task_id
stringlengths
3
14
prompt
stringlengths
164
742
canonical_solution
stringlengths
14
760
test
stringlengths
170
703
entry_point
stringlengths
3
31
601
class Pair(object): def __init__(self, a, b): self.a = a self.b = b def max_chain_length(arr, n): """ Find the longest chain which can be formed from the given set of pairs. >>> max_chain_length([Pair(5, 24), Pair(15, 25), Pair(27, 40), Pair(50, 60)], 4) 3 >>> max_chain_length([Pair(1, 2), Pair(3, 4), Pair(5, 6), Pair(7, 8)], 4) 4 """
max = 0 mcl = [1 for i in range(n)] for i in range(1, n): for j in range(0, i): if (arr[i].a > arr[j].b and mcl[i] < mcl[j] + 1): mcl[i] = mcl[j] + 1 for i in range(n): if (max < mcl[i]): max = mcl[i] return max
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([Pair(5, 24), Pair(15, 25), Pair(27, 40), Pair(50, 60)], 4) == 3 assert candidate([Pair(1, 2), Pair(3, 4), Pair(5, 6), Pair(7, 8)], 4) == 4 assert candidate([Pair(19, 10), Pair(11, 12), Pair(13, 14), Pair(15, 16), Pair(31, 54)], 5) == 5
max_chain_length
HumanEval\/602
def first_repeated_char(str1: str) -> str: """ Find the first repeated character in a given string. >>> first_repeated_char("abcabc") 'a' >>> first_repeated_char("abc") 'None' >>> first_repeated_char("123123") '1' """
for index, c in enumerate(str1): if str1[:index+1].count(c) > 1: return c return "None"
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate("abcabc") == "a" assert candidate("abc") == "None" assert candidate("123123") == "1"
first_repeated_char
603
def get_ludic(n): """ Write a function to get a lucid number smaller than or equal to n. >>> get_ludic(10) [1, 2, 3, 5, 7] >>> get_ludic(25) [1, 2, 3, 5, 7, 11, 13, 17, 23, 25] >>> get_ludic(45) [1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43] """
ludics = [] for i in range(1, n + 1): ludics.append(i) index = 1 while(index != len(ludics)): first_ludic = ludics[index] remove_index = index + first_ludic while(remove_index < len(ludics)): ludics.remove(ludics[remove_index]) remove_index = remove_index + first_ludic - 1 index += 1 return ludics
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(10) == [1, 2, 3, 5, 7] assert candidate(25) == [1, 2, 3, 5, 7, 11, 13, 17, 23, 25] assert candidate(45) == [1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43]
get_ludic
HumanEval\/604
def reverse_words(s: str) -> str: """ Reverse words in a given string >>> reverse_words("python program") 'program python' >>> reverse_words("java language") 'language java' >>> reverse_words("indian man") 'man indian' """
return ' '.join(reversed(s.split()))
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate("python program") == "program python" assert candidate("java language") == "language java" assert candidate("indian man") == "man indian"
reverse_words
HumanEval\/605
def prime_num(num: int) -> bool: """ Check if the given integer is a prime number. >>> prime_num(13) True >>> prime_num(7) True >>> prime_num(-1010) False """
if num <= 1: return False for i in range(2, int(num ** 0.5) + 1): if num % i == 0: return False return True
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(13) == True assert candidate(7) == True assert candidate(-1010) == False
prime_num
HumanEval\/606
import math def radian_degree(degree: float) -> float: """ Convert degrees to radians >>> radian_degree(90) 1.5707963267948966 >>> radian_degree(60) 1.0471975511965976 >>> radian_degree(120) 2.0943951023931953 """
return degree * (math.pi / 180)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(90) == 1.5707963267948966 assert candidate(60) == 1.0471975511965976 assert candidate(120) == 2.0943951023931953
radian_degree
HumanEval\/607
import re def find_literals(text: str, pattern: str) -> tuple: """ Search a literals string in a string and find the location within the original string where the pattern occurs by using regex. >>> find_literals('The quick brown fox jumps over the lazy dog.', 'fox') ('fox', 16, 19) >>> find_literals('Its been a very crazy procedure right', 'crazy') ('crazy', 16, 21) >>> find_literals('Hardest choices required strongest will', 'will') ('will', 35, 39) """
match = re.search(pattern, text) s = match.start() e = match.end() return (match.re.pattern, s, e)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('The quick brown fox jumps over the lazy dog.', 'fox') == ('fox', 16, 19) assert candidate('Its been a very crazy procedure right', 'crazy') == ('crazy', 16, 21) assert candidate('Hardest choices required strongest will', 'will') == ('will', 35, 39)
find_literals
HumanEval\/608
def bell_Number(n: int) -> int: """Calculate the nth Bell number. >>> bell_Number(2) 2 >>> bell_Number(3) 5 >>> bell_Number(4) 15 """
bell = [[0 for i in range(n+1)] for j in range(n+1)] bell[0][0] = 1 for i in range(1, n+1): bell[i][0] = bell[i-1][i-1] for j in range(1, i+1): bell[i][j] = bell[i-1][j-1] + bell[i][j-1] return bell[n][0]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(2) == 2 assert candidate(3) == 5 assert candidate(4) == 15
bell_Number
609
def floor_Min(A: int, B: int, N: int) -> int: """ Find the minimum possible value for the given periodic function. >>> floor_Min(10, 20, 30) 15 >>> floor_Min(1, 2, 1) 0 >>> floor_Min(11, 10, 9) 9 """
x = max(B - 1, N) return (A * x) // B
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(10, 20, 30) == 15 assert candidate(1, 2, 1) == 0 assert candidate(11, 10, 9) == 9
floor_Min
HumanEval\/610
from typing import List def remove_kth_element(list1: List[int], L: int) -> List[int]: """ Remove the k'th element from a given list >>> remove_kth_element([1,1,2,3,4,4,5,1], 3) [1, 1, 3, 4, 4, 5, 1] >>> remove_kth_element([0, 0, 1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 8, 9, 4, 4], 4) [0, 0, 1, 3, 4, 4, 5, 6, 6, 6, 7, 8, 9, 4, 4] >>> remove_kth_element([10, 10, 15, 19, 18, 18, 17, 26, 26, 17, 18, 10], 5) [10, 10, 15, 19, 18, 17, 26, 26, 17, 18, 10] """
return list1[:L-1] + list1[L:]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1,1,2,3,4,4,5,1], 3) == [1, 1, 3, 4, 4, 5, 1] assert candidate([0, 0, 1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 8, 9, 4, 4], 4) == [0, 0, 1, 3, 4, 4, 5, 6, 6, 6, 7, 8, 9, 4, 4] assert candidate([10, 10, 15, 19, 18, 18, 17, 26, 26, 17, 18, 10], 5) == [10, 10, 15, 19, 18, 17, 26, 26, 17, 18, 10]
remove_kth_element
611
def max_of_nth(test_list: list, N: int) -> int: """ Find the maximum of nth column from the given tuple list. >>> max_of_nth([(5, 6, 7), (1, 3, 5), (8, 9, 19)], 2) 19 >>> max_of_nth([(6, 7, 8), (2, 4, 6), (9, 10, 20)], 1) 10 """
res = max([sub[N] for sub in test_list]) return res
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([(5, 6, 7), (1, 3, 5), (8, 9, 19)], 2) == 19 assert candidate([(6, 7, 8), (2, 4, 6), (9, 10, 20)], 1) == 10 assert candidate([(7, 8, 9), (3, 5, 7), (10, 11, 21)], 1) == 11
max_of_nth
HumanEval\/612
from typing import List def merge(lst: List[List]) -> List[List]: """ Merge the first and last elements separately in a list of lists. >>> merge([['x', 'y'], ['a', 'b'], ['m', 'n']]) [['x', 'a', 'm'], ['y', 'b', 'n']] >>> merge([[1, 2], [3, 4], [5, 6], [7, 8]]) [[1, 3, 5, 7], [2, 4, 6, 8]] """
return [list(ele) for ele in list(zip(*lst))]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([['x', 'y'], ['a', 'b'], ['m', 'n']]) == [['x', 'a', 'm'], ['y', 'b', 'n']] assert candidate([[1, 2], [3, 4], [5, 6], [7, 8]]) == [[1, 3, 5, 7], [2, 4, 6, 8]] assert candidate([['x', 'y', 'z'], ['a', 'b', 'c'], ['m', 'n', 'o']]) == [['x', 'a', 'm'], ['y', 'b', 'n'], ['z', 'c', 'o']]
merge
HumanEval\/613
from typing import List, Tuple def maximum_value(test_list: List[Tuple[str, List[int]]]) -> List[Tuple[str, int]]: """ Write a function to find the maximum value in record list as tuple attribute in the given tuple list. >>> maximum_value([('key1', [3, 4, 5]), ('key2', [1, 4, 2]), ('key3', [9, 3])]) [('key1', 5), ('key2', 4), ('key3', 9)] >>> maximum_value([('key1', [4, 5, 6]), ('key2', [2, 5, 3]), ('key3', [10, 4])]) [('key1', 6), ('key2', 5), ('key3', 10)] """
return [(key, max(lst)) for key, lst in test_list]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([('key1', [3, 4, 5]), ('key2', [1, 4, 2]), ('key3', [9, 3])]) == [('key1', 5), ('key2', 4), ('key3', 9)] assert candidate([('key1', [4, 5, 6]), ('key2', [2, 5, 3]), ('key3', [10, 4])]) == [('key1', 6), ('key2', 5), ('key3', 10)] assert candidate([('key1', [5, 6, 7]), ('key2', [3, 6, 4]), ('key3', [11, 5])]) == [('key1', 7), ('key2', 6), ('key3', 11)]
maximum_value
HumanEval\/614
def cummulative_sum(test_list: List[Tuple[int, ...]]) -> int: """ Write a function to find the cumulative sum of all the values that are present in the given tuple list. >>> cummulative_sum([(1, 3), (5, 6, 7), (2, 6)]) 30 >>> cummulative_sum([(2, 4), (6, 7, 8), (3, 7)]) 37 >>> cummulative_sum([(3, 5), (7, 8, 9), (4, 8)]) 44 """
return sum(map(sum, test_list))
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([(1, 3), (5, 6, 7), (2, 6)]) == 30 assert candidate([(2, 4), (6, 7, 8), (3, 7)]) == 37 assert candidate([(3, 5), (7, 8, 9), (4, 8)]) == 44
cummulative_sum
HumanEval\/615
def average_tuple(nums): """ Write a function to find average value of the numbers in a given tuple of tuples. >>> average_tuple(((10, 10, 10, 12), (30, 45, 56, 45), (81, 80, 39, 32), (1, 2, 3, 4))) [30.5, 34.25, 27.0, 23.25] >>> average_tuple(((1, 1, -5), (30, -15, 56), (81, -60, -39), (-10, 2, 3))) [25.5, -18.0, 3.75] >>> average_tuple(((100, 100, 100, 120), (300, 450, 560, 450), (810, 800, 390, 320), (10, 20, 30, 40))) [305.0, 342.5, 270.0, 232.5] """
result = [sum(x) / len(x) for x in zip(*nums)] return result
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(((10, 10, 10, 12), (30, 45, 56, 45), (81, 80, 39, 32), (1, 2, 3, 4))) == [30.5, 34.25, 27.0, 23.25] assert candidate(((1, 1, -5), (30, -15, 56), (81, -60, -39), (-10, 2, 3))) == [25.5, -18.0, 3.75] assert candidate(((100, 100, 100, 120), (300, 450, 560, 450), (810, 800, 390, 320), (10, 20, 30, 40))) == [305.0, 342.5, 270.0, 232.5]
average_tuple
HumanEval\/616
def tuple_modulo(test_tup1: tuple, test_tup2: tuple) -> tuple: """ Perform the modulo of tuple elements in the given two tuples. >>> tuple_modulo((10, 4, 5, 6), (5, 6, 7, 5)) (0, 4, 5, 1) >>> tuple_modulo((11, 5, 6, 7), (6, 7, 8, 6)) (5, 5, 6, 1) >>> tuple_modulo((12, 6, 7, 8), (7, 8, 9, 7)) (5, 6, 7, 1) """
res = tuple(ele1 % ele2 for ele1, ele2 in zip(test_tup1, test_tup2)) return res
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate((10, 4, 5, 6), (5, 6, 7, 5)) == (0, 4, 5, 1) assert candidate((11, 5, 6, 7), (6, 7, 8, 6)) == (5, 5, 6, 1) assert candidate((12, 6, 7, 8), (7, 8, 9, 7)) == (5, 6, 7, 1)
tuple_modulo
HumanEval\/617
def min_Jumps(a: int, b: int, d: int) -> float: """ Calculate the number of jumps required of given length to reach a point (d, 0) from origin in a 2d plane. >>> min_Jumps(3, 4, 11) 3.5 >>> min_Jumps(3, 4, 0) 0 >>> min_Jumps(11, 14, 11) 1 """
temp = a a = min(a, b) b = max(temp, b) if (d >= b): return (d + b - 1) / b if (d == 0): return 0 if (d == a): return 1 else: return 2
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(3, 4, 11) == 3.5 assert candidate(3, 4, 0) == 0 assert candidate(11, 14, 11) == 1
min_Jumps
HumanEval\/618
from typing import List def div_list(nums1: List[float], nums2: List[float]) -> List[float]: """ Divide two lists element-wise using map and lambda function. >>> div_list([4,5,6],[1, 2, 3]) [4.0, 2.5, 2.0] >>> div_list([3,2],[1,4]) [3.0, 0.5] >>> div_list([90,120],[50,70]) [1.8, 1.7142857142857142] """
result = map(lambda x, y: x / y, nums1, nums2) return list(result)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([4,5,6],[1, 2, 3]) == [4.0, 2.5, 2.0] assert candidate([3,2],[1,4]) == [3.0, 0.5] assert candidate([90,120],[50,70]) == [1.8, 1.7142857142857142]
div_list
HumanEval\/619
def move_num(test_str: str) -> str: """ Move all the numbers in the string to the end of it. >>> move_num('I1love143you55three3000thousand') 'Iloveyouthreethousand1143553000' >>> move_num('Avengers124Assemble') 'AvengersAssemble124' >>> move_num('Its11our12path13to14see15things16do17things') 'Itsourpathtoseethingsdothings11121314151617' """
res = '' dig = '' for ele in test_str: if ele.isdigit(): dig += ele else: res += ele res += dig return res
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('I1love143you55three3000thousand') == 'Iloveyouthreethousand1143553000' assert candidate('Avengers124Assemble') == 'AvengersAssemble124' assert candidate('Its11our12path13to14see15things16do17things') == 'Itsourpathtoseethingsdothings11121314151617'
move_num
HumanEval\/620
def largest_subset(a, n): """ Find the largest subset where each pair is divisible >>> largest_subset([1, 3, 6, 13, 17, 18], 6) 4 >>> largest_subset([10, 5, 3, 15, 20], 5) 3 >>> largest_subset([18, 1, 3, 6, 13, 17], 6) 4 """
dp = [0 for i in range(n)] dp[n - 1] = 1; for i in range(n - 2, -1, -1): mxm = 0; for j in range(i + 1, n): if a[j] % a[i] == 0 or a[i] % a[j] == 0: mxm = max(mxm, dp[j]) dp[i] = 1 + mxm return max(dp)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1, 3, 6, 13, 17, 18], 6) == 4 assert candidate([10, 5, 3, 15, 20], 5) == 3 assert candidate([18, 1, 3, 6, 13, 17], 6) == 4
largest_subset
621
from typing import List def increment_numerics(test_list: List[str], K: int) -> List[str]: """ Increment the numeric values in the given strings by K. >>> increment_numerics(["MSM", "234", "is", "98", "123", "best", "4"], 6) ['MSM', '240', 'is', '104', '129', 'best', '10'] >>> increment_numerics(["Dart", "356", "is", "88", "169", "Super", "6"], 12) ['Dart', '368', 'is', '100', '181', 'Super', '18'] """
return [str(int(ele) + K) if ele.isdigit() else ele for ele in test_list]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(["MSM", "234", "is", "98", "123", "best", "4"], 6) == ['MSM', '240', 'is', '104', '129', 'best', '10'] assert candidate(["Dart", "356", "is", "88", "169", "Super", "6"], 12) == ['Dart', '368', 'is', '100', '181', 'Super', '18'] assert candidate(["Flutter", "451", "is", "44", "96", "Magnificent", "12"], 33) == ['Flutter', '484', 'is', '77', '129', 'Magnificent', '45']
increment_numerics
622
def get_median(arr1, arr2, n): """Find the median of two sorted arrays of the same size. >>> get_median([1, 12, 15, 26, 38], [2, 13, 17, 30, 45], 5) 16.0 >>> get_median([2, 4, 8, 9], [7, 13, 19, 28], 4) 8.5 >>> get_median([3, 6, 14, 23, 36, 42], [2, 18, 27, 39, 49, 55], 6) 25.0 """
i = 0 j = 0 m1 = -1 m2 = -1 count = 0 while count < n + 1: count += 1 if i == n: m1 = m2 m2 = arr2[0] break elif j == n: m1 = m2 m2 = arr1[0] break if arr1[i] <= arr2[j]: m1 = m2 m2 = arr1[i] i += 1 else: m1 = m2 m2 = arr2[j] j += 1 return (m1 + m2)/2
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1, 12, 15, 26, 38], [2, 13, 17, 30, 45], 5) == 16.0 assert candidate([2, 4, 8, 9], [7, 13, 19, 28], 4) == 8.5 assert candidate([3, 6, 14, 23, 36, 42], [2, 18, 27, 39, 49, 55], 6) == 25.0
get_median
HumanEval\/623
from typing import List def nth_nums(nums: List[int], n: int) -> List[int]: """ Find the n-th power of individual elements in a list using lambda function. >>> nth_nums([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 2) [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] >>> nth_nums([10, 20, 30], 3) [1000, 8000, 27000] >>> nth_nums([12, 15], 5) [248832, 759375] """
return list(map(lambda x: x ** n, nums))
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 2) == [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert candidate([10, 20, 30], 3) == [1000, 8000, 27000] assert candidate([12, 15], 5) == [248832, 759375]
nth_nums
HumanEval\/624
def is_upper(string: str) -> str: """ Convert the given string to upper case. >>> is_upper("person") 'PERSON' >>> is_upper("final") 'FINAL' >>> is_upper("Valid") 'VALID' """
return string.upper()
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate("person") == 'PERSON' assert candidate("final") == 'FINAL' assert candidate("Valid") == 'VALID'
is_upper
HumanEval\/625
from typing import List def swap_List(newList: List[int]) -> List[int]: """ Interchange first and last elements in a given list >>> swap_List([1,2,3]) [3,2,1] >>> swap_List([1,2,3,4,4]) [4,2,3,4,1] >>> swap_List([4,5,6]) [6,5,4] """
size = len(newList) temp = newList[0] newList[0] = newList[size - 1] newList[size - 1] = temp return newList
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1,2,3]) == [3,2,1] assert candidate([1,2,3,4,4]) == [4,2,3,4,1] assert candidate([4,5,6]) == [6,5,4]
swap_List
HumanEval\/626
def triangle_area(r: float) -> float: """ Calculate the area of the largest triangle that can be inscribed in a semicircle of radius r. >>> triangle_area(0) 0 >>> triangle_area(-1) -1 >>> triangle_area(2) 2.0 """
if r < 0: return -1 return r * r / 2
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(0) == 0 assert candidate(-1) == -1 assert candidate(2) == 2.0
triangle_area
HumanEval\/627
def find_First_Missing(array, start, end): """Find the smallest missing number from the given sorted array. >>> find_First_Missing([0, 1, 2, 3], 0, 3) 4 >>> find_First_Missing([0, 1, 2, 6, 9], 0, 4) 3 >>> find_First_Missing([2, 3, 5, 8, 9], 0, 4) 0 """
if (start > end): return end + 1 if (start != array[start]): return start mid = int((start + end) / 2) if (array[mid] == mid): return find_First_Missing(array, mid + 1, end) return find_First_Missing(array, start, mid)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([0, 1, 2, 3], 0, 3) == 4 assert candidate([0, 1, 2, 6, 9], 0, 4) == 3 assert candidate([2, 3, 5, 8, 9], 0, 4) == 0
find_First_Missing
HumanEval\/628
def replace_spaces(string: str) -> str: """ Replace all spaces in the given string with '%20'. >>> replace_spaces('My Name is Dawood') 'My%20Name%20is%20Dawood' >>> replace_spaces('I am a Programmer') 'I%20am%20a%20Programmer' >>> replace_spaces('I love Coding') 'I%20love%20Coding' """
string = string.strip() return string.replace(' ', '%20')
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('My Name is Dawood') == 'My%20Name%20is%20Dawood' assert candidate('I am a Programmer') == 'I%20am%20a%20Programmer' assert candidate('I love Coding') == 'I%20love%20Coding'
replace_spaces
HumanEval\/629
from typing import List, Union def Split(lst: List[Union[int, float]]) -> List[int]: """ Find even numbers from a mixed list >>> Split([1, 2, 3, 4, 5]) [2, 4] >>> Split([4, 5, 6, 7, 8, 0, 1]) [4, 6, 8, 0] >>> Split([8, 12, 15, 19]) [8, 12] """
ev_li = [] for i in lst: if isinstance(i, int) and i % 2 == 0: ev_li.append(i) return ev_li
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1, 2, 3, 4, 5]) == [2, 4] assert candidate([4, 5, 6, 7, 8, 0, 1]) == [4, 6, 8, 0] assert candidate([8, 12, 15, 19]) == [8, 12]
Split
HumanEval\/630
from typing import List, Tuple def get_coordinates(test_tup: Tuple[int, int]) -> List[List[int]]: """ Extract all the adjacent coordinates of the given coordinate tuple. >>> get_coordinates((3, 4)) [[2, 3], [2, 4], [2, 5], [3, 3], [3, 4], [3, 5], [4, 3], [4, 4], [4, 5]] >>> get_coordinates((4, 5)) [[3, 4], [3, 5], [3, 6], [4, 4], [4, 5], [4, 6], [5, 4], [5, 5], [5, 6]] """
def adjac(ele, sub=[]): if not ele: yield sub else: yield from [idx for j in range(ele[0] - 1, ele[0] + 2) for idx in adjac(ele[1:], sub + [j])] res = list(adjac(test_tup)) return res
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate((3, 4)) == [[2, 3], [2, 4], [2, 5], [3, 3], [3, 4], [3, 5], [4, 3], [4, 4], [4, 5]] assert candidate((4, 5)) == [[3, 4], [3, 5], [3, 6], [4, 4], [4, 5], [4, 6], [5, 4], [5, 5], [5, 6]] assert candidate((5, 6)) == [[4, 5], [4, 6], [4, 7], [5, 5], [5, 6], [5, 7], [6, 5], [6, 6], [6, 7]]
get_coordinates
HumanEval\/631
import re def replace_spaces(text: str) -> str: """ Replace whitespaces with an underscore and vice versa in a given string using regex. >>> replace_spaces('Jumanji The Jungle') 'Jumanji_The_Jungle' >>> replace_spaces('The Avengers') 'The_Avengers' >>> replace_spaces('Fast and Furious') 'Fast_and_Furious' """
text = re.sub(r' ', '_', text) text = re.sub(r'_', ' ', text) return text
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('Jumanji The Jungle') == 'Jumanji_The_Jungle' assert candidate('The Avengers') == 'The_Avengers' assert candidate('Fast and Furious') == 'Fast_and_Furious'
replace_spaces
HumanEval\/632
from typing import List def move_zero(num_list: List[int]) -> List[int]: """ Move all zeroes to the end of the given list >>> move_zero([1,0,2,0,3,4]) [1,2,3,4,0,0] >>> move_zero([2,3,2,0,0,4,0,5,0]) [2,3,2,4,5,0,0,0,0] >>> move_zero([0,1,0,1,1]) [1,1,1,0,0] """
a = [0 for i in range(num_list.count(0))] x = [i for i in num_list if i != 0] x.extend(a) return x
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1,0,2,0,3,4]) == [1,2,3,4,0,0] assert candidate([2,3,2,0,0,4,0,5,0]) == [2,3,2,4,5,0,0,0,0] assert candidate([0,1,0,1,1]) == [1,1,1,0,0]
move_zero
HumanEval\/633
from typing import List def pair_OR_Sum(arr: List[int], n: int) -> int: """ Write a python function to find the sum of xor of all pairs of numbers in the given array. >>> pair_OR_Sum([5,9,7,6], 4) 47 >>> pair_OR_Sum([7,3,5], 3) 12 >>> pair_OR_Sum([7,3], 2) 4 """
ans = 0 for i in range(0, n): for j in range(i + 1, n): ans = ans + (arr[i] ^ arr[j]) return ans
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([5,9,7,6], 4) == 47 assert candidate([7,3,5], 3) == 12 assert candidate([7,3], 2) == 4
pair_OR_Sum
HumanEval\/634
def even_Power_Sum(n: int) -> int: """Calculate the sum of the fourth power of the first n even natural numbers. >>> even_Power_Sum(2) 272 >>> even_Power_Sum(3) 1568 >>> even_Power_Sum(4) 5664 """
sum = 0 for i in range(1, n + 1): j = 2 * i sum += j ** 4 return sum
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(2) == 272 assert candidate(3) == 1568 assert candidate(4) == 5664
even_Power_Sum
HumanEval\/635
import heapq as hq def heap_sort(iterable): """ Push all values into a heap and then pop off the smallest values one at a time. >>> heap_sort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0]) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> heap_sort([25, 35, 22, 85, 14, 65, 75, 25, 58]) [14, 22, 25, 25, 35, 58, 65, 75, 85] >>> heap_sort([7, 1, 9, 5]) [1, 5, 7, 9] """
h = [] for value in iterable: hq.heappush(h, value) return [hq.heappop(h) for i in range(len(h))]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1, 3, 5, 7, 9, 2, 4, 6, 8, 0]) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] assert candidate([25, 35, 22, 85, 14, 65, 75, 25, 58]) == [14, 22, 25, 25, 35, 58, 65, 75, 85] assert candidate([7, 1, 9, 5]) == [1, 5, 7, 9]
heap_sort
HumanEval\/636
def Check_Solution(a: int, b: int, c: int) -> str: """ Check if roots of a quadratic equation are reciprocal of each other. >>> Check_Solution(2, 0, 2) 'Yes' >>> Check_Solution(2, -5, 2) 'Yes' >>> Check_Solution(1, 2, 3) 'No' """
if a == c: return "Yes" else: return "No"
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(2, 0, 2) == 'Yes' assert candidate(2, -5, 2) == 'Yes' assert candidate(1, 2, 3) == 'No'
Check_Solution
HumanEval\/637
def noprofit_noloss(actual_cost: int, sale_amount: int) -> bool: """ Check whether the given amount has no profit and no loss >>> noprofit_noloss(1500, 1200) False >>> noprofit_noloss(100, 100) True >>> noprofit_noloss(2000, 5000) False """
return sale_amount == actual_cost
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(1500, 1200) == False assert candidate(100, 100) == True assert candidate(2000, 5000) == False
noprofit_noloss
HumanEval\/638
import math def wind_chill(v: float, t: float) -> int: """ Calculate the wind chill index given the wind speed v (in km/h) and the temperature t (in degrees Celsius). >>> wind_chill(120, 35) 40 >>> wind_chill(40, 70) 86 >>> wind_chill(10, 100) 116 """
windchill = 13.12 + 0.6215*t - 11.37*math.pow(v, 0.16) + 0.3965*t*math.pow(v, 0.16) return int(round(windchill, 0))
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(120, 35) == 40 assert candidate(40, 70) == 86 assert candidate(10, 100) == 116
wind_chill
HumanEval\/639
from typing import List def sample_nam(sample_names: List[str]) -> int: """ Write a function to sum the length of the names of a given list of names after removing the names that start with a lowercase letter. >>> sample_nam(['sally', 'Dylan', 'rebecca', 'Diana', 'Joanne', 'keith']) 16 >>> sample_nam(["php", "res", "Python", "abcd", "Java", "aaa"]) 10 >>> sample_nam(["abcd", "Python", "abba", "aba"]) 6 """
sample_names = list(filter(lambda el: el[0].isupper() and el[1:].islower(), sample_names)) return len(''.join(sample_names))
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(['sally', 'Dylan', 'rebecca', 'Diana', 'Joanne', 'keith']) == 16 assert candidate(["php", "res", "Python", "abcd", "Java", "aaa"]) == 10 assert candidate(["abcd", "Python", "abba", "aba"]) == 6
sample_nam
HumanEval\/640
import re from typing import List def remove_parenthesis(items: List[str]) -> str: """ Remove the parenthesis area in a string >>> remove_parenthesis(["python (chrome)"]) 'python' >>> remove_parenthesis(["string(.abc)"]) 'string' >>> remove_parenthesis(["alpha(num)"]) 'alpha' """
return re.sub(r" ?\([^)]+\)", "", items[0])
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(["python (chrome)"]) == 'python' assert candidate(["string(.abc)"]) == 'string' assert candidate(["alpha(num)"]) == 'alpha'
remove_parenthesis
HumanEval\/641
def is_nonagonal(n: int) -> int: """ Calculate the nth nonagonal number >>> is_nonagonal(10) 325 >>> is_nonagonal(15) 750 >>> is_nonagonal(18) 1089 """
return int(n * (7 * n - 5) / 2)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(10) == 325 assert candidate(15) == 750 assert candidate(18) == 1089
is_nonagonal
HumanEval\/642
def remove_similar_row(test_list): """Remove similar rows from the given tuple matrix. >>> remove_similar_row([[(4, 5), (3, 2)], [(2, 2), (4, 6)], [(3, 2), (4, 5)]] ) {((2, 2), (4, 6)), ((3, 2), (4, 5))} >>> remove_similar_row([[(5, 6), (4, 3)], [(3, 3), (5, 7)], [(4, 3), (5, 6)]] ) {((4, 3), (5, 6)), ((3, 3), (5, 7))} >>> remove_similar_row([[(6, 7), (5, 4)], [(4, 4), (6, 8)], [(5, 4), (6, 7)]] ) {((4, 4), (6, 8)), ((5, 4), (6, 7))} """
res = set(sorted([tuple(sorted(set(sub))) for sub in test_list])) return (res)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([[(4, 5), (3, 2)], [(2, 2), (4, 6)], [(3, 2), (4, 5)]]) == {((2, 2), (4, 6)), ((3, 2), (4, 5))} assert candidate([[(5, 6), (4, 3)], [(3, 3), (5, 7)], [(4, 3), (5, 6)]]) == {((4, 3), (5, 6)), ((3, 3), (5, 7))} assert candidate([[(6, 7), (5, 4)], [(4, 4), (6, 8)], [(5, 4), (6, 7)]]) == {((4, 4), (6, 8)), ((5, 4), (6, 7))}
remove_similar_row
HumanEval\/643
import re def text_match_wordz_middle(text: str) -> str: """ Match a word containing 'z', not at the start or end of the word. >>> text_match_wordz_middle("pythonzabc.") 'Found a match!' >>> text_match_wordz_middle("xyzabc.") 'Found a match!' >>> text_match_wordz_middle(" lang .") 'Not matched!' """
patterns = '\\Bz\\B' if re.search(patterns, text): return 'Found a match!' else: return 'Not matched!'
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate("pythonzabc.") == 'Found a match!' assert candidate("xyzabc.") == 'Found a match!' assert candidate(" lang .") == 'Not matched!'
text_match_wordz_middle
HumanEval\/644
from typing import List def reverse_Array_Upto_K(input: List[int], k: int) -> List[int]: """ Reverse an array up to a given position k >>> reverse_Array_Upto_K([1, 2, 3, 4, 5, 6], 4) [4, 3, 2, 1, 5, 6] >>> reverse_Array_Upto_K([4, 5, 6, 7], 2) [5, 4, 6, 7] >>> reverse_Array_Upto_K([9, 8, 7, 6, 5], 3) [7, 8, 9, 6, 5] """
return (input[k-1::-1] + input[k:])
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1, 2, 3, 4, 5, 6], 4) == [4, 3, 2, 1, 5, 6] assert candidate([4, 5, 6, 7], 2) == [5, 4, 6, 7] assert candidate([9, 8, 7, 6, 5], 3) == [7, 8, 9, 6, 5]
reverse_Array_Upto_K
HumanEval\/645
def find_k_product(test_list, K): """Find the product of the kth index in the given tuples. >>> find_k_product([(5, 6, 7), (1, 3, 5), (8, 9, 19)], 2) 665 >>> find_k_product([(6, 7, 8), (2, 4, 6), (9, 10, 20)], 1) 280 >>> find_k_product([(7, 8, 9), (3, 5, 7), (10, 11, 21)], 0) 210 """ def get_product(val): res = 1 for ele in val: res *= ele return res res = get_product([sub[K] for sub in test_list]) return res
def get_product(val): res = 1 for ele in val: res *= ele return res res = get_product([sub[K] for sub in test_list]) return res
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([(5, 6, 7), (1, 3, 5), (8, 9, 19)], 2) == 665 assert candidate([(6, 7, 8), (2, 4, 6), (9, 10, 20)], 1) == 280 assert candidate([(7, 8, 9), (3, 5, 7), (10, 11, 21)], 0) == 210
find_k_product
HumanEval\/646
def No_of_cubes(N: int, K: int) -> int: """ Calculate the number of cubes of size K in a cube of size N. >>> No_of_cubes(2, 1) 8 >>> No_of_cubes(5, 2) 64 >>> No_of_cubes(1, 1) 1 """
No = (N - K + 1) return No ** 3
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(2, 1) == 8 assert candidate(5, 2) == 64 assert candidate(1, 1) == 1
No_of_cubes
HumanEval\/647
import re def split_upperstring(text: str) -> list: """ Split a string at uppercase letters. >>> split_upperstring("PythonProgramLanguage") ['Python', 'Program', 'Language'] >>> split_upperstring("PythonProgram") ['Python', 'Program'] >>> split_upperstring("ProgrammingLanguage") ['Programming', 'Language'] """
return re.findall('[A-Z][^A-Z]*', text)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate("PythonProgramLanguage") == ['Python', 'Program', 'Language'] assert candidate("PythonProgram") == ['Python', 'Program'] assert candidate("ProgrammingLanguage") == ['Programming', 'Language']
split_upperstring
HumanEval\/648
from typing import List def exchange_elements(lst: List[int]) -> List[int]: """ Exchange the position of every n-th value with (n+1)th value in a given list. >>> exchange_elements([0,1,2,3,4,5]) [1, 0, 3, 2, 5, 4] >>> exchange_elements([5,6,7,8,9,10]) [6, 5, 8, 7, 10, 9] """
from itertools import zip_longest, chain return list(chain.from_iterable(zip_longest(lst[1::2], lst[::2])))
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([0,1,2,3,4,5]) == [1, 0, 3, 2, 5, 4] assert candidate([5,6,7,8,9,10]) == [6, 5, 8, 7, 10, 9] assert candidate([25,35,45,55,75,95]) == [35, 25, 55, 45, 95, 75]
exchange_elements
HumanEval\/649
from typing import List def sum_Range_list(nums: List[int], m: int, n: int) -> int: """ Calculate the sum of the numbers in a list between the indices of a specified range. >>> sum_Range_list([2, 1, 5, 6, 8, 3, 4, 9, 10, 11, 8, 12], 8, 10) 29 >>> sum_Range_list([1, 2, 3, 4, 5], 1, 2) 5 >>> sum_Range_list([1, 0, 1, 2, 5, 6], 4, 5) 11 """
sum_range = 0 for i in range(m, n+1, 1): sum_range += nums[i] return sum_range
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([2, 1, 5, 6, 8, 3, 4, 9, 10, 11, 8, 12], 8, 10) == 29 assert candidate([1, 2, 3, 4, 5], 1, 2) == 5 assert candidate([1, 0, 1, 2, 5, 6], 4, 5) == 11
sum_Range_list
HumanEval\/650
def are_Equal(arr1: list, arr2: list, n: int, m: int) -> bool: """ Check whether the given two arrays are equal or not. >>> are_Equal([1,2,3],[3,2,1],3,3) True >>> are_Equal([1,1,1],[2,2,2],3,3) False >>> are_Equal([8,9],[4,5,6],2,3) False """
if n != m: return False arr1.sort() arr2.sort() for i in range(n): if arr1[i] != arr2[i]: return False return True
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1,2,3],[3,2,1],3,3) == True assert candidate([1,1,1],[2,2,2],3,3) == False assert candidate([8,9],[4,5,6],2,3) == False
are_Equal
HumanEval\/651
def check_subset(test_tup1: tuple, test_tup2: tuple) -> bool: """ Check if one tuple is a subset of another tuple >>> check_subset((10, 4, 5, 6), (5, 10)) True >>> check_subset((1, 2, 3, 4), (5, 6)) False >>> check_subset((7, 8, 9, 10), (10, 8)) True """
return set(test_tup2).issubset(test_tup1)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate((10, 4, 5, 6), (5, 10)) == True assert candidate((1, 2, 3, 4), (5, 6)) == False assert candidate((7, 8, 9, 10), (10, 8)) == True
check_subset
HumanEval\/652
def matrix_to_list(test_list): """ Flatten the given tuple matrix into the tuple list with each tuple representing each column. >>> matrix_to_list([[(4, 5), (7, 8)], [(10, 13), (18, 17)], [(0, 4), (10, 1)]]) '[(4, 7, 10, 18, 0, 10), (5, 8, 13, 17, 4, 1)]' """
temp = [ele for sub in test_list for ele in sub] res = list(zip(*temp)) return str(res)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([[(4, 5), (7, 8)], [(10, 13), (18, 17)], [(0, 4), (10, 1)]]) == '[(4, 7, 10, 18, 0, 10), (5, 8, 13, 17, 4, 1)]' assert candidate([[(5, 6), (8, 9)], [(11, 14), (19, 18)], [(1, 5), (11, 2)]]) == '[(5, 8, 11, 19, 1, 11), (6, 9, 14, 18, 5, 2)]' assert candidate([[(6, 7), (9, 10)], [(12, 15), (20, 21)], [(23, 7), (15, 8)]]) == '[(6, 9, 12, 20, 23, 15), (7, 10, 15, 21, 7, 8)]'
matrix_to_list
HumanEval\/653
from collections import defaultdict def grouping_dictionary(l): """ Group a sequence of key-value pairs into a dictionary of lists >>> grouping_dictionary([('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]) {'yellow': [1, 3], 'blue': [2, 4], 'red': [1]} """
d = defaultdict(list) for k, v in l: d[k].append(v) return d
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]) == {'yellow': [1, 3], 'blue': [2, 4], 'red': [1]} assert candidate([('yellow', 10), ('blue', 20), ('yellow', 30), ('blue', 40), ('red', 10)]) == {'yellow': [10, 30], 'blue': [20, 40], 'red': [10]} assert candidate([('yellow', 15), ('blue', 25), ('yellow', 35), ('blue', 45), ('red', 15)]) == {'yellow': [15, 35], 'blue': [25, 45], 'red': [15]}
grouping_dictionary
HumanEval\/654
def rectangle_perimeter(l: int, b: int) -> int: """ Calculate the perimeter of a rectangle given its length and breadth. >>> rectangle_perimeter(10, 20) 60 >>> rectangle_perimeter(10, 5) 30 >>> rectangle_perimeter(4, 2) 12 """
return 2 * (l + b)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(10, 20) == 60 assert candidate(10, 5) == 30 assert candidate(4, 2) == 12
rectangle_perimeter
HumanEval\/655
def fifth_Power_Sum(n: int) -> int: """ Calculate the sum of the fifth power of n natural numbers >>> fifth_Power_Sum(2) 33 >>> fifth_Power_Sum(4) 1300 >>> fifth_Power_Sum(3) 276 """
sm = 0 for i in range(1, n+1): sm += i**5 return sm
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(2) == 33 assert candidate(4) == 1300 assert candidate(3) == 276
fifth_Power_Sum
HumanEval\/656
def find_Min_Sum(a: List[int], b: List[int], n: int) -> int: """ Write a python function to find the minimum sum of absolute differences of two arrays. >>> find_Min_Sum([3,2,1],[2,1,3],3) 0 >>> find_Min_Sum([1,2,3],[4,5,6],3) 9 >>> find_Min_Sum([4,1,8,7],[2,3,6,5],4) 6 """
a.sort() b.sort() sum = 0 for i in range(n): sum = sum + abs(a[i] - b[i]) return sum
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([3,2,1],[2,1,3],3) == 0 assert candidate([1,2,3],[4,5,6],3) == 9 assert candidate([4,1,8,7],[2,3,6,5],4) == 6
find_Min_Sum
HumanEval\/657
import math def first_Digit(n: int) -> int: """Find the first digit in factorial of a given number. >>> first_Digit(5) 1 >>> first_Digit(10) 3 >>> first_Digit(7) 5 """
fact = 1 for i in range(2, n + 1): fact *= i while fact % 10 == 0: fact //= 10 while fact >= 10: fact //= 10 return fact
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(5) == 1 assert candidate(10) == 3 assert candidate(7) == 5
first_Digit
HumanEval\/658
from typing import List def max_occurrences(list1: List[int]) -> int: """ Find the item with maximum occurrences in a given list >>> max_occurrences([2,3,8,4,7,9,8,2,6,5,1,6,1,2,3,4,6,9,1,2]) 2 >>> max_occurrences([1, 3,5, 7,1, 3,13, 15, 17,5, 7,9,1, 11]) 1 >>> max_occurrences([1, 2, 3,2, 4, 5,1, 1, 1]) 1 """
max_val = 0 result = list1[0] for i in list1: occu = list1.count(i) if occu > max_val: max_val = occu result = i return result
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([2,3,8,4,7,9,8,2,6,5,1,6,1,2,3,4,6,9,1,2]) == 2 assert candidate([1, 3,5, 7,1, 3,13, 15, 17,5, 7,9,1, 11]) == 1 assert candidate([1, 2, 3,2, 4, 5,1, 1, 1]) == 1
max_occurrences
HumanEval\/659
from typing import List def Repeat(x: List[int]) -> List[int]: """ Return a list of duplicate integers from the input list. >>> Repeat([10, 20, 30, 20, 20, 30, 40, 50, -20, 60, 60, -20, -20]) [20, 30, -20, 60] >>> Repeat([-1, 1, -1, 8]) [-1] >>> Repeat([1, 2, 3, 1, 2]) [1, 2] """
_size = len(x) repeated = [] for i in range(_size): k = i + 1 for j in range(k, _size): if x[i] == x[j] and x[i] not in repeated: repeated.append(x[i]) return repeated
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([10, 20, 30, 20, 20, 30, 40, 50, -20, 60, 60, -20, -20]) == [20, 30, -20, 60] assert candidate([-1, 1, -1, 8]) == [-1] assert candidate([1, 2, 3, 1, 2]) == [1, 2]
Repeat
HumanEval\/660
def find_Points(l1: int, r1: int, l2: int, r2: int) -> tuple: """ Choose points from two ranges such that no point lies in both the ranges. >>> find_Points(5, 10, 1, 5) (1, 10) >>> find_Points(3, 5, 7, 9) (3, 9) >>> find_Points(1, 5, 2, 8) (1, 8) """
x = min(l1, l2) if (l1 != l2) else -1 y = max(r1, r2) if (r1 != r2) else -1 return (x, y)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(5, 10, 1, 5) == (1, 10) assert candidate(3, 5, 7, 9) == (3, 9) assert candidate(1, 5, 2, 8) == (1, 8)
find_Points
HumanEval\/661
from typing import List def max_sum_of_three_consecutive(arr: List[int], n: int) -> int: """ Write a function to find the maximum sum that can be formed which has no three consecutive elements present. >>> max_sum_of_three_consecutive([100, 1000, 100, 1000, 1], 5) 2101 >>> max_sum_of_three_consecutive([3000, 2000, 1000, 3, 10], 5) 5013 >>> max_sum_of_three_consecutive([1, 2, 3, 4, 5, 6, 7, 8], 8) 27 """
sum = [0 for k in range(n)] if n >= 1: sum[0] = arr[0] if n >= 2: sum[1] = arr[0] + arr[1] if n > 2: sum[2] = max(sum[1], max(arr[1] + arr[2], arr[0] + arr[2])) for i in range(3, n): sum[i] = max(max(sum[i-1], sum[i-2] + arr[i]), arr[i] + arr[i-1] + sum[i-3]) return sum[n-1]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([100, 1000, 100, 1000, 1], 5) == 2101 assert candidate([3000, 2000, 1000, 3, 10], 5) == 5013 assert candidate([1, 2, 3, 4, 5, 6, 7, 8], 8) == 27
max_sum_of_three_consecutive
HumanEval\/662
def sorted_dict(dict1): """ Sorts each list in the dictionary. >>> sorted_dict({'n1': [2, 3, 1], 'n2': [5, 1, 2], 'n3': [3, 2, 4]}) {'n1': [1, 2, 3], 'n2': [1, 2, 5], 'n3': [2, 3, 4]} """
sorted_dict = {x: sorted(y) for x, y in dict1.items()} return sorted_dict
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate({'n1': [2, 3, 1], 'n2': [5, 1, 2], 'n3': [3, 2, 4]}) == {'n1': [1, 2, 3], 'n2': [1, 2, 5], 'n3': [2, 3, 4]} assert candidate({'n1': [25,37,41], 'n2': [41,54,63], 'n3': [29,38,93]}) == {'n1': [25, 37, 41], 'n2': [41, 54, 63], 'n3': [29, 38, 93]} assert candidate({'n1': [58,44,56], 'n2': [91,34,58], 'n3': [100,200,300]}) == {'n1': [44, 56, 58], 'n2': [34, 58, 91], 'n3': [100, 200, 300]}
sorted_dict
HumanEval\/663
import sys def find_max_val(n: int, x: int, y: int) -> int: """ Find the largest possible value of k such that k modulo x is y. >>> find_max_val(15, 10, 5) 15 >>> find_max_val(187, 10, 5) 185 >>> find_max_val(16, 11, 1) 12 """
ans = -sys.maxsize for k in range(n + 1): if (k % x == y): ans = max(ans, k) return (ans if (ans >= 0 and ans <= n) else -1)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(15, 10, 5) == 15 assert candidate(187, 10, 5) == 185 assert candidate(16, 11, 1) == 12
find_max_val
HumanEval\/664
def average_Even(n: int) -> int: """ Calculate the average of even numbers up to a given even number n. >>> average_Even(2) 2 >>> average_Even(4) 3 >>> average_Even(100) 51 """
if n % 2 != 0: return "Invalid Input" sm = 0 count = 0 while n >= 2: count += 1 sm += n n -= 2 return sm // count
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(2) == 2 assert candidate(4) == 3 assert candidate(100) == 51
average_Even
HumanEval\/665
from typing import List def move_last(num_list: List[int]) -> List[int]: """ Shift first element to the end of given list >>> move_last([1,2,3,4]) [2,3,4,1] >>> move_last([2,3,4,1,5,0]) [3,4,1,5,0,2] >>> move_last([5,4,3,2,1]) [4,3,2,1,5] """
return num_list[1:] + num_list[:1]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1,2,3,4]) == [2,3,4,1] assert candidate([2,3,4,1,5,0]) == [3,4,1,5,0,2] assert candidate([5,4,3,2,1]) == [4,3,2,1,5]
move_last
HumanEval\/666
def count_char(string: str, char: str) -> int: """ Count occurrence of a character in a string. >>> count_char("Python", 'o') 1 >>> count_char("little", 't') 2 >>> count_char("assert", 's') 2 """
count = 0 for i in range(len(string)): if(string[i] == char): count = count + 1 return count
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate("Python", 'o') == 1 assert candidate("little", 't') == 2 assert candidate("assert", 's') == 2
count_char
HumanEval\/667
def Check_Vow(string: str, vowels: str) -> int: """ Count number of vowels in the string. >>> Check_Vow('corner', 'AaEeIiOoUu') 2 >>> Check_Vow('valid', 'AaEeIiOoUu') 2 >>> Check_Vow('true', 'AaEeIiOoUu') 2 """
final = [each for each in string if each in vowels] return len(final)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('corner', 'AaEeIiOoUu') == 2 assert candidate('valid', 'AaEeIiOoUu') == 2 assert candidate('true', 'AaEeIiOoUu') == 2
Check_Vow
HumanEval\/668
import re def replace(string: str, char: str) -> str: """ Replace multiple occurrences of a character by a single occurrence. >>> replace('peep', 'e') 'pep' >>> replace('Greek', 'e') 'Grek' >>> replace('Moon', 'o') 'Mon' """
pattern = char + '{2,}' string = re.sub(pattern, char, string) return string
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('peep', 'e') == 'pep' assert candidate('Greek', 'e') == 'Grek' assert candidate('Moon', 'o') == 'Mon'
replace
HumanEval\/669
import re def check_IP(Ip: str) -> str: """Check whether the given IP address is valid or not using regex. >>> check_IP("192.168.0.1") 'Valid IP address' >>> check_IP("366.1.2.2") 'Invalid IP address' """
regex = r'^(25[0-5]|2[0-4][0-9]|[0-1]?[0-9][0-9]?)\\.(25[0-5]|2[0-4][0-9]|[0-1]?[0-9][0-9]?)\\.(25[0-5]|2[0-4][0-9]|[0-1]?[0-9][0-9]?)\\.(25[0-5]|2[0-4][0-9]|[0-1]?[0-9][0-9]?)$' if re.search(regex, Ip): return "Valid IP address" else: return "Invalid IP address"
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate("192.168.0.1") == 'Valid IP address' assert candidate("110.234.52.124") == 'Valid IP address' assert candidate("366.1.2.2") == 'Invalid IP address'
check_IP
HumanEval\/670
from typing import List def decreasing_trend(nums: List[int]) -> bool: """ Check whether a sequence of numbers has a decreasing trend or not. >>> decreasing_trend([-4, -3, -2, -1]) True >>> decreasing_trend([1, 2, 3]) True >>> decreasing_trend([3, 2, 1]) False """
return nums == sorted(nums, reverse=True)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([-4, -3, -2, -1]) == True assert candidate([1, 2, 3]) == True assert candidate([3, 2, 1]) == False
decreasing_trend
HumanEval\/671
import math def get_Pos_Of_Right_most_Set_Bit(n): return int(math.log2(n & -n) + 1) def set_Right_most_Unset_Bit(n): """ Set the right most unset bit in the binary representation of n. >>> set_Right_most_Unset_Bit(21) 23 >>> set_Right_most_Unset_Bit(11) 15 >>> set_Right_most_Unset_Bit(15) 15 """ if n == 0: return 1 if (n & (n + 1)) == 0: return n pos = get_Pos_Of_Right_most_Set_Bit(~n) return (1 << (pos - 1)) | n
if n == 0: return 1 if (n & (n + 1)) == 0: return n pos = get_Pos_Of_Right_most_Set_Bit(~n) return (1 << (pos - 1)) | n
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(21) == 23 assert candidate(11) == 15 assert candidate(15) == 15
set_Right_most_Unset_Bit
HumanEval\/672
def max_of_three(num1: int, num2: int, num3: int) -> int: """ Find the maximum of three numbers >>> max_of_three(10, 20, 30) 30 >>> max_of_three(55, 47, 39) 55 >>> max_of_three(10, 49, 30) 49 """
if (num1 >= num2) and (num1 >= num3): return num1 elif (num2 >= num1) and (num2 >= num3): return num2 else: return num3
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(10, 20, 30) == 30 assert candidate(55, 47, 39) == 55 assert candidate(10, 49, 30) == 49
max_of_three
HumanEval\/673
from typing import List def convert(lst: List[int]) -> int: """ Convert a list of multiple integers into a single integer. >>> convert([1, 2, 3]) 123 >>> convert([4, 5, 6]) 456 """
s = [str(i) for i in lst] res = int("".join(s)) return res
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1, 2, 3]) == 123 assert candidate([4, 5, 6]) == 456 assert candidate([7, 8, 9]) == 789
convert
HumanEval\/674
from collections import OrderedDict def remove_duplicate(string: str) -> str: """ Remove duplicate words from a given string using collections module. >>> remove_duplicate("Python Exercises Practice Solution Exercises") 'Python Exercises Practice Solution' >>> remove_duplicate("Python Exercises Practice Solution Python") 'Python Exercises Practice Solution' >>> remove_duplicate("Python Exercises Practice Solution Practice") 'Python Exercises Practice Solution' """
result = ' '.join(OrderedDict((w,w) for w in string.split()).keys()) return result
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate("Python Exercises Practice Solution Exercises") == "Python Exercises Practice Solution" assert candidate("Python Exercises Practice Solution Python") == "Python Exercises Practice Solution" assert candidate("Python Exercises Practice Solution Practice") == "Python Exercises Practice Solution"
remove_duplicate
HumanEval\/675
def sum_nums(x: int, y: int, m: int, n: int) -> int: """ Add two integers and return 20 if the sum is within the given range. >>> sum_nums(2, 10, 11, 20) 20 >>> sum_nums(15, 17, 1, 10) 32 >>> sum_nums(10, 15, 5, 30) 20 """
sum_nums = x + y if sum_nums in range(m, n): return 20 else: return sum_nums
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(2, 10, 11, 20) == 20 assert candidate(15, 17, 1, 10) == 32 assert candidate(10, 15, 5, 30) == 20
sum_nums
HumanEval\/676
import re def remove_extra_char(text1: str) -> str: """ Remove everything except alphanumeric characters from the given string by using regex. >>> remove_extra_char('**//Google Android// - 12. ') 'GoogleAndroid12' >>> remove_extra_char('****//Google Flutter//*** - 36. ') 'GoogleFlutter36' >>> remove_extra_char('**//Google Firebase// - 478. ') 'GoogleFirebase478' """
pattern = re.compile('[\W_]+') return pattern.sub('', text1)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('**//Google Android// - 12. ') == 'GoogleAndroid12' assert candidate('****//Google Flutter//*** - 36. ') == 'GoogleFlutter36' assert candidate('**//Google Firebase// - 478. ') == 'GoogleFirebase478'
remove_extra_char
HumanEval\/677
def validity_triangle(a: int, b: int, c: int) -> bool: """ Check if the triangle is valid or not >>> validity_triangle(60, 50, 90) False >>> validity_triangle(45, 75, 60) True >>> validity_triangle(30, 50, 100) True """
total = a + b + c return total == 180
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(60, 50, 90) == False assert candidate(45, 75, 60) == True assert candidate(30, 50, 100) == True
validity_triangle
HumanEval\/678
def remove_spaces(str1: str) -> str: """ Remove spaces from a given string >>> remove_spaces("a b c") 'abc' >>> remove_spaces("1 2 3") '123' """
return str1.replace(' ', '')
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate("a b c") == "abc" assert candidate("1 2 3") == "123" assert candidate(" b c") == "bc"
remove_spaces
HumanEval\/679
def access_key(dictionary, key): """ Access dictionary key��s element by index >>> access_key({'physics': 80, 'math': 90, 'chemistry': 86}, 0) 'physics' >>> access_key({'python': 10, 'java': 20, 'C++': 30}, 2) 'C++' >>> access_key({'program': 15, 'computer': 45}, 1) 'computer' """
return list(dictionary)[key]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate({'physics': 80, 'math': 90, 'chemistry': 86}, 0) == 'physics' assert candidate({'python': 10, 'java': 20, 'C++': 30}, 2) == 'C++' assert candidate({'program': 15, 'computer': 45}, 1) == 'computer'
access_key
HumanEval\/680
from typing import List def increasing_trend(nums: List[int]) -> bool: """ Check whether a sequence of numbers has an increasing trend or not. >>> increasing_trend([1, 2, 3, 4]) True >>> increasing_trend([4, 3, 2, 1]) False >>> increasing_trend([0, 1, 4, 9]) True """
return sorted(nums) == nums
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1, 2, 3, 4]) == True assert candidate([4, 3, 2, 1]) == False assert candidate([0, 1, 4, 9]) == True
increasing_trend
HumanEval\/681
def smallest_Divisor(n: int) -> int: """ Find the smallest prime divisor of a number n >>> smallest_Divisor(10) 2 >>> smallest_Divisor(25) 5 >>> smallest_Divisor(31) 31 """
if n % 2 == 0: return 2 i = 3 while i * i <= n: if n % i == 0: return i i += 2 return n
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(10) == 2 assert candidate(25) == 5 assert candidate(31) == 31
smallest_Divisor
HumanEval\/682
from typing import List def mul_list(nums1: List[int], nums2: List[int]) -> List[int]: """ Multiply two lists using map and lambda function. >>> mul_list([1, 2, 3], [4, 5, 6]) [4, 10, 18] >>> mul_list([1, 2], [3, 4]) [3, 8] >>> mul_list([90, 120], [50, 70]) [4500, 8400] """
result = map(lambda x, y: x * y, nums1, nums2) return list(result)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1, 2, 3], [4, 5, 6]) == [4, 10, 18] assert candidate([1, 2], [3, 4]) == [3, 8] assert candidate([90, 120], [50, 70]) == [4500, 8400]
mul_list
HumanEval\/683
def sum_Square(n: int) -> bool: """ Check whether the given number can be represented by sum of two squares or not. >>> sum_Square(25) True >>> sum_Square(24) False >>> sum_Square(17) True """
i = 1 while i*i <= n: j = 1 while j*j <= n: if i*i + j*j == n: return True j += 1 i += 1 return False
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(25) == True assert candidate(24) == False assert candidate(17) == True
sum_Square
HumanEval\/684
def count_Char(str, x): """ Count occurrences of a character in a repeated string. >>> count_Char("abcac", 'a') 4 >>> count_Char("abca", 'c') 2 >>> count_Char("aba", 'a') 7 """
count = 0 for i in range(len(str)): if (str[i] == x): count += 1 n = 10 repititions = n // len(str) count = count * repititions l = n % len(str) for i in range(l): if (str[i] == x): count += 1 return count
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate("abcac", 'a') == 4 assert candidate("abca", 'c') == 2 assert candidate("aba", 'a') == 7
count_Char
HumanEval\/685
def sum_Of_Primes(n: int) -> int: """Write a python function to find sum of prime numbers between 1 to n. >>> sum_Of_Primes(10) 17 >>> sum_Of_Primes(20) 77 >>> sum_Of_Primes(5) 10 """
prime = [True] * (n + 1) p = 2 while p * p <= n: if prime[p] == True: i = p * 2 while i <= n: prime[i] = False i += p p += 1 sum = 0 for i in range(2, n + 1): if prime[i]: sum += i return sum
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(10) == 17 assert candidate(20) == 77 assert candidate(5) == 10
sum_Of_Primes
HumanEval\/686
from collections import defaultdict def freq_element(test_tup): """ Find the frequency of each element in the given list >>> freq_element((4, 5, 4, 5, 6, 6, 5, 5, 4)) '{4: 3, 5: 4, 6: 2}' >>> freq_element((7, 8, 8, 9, 4, 7, 6, 5, 4)) '{7: 2, 8: 2, 9: 1, 4: 2, 6: 1, 5: 1}' >>> freq_element((1, 4, 3, 1, 4, 5, 2, 6, 2, 7)) '{1: 2, 4: 2, 3: 1, 5: 1, 2: 2, 6: 1, 7: 1}' """
res = defaultdict(int) for ele in test_tup: res[ele] += 1 return str(dict(res))
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate((4, 5, 4, 5, 6, 6, 5, 5, 4)) == '{4: 3, 5: 4, 6: 2}' assert candidate((7, 8, 8, 9, 4, 7, 6, 5, 4)) == '{7: 2, 8: 2, 9: 1, 4: 2, 6: 1, 5: 1}' assert candidate((1, 4, 3, 1, 4, 5, 2, 6, 2, 7)) == '{1: 2, 4: 2, 3: 1, 5: 1, 2: 2, 6: 1, 7: 1}'
freq_element
HumanEval\/687
def recur_gcd(a: int, b: int) -> int: """ Find the greatest common divisor (gcd) of two integers using recursion. >>> recur_gcd(12, 14) 2 >>> recur_gcd(13, 17) 1 >>> recur_gcd(9, 3) 3 """
low = min(a, b) high = max(a, b) if low == 0: return high elif low == 1: return 1 else: return recur_gcd(low, high % low)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(12, 14) == 2 assert candidate(13, 17) == 1 assert candidate(9, 3) == 3
recur_gcd
HumanEval\/688
import cmath def len_complex(a: float, b: float) -> float: """ Calculate the length of a complex number given its real and imaginary parts. >>> len_complex(3, 4) 5.0 >>> len_complex(9, 10) 13.45362404707371 >>> len_complex(7, 9) 11.40175425099138 """
cn = complex(a, b) length = abs(cn) return length
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(3, 4) == 5.0 assert candidate(9, 10) == 13.45362404707371 assert candidate(7, 9) == 11.40175425099138
len_complex
HumanEval\/689
def min_jumps(arr, n): """ Find the minimum number of jumps to reach the end of the array for the given array of integers where each element represents the max number of steps that can be made forward from that element. >>> min_jumps([1, 3, 6, 1, 0, 9], 6) 3 >>> min_jumps([1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9], 11) 3 >>> min_jumps([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 11) 10 """
jumps = [0 for i in range(n)] if (n == 0) or (arr[0] == 0): return float('inf') jumps[0] = 0 for i in range(1, n): jumps[i] = float('inf') for j in range(i): if (i <= j + arr[j]) and (jumps[j] != float('inf')): jumps[i] = min(jumps[i], jumps[j] + 1) break return jumps[n-1]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1, 3, 6, 1, 0, 9], 6) == 3 assert candidate([1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9], 11) == 3 assert candidate([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 11) == 10
min_jumps
HumanEval\/690
from typing import List def mul_consecutive_nums(nums: List[int]) -> List[int]: """ Multiply consecutive numbers of a given list >>> mul_consecutive_nums([1, 1, 3, 4, 4, 5, 6, 7]) [1, 3, 12, 16, 20, 30, 42] >>> mul_consecutive_nums([4, 5, 8, 9, 6, 10]) [20, 40, 72, 54, 60] """
result = [b*a for a, b in zip(nums[:-1], nums[1:])] return result
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1, 1, 3, 4, 4, 5, 6, 7]) == [1, 3, 12, 16, 20, 30, 42] assert candidate([4, 5, 8, 9, 6, 10]) == [20, 40, 72, 54, 60] assert candidate([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) == [2, 6, 12, 20, 30, 42, 56, 72, 90]
mul_consecutive_nums
task_691
from itertools import groupby def group_element(test_list): """ Group the 1st elements on the basis of 2nd elements in the given tuple list. >>> group_element([(6, 5), (2, 7), (2, 5), (8, 7), (9, 8), (3, 7)]) {5: [6, 2], 7: [2, 8, 3], 8: [9]} """
res = dict() for key, val in groupby(sorted(test_list, key=lambda ele: ele[1]), key=lambda ele: ele[1]): res[key] = [ele[0] for ele in val] return res
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([(6, 5), (2, 7), (2, 5), (8, 7), (9, 8), (3, 7)]) == {5: [6, 2], 7: [2, 8, 3], 8: [9]} assert candidate([(7, 6), (3, 8), (3, 6), (9, 8), (10, 9), (4, 8)]) == {6: [7, 3], 8: [3, 9, 4], 9: [10]} assert candidate([(8, 7), (4, 9), (4, 7), (10, 9), (11, 10), (5, 9)]) == {7: [8, 4], 9: [4, 10, 5], 10: [11]}
group_element
HumanEval\/692
def last_Two_Digits(N: int) -> int: """ Find the last two digits in factorial of a given number. >>> last_Two_Digits(7) 40 >>> last_Two_Digits(5) 20 >>> last_Two_Digits(2) 2 """
if (N >= 10): return 0 fac = 1 for i in range(1, N + 1): fac = (fac * i) % 100 return fac
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(7) == 40 assert candidate(5) == 20 assert candidate(2) == 2
last_Two_Digits
693
import re def remove_multiple_spaces(text1: str) -> str: """ Remove multiple spaces in a string by using regex >>> remove_multiple_spaces('Google Assistant') 'Google Assistant' >>> remove_multiple_spaces('Quad Core') 'Quad Core' >>> remove_multiple_spaces('ChromeCast Built-in') 'ChromeCast Built-in' """
return re.sub(' +', ' ', text1)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('Google Assistant') == 'Google Assistant' assert candidate('Quad Core') == 'Quad Core' assert candidate('ChromeCast Built-in') == 'ChromeCast Built-in'
remove_multiple_spaces
HumanEval\/694
def extract_unique(test_dict): """ Extract unique values from the given dictionary values. >>> extract_unique({'msm' : [5, 6, 7, 8],'is' : [10, 11, 7, 5],'best' : [6, 12, 10, 8],'for' : [1, 2, 5]}) [1, 2, 5, 6, 7, 8, 10, 11, 12] """
res = list(sorted({ele for val in test_dict.values() for ele in val})) return res
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate({'msm' : [5, 6, 7, 8],'is' : [10, 11, 7, 5],'best' : [6, 12, 10, 8],'for' : [1, 2, 5]}) == [1, 2, 5, 6, 7, 8, 10, 11, 12] assert candidate({'Built' : [7, 1, 9, 4],'for' : [11, 21, 36, 14, 9],'ISP' : [4, 1, 21, 39, 47],'TV' : [1, 32, 38]}) == [1, 4, 7, 9, 11, 14, 21, 32, 36, 38, 39, 47] assert candidate({'F' : [11, 13, 14, 17],'A' : [12, 11, 15, 18],'N' : [19, 21, 15, 36],'G' : [37, 36, 35]}) == [11, 12, 13, 14, 15, 17, 18, 19, 21, 35, 36, 37]
extract_unique
HumanEval\/695
def check_greater(test_tup1: tuple, test_tup2: tuple) -> bool: """ Check if each element of the second tuple is greater than its corresponding index in the first tuple. >>> check_greater((10, 4, 5), (13, 5, 18)) True >>> check_greater((1, 2, 3), (2, 1, 4)) False >>> check_greater((4, 5, 6), (5, 6, 7)) True """
res = all(x < y for x, y in zip(test_tup1, test_tup2)) return res
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate((10, 4, 5), (13, 5, 18)) == True assert candidate((1, 2, 3), (2, 1, 4)) == False assert candidate((4, 5, 6), (5, 6, 7)) == True
check_greater
HumanEval\/696
from typing import List def zip_list(list1: List[List[int]], list2: List[List[int]]) -> List[List[int]]: """ Zip two given lists of lists. >>> zip_list([[1, 3], [5, 7], [9, 11]], [[2, 4], [6, 8], [10, 12, 14]]) [[1, 3, 2, 4], [5, 7, 6, 8], [9, 11, 10, 12, 14]] >>> zip_list([[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]) [[1, 2, 7, 8], [3, 4, 9, 10], [5, 6, 11, 12]] >>> zip_list([['a','b'],['c','d']], [['e','f'],['g','h']]) [['a','b','e','f'],['c','d','g','h']] """
return [a + b for a, b in zip(list1, list2)]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([[1, 3], [5, 7], [9, 11]], [[2, 4], [6, 8], [10, 12, 14]]) == [[1, 3, 2, 4], [5, 7, 6, 8], [9, 11, 10, 12, 14]] assert candidate([[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]) == [[1, 2, 7, 8], [3, 4, 9, 10], [5, 6, 11, 12]] assert candidate([['a','b'],['c','d']], [['e','f'],['g','h']]) == [['a','b','e','f'],['c','d','g','h']]
zip_list
HumanEval\/697
from typing import List def count_even(array_nums: List[int]) -> int: """ Write a function to find number of even elements in the given list using lambda function. >>> count_even([1, 2, 3, 5, 7, 8, 9, 10]) 3 >>> count_even([10,15,14,13,-18,12,-20]) 5 >>> count_even([1, 2, 4, 8, 9]) 3 """
return len(list(filter(lambda x: (x % 2 == 0), array_nums)))
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1, 2, 3, 5, 7, 8, 9, 10]) == 3 assert candidate([10, 15, 14, 13, -18, 12, -20]) == 5 assert candidate([1, 2, 4, 8, 9]) == 3
count_even
698
def sort_dict_item(test_dict): """ Sort dictionary items by tuple product of keys for the given dictionary with tuple keys. >>> sort_dict_item({(5, 6) : 3, (2, 3) : 9, (8, 4): 10, (6, 4): 12}) {(2, 3): 9, (6, 4): 12, (5, 6): 3, (8, 4): 10} """
res = {key: test_dict[key] for key in sorted(test_dict.keys(), key=lambda ele: ele[1] * ele[0])} return res
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate({(5, 6): 3, (2, 3): 9, (8, 4): 10, (6, 4): 12}) == {(2, 3): 9, (6, 4): 12, (5, 6): 3, (8, 4): 10} assert candidate({(6, 7): 4, (3, 4): 10, (9, 5): 11, (7, 5): 13}) == {(3, 4): 10, (7, 5): 13, (6, 7): 4, (9, 5): 11} assert candidate({(7, 8): 5, (4, 5): 11, (10, 6): 12, (8, 6): 14}) == {(4, 5): 11, (8, 6): 14, (7, 8): 5, (10, 6): 12}
sort_dict_item
HumanEval\/699
def min_Swaps(str1: str, str2: str) -> int: """Find the minimum number of swaps required to convert one binary string to another. >>> min_Swaps("1101", "1110") 1 >>> min_Swaps("1111", "0100") "Not Possible" >>> min_Swaps("1110000", "0001101") 3 """
count = 0 for i in range(len(str1)): if str1[i] != str2[i]: count += 1 if count % 2 == 0: return count // 2 else: return "Not Possible"
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate("1101", "1110") == 1 assert candidate("1111", "0100") == "Not Possible" assert candidate("1110000", "0001101") == 3
min_Swaps
HumanEval\/700
from typing import List, Union def count_range_in_list(li: List[Union[int, str]], min_val: Union[int, str], max_val: Union[int, str]) -> int: """ Count the number of elements in a list which are within a specific range >>> count_range_in_list([10,20,30,40,40,40,70,80,99],40,100) 6 >>> count_range_in_list(['a','b','c','d','e','f'],'a','e') 5 >>> count_range_in_list([7,8,9,15,17,19,45],15,20) 3 """
ctr = 0 for x in li: if min_val <= x <= max_val: ctr += 1 return ctr
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([10,20,30,40,40,40,70,80,99],40,100) == 6 assert candidate(['a','b','c','d','e','f'],'a','e') == 5 assert candidate([7,8,9,15,17,19,45],15,20) == 3
count_range_in_list
README.md exists but content is empty. Use the Edit dataset card button to edit it.
Downloads last month
33
Edit dataset card