File size: 6,922 Bytes
d86d5c0 b8ed1af d86d5c0 b8ed1af d86d5c0 b8ed1af d86d5c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition"""
import re
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@Article{SETH2016,
Title= {SETH detects and normalizes genetic variants in text.},
Author= {Thomas, Philippe and Rockt{\"{a}}schel, Tim and Hakenberg, J{\"{o}}rg and Lichtblau, Yvonne and Leser, Ulf},
Journal= {Bioinformatics},
Year= {2016},
Month= {Jun},
Doi= {10.1093/bioinformatics/btw234},
Language = {eng},
Medline-pst = {aheadofprint},
Pmid = {27256315},
Url = {http://dx.doi.org/10.1093/bioinformatics/btw234} Titel anhand dieser DOI in Citavi-Projekt übernehmen
}
"""
_DESCRIPTION = """\
This Dataset is used to for the Advanced Machine Learning and XAI course of the DHBW CAS in Heilbronn
"""
class SethConfig(datasets.BuilderConfig):
"""BuilderConfig for Seth Dataset"""
def __init__(self, **kwargs):
"""BuilderConfig for Seth.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(SethConfig, self).__init__(**kwargs)
class Seth(datasets.GeneratorBasedBuilder):
"""Seth dataset."""
BUILDER_CONFIGS = [
SethConfig(name="Seth", version=datasets.Version("1.0.0"), description="Seth dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("int32"),
"tokens": datasets.Sequence(datasets.Value("string")),
"labels": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-Gene",
"B-SNP",
"I-SNP",
"I-Gene",
"B-RS",
"I-RS"
]
)
)
}
),
supervised_keys=None,
homepage="https://rockt.github.io/SETH/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# Dateien herunterladen
downloaded_files = dl_manager.download({
"train": "https://raw.githubusercontent.com/Erechtheus/mutationCorpora/master/corpora/IOB/SETH-train.iob",
"test": "https://raw.githubusercontent.com/Erechtheus/mutationCorpora/master/corpora/IOB/SETH-test.iob",
})
# Logging, um die Dateipfade und Inhalte zu überprüfen
logger.info(f"Train file downloaded to: {downloaded_files['train']}")
logger.info(f"Test file downloaded to: {downloaded_files['test']}")
# Inhalte der Dateien anzeigen (optional)
with open(downloaded_files["train"], 'r') as train_file:
logger.info(f"First few lines of train file: {train_file.readlines()[:5]}")
with open(downloaded_files["test"], 'r') as test_file:
logger.info(f"First few lines of test file: {test_file.readlines()[:5]}")
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
document = {"id":None,
"tokens":[],
"labels":[]
}
documents = [] # Wird befüllt mit den Documented aus der Datei. Besteht aus einem Key "tokens" und "labels"
pattern = r"#\d+" # Reg Experassion um eine Documented ID zu detektieren
for idx, line in enumerate(f):
match = re.match(pattern, line)
#Überspringe erste Zeile weil das ein Header ist
if idx == 0:
continue
# Here ist die Dokumenten ID
if match:
if document["id"] != None:
# Speichere altes Dokument bevor ein neues angelegt wird
documents.append(document)
yield guid,document
guid+=1
document = {"id":int(line[1:]), # Speichere nur die Nummer ohne die Raute
"tokens":[],
"labels":[]
}
else:
#Initialisiere neues DOkument
document = {"id":int(line[1:]), # Speichere nur die Nummer ohne die Raute
"tokens":[],
"labels":[]
}
# Hier handeln wir die Sonderfälle ab
elif len(line.split(",")) >2:
# Sonderfall 1: ,,Label
if(line.split(",")[0] == "" and line.split(",")[1]==""):
document["tokens"].append(",")
document["labels"].append(line.split(",")[2].split("\n")[0])
# Sonderfall 2:Text,Text,Test,Label -> Label steht immer am schluss
else:
document["tokens"].append(",".join(line.split(",")[0:-1])) # Bringe die Splits wieder zusammen ohne das Label
document["labels"].append(line.split(",")[-1].split("\n")[0])
# Sonst gehen wir einfach vom standard aus Word sowie Tag
else:
word_tag = line.split(",")
# Hier erkennen wir den Ende eines Satzes dieser besteht aus " , "
if word_tag[0] == " " and word_tag[1] == " \n":
continue
document["tokens"].append(word_tag[0])
document["labels"].append(word_tag[1].split("\n")[0])
documents.append(document)
yield guid,document |