Datasets:
metadata
dataset_info:
features:
- name: image
dtype: image
- name: caption
list: string
- name: sentids
list: string
- name: split
dtype: string
- name: img_id
dtype: string
- name: filename
dtype: string
splits:
- name: train
num_bytes: 4044387988
num_examples: 29000
- name: test
num_bytes: 142155397
num_examples: 1000
- name: validation
num_bytes: 140557396.192
num_examples: 1014
download_size: 4306311970
dataset_size: 4327100781.192
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: validation
path: data/validation-*
task_categories:
- text-generation
- image-to-text
- text-to-image
language:
- pt
pretty_name: Flickr30K Portuguese Translated
size_categories:
- 10K<n<100K
🎉 Flickr30K Translated for Portuguese Image Captioning
💾 Dataset Summary
Flickr30K Portuguese Translated, a multimodal dataset for Portuguese image captioning with 31,014 images, each accompanied by five descriptive captions that have been generated by human annotators for every individual image. The original English captions were rendered into Portuguese through the utilization of the Google Translator API.
The dataset is one of the results of work available at: https://github.com/laicsiifes/ved-transformer-caption-ptbr.
🧑💻 Hot to Get Started with the Dataset
from datasets import load_dataset
dataset = load_dataset('laicsiifes/flickr30k-pt-br')
✍️ Languages
The images descriptions in the dataset are in Portuguese.
🧱 Dataset Structure
📝 Data Instances
An example looks like below:
{
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x333>,
'caption':[
'Um cachorro preto carrega um brinquedo verde na boca enquanto caminha pela grama.',
'Um cachorro preto molhado carrega um brinquedo verde pela grama.',
'Um cachorro preto carregando algo pela grama.',
'Um cachorro na grama com um item azul na boca.',
'Um cachorro preto tem um brinquedo azul na boca.'
],
'sentids': ['450', '451', '452', '453', '454'],
'split': 'train',
'img_id': '90',
'filename': '1026685415.jpg'
}
🗃️ Data Fields
The data instances have the following fields:
image
: aPIL.Image.Image
object containing image.caption
: alist
ofstr
containing 5 captions related to image.sentids
: alist
ofstr
containing 5 ordered identification numbers related to each caption.split
: astr
containing data split. It stores texts:train
,val
ortest
.img_id
: astr
containing image identification number.filename
: astr
containing name of image file.
✂️ Data Splits
The dataset is partitioned using the Karpathy splitting appoach for Image Captioning (Karpathy and Fei-Fei, 2015).
Split | Samples | Average Caption Length (Words) |
---|---|---|
Train | 29,000 | 12.1 ± 5.1 |
Validation | 1,014 | 12.3 ± 5.3 |
Test | 1,000 | 12.2 ± 5.4 |
Total | 31,014 | 12.1 ± 5.2 |
📋 BibTeX entry and citation info
@inproceedings{bromonschenkel2024comparative,
title={A Comparative Evaluation of Transformer-Based Vision Encoder-Decoder Models for Brazilian Portuguese Image Captioning},
author={Bromonschenkel, Gabriel and Oliveira, Hil{\'a}rio and Paix{\~a}o, Thiago M},
booktitle={2024 37th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)},
pages={1--6},
year={2024},
organization={IEEE}
}