JingjingZhai's picture
Update README.md
ce38574 verified
metadata
license: apache-2.0

Dataset Overview

The dataset consists of five tasks for cross-species modeling plant genomes at single-nucleotide resolution in plants. These tasks are:

  1. Translation Initiation Site (TIS) Prediction
  2. Translation Termination Site (TTS) Prediction
  3. Splice Donor Site Prediction
  4. Splice Acceptor Site Prediction
  5. Evolutionary Conservation Prediction

Tasks 1-4: Site Predictions

  • Training Dataset: Generated from Arabidopsis chromosomes 1-4
  • Validation Dataset: Generated from Arabidopsis chromosome 5
  • Testing Datasets: Compiled from rice, sorghum, and maize

Task 5: Evolutionary Conservation Prediction

  • Training Dataset: Generated from sorghum chromosomes 1-9
  • Validation Dataset: Generated from sorghum chromosome 10
  • Testing Datasets: Compiled in maize

This datasets facilitate robust cross-species nucleotide annotation.

Dataset sizes

TIS, TTS, Donor, Acceptor

TIS TTS Donor Acceptor
# of positives # of negatives # of positives # of negatives # of positives # of negatives # of positives # of negatives
Training on Arabidopsis chromosome 1-4 24,711 173,880 25,112 220,452 96,752 483,268 97,224 536,179
Validation on Arabidopsis chromosome 5 7,311 50,514 7,461 64,365 29,377 140,536 29,567 155,397
Rice test 2,974 1,400,115 2,974 3,718,029 21,963 3,764,549 21,963 4,151,774
Sorghum test 3,214 3,937,719 3,214 10,445,530 24,801 10,821,941 24,801 12,640,573
Maize test 3,098 11,265,574 3,098 29,535,973 24,399 34,516,038 24,399 40,025,899

Evolutionary conservation

# of positives # of negative
Train 429,043 429,043
Validation 19,030 19,030
Test 947,769 976,230

How to use

from datasets import load_dataset
import pandas as pd
repo_id = 'kuleshov-group/cross-species-single-nucleotide-annotation'
tis = load_dataset(repo_id, data_files={'train': 'TIS/train.tsv', 'valid': 'TIS/valid.tsv', 'test_rice':'TIS/test_rice.tsv', 'test_sorghum':'TIS/test_sorghum.tsv', 'test_maize':'TIS/test_maize.tsv'})
tis_train = tis['train']
# convert to pandas dataframe
tis_train_df = tis_train.to_pandas()