File size: 5,081 Bytes
68a157b
727ca82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68a157b
727ca82
 
 
 
 
 
 
 
 
 
 
 
 
fd54e00
727ca82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e2dce
727ca82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd54e00
727ca82
 
 
 
 
 
 
 
 
 
 
 
 
fd54e00
727ca82
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- en
license:
- cc-by-nc-sa-4.0
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
source_datasets:
- extended
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
pretty_name: LexFiles
configs:
- eu_legislation
- eu_court_cases
- uk_legislation
- uk_court_cases
- us_legislation
- us_court_cases
- us_contracts
- canadian_legislation
- canadian_court_cases
- indian_court_cases
---


# Dataset Card for "LexFiles"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Dataset Specifications](#supported-tasks-and-leaderboards)

## Dataset Description

- **Homepage:** https://github.com/coastalcph/lexlms
- **Repository:** https://github.com/coastalcph/lexlms
- **Paper:** https://arxiv.org/abs/2305.07507
- **Point of Contact:** [Ilias Chalkidis](mailto:[email protected])

### Dataset Summary

The LeXFiles is a new diverse English multinational legal corpus that we created including 11 distinct sub-corpora that cover legislation and case law from 6 primarily English-speaking legal systems (EU, CoE, Canada, US, UK, India).
The corpus contains approx. 19 billion tokens. In comparison, the "Pile of Law" corpus released by Hendersons et al. (2022) comprises 32 billion in total, where the majority (26/30) of sub-corpora come from the United States of America (USA), hence the corpus as a whole is biased towards the US legal system in general, and the federal or state jurisdiction in particular, to a significant extent.


### Dataset Specifications

| Corpus                            | Corpus alias         | Documents | Tokens | Pct.   | Sampl. (a=0.5) | Sampl. (a=0.2) |
|-----------------------------------|----------------------|-----------|--------|--------|----------------|----------------|
|  EU Legislation               | `eu-legislation`     | 93.7K     | 233.7M | 1.2%   | 5.0%           | 8.0%           |
| EU Court Decisions           | `eu-court-cases`     | 29.8K     | 178.5M | 0.9%   | 4.3%           | 7.6%           |
| ECtHR Decisions              | `ecthr-cases`        | 12.5K     | 78.5M  | 0.4%   | 2.9%           | 6.5%           |
| UK Legislation               | `uk-legislation`     | 52.5K     | 143.6M | 0.7%   | 3.9%           | 7.3%           |
| UK Court Decisions           | `uk-court-cases`     | 47K       | 368.4M | 1.9%   | 6.2%           | 8.8%           |
| Indian Court Decisions    | `indian-court-cases` | 34.8K     | 111.6M | 0.6%   | 3.4%           | 6.9%           |
| Canadian Legislation     | `canadian-legislation` | 6K        | 33.5M  | 0.2%   | 1.9%           | 5.5%           |
| Canadian Court Decisions | `canadian-court-cases` | 11.3K     | 33.1M  | 0.2%   | 1.8%           | 5.4%           |
| U.S. Court Decisions [1]     | `court-listener`     | 4.6M      | 11.4B  | 59.2%  | 34.7%          | 17.5%          |
| U.S. Legislation             | `us-legislation`     | 518       | 1.4B   | 7.4%   | 12.3%          | 11.5%          |
| U.S. Contracts               | `us-contracts`       | 622K      | 5.3B   | 27.3%  | 23.6%          | 15.0%          |
| Total                             | `lexlms/lex_files`    | 5.8M      | 18.8B  | 100%   | 100%           | 100%           |

[1] We consider only U.S. Court Decisions from 1965 onwards (cf. post Civil Rights Act), as a hard threshold for cases relying on severely out-dated and in many cases harmful law standards. The rest of the corpora include more recent documents.

[2] Sampling (Sampl.) ratios are computed following the exponential sampling introduced by Lample et al. (2019).

Additional corpora not considered for pre-training, since they do not represent factual legal knowledge.

| Corpus                                 | Corpus alias           | Documents | Tokens | 
|----------------------------------------|------------------------|-----------|--------|
| Legal web pages from C4    | `legal-c4`             | 284K      | 340M   |


### Citation

[*Ilias Chalkidis\*, Nicolas Garneau\*, Catalina E.C. Goanta, Daniel Martin Katz, and Anders Søgaard.*
*LeXFiles and LegalLAMA: Facilitating English Multinational Legal Language Model Development.*
*2022. In the Proceedings of the 61th Annual Meeting of the Association for Computational Linguistics. Toronto, Canada.*](https://arxiv.org/abs/2305.07507)
```
@inproceedings{chalkidis-garneau-etal-2023-lexlms,
    title = {{LeXFiles and LegalLAMA: Facilitating English Multinational Legal Language Model Development}},
    author = "Chalkidis*, Ilias and 
              Garneau*, Nicolas and
              Goanta, Catalina and 
              Katz, Daniel Martin and 
              Søgaard, Anders",
    booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics",
    month = june,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2305.07507",
}
```