SMILES
stringlengths 4
186
| Y
class label 2
classes |
---|---|
CC(C)NC[C@H](O)c1ccc(O)c(O)c1 | 0negative
|
CCCN(CCC)S(=O)(=O)c1ccc(C(=O)O)cc1 | 1positive
|
CCOC(=O)O[C@]1(C(=O)OCCl)CCC2C3CCC4=CC(=O)C=C[C@]4(C)C3C(O)C[C@@]21C | 0negative
|
COC(=O)c1ccccc1O | 0negative
|
Cc1ccccc1OC[C@H](O)CO | 0negative
|
Cc1cccc(C)c1OC[C@H](C)N | 1positive
|
CC[N+](CC)(CC)CCOc1cccc(OCC[N+](CC)(CC)CC)c1OCC[N+](CC)(CC)CC | 0negative
|
O=C(O)[C@H](O)c1ccccc1 | 0negative
|
C/N=C(\NC)NCc1ccccc1 | 0negative
|
CC1CC2C3C(Cl)CC4=CC(=O)C=C[C@]4(C)C3C(O)C[C@]2(C)[C@@]1(O)C(=O)CO | 0negative
|
CC(=O)N(C[C@H](O)CO)c1c(I)c(C(=O)NCCO)c(I)c(C(=O)NC[C@H](O)CO)c1I | 0negative
|
Oc1ccccc1 | 1positive
|
CCCCOCCOC(=O)c1cccnc1 | 0negative
|
COc1ccccc1O | 0negative
|
CNC[C@H](O)c1ccc(O)c(O)c1 | 0negative
|
O=C(OCCO)c1ccccc1O | 0negative
|
O=C(NCCO[N+](=O)[O-])c1cccnc1 | 0negative
|
COc1ccc(OC)c([C@H](O)CNC(=O)CN)c1 | 0negative
|
NC(=O)OCC(COC(N)=O)c1ccccc1 | 1positive
|
CCN(CC)c1ccc(N)cc1 | 1positive
|
COc1ccccc1NC(=O)/C(N=O)=C(/C)O | 0negative
|
CCOC(=O)/C=C/c1ccc(O)c(OC)c1 | 0negative
|
Oc1cccc(O)c1 | 0negative
|
CNCCc1ccccn1 | 0negative
|
NNC(=O)c1ccncc1 | 1positive
|
CC1CC2C3CCC4=CC(=O)C=C[C@]4(C)[C@@]3(F)C(O)C[C@]2(C)[C@@]1(O)C(=O)COP(=O)(O)O | 0negative
|
C[C@H](N)[C@H](O)c1cccc(O)c1 | 0negative
|
C[C@]12C=CC(=O)C=C1CCC1C2C(O)C[C@@]2(C)C1CC[C@]2(O)C(=O)OCCl | 0negative
|
COc1cc2cc(C(=O)N3C[C@H]4C[C@@]45C3=CC(=O)c3[nH]c(C)c(C(=O)OCCBr)c35)[nH]c2c(OC)c1OC | 1positive
|
COc1cc(CNC(=O)CCCC/C=C\C(C)C)ccc1O | 0negative
|
CC(C)N[C@H](C)Cc1ccc(I)cc1 | 0negative
|
CCCCNc1ccc(C(=O)OCCOCCOCCOCCOCCOCCOCCOCCOCCOC)cc1 | 0negative
|
COc1cc2cc(C(=O)N3C[C@H]4C[C@@]45C3=CC(=O)c3[nH]c(C)c(CO)c35)[nH]c2c(OC)c1OC | 1positive
|
Cc1ccc(C(C)C)c(O)c1 | 0negative
|
N[C@H](C(=O)O)[C@H](O)c1ccc(O)c(O)c1 | 0negative
|
CCCCCCCCCCCCCCCC[N+](C)(C)Cc1ccccc1 | 0negative
|
OCCOc1ccccc1 | 0negative
|
CCCCCCCN(CC)CCC[C@H](O)c1ccc(NS(C)(=O)=O)cc1 | 0negative
|
Nc1ccncc1 | 0negative
|
CNC(=O)c1c(I)c(NC(C)=O)c(I)c(C(=O)O)c1I | 0negative
|
CN(C(=O)CO)c1c(I)c(C(=O)NC[C@H](O)CO)c(I)c(C(=O)NC[C@H](O)CO)c1I | 0negative
|
CN(C)CCN1C(=O)c2cccc3cccc(c23)C1=O | 1positive
|
CCCC(=O)O[C@]1(C(=O)COC(C)=O)CCC2C3CC(F)C4=CC(=O)C=C[C@]4(C)[C@@]3(F)C(O)C[C@@]21C | 0negative
|
CN[C@H](C)Cc1ccccc1OC | 0negative
|
CCCC(=O)O[C@]1(C(=O)CO)CCC2C3CCC4=CC(=O)CC[C@]4(C)C3C(O)C[C@@]21C | 0negative
|
CCC(=O)O[C@]1(C(=O)CO)CCC2C3CCC4=CC(=O)CC[C@]4(C)C3CC[C@@]21C | 0negative
|
CC(=O)N(C[C@H](C)C(=O)O)c1c(I)cc(I)c(N)c1I | 0negative
|
CC[N+](C)(C)c1cccc(O)c1 | 0negative
|
NC(=O)OC[C@H](N)Cc1ccccc1 | 0negative
|
O=C/C=C/c1ccccc1 | 0negative
|
N#Cc1cc(NC(=O)C(=O)O)c(Cl)c(NC(=O)C(=O)O)c1 | 0negative
|
O=[N+]([O-])c1cc([N+](=O)[O-])c(S(=O)(=O)[O-])c([N+](=O)[O-])c1 | 1positive
|
CC(=O)C1CCC2C3CC(C)C4=CC(=O)CC[C@]4(C)C3C(O)C[C@]12C | 0negative
|
NC(=O)c1ccccc1O | 0negative
|
CN(C)CCN1C(=O)c2cccc3cc(NC(=O)NCCCl)cc(c23)C1=O | 1positive
|
OCc1ccccc1 | 0negative
|
CC(=O)Oc1ccccc1C(=O)O | 1positive
|
CCCCCCCCCCCC[N+](C)(C)Cc1ccccc1 | 0negative
|
CCCC[C@@H](CC)COC(=O)c1ccc(N(C)C)cc1 | 0negative
|
CC(=O)Nc1ccc(O)cc1 | 1positive
|
CC(=O)Oc1cc(C(C)C)c(OCCN(C)C)cc1C | 0negative
|
O=C(O)Cc1ccccc1 | 0negative
|
CC(=O)Nc1c(I)c(C(=O)O)c(I)c(N(C)C(C)=O)c1I | 0negative
|
CN(C)C(=O)Oc1cccc([N+](C)(C)C)c1 | 0negative
|
CC1CC2C3CC(F)C4=CC(=O)C=C[C@]4(C)[C@@]3(Cl)C(O)C[C@]2(C)C1C(=O)CO | 0negative
|
CC(C)(C)NC[C@H](O)c1cc(Cl)c(N)c(Cl)c1 | 0negative
|
CCC(=O)OCC(=O)[C@@]1(OC(=O)CC)C(C)CC2C3CCC4=CC(=O)C=C[C@]4(C)[C@@]3(Cl)C(O)C[C@@]21C | 0negative
|
CC1CC2C(C(O)C[C@@]3(C)C2CC[C@]3(O)C(=O)COC(=O)CCC(=O)O)[C@@]2(C)C=CC(=O)C=C12 | 0negative
|
CC(C)NC[C@H](O)c1cc(O)cc(O)c1 | 0negative
|
C[C@]12C=CC(=O)C=C1CCC1C3CC(O)[C@](O)(C(=O)CO)[C@@]3(C)CC(O)[C@@]12F | 0negative
|
CCCCCC(=O)O[C@]1(C(C)=O)CCC2C3CCC4=CC(=O)CCC4C3CC[C@@]21C | 0negative
|
CC(=O)Nc1ccccc1 | 1positive
|
CC(=O)OCC(=O)[C@@]1(O)C(C)CC2C3CCC4=CC(=O)C=C[C@]4(C)[C@@]3(F)C(O)C[C@@]21C | 0negative
|
CCCN[C@@H](C)C(=O)Nc1ccccc1C | 0negative
|
CC1CC2C3CCC4=CC(=O)C=C[C@]4(C)[C@@]3(F)C(O)C[C@]2(C)[C@@]1(O)C(=O)CCl | 0negative
|
O=S(=O)([O-])c1ccc(O)cc1 | 0negative
|
COCCO[C@H](C)C/N=C(\O)c1ccccc1OCC(=O)[O-] | 0negative
|
CCCC(=O)O[C@]1(C(=O)COC(=O)CC)CCC2C3CCC4=CC(=O)CC[C@]4(C)C3C(O)C[C@@]21C | 0negative
|
Clc1ccc([C@@H](c2ccccc2Cl)C(Cl)Cl)cc1 | 1positive
|
C[C@]12CCC(=O)C=C1CCC1C2C(O)C[C@@]2(C)C1CC[C@]2(O)C(=O)CO | 0negative
|
O=C(O)CNC(=O)CNC(=O)CNC(=O)CSC(=O)c1ccccc1 | 0negative
|
CC(C)(C)NC[C@H](O)c1ccc(O)c(CO)n1 | 0negative
|
CCCCCCCCCCCCCCCC(=O)OC[C@@H](NC(=O)C(Cl)Cl)[C@H](O)c1ccc([N+](=O)[O-])cc1 | 0negative
|
CCN(CC)CC(=O)OCC(=O)[C@@]1(O)CCC2C3CCC4=CC(=O)CC[C@]4(C)C3C(O)C[C@@]21C | 0negative
|
COc1cc2cc(C(=O)N3C[C@H]4C[C@@]45C3=CC(=O)c3[nH]c(C)c(Cl)c35)[nH]c2c(OC)c1OC | 1positive
|
NNCCc1ccccc1 | 0negative
|
COc1cc2cc(C(=O)N3C[C@H]4C[C@@]45C3=CC(=O)c3[nH]c(C)c(C(=O)O)c35)[nH]c2c(OC)c1OC | 1positive
|
Nc1ccc(O)c(C(=O)O)c1 | 1positive
|
O=C(O)CCC(=O)OC[C@@H](NC(=O)C(Cl)Cl)[C@H](O)c1ccc([N+](=O)[O-])cc1 | 0negative
|
NCCc1ccc(O)c(O)c1 | 0negative
|
CCC(=O)C(C[C@H](C)N(C)C)(c1ccccc1)c1ccccc1 | 0negative
|
CNC(C)(C)Cc1ccccc1 | 0negative
|
CCCCC(=O)O[C@]1(C(=O)CO)CCC2C3CCC4=CC(=O)CC[C@]4(C)C3C(O)C[C@@]21C | 0negative
|
COc1ccccc1OC[C@H](O)CO | 0negative
|
CC[C@@H](c1cccc(O)c1)[C@@H](C)CN(C)C | 0negative
|
COC(=O)c1c(C)[nH]c2c1[C@@]13C[C@@H]1CN(C(=O)c1cc4cc(OC)c(OC)c(OC)c4[nH]1)C3=CC2=O | 1positive
|
CC[N+](C)(C)Cc1ccccc1Br | 0negative
|
CN(C)CCN1C(=O)c2cccc3cc(NC=O)cc(c23)C1=O | 1positive
|
CC(C)c1cccc(C(C)C)c1O | 0negative
|
CN[C@H](C)Cc1ccccc1 | 0negative
|
Hematotoxicity Dataset (HematoxLong2023)
A hematotoxicity dataset containing 1772 chemicals was obtained, which includes a positive set with 589 molecules and a negative set with 1183 molecules. The molecules were divided into a training set of 1330 molecules and a test set of 442 molecules according to their Murcko scaffolds. Additionally, 610 new molecules from related research and databases were compiled as the external validation set.
The train and test datasets uploaded to our Hugging Face repository have been sanitized and split from the original dataset, which contains 2382 molecules. If you would like to try these processes with the original dataset, please follow the instructions in the Preprocessing Script.py file located in the HematoxLong2023.
Quickstart Usage
Load a dataset in python
Each subset can be loaded into python using the Huggingface datasets library.
First, from the command line install the datasets
library
$ pip install datasets
then, from within python load the datasets library
>>> import datasets
and load one of the HematoxLong2023
datasets, e.g.,
>>> HematoxLong2023 = datasets.load_dataset("maomlab/HematoxLong2023", name = "HematoxLong2023")
Downloading readme: 100%|ββββββββββ| 5.23k/5.23k [00:00<00:00, 35.1kkB/s]
Downloading data: 100%|ββββββββββ|β34.5k//34.5k/ [00:00<00:00,β155kB/s]
Downloading data: 100%|ββββββββββ| 97.1k/97.1k [00:00<00:00,β587kB/s]
Generating test split: 100%|ββββββββββ| 594/594 [00:00<00:00, 12705.92βexamples/s]
Generating train split: 100%|ββββββββββ| 1788/1788 [00:00<00:00, 43895.91βexamples/s]
and inspecting the loaded dataset
>>> HematoxLong2023
HematoxLong2023
DatasetDict({
test: Dataset({
features: ['SMILES', 'Y'],
num_rows: 594
})
train: Dataset({
features: ['SMILES', 'Y'],
num_rows: 1788
})
})
Use a dataset to train a model
One way to use the dataset is through the MolFlux package developed by Exscientia.
First, from the command line, install MolFlux
library with catboost
and rdkit
support
pip install 'molflux[catboost,rdkit]'
then load, featurize, split, fit, and evaluate the catboost model
import json
from datasets import load_dataset
from molflux.datasets import featurise_dataset
from molflux.features import load_from_dicts as load_representations_from_dicts
from molflux.splits import load_from_dict as load_split_from_dict
from molflux.modelzoo import load_from_dict as load_model_from_dict
from molflux.metrics import load_suite
Split and evaluate the catboost model
split_dataset = load_dataset('maomlab/HematoxLong2023', name = 'HematoxLong2023')
split_featurised_dataset = featurise_dataset(
split_dataset,
column = "SMILES",
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
model = load_model_from_dict({
"name": "cat_boost_classifier",
"config": {
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
"y_features": ['Y']}})
model.train(split_featurised_dataset["train"])
preds = model.predict(split_featurised_dataset["test"])
classification_suite = load_suite("classification")
scores = classification_suite.compute(
references=split_featurised_dataset["test"]['Y'],
predictions=preds["cat_boost_classifier::Y"])
Citation
Cite this: J. Chem. Inf. Model. 2023, 63, 1, 111β125 Publication Date:December 6, 2022 https://doi.org/10.1021/acs.jcim.2c01088 Copyright Β© 2024 American Chemical Society
- Downloads last month
- 63