Datasets:
Tasks:
Text2Text Generation
Modalities:
Text
Languages:
code
Size:
1K - 10K
ArXiv:
Tags:
code-generation
License:
metadata
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- code
license:
- mit
multilinguality:
- monolingual
source_datasets:
- original
task_categories:
- text2text-generation
task_ids: []
pretty_name: OpenAI HumanEval-Infilling
tags:
- code-generation
HumanEval-Infilling
Dataset Description
- Repository: https://github.com/openai/human-eval-infilling
- Paper: https://arxiv.org/pdf/2207.14255
Dataset Summary
HumanEval-Infilling is a benchmark for infilling tasks, derived from HumanEval benchmark for the evaluation of code generation models.
Dataset Structure
To load the dataset you need to specify a subset. By default HumanEval-SingleLineInfilling
is loaded.
from datasets import load_dataset
ds = load_dataset("humaneval_infilling", "HumanEval-RandomSpanInfilling")
DatasetDict({
test: Dataset({
features: ['task_id', 'entry_point', 'prompt', 'suffix', 'canonical_solution', 'test'],
num_rows: 1640
})
})
Subsets
This dataset has 4 subsets: HumanEval-MultiLineInfilling, HumanEval-SingleLineInfilling, HumanEval-RandomSpanInfilling, HumanEval-RandomSpanInfillingLight. The single-line, multi-line, random span infilling and its light version have 1033, 5815, 1640 and 164 tasks, respectively.
Citation
@article{bavarian2022efficient,
title={Efficient Training of Language Models to Fill in the Middle},
author={Bavarian, Mohammad and Jun, Heewoo and Tezak, Nikolas and Schulman, John and McLeavey, Christine and Tworek, Jerry and Chen, Mark},
journal={arXiv preprint arXiv:2207.14255},
year={2022}
}