84
- supervised_keys=None,
85
- homepage="https://github.com/komari6/Arabic-twitter-corpus-AJGT",
86
- citation=_CITATION,
87
- task_templates=[TextClassification(text_column="text", label_column="label")],
88
- )
89
-
90
- def _split_generators(self, dl_manager):
91
- urls_to_download = {
92
- "train": os.path.join(_URL, "AJGT.xlsx"),
93
- }
94
- downloaded_files = dl_manager.download(urls_to_download)
95
- return [
96
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
97
- ]
98
-
99
- def _generate_examples(self, filepath):
100
- """Generate examples."""
101
- with open(filepath, "rb") as f:
102
- df = pd.read_excel(f, engine="openpyxl")
103
- for id_, record in df.iterrows():
104
- tweet, sentiment = record["Feed"], record["Sentiment"]
105
- yield str(id_), {"text": tweet, "label": sentiment}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"plain_text": {"description": "Arabic Jordanian General Tweets (AJGT) Corpus consisted of 1,800 tweets annotated as positive and negative. Modern Standard Arabic (MSA) or Jordanian dialect.\n", "citation": "@inproceedings{alomari2017arabic,\n title={Arabic tweets sentimental analysis using machine learning},\n author={Alomari, Khaled Mohammad and ElSherif, Hatem M and Shaalan, Khaled},\n booktitle={International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems},\n pages={602--610},\n year={2017},\n organization={Springer}\n}\n", "homepage": "https://github.com/komari6/Arabic-twitter-corpus-AJGT", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["Negative", "Positive"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "text-classification", "text_column": "text", "label_column": "label", "labels": ["Negative", "Positive"]}], "builder_name": "ajgt_twitter_ar", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 175424, "num_examples": 1800, "dataset_name": "ajgt_twitter_ar"}}, "download_checksums": {"https://raw.githubusercontent.com/komari6/Arabic-twitter-corpus-AJGT/master/AJGT.xlsx": {"num_bytes": 107395, "checksum": "966c52213872b6b8a3ced5fb7c60aee2abf47ca673c7d2c2eeb064a60bc9ed51"}}, "download_size": 107395, "post_processing_size": null, "dataset_size": 175424, "size_in_bytes": 282819}}
 
 
plain_text/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6f35180ab9678918a07d4faf67c4b2d6c2ae29e7b2c467a990b5ec395deee9e
3
+ size 91857