Datasets:

ArXiv:
License:
Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 2 new columns ({'PM25', 'PM10'}) and 7 missing columns ({'CLOUD_BASE_PRESSURE', 'HCHO', 'CLOUD_TOP_PRESSURE', 'CH4', 'AER_AI_340_380', 'CO', 'AER_AI_354_388'}).

This happened while the csv dataset builder was generating data using

hf://datasets/links-ads/mil-qualair/stations.csv (at revision 287b8743d9c12d30faead4922738c2d0e6064ea0)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              date: string
              station_id: int64
              city: string
              year: int64
              NO2: double
              O3: double
              PM10: double
              PM25: double
              SO2: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1238
              to
              {'date': Value(dtype='string', id=None), 'station_id': Value(dtype='int64', id=None), 'city': Value(dtype='string', id=None), 'year': Value(dtype='int64', id=None), 'CH4': Value(dtype='float64', id=None), 'CO': Value(dtype='float64', id=None), 'HCHO': Value(dtype='float64', id=None), 'NO2': Value(dtype='float64', id=None), 'O3': Value(dtype='float64', id=None), 'SO2': Value(dtype='float64', id=None), 'CLOUD_TOP_PRESSURE': Value(dtype='float64', id=None), 'CLOUD_BASE_PRESSURE': Value(dtype='float64', id=None), 'AER_AI_340_380': Value(dtype='float64', id=None), 'AER_AI_354_388': Value(dtype='float64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1324, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 938, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 2 new columns ({'PM25', 'PM10'}) and 7 missing columns ({'CLOUD_BASE_PRESSURE', 'HCHO', 'CLOUD_TOP_PRESSURE', 'CH4', 'AER_AI_340_380', 'CO', 'AER_AI_354_388'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/links-ads/mil-qualair/stations.csv (at revision 287b8743d9c12d30faead4922738c2d0e6064ea0)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

date
string
station_id
int64
city
string
year
int64
CH4
null
CO
float64
HCHO
float64
NO2
null
O3
float64
SO2
float64
CLOUD_TOP_PRESSURE
float64
CLOUD_BASE_PRESSURE
float64
AER_AI_340_380
null
AER_AI_354_388
null
2018-04-30T10-27-52
1
milan
2,018
null
0.037974
0.000395
null
0.159405
0.000412
58,506.097227
66,746.066641
null
null
2018-04-30T10-27-52
2
milan
2,018
null
0.038527
0.000494
null
0.159214
0.000884
62,029.962928
70,656.242112
null
null
2018-04-30T10-27-52
3
milan
2,018
null
0.038249
0.000402
null
0.159061
0.000274
59,537.164234
67,887.026614
null
null
2018-04-30T10-27-52
4
milan
2,018
null
0.038918
0.000493
null
0.158836
0.000583
64,873.006641
73,806.437734
null
null
2018-04-30T10-27-52
5
milan
2,018
null
0.038647
0.000499
null
0.158831
0.000636
65,132.211719
74,086.594922
null
null
2018-04-30T10-27-52
6
milan
2,018
null
0.038648
0.000475
null
0.159099
0.000677
61,772.416284
70,370.849842
null
null
2018-04-30T10-27-52
7
milan
2,018
null
0.03856
0.000465
null
0.159135
0.00065
61,021.365859
69,537.679922
null
null
2018-04-30T10-27-52
8
milan
2,018
null
0.038665
0.00045
null
0.15775
null
63,381.629648
72,140.891484
null
null
2018-04-30T10-27-52
9
milan
2,018
null
0.038594
0.000491
null
0.15923
0.00085
61,906.576328
70,520.701172
null
null
2018-05-01T10-08-54
1
milan
2,018
null
null
null
null
0.157039
0.00331
26,242.688086
30,677.560254
null
null
2018-05-01T10-08-54
2
milan
2,018
null
null
null
null
0.156873
0.003836
26,885.609582
31,400.039682
null
null
2018-05-01T10-08-54
3
milan
2,018
null
null
null
null
0.157045
0.003486
26,052.428743
30,462.55604
null
null
2018-05-01T10-08-54
4
milan
2,018
null
null
null
null
0.157489
0.002346
25,834.269063
30,210.478867
null
null
2018-05-01T10-08-54
5
milan
2,018
null
null
null
null
0.156578
0.003775
27,522.670332
32,115.134258
null
null
2018-05-01T10-08-54
6
milan
2,018
null
null
null
null
0.157332
0.003213
25,936.108981
30,331.256648
null
null
2018-05-01T10-08-54
7
milan
2,018
null
null
null
null
0.157326
0.003266
25,895.014609
30,285.905625
null
null
2018-05-01T10-08-54
8
milan
2,018
null
null
null
null
0.157423
0.003173
25,871.085977
30,250.42752
null
null
2018-05-01T10-08-54
9
milan
2,018
null
null
null
null
0.157065
0.003593
26,498.551387
30,964.767793
null
null
2018-05-02T11-31-27
1
milan
2,018
null
null
null
null
0.161591
null
60,772.72957
69,104.997031
null
null
2018-05-02T11-31-27
2
milan
2,018
null
0.031778
null
null
0.161097
null
67,406.710562
76,496.369742
null
null
2018-05-02T11-31-27
3
milan
2,018
null
null
null
null
0.161496
null
60,700.264595
69,022.490642
null
null
2018-05-02T11-31-27
4
milan
2,018
null
null
null
null
0.160897
null
65,467.06957
74,330.578828
null
null
2018-05-02T11-31-27
5
milan
2,018
null
0.031778
null
null
0.16048
null
69,180.746563
78,464.550703
null
null
2018-05-02T11-31-27
6
milan
2,018
null
null
null
null
0.161288
null
64,724.399083
73,506.598767
null
null
2018-05-02T11-31-27
7
milan
2,018
null
null
null
null
0.161385
null
63,947.500703
72,641.109609
null
null
2018-05-02T11-31-27
8
milan
2,018
null
null
null
null
0.161464
null
59,299.773945
67,459.585
null
null
2018-05-02T11-31-27
9
milan
2,018
null
null
null
null
0.161159
null
66,527.915625
75,518.666094
null
null
2018-05-03T11-12-29
1
milan
2,018
null
null
null
null
0.154993
null
61,657.761836
70,038.321719
null
null
2018-05-03T11-12-29
2
milan
2,018
null
null
null
null
0.155263
null
59,066.889461
67,167.53418
null
null
2018-05-03T11-12-29
3
milan
2,018
null
null
null
null
0.155567
null
61,802.361822
70,197.632212
null
null
2018-05-03T11-12-29
4
milan
2,018
null
null
null
null
0.155516
null
61,448.609805
69,810.382266
null
null
2018-05-03T11-12-29
5
milan
2,018
null
null
null
null
0.155283
null
58,933.514063
67,020.440234
null
null
2018-05-03T11-12-29
6
milan
2,018
null
null
null
null
0.155746
null
60,801.614321
69,091.030605
null
null
2018-05-03T11-12-29
7
milan
2,018
null
null
null
null
0.155752
null
61,030.062227
69,344.023906
null
null
2018-05-03T11-12-29
8
milan
2,018
null
null
null
null
0.155975
null
62,799.95957
71,302.505156
null
null
2018-05-03T11-12-29
9
milan
2,018
null
null
null
null
0.155368
null
59,472.31793
67,617.091172
null
null
2018-05-04T10-54-02
1
milan
2,018
null
null
0.000489
null
0.156905
0.000175
42,391.40793
49,264.014688
null
null
2018-05-04T10-54-02
2
milan
2,018
null
null
0.000555
null
0.155792
null
45,524.439228
52,105.205829
null
null
2018-05-04T10-54-02
3
milan
2,018
null
null
null
null
0.156078
0.000333
43,970.224974
50,878.904447
null
null
2018-05-04T10-54-02
4
milan
2,018
null
0.03348
0.000531
null
0.154277
null
52,116.419727
59,434.62918
null
null
2018-05-04T10-54-02
5
milan
2,018
null
0.032877
0.000613
null
0.155474
0.000149
49,715.229727
56,785.027891
null
null
2018-05-04T10-54-02
6
milan
2,018
null
null
0.000484
null
0.154846
null
47,066.007526
53,834.320348
null
null
2018-05-04T10-54-02
7
milan
2,018
null
null
0.000469
null
0.155024
null
46,397.208984
53,124.92918
null
null
2018-05-04T10-54-02
8
milan
2,018
null
null
null
null
0.154477
0.000616
49,622.235195
56,662.204023
null
null
2018-05-04T10-54-02
9
milan
2,018
null
null
0.000514
null
0.155296
null
46,412.563828
53,091.659766
null
null
2018-05-05T10-35-08
1
milan
2,018
null
0.032965
0.000609
null
0.149966
null
null
null
null
null
2018-05-05T10-35-08
2
milan
2,018
null
0.033603
0.000543
null
0.148985
null
36,416.625
41,997.00323
null
null
2018-05-05T10-35-08
3
milan
2,018
null
0.033276
0.000647
null
0.149776
null
null
null
null
null
2018-05-05T10-35-08
4
milan
2,018
null
0.03389
0.00051
null
0.148933
0.000052
null
null
null
null
2018-05-05T10-35-08
5
milan
2,018
null
0.033714
0.000485
null
0.148456
null
35,776.137383
41,279.320078
null
null
2018-05-05T10-35-08
6
milan
2,018
null
0.033681
0.000607
null
0.149277
null
null
null
null
null
2018-05-05T10-35-08
7
milan
2,018
null
0.03357
0.000625
null
0.149405
null
null
null
null
null
2018-05-05T10-35-08
8
milan
2,018
null
0.03444
0.000551
null
0.149538
0.000034
null
null
null
null
2018-05-05T10-35-08
9
milan
2,018
null
0.033666
0.000566
null
0.149077
null
36,451.720165
42,035.575408
null
null
2018-05-06T10-16-16
1
milan
2,018
null
null
0.000477
null
0.148044
0.000282
null
null
null
null
2018-05-06T10-16-16
2
milan
2,018
null
null
0.00051
null
0.148424
0.000322
null
null
null
null
2018-05-06T10-16-16
3
milan
2,018
null
null
0.000489
null
0.148263
0.000373
null
null
null
null
2018-05-06T10-16-16
4
milan
2,018
null
null
0.000549
null
0.148809
0.00045
null
null
null
null
2018-05-06T10-16-16
5
milan
2,018
null
null
0.000544
null
0.148699
0.000164
null
null
null
null
2018-05-06T10-16-16
6
milan
2,018
null
null
0.000502
null
0.148448
0.00049
null
null
null
null
2018-05-06T10-16-16
7
milan
2,018
null
null
0.000493
null
0.148351
0.000477
null
null
null
null
2018-05-06T10-16-16
8
milan
2,018
null
null
0.000567
null
0.14887
0.000438
null
null
null
null
2018-05-06T10-16-16
9
milan
2,018
null
null
0.000504
null
0.148412
0.000393
null
null
null
null
2018-05-07T11-38-08
1
milan
2,018
null
null
null
null
null
null
null
null
null
null
2018-05-07T11-38-08
2
milan
2,018
null
null
null
null
null
null
null
null
null
null
2018-05-07T11-38-08
3
milan
2,018
null
null
null
null
null
null
null
null
null
null
2018-05-07T11-38-08
4
milan
2,018
null
null
null
null
null
null
null
null
null
null
2018-05-07T11-38-08
5
milan
2,018
null
null
null
null
null
null
null
null
null
null
2018-05-07T11-38-08
6
milan
2,018
null
null
null
null
null
null
null
null
null
null
2018-05-07T11-38-08
7
milan
2,018
null
null
null
null
null
null
null
null
null
null
2018-05-07T11-38-08
8
milan
2,018
null
null
null
null
null
null
null
null
null
null
2018-05-07T11-38-08
9
milan
2,018
null
null
null
null
null
null
null
null
null
null
2018-05-08T11-19-10
1
milan
2,018
null
0.034598
0.000596
null
0.153171
0.000128
38,607.106563
44,450.194844
null
null
2018-05-08T11-19-10
2
milan
2,018
null
0.033026
0.000518
null
0.152575
0.000204
37,037.99046
42,844.011756
null
null
2018-05-08T11-19-10
3
milan
2,018
null
0.034964
0.000587
null
0.153554
0.000054
41,340.989741
47,481.591732
null
null
2018-05-08T11-19-10
4
milan
2,018
null
0.033625
0.000506
null
0.15322
0.000057
35,389.066445
41,127.467109
null
null
2018-05-08T11-19-10
5
milan
2,018
null
0.03348
0.000421
null
0.153647
null
48,204.223867
55,175.315078
null
null
2018-05-08T11-19-10
6
milan
2,018
null
0.033916
0.000458
null
0.152981
0.000243
33,919.877903
39,390.539242
null
null
2018-05-08T11-19-10
7
milan
2,018
null
0.034113
0.000465
null
0.153049
0.000246
34,229.614336
39,660.064297
null
null
2018-05-08T11-19-10
8
milan
2,018
null
0.034122
0.000448
null
0.154022
0.000143
53,390.441758
60,847.502109
null
null
2018-05-08T11-19-10
9
milan
2,018
null
0.033326
0.000461
null
0.152534
0.000296
35,127.47207
40,786.252773
null
null
2018-05-09T11-00-15
1
milan
2,018
null
0.032984
0.000352
null
0.164005
null
85,489.192266
97,183.035625
null
null
2018-05-09T11-00-15
2
milan
2,018
null
0.034201
0.000333
null
0.165235
null
94,380.430439
98,194.761719
null
null
2018-05-09T11-00-15
3
milan
2,018
null
0.033003
0.000335
null
0.163878
null
79,981.748455
92,067.37603
null
null
2018-05-09T11-00-15
4
milan
2,018
null
0.033841
0.00029
null
0.165015
null
78,176.716563
88,266.397969
null
null
2018-05-09T11-00-15
5
milan
2,018
null
0.034628
0.000284
null
0.165788
null
86,358.334609
94,117.516719
null
null
2018-05-09T11-00-15
6
milan
2,018
null
0.033907
0.0003
null
0.164851
null
82,757.367689
91,990.410479
null
null
2018-05-09T11-00-15
7
milan
2,018
null
0.03382
0.000306
null
0.164763
null
82,974.089609
92,715.061797
null
null
2018-05-09T11-00-15
8
milan
2,018
null
0.033165
0.000335
null
0.164307
0.000224
71,732.254609
81,860.563984
null
null
2018-05-09T11-00-15
9
milan
2,018
null
0.034127
0.000322
null
0.164959
null
91,321.986406
97,038.013516
null
null
2018-05-10T10-41-22
1
milan
2,018
null
0.037586
0.000229
null
0.15758
0.000042
84,813.825469
91,321.397188
null
null
2018-05-10T10-41-22
2
milan
2,018
null
0.037553
0.000155
null
0.156905
null
79,924.521785
90,990.432843
null
null
2018-05-10T10-41-22
3
milan
2,018
null
0.037783
0.000233
null
0.1573
0.000097
81,222.136676
89,052.671446
null
null
2018-05-10T10-41-22
4
milan
2,018
null
0.038174
0.00017
null
0.157596
0.000258
74,172.889609
85,134.159453
null
null
2018-05-10T10-41-22
5
milan
2,018
null
0.037556
0.000136
null
0.156775
null
82,433.806016
93,540.481094
null
null
2018-05-10T10-41-22
6
milan
2,018
null
0.037813
0.000186
null
0.157115
0.00016
74,869.594037
85,331.790209
null
null
2018-05-10T10-41-22
7
milan
2,018
null
0.03778
0.000194
null
0.157158
0.000154
75,610.915
85,516.935938
null
null
2018-05-10T10-41-22
8
milan
2,018
null
0.038637
0.000209
null
0.157484
0.000056
77,567.636484
86,788.556875
null
null
2018-05-10T10-41-22
9
milan
2,018
null
0.037646
0.000165
null
0.156956
0.000065
77,485.845156
88,375.432266
null
null
2018-05-11T10-22-28
1
milan
2,018
null
0.035108
0.00022
null
0.15232
null
null
null
null
null
End of preview.

Dataset Card for MIL-QUALAIR

The dataset has been constructed for urban air pollution forecasting in task the Milan metropolitan area and includes Sentinel-5P satellite observations, meteorological conditions, topographical features, and ground monitoring station measurements.

Dataset Details

Dataset Description

The dataset encompasses a compilation of various data sources, including Sentinel-5 satellite observations, Digital Elevation Model (DEM) data, land cover information, meteorological records, and ground-level measurements, spanning the period from 2018 to 2023 within the metropolitan area of Milan. It is curated to support the task of forecasting the concentrations of five major pollutants namely PM10, PM25, NO2, O3, SO2. This dataset has been utilized and introduced in the study Urban Air Pollution Forecasting: A Machine Learning Approach Leveraging Satellite Observations and Meteorological Forecasts.

  • Curated by: LINKS Foundation
  • Funded by: UP2030 project
  • License: MIT License

Dataset Sources [optional]

  • Paper:
@misc{https://doi.org/10.48550/arxiv.2405.19901,
  doi = {10.48550/ARXIV.2405.19901},
  url = {https://arxiv.org/abs/2405.19901},
  author = {Blanco,  Giacomo and Barco,  Luca and Innocenti,  Lorenzo and Rossi,  Claudio},
  keywords = {Machine Learning (cs.LG),  FOS: Computer and information sciences,  FOS: Computer and information sciences,  I.2.m; G.3},
  title = {Urban Air Pollution Forecasting: a Machine Learning Approach leveraging Satellite Observations and Meteorological Forecasts},
  publisher = {arXiv},
  year = {2024},
  copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International}
}

Uses

The dataset is intended to serve as a comprehensive resource for researchers and practitioners interested in studying urban air quality dynamics and developing pollution forecasting models. With its diverse array of environmental data sources, including Sentinel-5 satellite observations, Digital Elevation Model (DEM) data, land cover information, meteorological records, and ground-level measurements, the dataset offers rich insights into the complex interplay of factors influencing air pollution levels in the Milan metropolitan area. Researchers can utilize this dataset to investigate correlations between different environmental variables and pollutant concentrations, identify patterns and trends over time, and develop and validate predictive models for air quality forecasting.

Direct Use

Major dataset use case is for the development of air pollution forecasting models. By combining various data sources within the dataset, users can create a comprehensive feature set for each day. This aggregated feature set provides a robust foundation for predicting the levels of the five supported pollutants with greater accuracy. The repository presents each data source separately, allowing users to follow the aggregation process outlined in the associated paper or develop their own methodology tailored to specific research objectives.

Dataset Structure

Sentinel 5P

  • sentinel5.csv : Daily readings of Sentinel5P satellite bands, sampled around each station

DEM

  • dem.tiff : 10m-resolution map of Milan metropolitan area with Digital Elevation model measurement

Weather

  • weather.csv : Daily measurements of weather variables

Land Cover

  • land_cover/land_cover.tiff : 10m-resolution map of Milan metropolitan area land cover classification
  • land_cover/land_cover_taxonomy.json : Association between numeric class in tiff file and correspondent label
  • land_cover/land_cover_mapping.json : Mapping of land cover classes as proposed in the original work

Ground truth

  • stations.csv : Daily readings of station measurements for the five supported pollutants

Dataset Creation

Source Data

Sentinel 5P

  • ESA Copernicus Sentinel 5p mission

DEM

  • Copernicus

Weather

Land Cover

  • Copernicus Land Monitoring Service - Urban Atlas

Ground truth

  • Milan open data portal

Dataset Card Authors [optional]

Giacomo Blanco, Luca Barco, Lorenzo Innocenti and Claudio rossi

Dataset Card Contact

[email protected], [email protected], [email protected], [email protected]

Downloads last month
60