|
import json |
|
import os |
|
from collections import OrderedDict, defaultdict |
|
from math import ceil |
|
|
|
import numpy as np |
|
import pandas as pd |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
CCAGT_CLASSES = OrderedDict( |
|
{ |
|
1: "NUCLEUS", |
|
2: "CLUSTER", |
|
3: "SATELLITE", |
|
4: "NUCLEUS_OUT_OF_FOCUS", |
|
5: "OVERLAPPED_NUCLEI", |
|
6: "NON_VIABLE_NUCLEUS", |
|
7: "LEUKOCYTE_NUCLEUS", |
|
} |
|
) |
|
|
|
_LICENSE = "CC BY NC 3.0 License" |
|
|
|
_CITATION = """\ |
|
@misc{CCAgTDataset, |
|
doi = {10.17632/WG4BPM33HJ.2}, |
|
url = {https://data.mendeley.com/datasets/wg4bpm33hj/2}, |
|
author = {Jo{\\~{a}}o Gustavo Atkinson Amorim and Andr{\'{e}} Vict{\'{o}}ria Matias and Tainee Bottamedi and Vinícius Sanches and Ane Francyne Costa and Fabiana Botelho De Miranda Onofre and Alexandre Sherlley Casimiro Onofre and Aldo von Wangenheim}, |
|
title = {CCAgT: Images of Cervical Cells with AgNOR Stain Technique}, |
|
publisher = {Mendeley}, |
|
year = {2022}, |
|
copyright = {Attribution-NonCommercial 3.0 Unported} |
|
} |
|
""" |
|
|
|
_HOMEPAGE = "https://data.mendeley.com/datasets/wg4bpm33hj" |
|
|
|
_DESCRIPTION = """\ |
|
The CCAgT (Images of Cervical Cells with AgNOR Stain Technique) dataset contains 9339 images (1600x1200 resolution where each pixel is 0.111µmX0.111µm) from 15 different slides stained using the AgNOR technique. |
|
Each image has at least one label. In total, this dataset has more than 63K instances of annotated object. |
|
The images are from the patients of the Gynecology and Colonoscopy Outpatient Clinic of the Polydoro Ernani de São Thiago University Hospital of the Universidade Federal de Santa Catarina (HU-UFSC). |
|
""" |
|
|
|
_DATA_URL = "https://md-datasets-cache-zipfiles-prod.s3.eu-west-1.amazonaws.com/wg4bpm33hj-2.zip" |
|
|
|
|
|
def tvt(ids, tvt_size, seed=1609): |
|
"""From a list of indexes/ids (int) will generate the train-validation-test data. |
|
|
|
Based on `github.com/scikit-learn/scikit-learn/blob/37ac6788c9504ee409b75e5e24ff7d86c90c2ffb/sklearn/model_selection/_split.py#L2321` |
|
""" |
|
n_samples = len(ids) |
|
|
|
qtd = { |
|
"valid": ceil(n_samples * tvt_size[1]), |
|
"test": ceil(n_samples * tvt_size[2]), |
|
} |
|
qtd["train"] = int(n_samples - qtd["valid"] - qtd["test"]) |
|
|
|
rng = np.random.RandomState(seed) |
|
permutatation = rng.permutation(ids) |
|
|
|
out = { |
|
"train": set(permutatation[: qtd["train"]]), |
|
"valid": set(permutatation[qtd["train"] : qtd["train"] + qtd["valid"]]), |
|
"test": set(permutatation[qtd["train"] + qtd["valid"] :]), |
|
} |
|
|
|
return out["train"], out["valid"], out["test"] |
|
|
|
|
|
def annotations_per_image(df): |
|
""" |
|
based on: https://github.com/johnnv1/CCAgT-utils/blob/54ade78e4ddb2e2ed9507b8a1633940897767cac/CCAgT_utils/describe.py#L152 |
|
""" |
|
df_describe_images = df.groupby(["image_id", "category_id"]).size().reset_index().rename(columns={0: "count"}) |
|
df_describe_images = df_describe_images.pivot(columns=["category_id"], index="image_id") |
|
df_describe_images = df_describe_images.rename(CCAGT_CLASSES, axis=1) |
|
df_describe_images["qtd_annotations"] = df_describe_images.sum(axis=1) |
|
df_describe_images = df_describe_images.fillna(0) |
|
df_describe_images["NORs"] = ( |
|
df_describe_images[ |
|
"count", |
|
CCAGT_CLASSES[2], |
|
] |
|
+ df_describe_images[ |
|
"count", |
|
CCAGT_CLASSES[3], |
|
] |
|
) |
|
|
|
return df_describe_images |
|
|
|
|
|
def tvt_by_nors(df, tvt_size=(0.7, 0.15, 0.15), **kwargs): |
|
"""This will split the CCAgT annotations based on the number of NORs |
|
into each image. With a silly separation, first will split |
|
between each fold images with one or less NORs, after will split |
|
images with the amount of NORs is between 2 and 7, and at least will |
|
split images that have more than 7 NORs. |
|
|
|
based on `https://github.com/johnnv1/CCAgT-utils/blob/54ade78e4ddb2e2ed9507b8a1633940897767cac/CCAgT_utils/split.py#L64` |
|
""" |
|
if sum(tvt_size) != 1: |
|
raise ValueError("The sum of `tvt_size` need to be equal to 1!") |
|
|
|
df_describe_imgs = annotations_per_image(df) |
|
|
|
img_ids = {} |
|
img_ids["low_nors"] = df_describe_imgs.loc[(df_describe_imgs["NORs"] < 2)].index |
|
img_ids["medium_nors"] = df_describe_imgs[(df_describe_imgs["NORs"] >= 2) * (df_describe_imgs["NORs"] <= 7)].index |
|
img_ids["high_nors"] = df_describe_imgs[(df_describe_imgs["NORs"] > 7)].index |
|
|
|
train_ids = set({}) |
|
valid_ids = set({}) |
|
test_ids = set({}) |
|
|
|
for k, ids in img_ids.items(): |
|
logger.info(f"Splitting {len(ids)} images with {k} quantity...") |
|
if len(ids) == 0: |
|
continue |
|
_train, _valid, _test = tvt(ids, tvt_size, **kwargs) |
|
logger.info(f">T: {len(_train)} V: {len(_valid)} T: {len(_test)}") |
|
train_ids = train_ids.union(_train) |
|
valid_ids = valid_ids.union(_valid) |
|
test_ids = test_ids.union(_test) |
|
|
|
return train_ids, valid_ids, test_ids |
|
|
|
|
|
def get_basename(path): |
|
return os.path.splitext(os.path.basename(path))[0] |
|
|
|
|
|
def get_slide_id(path): |
|
bn = get_basename(path) |
|
slide_id = bn.split("_")[0] |
|
return slide_id |
|
|
|
|
|
class CCAgTConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for CCAgT.""" |
|
|
|
seed = 1609 |
|
tvt_size = (0.7, 0.15, 0.15) |
|
|
|
|
|
class CCAgT(datasets.GeneratorBasedBuilder): |
|
"""Images of Cervical Cells with AgNOR Stain Technique (CCAgT) dataset""" |
|
|
|
test_dummy_data = False |
|
|
|
VERSION = datasets.Version("2.0.0") |
|
|
|
BUILDER_CONFIG_CLASS = CCAgTConfig |
|
BUILDER_CONFIGS = [ |
|
CCAgTConfig(name="semantic_segmentation", version=VERSION, description="The semantic segmentation variant."), |
|
CCAgTConfig(name="object_detection", version=VERSION, description="The object detection variant."), |
|
CCAgTConfig(name="instance_segmentation", version=VERSION, description="The instance segmentation variant."), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "semantic_segmentation" |
|
|
|
def _info(self): |
|
assert len(CCAGT_CLASSES) == 7 |
|
|
|
if self.config.name == "semantic_segmentation": |
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"annotation": datasets.Image(), |
|
} |
|
) |
|
elif self.config.name == "object_detection": |
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"objects": datasets.Sequence( |
|
{ |
|
"bbox": datasets.Sequence(datasets.Value("float32"), length=4), |
|
"label": datasets.ClassLabel(names=list(CCAGT_CLASSES.values())), |
|
} |
|
), |
|
} |
|
) |
|
elif self.config.name == "instance_segmentation": |
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"objects": datasets.Sequence( |
|
{ |
|
"bbox": datasets.Sequence(datasets.Value("float32"), length=4), |
|
"segment": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), |
|
"label": datasets.ClassLabel(names=list(CCAGT_CLASSES.values())), |
|
} |
|
), |
|
} |
|
) |
|
else: |
|
raise NotImplementedError |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _download_and_extract_all(self, dl_manager): |
|
def extracted_by_slide(paths): |
|
return {get_slide_id(path): dl_manager.extract(path) for path in paths} |
|
|
|
data_dir = dl_manager.download_and_extract(_DATA_URL) |
|
base_path = os.path.join(data_dir, "wg4bpm33hj-2") |
|
|
|
logger.info("Extracting images...") |
|
self.images_base_dir = os.path.join(base_path, "images") |
|
images_to_extract = [ |
|
os.path.join(self.images_base_dir, fn) for fn in os.listdir(self.images_base_dir) if fn.endswith(".zip") |
|
] |
|
self.images_extracted = extracted_by_slide(images_to_extract) |
|
|
|
if self.config.name == "semantic_segmentation": |
|
logger.info("Extracting masks...") |
|
self.masks_base_dir = os.path.join(base_path, "masks") |
|
masks_to_extract = [ |
|
os.path.join(self.masks_base_dir, fn) for fn in os.listdir(self.masks_base_dir) if fn.endswith(".zip") |
|
] |
|
self.masks_extracted = extracted_by_slide(masks_to_extract) |
|
elif self.config.name in {"object_detection", "instance_segmentation"}: |
|
logger.info("Reading COCO OD file...") |
|
ccagt_OD_COCO_path = os.path.join(base_path, "CCAgT_COCO_OD.json") |
|
with open(ccagt_OD_COCO_path, "r", encoding="utf-8") as json_file: |
|
coco_OD = json.load(json_file) |
|
|
|
self._imageid_to_coco_OD_annotations = defaultdict(list) |
|
for labels in coco_OD["annotations"]: |
|
self._imageid_to_coco_OD_annotations[labels["image_id"]].append(labels) |
|
|
|
logger.info("Loading dataset info...") |
|
ccagt_raw_path = os.path.join(base_path, "CCAgT.parquet.gzip") |
|
with open(ccagt_raw_path, "rb") as f: |
|
self._ccagt_info = pd.read_parquet(f, columns=["image_name", "category_id", "image_id", "slide_id"]) |
|
self._bn_to_imageid = pd.Series( |
|
self._ccagt_info["image_id"].values, index=self._ccagt_info["image_name"] |
|
).to_dict() |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
def build_path(basename, tp="images"): |
|
slide = basename.split("_")[0] |
|
if tp == "images": |
|
dir_path = self.images_extracted[slide] |
|
ext = ".jpg" |
|
else: |
|
dir_path = self.masks_extracted[slide] |
|
ext = ".png" |
|
|
|
return os.path.join(dir_path, slide, basename + ext) |
|
|
|
def images_and_masks(basenames): |
|
for bn in basenames: |
|
yield build_path(bn), build_path(bn, "masks") |
|
|
|
def images_and_boxes(basenames): |
|
for bn in basenames: |
|
image_id = self._bn_to_imageid[bn] |
|
labels = [ |
|
{"bbox": annotation["bbox"], "label": annotation["category_id"] - 1} |
|
for annotation in self._imageid_to_coco_OD_annotations[image_id] |
|
] |
|
|
|
yield build_path(bn), labels |
|
|
|
def images_and_instances(basenames): |
|
for bn in basenames: |
|
image_id = self._bn_to_imageid[bn] |
|
instances = [ |
|
{ |
|
"bbox": annotation["bbox"], |
|
"label": annotation["category_id"] - 1, |
|
"segment": annotation["segmentation"], |
|
} |
|
for annotation in self._imageid_to_coco_OD_annotations[image_id] |
|
] |
|
|
|
yield build_path(bn), instances |
|
|
|
self._download_and_extract_all(dl_manager) |
|
|
|
logger.info("Splitting dataset based on the NORs quantity by image...") |
|
train_ids, valid_ids, test_ids = tvt_by_nors( |
|
self._ccagt_info, tvt_size=self.config.tvt_size, seed=self.config.seed |
|
) |
|
train_bn_images = self._ccagt_info.loc[self._ccagt_info["image_id"].isin(train_ids), "image_name"].unique() |
|
valid_bn_images = self._ccagt_info.loc[self._ccagt_info["image_id"].isin(valid_ids), "image_name"].unique() |
|
test_bn_images = self._ccagt_info.loc[self._ccagt_info["image_id"].isin(test_ids), "image_name"].unique() |
|
|
|
if self.config.name == "semantic_segmentation": |
|
train_data = images_and_masks(train_bn_images) |
|
valid_data = images_and_masks(valid_bn_images) |
|
test_data = images_and_masks(test_bn_images) |
|
elif self.config.name == "object_detection": |
|
train_data = images_and_boxes(train_bn_images) |
|
valid_data = images_and_boxes(valid_bn_images) |
|
test_data = images_and_boxes(test_bn_images) |
|
elif self.config.name == "instance_segmentation": |
|
train_data = images_and_instances(train_bn_images) |
|
valid_data = images_and_instances(valid_bn_images) |
|
test_data = images_and_instances(test_bn_images) |
|
else: |
|
raise NotImplementedError |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"data": train_data}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"data": test_data}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"data": valid_data}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data): |
|
if self.config.name == "semantic_segmentation": |
|
for img_path, msk_path in data: |
|
img_basename = get_basename(img_path) |
|
image_id = self._bn_to_imageid[img_basename] |
|
yield image_id, { |
|
"image": img_path, |
|
"annotation": msk_path, |
|
} |
|
elif self.config.name == "object_detection": |
|
for img_path, labels in data: |
|
img_basename = get_basename(img_path) |
|
image_id = self._bn_to_imageid[img_basename] |
|
yield image_id, {"image": img_path, "objects": labels} |
|
elif self.config.name == "instance_segmentation": |
|
for img_path, instances in data: |
|
img_basename = get_basename(img_path) |
|
image_id = self._bn_to_imageid[img_basename] |
|
yield image_id, {"image": img_path, "objects": instances} |
|
else: |
|
raise NotImplementedError |
|
|