|
""" English metaphor-annotated corpus. """ |
|
|
|
import os |
|
|
|
import datasets |
|
import logging |
|
import re |
|
|
|
import xml.etree.ElementTree as ET |
|
from typing import List, Tuple, Dict |
|
|
|
|
|
_CITATION = """\ |
|
@book{steen2010method, |
|
title={A method for linguistic metaphor identification: From MIP to MIPVU}, |
|
author={Steen, Gerard and Dorst, Lettie and Herrmann, J. and Kaal, Anna and Krennmayr, Tina and Pasma, Trijntje}, |
|
volume={14}, |
|
year={2010}, |
|
publisher={John Benjamins Publishing} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The resource contains a selection of excerpts from BNC-Baby files that have been annotated for metaphor. |
|
There are four registers, each comprising about 50,000 words: academic texts, news texts, fiction, and conversations. |
|
Words have been separately labelled as participating in multi-word expressions (about 1.5%) or as discarded for |
|
metaphor analysis (0.02%). Main categories include words that are related to metaphor (MRW), words that signal |
|
metaphor (MFlag), and words that are not related to metaphor. For metaphor-related words, subdivisions have been made |
|
between clear cases of metaphor versus borderline cases (WIDLII, When In Doubt, Leave It In). Another parameter of |
|
metaphor-related words makes a distinction between direct metaphor, indirect metaphor, and implicit metaphor. |
|
""" |
|
|
|
_HOMEPAGE = "https://hdl.handle.net/20.500.12024/2541" |
|
|
|
_LICENSE = "Available for non-commercial use on condition that the terms of the BNC Licence are observed and that " \ |
|
"this header is included in its entirety with any copy distributed." |
|
|
|
_URLS = { |
|
"vuamc": "https://ota.bodleian.ox.ac.uk/repository/xmlui/bitstream/handle/20.500.12024/2541/VUAMC.xml" |
|
} |
|
|
|
|
|
XML_NAMESPACE = "{http://www.w3.org/XML/1998/namespace}" |
|
VICI_NAMESPACE = "{http://www.tei-c.org/ns/VICI}" |
|
NA_STR = "N/A" |
|
|
|
|
|
def namespace(element): |
|
|
|
m = re.match(r'\{.*\}', element.tag) |
|
return m.group(0) if m else '' |
|
|
|
|
|
def resolve_recursively(el, ns): |
|
words, lemmas, pos_tags, met_type, meta_tags = [], [], [], [], [] |
|
|
|
if el.tag.endswith("w"): |
|
|
|
|
|
|
|
|
|
idx_word = 0 |
|
_w_text = el.text.strip() if el.text is not None else "" |
|
if len(_w_text) > 0: |
|
words.append(_w_text) |
|
lemmas.append(_w_text) |
|
pos_tags.append(el.attrib["type"]) |
|
meta_tags.append(NA_STR) |
|
idx_word += 1 |
|
|
|
met_els = el.findall(f"{ns}seg") |
|
for met_el in met_els: |
|
parse_tail = True |
|
if met_el.text is None: |
|
|
|
|
|
parse_tail = False |
|
_w_text = met_el.tail.strip() |
|
else: |
|
_w_text = met_el.text.strip() |
|
|
|
curr_met_type = met_el.attrib[f"function"] |
|
|
|
|
|
if "type" in met_el.attrib: |
|
curr_met_type = f"{curr_met_type}/{met_el.attrib['type']}" |
|
|
|
if "subtype" in met_el.attrib: |
|
curr_met_type = f"{curr_met_type}/{met_el.attrib['subtype']}" |
|
|
|
words.append(_w_text) |
|
lemmas.append(_w_text) |
|
pos_tags.append(el.attrib["type"]) |
|
meta_tags.append(NA_STR) |
|
met_type.append({"type": curr_met_type, "word_indices": [idx_word]}) |
|
idx_word += 1 |
|
|
|
if not parse_tail: |
|
continue |
|
|
|
_w_text = met_el.tail.strip() if met_el.tail is not None else "" |
|
if len(_w_text) > 0: |
|
words.append(_w_text) |
|
lemmas.append(_w_text) |
|
pos_tags.append(el.attrib["type"]) |
|
meta_tags.append(NA_STR) |
|
idx_word += 1 |
|
|
|
elif el.tag.endswith("vocal"): |
|
desc_el = el.find(f"{ns}desc") |
|
description = desc_el.text.strip() if desc_el is not None else "unknown" |
|
|
|
words.append("") |
|
lemmas.append("") |
|
pos_tags.append(NA_STR) |
|
meta_tags.append(f"vocal/{description}") |
|
|
|
elif el.tag.endswith("gap"): |
|
words.append("") |
|
lemmas.append("") |
|
pos_tags.append(NA_STR) |
|
meta_tags.append(f"gap/{el.attrib.get('reason', 'unclear')}") |
|
|
|
elif el.tag.endswith("incident"): |
|
desc_el = el.find(f"{ns}desc") |
|
description = desc_el.text.strip() if desc_el is not None else "unknown" |
|
|
|
words.append("") |
|
lemmas.append("") |
|
pos_tags.append(NA_STR) |
|
meta_tags.append(f"incident/{description}") |
|
|
|
elif el.tag.endswith("shift"): |
|
|
|
new_state = el.attrib.get("new", "normal") |
|
children = list(iter(el)) |
|
|
|
|
|
if len(children) > 0: |
|
for w_el in el: |
|
_words, _lemmas, _pos, _mets, _metas = resolve_recursively(w_el, ns=ns) |
|
words.extend(_words) |
|
lemmas.extend(_lemmas) |
|
pos_tags.extend(_pos) |
|
meta_tags.extend(_metas) |
|
|
|
elif el.tag.endswith("seg"): |
|
|
|
word_el = el.find(f"{ns}w") |
|
|
|
words.append(word_el.text.strip()) |
|
lemmas.append(word_el.attrib["lemma"]) |
|
pos_tags.append(word_el.attrib["type"]) |
|
meta_tags.append(NA_STR) |
|
|
|
elif el.tag.endswith("pause"): |
|
words.append("") |
|
lemmas.append("") |
|
pos_tags.append(NA_STR) |
|
meta_tags.append(f"pause") |
|
|
|
elif el.tag.endswith("sic"): |
|
for w_el in el: |
|
_words, _lemmas, _pos, _mets, _metas = resolve_recursively(w_el, ns=ns) |
|
words.extend(_words) |
|
lemmas.extend(_lemmas) |
|
pos_tags.extend(_pos) |
|
meta_tags.extend(_metas) |
|
|
|
elif el.tag.endswith("c"): |
|
words.append(el.text.strip()) |
|
lemmas.append(el.text.strip()) |
|
pos_tags.append(el.attrib["type"]) |
|
meta_tags.append(NA_STR) |
|
|
|
elif el.tag.endswith("pb"): |
|
words.append("") |
|
lemmas.append("") |
|
pos_tags.append(NA_STR) |
|
meta_tags.append(NA_STR) |
|
|
|
elif el.tag.endswith("hi"): |
|
|
|
rendition = el.attrib.get("rend", "normal") |
|
|
|
for child_el in el: |
|
_words, _lemmas, _pos, _mets, _metas = resolve_recursively(child_el, ns=ns) |
|
words.extend(_words) |
|
lemmas.extend(_lemmas) |
|
pos_tags.extend(_pos) |
|
meta_tags.extend(_metas) |
|
|
|
elif el.tag.endswith("choice"): |
|
sic_el = el.find(f"{ns}sic") |
|
_words, _lemmas, _pos, _mets, _metas = resolve_recursively(sic_el, ns=ns) |
|
words.extend(_words) |
|
lemmas.extend(_lemmas) |
|
pos_tags.extend(_pos) |
|
met_type.extend(_mets) |
|
meta_tags.extend(_metas) |
|
|
|
elif el.tag.endswith(("ptr", "corr")): |
|
|
|
|
|
|
|
pass |
|
|
|
else: |
|
logging.warning(f"Unrecognized child element: {el.tag}.\n" |
|
f"If you are seeing this message, please open an issue on HF datasets.") |
|
|
|
return words, lemmas, pos_tags, met_type, meta_tags |
|
|
|
|
|
def parse_sent(sent_el, ns) -> Tuple[List[str], List[str], List[str], List[Dict], List[str]]: |
|
all_words, all_lemmas, all_pos_tags, all_met_types, all_metas = [], [], [], [], [] |
|
for child_el in sent_el: |
|
word, lemma, pos, mtype, meta = resolve_recursively(child_el, ns=ns) |
|
|
|
if len(mtype) > 0: |
|
base = len(all_words) |
|
mtype = list(map(lambda met_info: { |
|
"type": met_info["type"], |
|
"word_indices": list(map(lambda _i: base + _i, met_info["word_indices"])) |
|
}, mtype)) |
|
|
|
all_words.extend(word) |
|
all_lemmas.extend(lemma) |
|
all_pos_tags.extend(pos) |
|
all_met_types.extend(mtype) |
|
all_metas.extend(meta) |
|
|
|
return all_words, all_lemmas, all_pos_tags, all_met_types, all_metas |
|
|
|
|
|
def parse_text_body(body_el, ns): |
|
all_words: List[List] = [] |
|
all_lemmas: List[List] = [] |
|
all_pos: List[List] = [] |
|
all_met_type: List[List] = [] |
|
all_meta: List[List] = [] |
|
|
|
|
|
if body_el.tag.endswith("s"): |
|
words, lemmas, pos_tags, met_types, meta_tags = parse_sent(body_el, ns=ns) |
|
all_words.append(words) |
|
all_lemmas.append(lemmas) |
|
all_pos.append(pos_tags) |
|
all_met_type.append(met_types) |
|
all_meta.append(meta_tags) |
|
|
|
|
|
elif body_el.tag.endswith("u"): |
|
children = list(filter(lambda _child: not _child.tag.endswith("ptr"), list(iter(body_el)))) |
|
is_utterance_sent = all(map(lambda _child: not _child.tag.endswith("s"), children)) |
|
if is_utterance_sent: |
|
|
|
words, lemmas, pos_tags, met_types, meta_tags = parse_sent(body_el, ns=ns) |
|
all_words.append(words) |
|
all_lemmas.append(lemmas) |
|
all_pos.append(pos_tags) |
|
all_met_type.append(met_types) |
|
all_meta.append(meta_tags) |
|
else: |
|
|
|
for _child in children: |
|
words, lemmas, pos_tags, met_types, meta_tags = parse_sent(_child, ns=ns) |
|
all_words.append(words) |
|
all_lemmas.append(lemmas) |
|
all_pos.append(pos_tags) |
|
all_met_type.append(met_types) |
|
all_meta.append(meta_tags) |
|
|
|
|
|
else: |
|
for _child in body_el: |
|
_c_word, _c_lemmas, _c_pos, _c_met, _c_meta = parse_text_body(_child, ns=ns) |
|
|
|
all_words.extend(_c_word) |
|
all_lemmas.extend(_c_lemmas) |
|
all_pos.extend(_c_pos) |
|
all_met_type.extend(_c_met) |
|
all_meta.extend(_c_meta) |
|
|
|
return all_words, all_lemmas, all_pos, all_met_type, all_meta |
|
|
|
|
|
class VUAMC(datasets.GeneratorBasedBuilder): |
|
"""English metaphor-annotated corpus. """ |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"document_name": datasets.Value("string"), |
|
"words": datasets.Sequence(datasets.Value("string")), |
|
"lemmas": datasets.Sequence(datasets.Value("string")), |
|
"pos_tags": datasets.Sequence(datasets.Value("string")), |
|
"met_type": [{ |
|
"type": datasets.Value("string"), |
|
"word_indices": datasets.Sequence(datasets.Value("uint32")) |
|
}], |
|
"meta": datasets.Sequence(datasets.Value("string")) |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS["vuamc"] |
|
data_path = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"file_path": os.path.join(data_path)} |
|
) |
|
] |
|
|
|
def _generate_examples(self, file_path): |
|
curr_doc = ET.parse(file_path) |
|
root = curr_doc.getroot() |
|
NAMESPACE = namespace(root) |
|
root = root.find(f"{NAMESPACE}text") |
|
|
|
idx_instance = 0 |
|
for idx_doc, doc in enumerate(root.iterfind(f".//{NAMESPACE}text")): |
|
document_name = doc.attrib[f"{XML_NAMESPACE}id"] |
|
body = doc.find(f"{NAMESPACE}body") |
|
body_data = parse_text_body(body, ns=NAMESPACE) |
|
|
|
for sent_words, sent_lemmas, sent_pos, sent_met_type, sent_meta in zip(*body_data): |
|
|
|
if len(sent_words) == 0: |
|
continue |
|
|
|
yield idx_instance, { |
|
"document_name": document_name, |
|
"words": sent_words, |
|
"lemmas": sent_lemmas, |
|
"pos_tags": sent_pos, |
|
"met_type": sent_met_type, |
|
"meta": sent_meta |
|
} |
|
idx_instance += 1 |
|
|