miniCTX
Collection
7 items
•
Updated
state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
⊢ r ∈ annihilator (span R s) ↔ ∀ (n : ↑s), r • ↑n = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
| rw [Submodule.mem_annihilator] | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
| Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
⊢ (∀ n ∈ span R s, r • n = 0) ↔ ∀ (n : ↑s), r • ↑n = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
| constructor | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
| Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mp
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
⊢ (∀ n ∈ span R s, r • n = 0) → ∀ (n : ↑s), r • ↑n = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· | intro h n | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· | Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mp
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
h : ∀ n ∈ span R s, r • n = 0
n : ↑s
⊢ r • ↑n = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
| exact h _ (Submodule.subset_span n.prop) | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
| Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mpr
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
⊢ (∀ (n : ↑s), r • ↑n = 0) → ∀ n ∈ span R s, r • n = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· | intro h n hn | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· | Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mpr
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
h : ∀ (n : ↑s), r • ↑n = 0
n : M
hn : n ∈ span R s
⊢ r • n = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
| refine Submodule.span_induction hn ?_ ?_ ?_ ?_ | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
| Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mpr.refine_1
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
h : ∀ (n : ↑s), r • ↑n = 0
n : M
hn : n ∈ span R s
⊢ ∀ x ∈ s, r • x = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· | intro x hx | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· | Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mpr.refine_1
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
h : ∀ (n : ↑s), r • ↑n = 0
n : M
hn : n ∈ span R s
x : M
hx : x ∈ s
⊢ r • x = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
| exact h ⟨x, hx⟩ | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
| Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mpr.refine_2
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
h : ∀ (n : ↑s), r • ↑n = 0
n : M
hn : n ∈ span R s
⊢ r • 0 = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· | exact smul_zero _ | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· | Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mpr.refine_3
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
h : ∀ (n : ↑s), r • ↑n = 0
n : M
hn : n ∈ span R s
⊢ ∀ (x y : M), r • x = 0 → r • y = 0 → r • (x + y) = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· | intro x y hx hy | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· | Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mpr.refine_3
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
h : ∀ (n : ↑s), r • ↑n = 0
n : M
hn : n ∈ span R s
x y : M
hx : r • x = 0
hy : r • y = 0
⊢ r • (x + y) = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
| rw [smul_add, hx, hy, zero_add] | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
| Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mpr.refine_4
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
h : ∀ (n : ↑s), r • ↑n = 0
n : M
hn : n ∈ span R s
⊢ ∀ (a : R) (x : M), r • x = 0 → r • a • x = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· | intro a x hx | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· | Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mpr.refine_4
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
h : ∀ (n : ↑s), r • ↑n = 0
n : M
hn : n ∈ span R s
a : R
x : M
hx : r • x = 0
⊢ r • a • x = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
| rw [smul_comm, hx, smul_zero] | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
| Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
g : M
r : R
⊢ r ∈ annihilator (span R {g}) ↔ r • g = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by | simp [mem_annihilator_span] | theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by | Mathlib.RingTheory.Ideal.Operations.77_0.5qK551sG47yBciY | theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
p : M → Prop
x : M
H : x ∈ I • N
Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n)
H1 : ∀ (x y : M), p x → p y → p (x + y)
⊢ p x | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
| have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
| Mathlib.RingTheory.Ideal.Operations.113_0.5qK551sG47yBciY | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
p : M → Prop
x : M
H : x ∈ I • N
Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n)
H1 : ∀ (x y : M), p x → p y → p (x + y)
⊢ p 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by | simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by | Mathlib.RingTheory.Ideal.Operations.113_0.5qK551sG47yBciY | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
p : M → Prop
x : M
H : x ∈ I • N
Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n)
H1 : ∀ (x y : M), p x → p y → p (x + y)
H0 : p 0
⊢ p x | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
| refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1 | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
| Mathlib.RingTheory.Ideal.Operations.113_0.5qK551sG47yBciY | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
p : M → Prop
x : M
H : x ∈ I • N
Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n)
H1 : ∀ (x y : M), p x → p y → p (x + y)
H0 : p 0
⊢ ∀ (i : ↥I), ∀ x ∈ map ((LinearMap.lsmul R M) ↑i) N, p x | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
| rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩ | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
| Mathlib.RingTheory.Ideal.Operations.113_0.5qK551sG47yBciY | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x | Mathlib_RingTheory_Ideal_Operations |
case mk.intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
p : M → Prop
x : M
H : x ∈ I • N
Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n)
H1 : ∀ (x y : M), p x → p y → p (x + y)
H0 : p 0
i : R
hi : i ∈ I
m j : M
hj : j ∈ ↑N
hj' : ((LinearMap.lsmul R M) ↑{ val := i, property := hi }) j = m
⊢ p m | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
| rw [← hj'] | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
| Mathlib.RingTheory.Ideal.Operations.113_0.5qK551sG47yBciY | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x | Mathlib_RingTheory_Ideal_Operations |
case mk.intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
p : M → Prop
x : M
H : x ∈ I • N
Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n)
H1 : ∀ (x y : M), p x → p y → p (x + y)
H0 : p 0
i : R
hi : i ∈ I
m j : M
hj : j ∈ ↑N
hj' : ((LinearMap.lsmul R M) ↑{ val := i, property := hi }) j = m
⊢ p (((LinearMap.lsmul R M) ↑{ val := i, property := hi }) j) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
| exact Hb _ hi _ hj | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
| Mathlib.RingTheory.Ideal.Operations.113_0.5qK551sG47yBciY | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
x : M
hx : x ∈ I • N
p : (x : M) → x ∈ I • N → Prop
Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (_ : r • n ∈ I • N)
H1 : ∀ (x : M) (hx : x ∈ I • N) (y : M) (hy : y ∈ I • N), p x hx → p y hy → p (x + y) (_ : x + y ∈ I • N)
⊢ p x hx | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
| refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H | /-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
| Mathlib.RingTheory.Ideal.Operations.123_0.5qK551sG47yBciY | /-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
x : M
hx : x ∈ I • N
p : (x : M) → x ∈ I • N → Prop
Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (_ : r • n ∈ I • N)
H1 : ∀ (x : M) (hx : x ∈ I • N) (y : M) (hy : y ∈ I • N), p x hx → p y hy → p (x + y) (_ : x + y ∈ I • N)
⊢ ∃ (x_1 : x ∈ I • N), p x x_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
| exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩ | /-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
| Mathlib.RingTheory.Ideal.Operations.123_0.5qK551sG47yBciY | /-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I✝ J : Ideal R
N P : Submodule R M
I : Ideal R
m x : M
hx : x ∈ I • span R {m}
m1 m2 : M
x✝¹ : ∃ y ∈ I, y • m = m1
x✝ : ∃ y ∈ I, y • m = m2
y1 : R
hyi1 : y1 ∈ I
hy1 : y1 • m = m1
y2 : R
hyi2 : y2 ∈ I
hy2 : y2 • m = m2
⊢ (y1 + y2) • m = m1 + m2 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by | rw [add_smul, hy1, hy2] | theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by | Mathlib.RingTheory.Ideal.Operations.134_0.5qK551sG47yBciY | theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I✝ J : Ideal R
N P : Submodule R M
I : Ideal R
f : R →ₗ[R] M
⊢ map f I ≤ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
| rintro _ ⟨y, hy, rfl⟩ | theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
| Mathlib.RingTheory.Ideal.Operations.162_0.5qK551sG47yBciY | theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) | Mathlib_RingTheory_Ideal_Operations |
case intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I✝ J : Ideal R
N P : Submodule R M
I : Ideal R
f : R →ₗ[R] M
y : R
hy : y ∈ ↑I
⊢ f y ∈ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
| rw [← mul_one y, ← smul_eq_mul, f.map_smul] | theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
| Mathlib.RingTheory.Ideal.Operations.162_0.5qK551sG47yBciY | theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) | Mathlib_RingTheory_Ideal_Operations |
case intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I✝ J : Ideal R
N P : Submodule R M
I : Ideal R
f : R →ₗ[R] M
y : R
hy : y ∈ ↑I
⊢ y • f 1 ∈ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
| exact smul_mem_smul hy mem_top | theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
| Mathlib.RingTheory.Ideal.Operations.162_0.5qK551sG47yBciY | theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I✝ J : Ideal R
N P : Submodule R M
I : Ideal R
⊢ I * annihilator I = ⊥ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by | rw [mul_comm, annihilator_mul] | @[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by | Mathlib.RingTheory.Ideal.Operations.179_0.5qK551sG47yBciY | @[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
r : R
N : Submodule R M
⊢ Ideal.span {r} • N = r • N | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
| have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
| Mathlib.RingTheory.Ideal.Operations.240_0.5qK551sG47yBciY | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
r : R
N : Submodule R M
⊢ span R (⋃ t ∈ N, {r • t}) = r • N | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
| convert span_eq (r • N) | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
| Mathlib.RingTheory.Ideal.Operations.240_0.5qK551sG47yBciY | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N | Mathlib_RingTheory_Ideal_Operations |
case h.e'_2.h.e'_6
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
r : R
N : Submodule R M
⊢ ⋃ t ∈ N, {r • t} = ↑(r • N) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
| exact (Set.image_eq_iUnion _ (N : Set M)).symm | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
| Mathlib.RingTheory.Ideal.Operations.240_0.5qK551sG47yBciY | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
r : R
N : Submodule R M
this : span R (⋃ t ∈ N, {r • t}) = r • N
⊢ Ideal.span {r} • N = r • N | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
| conv_lhs => rw [← span_eq N, span_smul_span] | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
| Mathlib.RingTheory.Ideal.Operations.240_0.5qK551sG47yBciY | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
r : R
N : Submodule R M
this : span R (⋃ t ∈ N, {r • t}) = r • N
| Ideal.span {r} • N | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => | rw [← span_eq N, span_smul_span] | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => | Mathlib.RingTheory.Ideal.Operations.240_0.5qK551sG47yBciY | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N | Mathlib_RingTheory_Ideal_Operations |
Lean 4 tactic prediction examples extracted from Mathlib.
These examples have not been formatted for instruction tuning (including data splits).
Please see l3lab/ntp-mathlib-instruct-*
for datasets with instruction tuning examples.
Generated using ntptoolkit
's ntp-training-data
.
It used the following config for ntp-training-data
:
{
"repo": "https://github.com/leanprover-community/mathlib4",
"commit": "cf8e23a62939ed7cc530fbb68e83539730f32f86",
"lean": "leanprover/lean4:v4.4.0",
"name": "mathlib",
"import_file": "Mathlib.lean",
"imports": ["Mathlib"]
}
ds = datasets.load_dataset('l3lab/ntp-mathlib')
print(len(ds['train']))
# ==> 307049
{
'state': 'proof state',
'srcUpToTactic': 'source up to tactic invocation',
'nextTactic': 'tactic',
'declUpToTactic': 'declariation up to tactic invocation',
'declId': 'unique ID for declaration',
'decl': 'declaration',
'file_tag': 'file ID'
}
Please cite:
@misc{hu2024minictx,
title={miniCTX: Neural Theorem Proving with (Long-)Contexts},
author={Jiewen Hu and Thomas Zhu and Sean Welleck},
year={2024},
eprint={2408.03350},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2408.03350},
}