Dataset Viewer
Full Screen Viewer
Full Screen
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code: FeaturesError Exception: ArrowInvalid Message: JSON parse error: Column(/referencias-normativas/referencia-normativa) changed from array to object in row 2 Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 160, in _generate_tables df = pandas_read_json(f) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json return pd.read_json(path_or_buf, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 815, in read_json return json_reader.read() File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 1025, in read obj = self._get_object_parser(self.data) File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 1051, in _get_object_parser obj = FrameParser(json, **kwargs).parse() File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 1187, in parse self._parse() File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 1403, in _parse ujson_loads(json, precise_float=self.precise_float), dtype=None ValueError: Trailing data During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 233, in compute_first_rows_from_streaming_response iterable_dataset = iterable_dataset._resolve_features() File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2998, in _resolve_features features = _infer_features_from_batch(self.with_format(None)._head()) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1918, in _head return _examples_to_batch(list(self.take(n))) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2093, in __iter__ for key, example in ex_iterable: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1576, in __iter__ for key_example in islice(self.ex_iterable, self.n - ex_iterable_num_taken): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 279, in __iter__ for key, pa_table in self.generate_tables_fn(**gen_kwags): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 163, in _generate_tables raise e File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 137, in _generate_tables pa_table = paj.read_json( File "pyarrow/_json.pyx", line 308, in pyarrow._json.read_json File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: JSON parse error: Column(/referencias-normativas/referencia-normativa) changed from array to object in row 2
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Jurisprudencia de la Repùblica Argentina - Sistema Argentino de Información Jurídica
Este dataset es actualizado diariamente con la información de SAIJ utilizando la librería de SandboxAI
Formato
El formato del dataset es el siguiente:
{
"numero-sumario": "Número de identificación del sumario",
"materia": "Área del derecho a la que pertenece el caso",
"timestamp": "Fecha y hora de creación del registro",
"timestamp-m": "Fecha y hora de la última modificación del registro",
"sumario": "Resumen del caso",
"caratula": "Título del caso",
"descriptores": {
"descriptor": [
{
"elegido": {
"termino": "Término elegido para describir al caso"
},
"preferido": {
"termino": "Término preferido para describir al caso"
},
"sinonimos": {
"termino": ["Lista de sinónimos"]
}
}
],
"suggest": {
"termino": ["Lista de términos sugeridos"]
}
},
"fecha": "Fecha del caso",
"instancia": "Instancia judicial",
"jurisdiccion": {
"codigo": "Código de la jurisdicción",
"descripcion": "Descripción de la jurisdicción",
"capital": "Capital de la jurisdicción",
"id-pais": "ID del país"
},
"numero-interno": "Número interno del caso",
"provincia": "Provincia donde se lleva el caso",
"tipo-tribunal": "Tipo de tribunal",
"referencias-normativas": {
"referencia-normativa": {
"cr": "Referencia cruzada",
"id": "ID de la referencia normativa",
"ref": "Referencia normativa"
}
},
"fecha-alta": "Fecha de alta del registro",
"fecha-mod": "Fecha de última modificación del registro",
"fuente": "Fuente del registro",
"uid-alta": "UID de alta",
"uid-mod": "UID de modificación",
"texto": "Texto completo del caso",
"id-infojus": "ID de Infojus",
"titulo": "Título del sumario",
"guid": "GUID del registro"
}
Uso
Podés usar este dataset sin descargarlo por completo, trayendo data filtrada con un solo query. Podes hacerlo así:
# En este ejemplo, filtramos entradas por fecha
import requests
API_TOKEN = "tu_api_token"
headers = {"Authorization": f"Bearer {API_TOKEN}"}
date='2024-03-01'
API_URL = f"https://datasets-server.huggingface.co/filter?dataset=marianbasti/jurisprudencia-Argentina-SAIJ&config=default&split=train&where=timestamp='{date}T00:00:00'"
def query():
response = requests.get(API_URL, headers=headers)
return response.json()
data = query()
- Downloads last month
- 70