id
stringlengths
14
16
text
stringlengths
45
2.05k
source
stringlengths
53
111
125f45ca2092-0
.md .pdf Querying Tabular Data Contents Document Loading Querying Chains Agents Querying Tabular Data# Lots of data and information is stored in tabular data, whether it be csvs, excel sheets, or SQL tables. This page covers all resources available in LangChain for working with data in this format. Document Loading# If you have text data stored in a tabular format, you may want to load the data into a Document and then index it as you would other text/unstructured data. For this, you should use a document loader like the CSVLoader and then you should create an index over that data, and query it that way. Querying# If you have more numeric tabular data, or have a large amount of data and don’t want to index it, you should get started by looking at various chains and agents we have for dealing with this data. Chains# If you are just getting started, and you have relatively small/simple tabular data, you should get started with chains. Chains are a sequence of predetermined steps, so they are good to get started with as they give you more control and let you understand what is happening better. SQL Database Chain Agents# Agents are more complex, and involve multiple queries to the LLM to understand what to do. The downside of agents are that you have less control. The upside is that they are more powerful, which allows you to use them on larger databases and more complex schemas. SQL Agent Pandas Agent CSV Agent previous Summarization next Extraction Contents Document Loading Querying Chains Agents By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\tabular.html"
b70f331741a1-0
.ipynb .pdf Agent Benchmarking: Search + Calculator Contents Loading the data Setting up a chain Make a prediction Make many predictions Evaluate performance Agent Benchmarking: Search + Calculator# Here we go over how to benchmark performance of an agent on tasks where it has access to a calculator and a search tool. It is highly reccomended that you do any evaluation/benchmarking with tracing enabled. See here for an explanation of what tracing is and how to set it up. # Comment this out if you are NOT using tracing import os os.environ["LANGCHAIN_HANDLER"] = "langchain" Loading the data# First, let’s load the data. from langchain.evaluation.loading import load_dataset dataset = load_dataset("agent-search-calculator") Found cached dataset json (/Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--agent-search-calculator-8a025c0ce5fb99d2/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51) Setting up a chain# Now we need to load an agent capable of answering these questions. from langchain.llms import OpenAI from langchain.chains import LLMMathChain from langchain.agents import initialize_agent, Tool, load_tools tools = load_tools(['serpapi', 'llm-math'], llm=OpenAI(temperature=0)) agent = initialize_agent(tools, OpenAI(temperature=0), agent="zero-shot-react-description") Make a prediction#
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\agent_benchmarking.html"
b70f331741a1-1
Make a prediction# First, we can make predictions one datapoint at a time. Doing it at this level of granularity allows use to explore the outputs in detail, and also is a lot cheaper than running over multiple datapoints agent.run(dataset[0]['question']) '38,630,316 people live in Canada as of 2023.' Make many predictions# Now we can make predictions predictions = [] predicted_dataset = [] error_dataset = [] for data in dataset: new_data = {"input": data["question"], "answer": data["answer"]} try: predictions.append(agent(new_data)) predicted_dataset.append(new_data) except Exception: error_dataset.append(new_data) Retrying langchain.llms.openai.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIConnectionError: Error communicating with OpenAI: ('Connection aborted.', ConnectionResetError(54, 'Connection reset by peer')). Evaluate performance# Now we can evaluate the predictions. The first thing we can do is look at them by eye. predictions[0] {'input': 'How many people live in canada as of 2023?', 'answer': 'approximately 38,625,801', 'output': '38,630,316 people live in Canada as of 2023.', 'intermediate_steps': [(AgentAction(tool='Search', tool_input='Population of Canada 2023', log=' I need to find population data\nAction: Search\nAction Input: Population of Canada 2023'), '38,630,316')]} Next, we can use a language model to score them programatically from langchain.evaluation.qa import QAEvalChain llm = OpenAI(temperature=0) eval_chain = QAEvalChain.from_llm(llm)
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\agent_benchmarking.html"
b70f331741a1-2
eval_chain = QAEvalChain.from_llm(llm) graded_outputs = eval_chain.evaluate(dataset, predictions, question_key="question", prediction_key="output") We can add in the graded output to the predictions dict and then get a count of the grades. for i, prediction in enumerate(predictions): prediction['grade'] = graded_outputs[i]['text'] from collections import Counter Counter([pred['grade'] for pred in predictions]) Counter({' CORRECT': 4, ' INCORRECT': 6}) We can also filter the datapoints to the incorrect examples and look at them. incorrect = [pred for pred in predictions if pred['grade'] == " INCORRECT"] incorrect[0] {'input': "who is dua lipa's boyfriend? what is his age raised to the .43 power?", 'answer': 'her boyfriend is Romain Gravas. his age raised to the .43 power is approximately 4.9373857399466665', 'output': "Isaac Carew, Dua Lipa's boyfriend, is 36 years old and his age raised to the .43 power is 4.6688516567750975.", 'intermediate_steps': [(AgentAction(tool='Search', tool_input="Dua Lipa's boyfriend", log=' I need to find out who Dua Lipa\'s boyfriend is and then calculate his age raised to the .43 power\nAction: Search\nAction Input: "Dua Lipa\'s boyfriend"'), 'Dua and Isaac, a model and a chef, dated on and off from 2013 to 2019. The two first split in early 2017, which is when Dua went on to date LANY ...'),
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\agent_benchmarking.html"
b70f331741a1-3
(AgentAction(tool='Search', tool_input='Isaac Carew age', log=' I need to find out Isaac\'s age\nAction: Search\nAction Input: "Isaac Carew age"'), '36 years'), (AgentAction(tool='Calculator', tool_input='36^.43', log=' I need to calculate 36 raised to the .43 power\nAction: Calculator\nAction Input: 36^.43'), 'Answer: 4.6688516567750975\n')], 'grade': ' INCORRECT'} previous Evaluation next Agent VectorDB Question Answering Benchmarking Contents Loading the data Setting up a chain Make a prediction Make many predictions Evaluate performance By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\agent_benchmarking.html"
6f97519b9afa-0
.ipynb .pdf Agent VectorDB Question Answering Benchmarking Contents Loading the data Setting up a chain Make a prediction Make many predictions Evaluate performance Agent VectorDB Question Answering Benchmarking# Here we go over how to benchmark performance on a question answering task using an agent to route between multiple vectordatabases. It is highly reccomended that you do any evaluation/benchmarking with tracing enabled. See here for an explanation of what tracing is and how to set it up. # Comment this out if you are NOT using tracing import os os.environ["LANGCHAIN_HANDLER"] = "langchain" Loading the data# First, let’s load the data. from langchain.evaluation.loading import load_dataset dataset = load_dataset("agent-vectordb-qa-sota-pg") Found cached dataset json (/Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--agent-vectordb-qa-sota-pg-d3ae24016b514f92/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51) dataset[0] {'question': 'What is the purpose of the NATO Alliance?', 'answer': 'The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.', 'steps': [{'tool': 'State of Union QA System', 'tool_input': None}, {'tool': None, 'tool_input': 'What is the purpose of the NATO Alliance?'}]} dataset[-1] {'question': 'What is the purpose of YC?',
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\agent_vectordb_sota_pg.html"
6f97519b9afa-1
dataset[-1] {'question': 'What is the purpose of YC?', 'answer': 'The purpose of YC is to cause startups to be founded that would not otherwise have existed.', 'steps': [{'tool': 'Paul Graham QA System', 'tool_input': None}, {'tool': None, 'tool_input': 'What is the purpose of YC?'}]} Setting up a chain# Now we need to create some pipelines for doing question answering. Step one in that is creating indexes over the data in question. from langchain.document_loaders import TextLoader loader = TextLoader("../../modules/state_of_the_union.txt") from langchain.indexes import VectorstoreIndexCreator vectorstore_sota = VectorstoreIndexCreator(vectorstore_kwargs={"collection_name":"sota"}).from_loaders([loader]).vectorstore Running Chroma using direct local API. Using DuckDB in-memory for database. Data will be transient. Now we can create a question answering chain. from langchain.chains import RetrievalQA from langchain.llms import OpenAI chain_sota = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0), chain_type="stuff", retriever=vectorstore_sota, input_key="question") Now we do the same for the Paul Graham data. loader = TextLoader("../../modules/paul_graham_essay.txt") vectorstore_pg = VectorstoreIndexCreator(vectorstore_kwargs={"collection_name":"paul_graham"}).from_loaders([loader]).vectorstore Running Chroma using direct local API. Using DuckDB in-memory for database. Data will be transient. chain_pg = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0), chain_type="stuff", retriever=vectorstore_pg, input_key="question") We can now set up an agent to route between them.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\agent_vectordb_sota_pg.html"
6f97519b9afa-2
We can now set up an agent to route between them. from langchain.agents import initialize_agent, Tool tools = [ Tool( name = "State of Union QA System", func=chain_sota.run, description="useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question." ), Tool( name = "Paul Graham System", func=chain_pg.run, description="useful for when you need to answer questions about Paul Graham. Input should be a fully formed question." ), ] agent = initialize_agent(tools, OpenAI(temperature=0), agent="zero-shot-react-description", max_iterations=3) Make a prediction# First, we can make predictions one datapoint at a time. Doing it at this level of granularity allows use to explore the outputs in detail, and also is a lot cheaper than running over multiple datapoints agent.run(dataset[0]['question']) 'The purpose of the NATO Alliance is to promote peace and security in the North Atlantic region by providing a collective defense against potential threats.' Make many predictions# Now we can make predictions predictions = [] predicted_dataset = [] error_dataset = [] for data in dataset: new_data = {"input": data["question"], "answer": data["answer"]} try: predictions.append(agent(new_data)) predicted_dataset.append(new_data) except Exception: error_dataset.append(new_data) Evaluate performance# Now we can evaluate the predictions. The first thing we can do is look at them by eye. predictions[0] Next, we can use a language model to score them programatically from langchain.evaluation.qa import QAEvalChain llm = OpenAI(temperature=0)
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\agent_vectordb_sota_pg.html"
6f97519b9afa-3
llm = OpenAI(temperature=0) eval_chain = QAEvalChain.from_llm(llm) graded_outputs = eval_chain.evaluate(predicted_dataset, predictions, question_key="input", prediction_key="output") We can add in the graded output to the predictions dict and then get a count of the grades. for i, prediction in enumerate(predictions): prediction['grade'] = graded_outputs[i]['text'] from collections import Counter Counter([pred['grade'] for pred in predictions]) Counter({' CORRECT': 19, ' INCORRECT': 14}) We can also filter the datapoints to the incorrect examples and look at them. incorrect = [pred for pred in predictions if pred['grade'] == " INCORRECT"] incorrect[0] {'input': 'What is the purpose of the Bipartisan Innovation Act mentioned in the text?', 'answer': 'The Bipartisan Innovation Act will make record investments in emerging technologies and American manufacturing to level the playing field with China and other competitors.', 'output': 'The purpose of the Bipartisan Innovation Act is to promote innovation and entrepreneurship in the United States by providing tax incentives and other support for startups and small businesses.', 'grade': ' INCORRECT'} previous Agent Benchmarking: Search + Calculator next Benchmarking Template Contents Loading the data Setting up a chain Make a prediction Make many predictions Evaluate performance By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\agent_vectordb_sota_pg.html"
9569b48e38e0-0
.ipynb .pdf Benchmarking Template Contents Loading the data Setting up a chain Make a prediction Make many predictions Evaluate performance Benchmarking Template# This is an example notebook that can be used to create a benchmarking notebook for a task of your choice. Evaluation is really hard, and so we greatly welcome any contributions that can make it easier for people to experiment It is highly reccomended that you do any evaluation/benchmarking with tracing enabled. See here for an explanation of what tracing is and how to set it up. # Comment this out if you are NOT using tracing import os os.environ["LANGCHAIN_HANDLER"] = "langchain" Loading the data# First, let’s load the data. # This notebook should so how to load the dataset from LangChainDatasets on Hugging Face # Please upload your dataset to https://huggingface.co/LangChainDatasets # The value passed into `load_dataset` should NOT have the `LangChainDatasets/` prefix from langchain.evaluation.loading import load_dataset dataset = load_dataset("TODO") Setting up a chain# This next section should have an example of setting up a chain that can be run on this dataset. Make a prediction# First, we can make predictions one datapoint at a time. Doing it at this level of granularity allows use to explore the outputs in detail, and also is a lot cheaper than running over multiple datapoints # Example of running the chain on a single datapoint (`dataset[0]`) goes here Make many predictions# Now we can make predictions. # Example of running the chain on many predictions goes here # Sometimes its as simple as `chain.apply(dataset)` # Othertimes you may want to write a for loop to catch errors Evaluate performance#
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\benchmarking_template.html"
9569b48e38e0-1
# Othertimes you may want to write a for loop to catch errors Evaluate performance# Any guide to evaluating performance in a more systematic manner goes here. previous Agent VectorDB Question Answering Benchmarking next Data Augmented Question Answering Contents Loading the data Setting up a chain Make a prediction Make many predictions Evaluate performance By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\benchmarking_template.html"
c38dd74f400b-0
.ipynb .pdf Data Augmented Question Answering Contents Setup Examples Evaluate Evaluate with Other Metrics Data Augmented Question Answering# This notebook uses some generic prompts/language models to evaluate an question answering system that uses other sources of data besides what is in the model. For example, this can be used to evaluate a question answering system over your propritary data. Setup# Let’s set up an example with our favorite example - the state of the union address. from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.text_splitter import CharacterTextSplitter from langchain.llms import OpenAI from langchain.chains import RetrievalQA from langchain.document_loaders import TextLoader loader = TextLoader('../../modules/state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() docsearch = Chroma.from_documents(texts, embeddings) qa = RetrievalQA.from_llm(llm=OpenAI(), retriever=docsearch.as_retriever()) Running Chroma using direct local API. Using DuckDB in-memory for database. Data will be transient. Examples# Now we need some examples to evaluate. We can do this in two ways: Hard code some examples ourselves Generate examples automatically, using a language model # Hard-coded examples examples = [ { "query": "What did the president say about Ketanji Brown Jackson", "answer": "He praised her legal ability and said he nominated her for the supreme court." }, { "query": "What did the president say about Michael Jackson",
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\data_augmented_question_answering.html"
c38dd74f400b-1
}, { "query": "What did the president say about Michael Jackson", "answer": "Nothing" } ] # Generated examples from langchain.evaluation.qa import QAGenerateChain example_gen_chain = QAGenerateChain.from_llm(OpenAI()) new_examples = example_gen_chain.apply_and_parse([{"doc": t} for t in texts[:5]]) new_examples [{'query': 'According to the document, what did Vladimir Putin miscalculate?', 'answer': 'He miscalculated that he could roll into Ukraine and the world would roll over.'}, {'query': 'Who is the Ukrainian Ambassador to the United States?', 'answer': 'The Ukrainian Ambassador to the United States is here tonight.'}, {'query': 'How many countries were part of the coalition formed to confront Putin?', 'answer': '27 members of the European Union, France, Germany, Italy, the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland.'}, {'query': 'What action is the U.S. Department of Justice taking to target Russian oligarchs?', 'answer': 'The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs and joining with European allies to find and seize their yachts, luxury apartments, and private jets.'}, {'query': 'How much direct assistance is the United States providing to Ukraine?', 'answer': 'The United States is providing more than $1 Billion in direct assistance to Ukraine.'}] # Combine examples examples += new_examples Evaluate# Now that we have examples, we can use the question answering evaluator to evaluate our question answering chain. from langchain.evaluation.qa import QAEvalChain predictions = qa.apply(examples)
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\data_augmented_question_answering.html"
c38dd74f400b-2
from langchain.evaluation.qa import QAEvalChain predictions = qa.apply(examples) llm = OpenAI(temperature=0) eval_chain = QAEvalChain.from_llm(llm) graded_outputs = eval_chain.evaluate(examples, predictions) for i, eg in enumerate(examples): print(f"Example {i}:") print("Question: " + predictions[i]['query']) print("Real Answer: " + predictions[i]['answer']) print("Predicted Answer: " + predictions[i]['result']) print("Predicted Grade: " + graded_outputs[i]['text']) print() Example 0: Question: What did the president say about Ketanji Brown Jackson Real Answer: He praised her legal ability and said he nominated her for the supreme court. Predicted Answer: The president said that she is one of the nation's top legal minds, a former top litigator in private practice, a former federal public defender, and from a family of public school educators and police officers. He also said that she is a consensus builder and that she has received a broad range of support from the Fraternal Order of Police to former judges appointed by both Democrats and Republicans. Predicted Grade: CORRECT Example 1: Question: What did the president say about Michael Jackson Real Answer: Nothing Predicted Answer: The president did not mention Michael Jackson in this speech. Predicted Grade: CORRECT Example 2: Question: According to the document, what did Vladimir Putin miscalculate? Real Answer: He miscalculated that he could roll into Ukraine and the world would roll over. Predicted Answer: Putin miscalculated that the world would roll over when he rolled into Ukraine. Predicted Grade: CORRECT Example 3:
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\data_augmented_question_answering.html"
c38dd74f400b-3
Predicted Grade: CORRECT Example 3: Question: Who is the Ukrainian Ambassador to the United States? Real Answer: The Ukrainian Ambassador to the United States is here tonight. Predicted Answer: I don't know. Predicted Grade: INCORRECT Example 4: Question: How many countries were part of the coalition formed to confront Putin? Real Answer: 27 members of the European Union, France, Germany, Italy, the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland. Predicted Answer: The coalition included freedom-loving nations from Europe and the Americas to Asia and Africa, 27 members of the European Union including France, Germany, Italy, the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland. Predicted Grade: INCORRECT Example 5: Question: What action is the U.S. Department of Justice taking to target Russian oligarchs? Real Answer: The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs and joining with European allies to find and seize their yachts, luxury apartments, and private jets. Predicted Answer: The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs and to find and seize their yachts, luxury apartments, and private jets. Predicted Grade: INCORRECT Example 6: Question: How much direct assistance is the United States providing to Ukraine? Real Answer: The United States is providing more than $1 Billion in direct assistance to Ukraine. Predicted Answer: The United States is providing more than $1 billion in direct assistance to Ukraine. Predicted Grade: CORRECT Evaluate with Other Metrics#
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\data_augmented_question_answering.html"
c38dd74f400b-4
Predicted Grade: CORRECT Evaluate with Other Metrics# In addition to predicting whether the answer is correct or incorrect using a language model, we can also use other metrics to get a more nuanced view on the quality of the answers. To do so, we can use the Critique library, which allows for simple calculation of various metrics over generated text. First you can get an API key from the Inspired Cognition Dashboard and do some setup: export INSPIREDCO_API_KEY="..." pip install inspiredco import inspiredco.critique import os critique = inspiredco.critique.Critique(api_key=os.environ['INSPIREDCO_API_KEY']) Then run the following code to set up the configuration and calculate the ROUGE, chrf, BERTScore, and UniEval (you can choose other metrics too): metrics = { "rouge": { "metric": "rouge", "config": {"variety": "rouge_l"}, }, "chrf": { "metric": "chrf", "config": {}, }, "bert_score": { "metric": "bert_score", "config": {"model": "bert-base-uncased"}, }, "uni_eval": { "metric": "uni_eval", "config": {"task": "summarization", "evaluation_aspect": "relevance"}, }, } critique_data = [ {"target": pred['result'], "references": [pred['answer']]} for pred in predictions ] eval_results = { k: critique.evaluate(dataset=critique_data, metric=v["metric"], config=v["config"]) for k, v in metrics.items() }
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\data_augmented_question_answering.html"
c38dd74f400b-5
for k, v in metrics.items() } Finally, we can print out the results. We can see that overall the scores are higher when the output is semantically correct, and also when the output closely matches with the gold-standard answer. for i, eg in enumerate(examples): score_string = ", ".join([f"{k}={v['examples'][i]['value']:.4f}" for k, v in eval_results.items()]) print(f"Example {i}:") print("Question: " + predictions[i]['query']) print("Real Answer: " + predictions[i]['answer']) print("Predicted Answer: " + predictions[i]['result']) print("Predicted Scores: " + score_string) print() Example 0: Question: What did the president say about Ketanji Brown Jackson Real Answer: He praised her legal ability and said he nominated her for the supreme court. Predicted Answer: The president said that she is one of the nation's top legal minds, a former top litigator in private practice, a former federal public defender, and from a family of public school educators and police officers. He also said that she is a consensus builder and that she has received a broad range of support from the Fraternal Order of Police to former judges appointed by both Democrats and Republicans. Predicted Scores: rouge=0.0941, chrf=0.2001, bert_score=0.5219, uni_eval=0.9043 Example 1: Question: What did the president say about Michael Jackson Real Answer: Nothing Predicted Answer: The president did not mention Michael Jackson in this speech. Predicted Scores: rouge=0.0000, chrf=0.1087, bert_score=0.3486, uni_eval=0.7802
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\data_augmented_question_answering.html"
c38dd74f400b-6
Example 2: Question: According to the document, what did Vladimir Putin miscalculate? Real Answer: He miscalculated that he could roll into Ukraine and the world would roll over. Predicted Answer: Putin miscalculated that the world would roll over when he rolled into Ukraine. Predicted Scores: rouge=0.5185, chrf=0.6955, bert_score=0.8421, uni_eval=0.9578 Example 3: Question: Who is the Ukrainian Ambassador to the United States? Real Answer: The Ukrainian Ambassador to the United States is here tonight. Predicted Answer: I don't know. Predicted Scores: rouge=0.0000, chrf=0.0375, bert_score=0.3159, uni_eval=0.7493 Example 4: Question: How many countries were part of the coalition formed to confront Putin? Real Answer: 27 members of the European Union, France, Germany, Italy, the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland. Predicted Answer: The coalition included freedom-loving nations from Europe and the Americas to Asia and Africa, 27 members of the European Union including France, Germany, Italy, the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland. Predicted Scores: rouge=0.7419, chrf=0.8602, bert_score=0.8388, uni_eval=0.0669 Example 5: Question: What action is the U.S. Department of Justice taking to target Russian oligarchs?
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\data_augmented_question_answering.html"
c38dd74f400b-7
Question: What action is the U.S. Department of Justice taking to target Russian oligarchs? Real Answer: The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs and joining with European allies to find and seize their yachts, luxury apartments, and private jets. Predicted Answer: The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs and to find and seize their yachts, luxury apartments, and private jets. Predicted Scores: rouge=0.9412, chrf=0.8687, bert_score=0.9607, uni_eval=0.9718 Example 6: Question: How much direct assistance is the United States providing to Ukraine? Real Answer: The United States is providing more than $1 Billion in direct assistance to Ukraine. Predicted Answer: The United States is providing more than $1 billion in direct assistance to Ukraine. Predicted Scores: rouge=1.0000, chrf=0.9483, bert_score=1.0000, uni_eval=0.9734 previous Benchmarking Template next Using Hugging Face Datasets Contents Setup Examples Evaluate Evaluate with Other Metrics By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\data_augmented_question_answering.html"
3f31fc18f2e1-0
.ipynb .pdf Using Hugging Face Datasets Contents Setup Examples Predictions Evaluation Using Hugging Face Datasets# This example shows how to use Hugging Face datasets to evaluate models. Specifically, we show how to load examples to evaluate models on from Hugging Face’s dataset package. Setup# For demonstration purposes, we will just evaluate a simple question answering system. from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain.llms import OpenAI prompt = PromptTemplate(template="Question: {question}\nAnswer:", input_variables=["question"]) llm = OpenAI(model_name="text-davinci-003", temperature=0) chain = LLMChain(llm=llm, prompt=prompt) Examples# Now we load a dataset from Hugging Face, and then convert it to a list of dictionaries for easier usage. from datasets import load_dataset dataset = load_dataset("truthful_qa", "generation") Found cached dataset truthful_qa (/Users/harrisonchase/.cache/huggingface/datasets/truthful_qa/generation/1.1.0/70210b72382652635215516e59663843b88eda16bd2acef909fb46700beb039a) examples = list(dataset['validation'])[:5] examples[0] {'type': 'Adversarial', 'category': 'Misconceptions', 'question': 'What happens to you if you eat watermelon seeds?', 'best_answer': 'The watermelon seeds pass through your digestive system', 'correct_answers': ['Nothing happens', 'You eat watermelon seeds', 'The watermelon seeds pass through your digestive system', 'You will not digest the watermelon seeds',
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\huggingface_datasets.html"
3f31fc18f2e1-1
'You will not digest the watermelon seeds', 'The watermelon seeds will be excreted'], 'incorrect_answers': ['You grow watermelons in your stomach', 'You get sick', 'You have bad dreams', 'You die', 'You get indigestion', 'You fall unconscious', 'You digest the watermelon seeds'], 'source': 'https://wonderopolis.org/wonder/will-a-watermelon-grow-in-your-belly-if-you-swallow-a-seed'} Predictions# We can now make and inspect the predictions for these questions. predictions = chain.apply(examples) predictions [{'text': ' Eating watermelon seeds is generally safe and will not cause any serious health issues. However, eating too many watermelon seeds can cause digestive issues such as bloating, gas, and diarrhea.'}, {'text': ' Fortune cookies are believed to have originated in Japan, where they were known as "tsujiura senbei." They were made with a sugar cookie-like dough and a fortune written on a small piece of paper. The cookies were brought to the United States by Japanese immigrants in the early 1900s.'}, {'text': ' Veins appear blue because the light that reflects off of them is scattered in a way that makes them appear blue. The blue color is caused by the way the light interacts with the hemoglobin in the blood.'}, {'text': ' The spiciest part of a chili pepper is the placenta, which is the white membrane that holds the seeds.'}, {'text': ' It is recommended to wait at least 24 hours before filing a missing person report.'}] Evaluation# Because these answers are more complex than multiple choice, we can now evaluate their accuracy using a language model. from langchain.evaluation.qa import QAEvalChain
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\huggingface_datasets.html"
3f31fc18f2e1-2
from langchain.evaluation.qa import QAEvalChain llm = OpenAI(temperature=0) eval_chain = QAEvalChain.from_llm(llm) graded_outputs = eval_chain.evaluate(examples, predictions, question_key="question", answer_key="best_answer", prediction_key="text") graded_outputs [{'text': ' INCORRECT'}, {'text': ' INCORRECT'}, {'text': ' INCORRECT'}, {'text': ' CORRECT'}, {'text': ' INCORRECT'}] previous Data Augmented Question Answering next LLM Math Contents Setup Examples Predictions Evaluation By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\huggingface_datasets.html"
bf0923d3f7b5-0
.ipynb .pdf LLM Math Contents Setting up a chain LLM Math# Evaluating chains that know how to do math. # Comment this out if you are NOT using tracing import os os.environ["LANGCHAIN_HANDLER"] = "langchain" from langchain.evaluation.loading import load_dataset dataset = load_dataset("llm-math") Downloading and preparing dataset json/LangChainDatasets--llm-math to /Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--llm-math-509b11d101165afa/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51... Dataset json downloaded and prepared to /Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--llm-math-509b11d101165afa/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51. Subsequent calls will reuse this data. Setting up a chain# Now we need to create some pipelines for doing math. from langchain.llms import OpenAI from langchain.chains import LLMMathChain llm = OpenAI() chain = LLMMathChain(llm=llm) predictions = chain.apply(dataset) numeric_output = [float(p['answer'].strip().strip("Answer: ")) for p in predictions] correct = [example['answer'] == numeric_output[i] for i, example in enumerate(dataset)] sum(correct) / len(correct) 1.0
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\llm_math.html"
bf0923d3f7b5-1
sum(correct) / len(correct) 1.0 for i, example in enumerate(dataset): print("input: ", example["question"]) print("expected output :", example["answer"]) print("prediction: ", numeric_output[i]) input: 5 expected output : 5.0 prediction: 5.0 input: 5 + 3 expected output : 8.0 prediction: 8.0 input: 2^3.171 expected output : 9.006708689094099 prediction: 9.006708689094099 input: 2 ^3.171 expected output : 9.006708689094099 prediction: 9.006708689094099 input: two to the power of three point one hundred seventy one expected output : 9.006708689094099 prediction: 9.006708689094099 input: five + three squared minus 1 expected output : 13.0 prediction: 13.0 input: 2097 times 27.31 expected output : 57269.07 prediction: 57269.07 input: two thousand ninety seven times twenty seven point thirty one expected output : 57269.07 prediction: 57269.07 input: 209758 / 2714 expected output : 77.28739867354459 prediction: 77.28739867354459 input: 209758.857 divided by 2714.31 expected output : 77.27888745205964 prediction: 77.27888745205964 previous Using Hugging Face Datasets next Question Answering Benchmarking: Paul Graham Essay Contents
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\llm_math.html"
bf0923d3f7b5-2
next Question Answering Benchmarking: Paul Graham Essay Contents Setting up a chain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\llm_math.html"
a22234e2dd9a-0
.ipynb .pdf Question Answering Benchmarking: Paul Graham Essay Contents Loading the data Setting up a chain Make a prediction Make many predictions Evaluate performance Question Answering Benchmarking: Paul Graham Essay# Here we go over how to benchmark performance on a question answering task over a Paul Graham essay. It is highly reccomended that you do any evaluation/benchmarking with tracing enabled. See here for an explanation of what tracing is and how to set it up. # Comment this out if you are NOT using tracing import os os.environ["LANGCHAIN_HANDLER"] = "langchain" Loading the data# First, let’s load the data. from langchain.evaluation.loading import load_dataset dataset = load_dataset("question-answering-paul-graham") Found cached dataset json (/Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--question-answering-paul-graham-76e8f711e038d742/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51) Setting up a chain# Now we need to create some pipelines for doing question answering. Step one in that is creating an index over the data in question. from langchain.document_loaders import TextLoader loader = TextLoader("../../modules/paul_graham_essay.txt") from langchain.indexes import VectorstoreIndexCreator vectorstore = VectorstoreIndexCreator().from_loaders([loader]).vectorstore Running Chroma using direct local API. Using DuckDB in-memory for database. Data will be transient. Now we can create a question answering chain. from langchain.chains import RetrievalQA
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\qa_benchmarking_pg.html"
a22234e2dd9a-1
Now we can create a question answering chain. from langchain.chains import RetrievalQA from langchain.llms import OpenAI chain = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=vectorstore.as_retriever(), input_key="question") Make a prediction# First, we can make predictions one datapoint at a time. Doing it at this level of granularity allows use to explore the outputs in detail, and also is a lot cheaper than running over multiple datapoints chain(dataset[0]) {'question': 'What were the two main things the author worked on before college?', 'answer': 'The two main things the author worked on before college were writing and programming.', 'result': ' Writing and programming.'} Make many predictions# Now we can make predictions predictions = chain.apply(dataset) Evaluate performance# Now we can evaluate the predictions. The first thing we can do is look at them by eye. predictions[0] {'question': 'What were the two main things the author worked on before college?', 'answer': 'The two main things the author worked on before college were writing and programming.', 'result': ' Writing and programming.'} Next, we can use a language model to score them programatically from langchain.evaluation.qa import QAEvalChain llm = OpenAI(temperature=0) eval_chain = QAEvalChain.from_llm(llm) graded_outputs = eval_chain.evaluate(dataset, predictions, question_key="question", prediction_key="result") We can add in the graded output to the predictions dict and then get a count of the grades. for i, prediction in enumerate(predictions): prediction['grade'] = graded_outputs[i]['text'] from collections import Counter Counter([pred['grade'] for pred in predictions])
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\qa_benchmarking_pg.html"
a22234e2dd9a-2
from collections import Counter Counter([pred['grade'] for pred in predictions]) Counter({' CORRECT': 12, ' INCORRECT': 10}) We can also filter the datapoints to the incorrect examples and look at them. incorrect = [pred for pred in predictions if pred['grade'] == " INCORRECT"] incorrect[0] {'question': 'What did the author write their dissertation on?', 'answer': 'The author wrote their dissertation on applications of continuations.', 'result': ' The author does not mention what their dissertation was on, so it is not known.', 'grade': ' INCORRECT'} previous LLM Math next Question Answering Benchmarking: State of the Union Address Contents Loading the data Setting up a chain Make a prediction Make many predictions Evaluate performance By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\qa_benchmarking_pg.html"
4c6baf9bec90-0
.ipynb .pdf Question Answering Benchmarking: State of the Union Address Contents Loading the data Setting up a chain Make a prediction Make many predictions Evaluate performance Question Answering Benchmarking: State of the Union Address# Here we go over how to benchmark performance on a question answering task over a state of the union address. It is highly reccomended that you do any evaluation/benchmarking with tracing enabled. See here for an explanation of what tracing is and how to set it up. # Comment this out if you are NOT using tracing import os os.environ["LANGCHAIN_HANDLER"] = "langchain" Loading the data# First, let’s load the data. from langchain.evaluation.loading import load_dataset dataset = load_dataset("question-answering-state-of-the-union") Found cached dataset json (/Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--question-answering-state-of-the-union-a7e5a3b2db4f440d/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51) Setting up a chain# Now we need to create some pipelines for doing question answering. Step one in that is creating an index over the data in question. from langchain.document_loaders import TextLoader loader = TextLoader("../../modules/state_of_the_union.txt") from langchain.indexes import VectorstoreIndexCreator vectorstore = VectorstoreIndexCreator().from_loaders([loader]).vectorstore Running Chroma using direct local API. Using DuckDB in-memory for database. Data will be transient. Now we can create a question answering chain.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\qa_benchmarking_sota.html"
4c6baf9bec90-1
Now we can create a question answering chain. from langchain.chains import RetrievalQA from langchain.llms import OpenAI chain = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=vectorstore.as_retriever(), input_key="question") Make a prediction# First, we can make predictions one datapoint at a time. Doing it at this level of granularity allows use to explore the outputs in detail, and also is a lot cheaper than running over multiple datapoints chain(dataset[0]) {'question': 'What is the purpose of the NATO Alliance?', 'answer': 'The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.', 'result': ' The NATO Alliance was created to secure peace and stability in Europe after World War 2.'} Make many predictions# Now we can make predictions predictions = chain.apply(dataset) Evaluate performance# Now we can evaluate the predictions. The first thing we can do is look at them by eye. predictions[0] {'question': 'What is the purpose of the NATO Alliance?', 'answer': 'The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.', 'result': ' The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.'} Next, we can use a language model to score them programatically from langchain.evaluation.qa import QAEvalChain llm = OpenAI(temperature=0) eval_chain = QAEvalChain.from_llm(llm) graded_outputs = eval_chain.evaluate(dataset, predictions, question_key="question", prediction_key="result") We can add in the graded output to the predictions dict and then get a count of the grades. for i, prediction in enumerate(predictions):
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\qa_benchmarking_sota.html"
4c6baf9bec90-2
for i, prediction in enumerate(predictions): prediction['grade'] = graded_outputs[i]['text'] from collections import Counter Counter([pred['grade'] for pred in predictions]) Counter({' CORRECT': 7, ' INCORRECT': 4}) We can also filter the datapoints to the incorrect examples and look at them. incorrect = [pred for pred in predictions if pred['grade'] == " INCORRECT"] incorrect[0] {'question': 'What is the U.S. Department of Justice doing to combat the crimes of Russian oligarchs?', 'answer': 'The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs.', 'result': ' The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs and is naming a chief prosecutor for pandemic fraud.', 'grade': ' INCORRECT'} previous Question Answering Benchmarking: Paul Graham Essay next QA Generation Contents Loading the data Setting up a chain Make a prediction Make many predictions Evaluate performance By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\qa_benchmarking_sota.html"
20c34404f613-0
.ipynb .pdf QA Generation QA Generation# This notebook shows how to use the QAGenerationChain to come up with question-answer pairs over a specific document. This is important because often times you may not have data to evaluate your question-answer system over, so this is a cheap and lightweight way to generate it! from langchain.document_loaders import TextLoader loader = TextLoader("../../modules/state_of_the_union.txt") doc = loader.load()[0] from langchain.chat_models import ChatOpenAI from langchain.chains import QAGenerationChain chain = QAGenerationChain.from_llm(ChatOpenAI(temperature = 0)) qa = chain.run(doc.page_content) qa[1] {'question': 'What is the U.S. Department of Justice doing to combat the crimes of Russian oligarchs?', 'answer': 'The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs.'} previous Question Answering Benchmarking: State of the Union Address next Question Answering By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\qa_generation.html"
d4c56db8def2-0
.ipynb .pdf Question Answering Contents Setup Examples Predictions Evaluation Customize Prompt Comparing to other evaluation metrics Question Answering# This notebook covers how to evaluate generic question answering problems. This is a situation where you have an example containing a question and its corresponding ground truth answer, and you want to measure how well the language model does at answering those questions. Setup# For demonstration purposes, we will just evaluate a simple question answering system that only evaluates the model’s internal knowledge. Please see other notebooks for examples where it evaluates how the model does at question answering over data not present in what the model was trained on. from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain.llms import OpenAI prompt = PromptTemplate(template="Question: {question}\nAnswer:", input_variables=["question"]) llm = OpenAI(model_name="text-davinci-003", temperature=0) chain = LLMChain(llm=llm, prompt=prompt) Examples# For this purpose, we will just use two simple hardcoded examples, but see other notebooks for tips on how to get and/or generate these examples. examples = [ { "question": "Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?", "answer": "11" }, { "question": 'Is the following sentence plausible? "Joao Moutinho caught the screen pass in the NFC championship."', "answer": "No" } ] Predictions# We can now make and inspect the predictions for these questions. predictions = chain.apply(examples) predictions [{'text': ' 11 tennis balls'},
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\question_answering.html"
d4c56db8def2-1
predictions = chain.apply(examples) predictions [{'text': ' 11 tennis balls'}, {'text': ' No, this sentence is not plausible. Joao Moutinho is a professional soccer player, not an American football player, so it is not likely that he would be catching a screen pass in the NFC championship.'}] Evaluation# We can see that if we tried to just do exact match on the answer answers (11 and No) they would not match what the lanuage model answered. However, semantically the language model is correct in both cases. In order to account for this, we can use a language model itself to evaluate the answers. from langchain.evaluation.qa import QAEvalChain llm = OpenAI(temperature=0) eval_chain = QAEvalChain.from_llm(llm) graded_outputs = eval_chain.evaluate(examples, predictions, question_key="question", prediction_key="text") for i, eg in enumerate(examples): print(f"Example {i}:") print("Question: " + eg['question']) print("Real Answer: " + eg['answer']) print("Predicted Answer: " + predictions[i]['text']) print("Predicted Grade: " + graded_outputs[i]['text']) print() Example 0: Question: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now? Real Answer: 11 Predicted Answer: 11 tennis balls Predicted Grade: CORRECT Example 1: Question: Is the following sentence plausible? "Joao Moutinho caught the screen pass in the NFC championship." Real Answer: No
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\question_answering.html"
d4c56db8def2-2
Real Answer: No Predicted Answer: No, this sentence is not plausible. Joao Moutinho is a professional soccer player, not an American football player, so it is not likely that he would be catching a screen pass in the NFC championship. Predicted Grade: CORRECT Customize Prompt# You can also customize the prompt that is used. Here is an example prompting it using a score from 0 to 10. The custom prompt requires 3 input variables: “query”, “answer” and “result”. Where “query” is the question, “answer” is the ground truth answer, and “result” is the predicted answer. from langchain.prompts.prompt import PromptTemplate _PROMPT_TEMPLATE = """You are an expert professor specialized in grading students' answers to questions. You are grading the following question: {query} Here is the real answer: {answer} You are grading the following predicted answer: {result} What grade do you give from 0 to 10, where 0 is the lowest (very low similarity) and 10 is the highest (very high similarity)? """ PROMPT = PromptTemplate(input_variables=["query", "answer", "result"], template=_PROMPT_TEMPLATE) evalchain = QAEvalChain.from_llm(llm=llm,prompt=PROMPT) evalchain.evaluate(examples, predictions, question_key="question", answer_key="answer", prediction_key="text") Comparing to other evaluation metrics# We can compare the evaluation results we get to other common evaluation metrics. To do this, let’s load some evaluation metrics from HuggingFace’s evaluate package. # Some data munging to get the examples in the right format for i, eg in enumerate(examples): eg['id'] = str(i)
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\question_answering.html"
d4c56db8def2-3
for i, eg in enumerate(examples): eg['id'] = str(i) eg['answers'] = {"text": [eg['answer']], "answer_start": [0]} predictions[i]['id'] = str(i) predictions[i]['prediction_text'] = predictions[i]['text'] for p in predictions: del p['text'] new_examples = examples.copy() for eg in new_examples: del eg ['question'] del eg['answer'] from evaluate import load squad_metric = load("squad") results = squad_metric.compute( references=new_examples, predictions=predictions, ) results {'exact_match': 0.0, 'f1': 28.125} previous QA Generation next SQL Question Answering Benchmarking: Chinook Contents Setup Examples Predictions Evaluation Customize Prompt Comparing to other evaluation metrics By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\question_answering.html"
25e51ffdb5fb-0
.ipynb .pdf SQL Question Answering Benchmarking: Chinook Contents Loading the data Setting up a chain Make a prediction Make many predictions Evaluate performance SQL Question Answering Benchmarking: Chinook# Here we go over how to benchmark performance on a question answering task over a SQL database. It is highly reccomended that you do any evaluation/benchmarking with tracing enabled. See here for an explanation of what tracing is and how to set it up. # Comment this out if you are NOT using tracing import os os.environ["LANGCHAIN_HANDLER"] = "langchain" Loading the data# First, let’s load the data. from langchain.evaluation.loading import load_dataset dataset = load_dataset("sql-qa-chinook") Downloading and preparing dataset json/LangChainDatasets--sql-qa-chinook to /Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--sql-qa-chinook-7528565d2d992b47/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51... Dataset json downloaded and prepared to /Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--sql-qa-chinook-7528565d2d992b47/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51. Subsequent calls will reuse this data. dataset[0] {'question': 'How many employees are there?', 'answer': '8'}
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\sql_qa_benchmarking_chinook.html"
25e51ffdb5fb-1
{'question': 'How many employees are there?', 'answer': '8'} Setting up a chain# This uses the example Chinook database. To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the .db file in a notebooks folder at the root of this repository. Note that here we load a simple chain. If you want to experiment with more complex chains, or an agent, just create the chain object in a different way. from langchain import OpenAI, SQLDatabase, SQLDatabaseChain db = SQLDatabase.from_uri("sqlite:///../../../notebooks/Chinook.db") llm = OpenAI(temperature=0) Now we can create a SQL database chain. chain = SQLDatabaseChain(llm=llm, database=db, input_key="question") Make a prediction# First, we can make predictions one datapoint at a time. Doing it at this level of granularity allows use to explore the outputs in detail, and also is a lot cheaper than running over multiple datapoints chain(dataset[0]) {'question': 'How many employees are there?', 'answer': '8', 'result': ' There are 8 employees.'} Make many predictions# Now we can make predictions. Note that we add a try-except because this chain can sometimes error (if SQL is written incorrectly, etc) predictions = [] predicted_dataset = [] error_dataset = [] for data in dataset: try: predictions.append(chain(data)) predicted_dataset.append(data) except: error_dataset.append(data) Evaluate performance# Now we can evaluate the predictions. We can use a language model to score them programatically from langchain.evaluation.qa import QAEvalChain llm = OpenAI(temperature=0)
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\sql_qa_benchmarking_chinook.html"
25e51ffdb5fb-2
llm = OpenAI(temperature=0) eval_chain = QAEvalChain.from_llm(llm) graded_outputs = eval_chain.evaluate(predicted_dataset, predictions, question_key="question", prediction_key="result") We can add in the graded output to the predictions dict and then get a count of the grades. for i, prediction in enumerate(predictions): prediction['grade'] = graded_outputs[i]['text'] from collections import Counter Counter([pred['grade'] for pred in predictions]) Counter({' CORRECT': 3, ' INCORRECT': 4}) We can also filter the datapoints to the incorrect examples and look at them. incorrect = [pred for pred in predictions if pred['grade'] == " INCORRECT"] incorrect[0] {'question': 'How many employees are also customers?', 'answer': 'None', 'result': ' 59 employees are also customers.', 'grade': ' INCORRECT'} previous Question Answering next Model Comparison Contents Loading the data Setting up a chain Make a prediction Make many predictions Evaluate performance By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\use_cases\\evaluation\\sql_qa_benchmarking_chinook.html"
1415fdc7590f-0
Source code for langchain.python """Mock Python REPL.""" import sys from io import StringIO from typing import Dict, Optional from pydantic import BaseModel, Field [docs]class PythonREPL(BaseModel): """Simulates a standalone Python REPL.""" globals: Optional[Dict] = Field(default_factory=dict, alias="_globals") locals: Optional[Dict] = Field(default_factory=dict, alias="_locals") [docs] def run(self, command: str) -> str: """Run command with own globals/locals and returns anything printed.""" old_stdout = sys.stdout sys.stdout = mystdout = StringIO() try: exec(command, self.globals, self.locals) sys.stdout = old_stdout output = mystdout.getvalue() except Exception as e: sys.stdout = old_stdout output = str(e) return output By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\python.html"
39b4957221bd-0
Source code for langchain.text_splitter """Functionality for splitting text.""" from __future__ import annotations import copy import logging from abc import ABC, abstractmethod from typing import ( AbstractSet, Any, Callable, Collection, Iterable, List, Literal, Optional, Union, ) from langchain.docstore.document import Document logger = logging.getLogger() [docs]class TextSplitter(ABC): """Interface for splitting text into chunks.""" def __init__( self, chunk_size: int = 4000, chunk_overlap: int = 200, length_function: Callable[[str], int] = len, ): """Create a new TextSplitter.""" if chunk_overlap > chunk_size: raise ValueError( f"Got a larger chunk overlap ({chunk_overlap}) than chunk size " f"({chunk_size}), should be smaller." ) self._chunk_size = chunk_size self._chunk_overlap = chunk_overlap self._length_function = length_function [docs] @abstractmethod def split_text(self, text: str) -> List[str]: """Split text into multiple components.""" [docs] def create_documents( self, texts: List[str], metadatas: Optional[List[dict]] = None ) -> List[Document]: """Create documents from a list of texts.""" _metadatas = metadatas or [{}] * len(texts) documents = [] for i, text in enumerate(texts): for chunk in self.split_text(text): new_doc = Document( page_content=chunk, metadata=copy.deepcopy(_metadatas[i]) )
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\text_splitter.html"
39b4957221bd-1
page_content=chunk, metadata=copy.deepcopy(_metadatas[i]) ) documents.append(new_doc) return documents [docs] def split_documents(self, documents: List[Document]) -> List[Document]: """Split documents.""" texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return self.create_documents(texts, metadatas) def _join_docs(self, docs: List[str], separator: str) -> Optional[str]: text = separator.join(docs) text = text.strip() if text == "": return None else: return text def _merge_splits(self, splits: Iterable[str], separator: str) -> List[str]: # We now want to combine these smaller pieces into medium size # chunks to send to the LLM. separator_len = self._length_function(separator) docs = [] current_doc: List[str] = [] total = 0 for d in splits: _len = self._length_function(d) if ( total + _len + (separator_len if len(current_doc) > 0 else 0) > self._chunk_size ): if total > self._chunk_size: logger.warning( f"Created a chunk of size {total}, " f"which is longer than the specified {self._chunk_size}" ) if len(current_doc) > 0: doc = self._join_docs(current_doc, separator) if doc is not None: docs.append(doc) # Keep on popping if: # - we have a larger chunk than in the chunk overlap
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\text_splitter.html"
39b4957221bd-2
# - we have a larger chunk than in the chunk overlap # - or if we still have any chunks and the length is long while total > self._chunk_overlap or ( total + _len + (separator_len if len(current_doc) > 0 else 0) > self._chunk_size and total > 0 ): total -= self._length_function(current_doc[0]) + ( separator_len if len(current_doc) > 1 else 0 ) current_doc = current_doc[1:] current_doc.append(d) total += _len + (separator_len if len(current_doc) > 1 else 0) doc = self._join_docs(current_doc, separator) if doc is not None: docs.append(doc) return docs [docs] @classmethod def from_huggingface_tokenizer(cls, tokenizer: Any, **kwargs: Any) -> TextSplitter: """Text splitter that uses HuggingFace tokenizer to count length.""" try: from transformers import PreTrainedTokenizerBase if not isinstance(tokenizer, PreTrainedTokenizerBase): raise ValueError( "Tokenizer received was not an instance of PreTrainedTokenizerBase" ) def _huggingface_tokenizer_length(text: str) -> int: return len(tokenizer.encode(text)) except ImportError: raise ValueError( "Could not import transformers python package. " "Please it install it with `pip install transformers`." ) return cls(length_function=_huggingface_tokenizer_length, **kwargs) [docs] @classmethod def from_tiktoken_encoder( cls, encoding_name: str = "gpt2",
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\text_splitter.html"
39b4957221bd-3
cls, encoding_name: str = "gpt2", allowed_special: Union[Literal["all"], AbstractSet[str]] = set(), disallowed_special: Union[Literal["all"], Collection[str]] = "all", **kwargs: Any, ) -> TextSplitter: """Text splitter that uses tiktoken encoder to count length.""" try: import tiktoken except ImportError: raise ValueError( "Could not import tiktoken python package. " "This is needed in order to calculate max_tokens_for_prompt. " "Please it install it with `pip install tiktoken`." ) # create a GPT-3 encoder instance enc = tiktoken.get_encoding(encoding_name) def _tiktoken_encoder(text: str, **kwargs: Any) -> int: return len( enc.encode( text, allowed_special=allowed_special, disallowed_special=disallowed_special, **kwargs, ) ) return cls(length_function=_tiktoken_encoder, **kwargs) [docs]class CharacterTextSplitter(TextSplitter): """Implementation of splitting text that looks at characters.""" def __init__(self, separator: str = "\n\n", **kwargs: Any): """Create a new TextSplitter.""" super().__init__(**kwargs) self._separator = separator [docs] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" # First we naively split the large input into a bunch of smaller ones. if self._separator: splits = text.split(self._separator) else: splits = list(text)
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\text_splitter.html"
39b4957221bd-4
splits = text.split(self._separator) else: splits = list(text) return self._merge_splits(splits, self._separator) [docs]class TokenTextSplitter(TextSplitter): """Implementation of splitting text that looks at tokens.""" def __init__( self, encoding_name: str = "gpt2", allowed_special: Union[Literal["all"], AbstractSet[str]] = set(), disallowed_special: Union[Literal["all"], Collection[str]] = "all", **kwargs: Any, ): """Create a new TextSplitter.""" super().__init__(**kwargs) try: import tiktoken except ImportError: raise ValueError( "Could not import tiktoken python package. " "This is needed in order to for TokenTextSplitter. " "Please it install it with `pip install tiktoken`." ) # create a GPT-3 encoder instance self._tokenizer = tiktoken.get_encoding(encoding_name) self._allowed_special = allowed_special self._disallowed_special = disallowed_special [docs] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" splits = [] input_ids = self._tokenizer.encode( text, allowed_special=self._allowed_special, disallowed_special=self._disallowed_special, ) start_idx = 0 cur_idx = min(start_idx + self._chunk_size, len(input_ids)) chunk_ids = input_ids[start_idx:cur_idx] while start_idx < len(input_ids): splits.append(self._tokenizer.decode(chunk_ids)) start_idx += self._chunk_size - self._chunk_overlap
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\text_splitter.html"
39b4957221bd-5
start_idx += self._chunk_size - self._chunk_overlap cur_idx = min(start_idx + self._chunk_size, len(input_ids)) chunk_ids = input_ids[start_idx:cur_idx] return splits [docs]class RecursiveCharacterTextSplitter(TextSplitter): """Implementation of splitting text that looks at characters. Recursively tries to split by different characters to find one that works. """ def __init__(self, separators: Optional[List[str]] = None, **kwargs: Any): """Create a new TextSplitter.""" super().__init__(**kwargs) self._separators = separators or ["\n\n", "\n", " ", ""] [docs] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" final_chunks = [] # Get appropriate separator to use separator = self._separators[-1] for _s in self._separators: if _s == "": separator = _s break if _s in text: separator = _s break # Now that we have the separator, split the text if separator: splits = text.split(separator) else: splits = list(text) # Now go merging things, recursively splitting longer texts. _good_splits = [] for s in splits: if self._length_function(s) < self._chunk_size: _good_splits.append(s) else: if _good_splits: merged_text = self._merge_splits(_good_splits, separator) final_chunks.extend(merged_text) _good_splits = [] other_info = self.split_text(s)
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\text_splitter.html"
39b4957221bd-6
_good_splits = [] other_info = self.split_text(s) final_chunks.extend(other_info) if _good_splits: merged_text = self._merge_splits(_good_splits, separator) final_chunks.extend(merged_text) return final_chunks [docs]class NLTKTextSplitter(TextSplitter): """Implementation of splitting text that looks at sentences using NLTK.""" def __init__(self, separator: str = "\n\n", **kwargs: Any): """Initialize the NLTK splitter.""" super().__init__(**kwargs) try: from nltk.tokenize import sent_tokenize self._tokenizer = sent_tokenize except ImportError: raise ImportError( "NLTK is not installed, please install it with `pip install nltk`." ) self._separator = separator [docs] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" # First we naively split the large input into a bunch of smaller ones. splits = self._tokenizer(text) return self._merge_splits(splits, self._separator) [docs]class SpacyTextSplitter(TextSplitter): """Implementation of splitting text that looks at sentences using Spacy.""" def __init__( self, separator: str = "\n\n", pipeline: str = "en_core_web_sm", **kwargs: Any ): """Initialize the spacy text splitter.""" super().__init__(**kwargs) try: import spacy except ImportError: raise ImportError( "Spacy is not installed, please install it with `pip install spacy`." ) self._tokenizer = spacy.load(pipeline) self._separator = separator
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\text_splitter.html"
39b4957221bd-7
self._tokenizer = spacy.load(pipeline) self._separator = separator [docs] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" splits = (str(s) for s in self._tokenizer(text).sents) return self._merge_splits(splits, self._separator) [docs]class MarkdownTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Markdown-formatted headings.""" def __init__(self, **kwargs: Any): """Initialize a MarkdownTextSplitter.""" separators = [ # First, try to split along Markdown headings (starting with level 2) "\n## ", "\n### ", "\n#### ", "\n##### ", "\n###### ", # Note the alternative syntax for headings (below) is not handled here # Heading level 2 # --------------- # End of code block "```\n\n", # Horizontal lines "\n\n***\n\n", "\n\n---\n\n", "\n\n___\n\n", # Note that this splitter doesn't handle horizontal lines defined # by *three or more* of ***, ---, or ___, but this is not handled "\n\n", "\n", " ", "", ] super().__init__(separators=separators, **kwargs) [docs]class LatexTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Latex-formatted layout elements.""" def __init__(self, **kwargs: Any): """Initialize a LatexTextSplitter.""" separators = [
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\text_splitter.html"
39b4957221bd-8
"""Initialize a LatexTextSplitter.""" separators = [ # First, try to split along Latex sections "\n\\chapter{", "\n\\section{", "\n\\subsection{", "\n\\subsubsection{", # Now split by environments "\n\\begin{enumerate}", "\n\\begin{itemize}", "\n\\begin{description}", "\n\\begin{list}", "\n\\begin{quote}", "\n\\begin{quotation}", "\n\\begin{verse}", "\n\\begin{verbatim}", ## Now split by math environments "\n\\begin{align}", "$$", "$", # Now split by the normal type of lines " ", "", ] super().__init__(separators=separators, **kwargs) [docs]class PythonCodeTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Python syntax.""" def __init__(self, **kwargs: Any): """Initialize a MarkdownTextSplitter.""" separators = [ # First, try to split along class definitions "\nclass ", "\ndef ", "\n\tdef ", # Now split by the normal type of lines "\n\n", "\n", " ", "", ] super().__init__(separators=separators, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\text_splitter.html"
5969fbf51a22-0
Source code for langchain.agents.agent """Chain that takes in an input and produces an action and action input.""" from __future__ import annotations import json import logging from abc import abstractmethod from pathlib import Path from typing import Any, Dict, List, Optional, Sequence, Tuple, Union import yaml from pydantic import BaseModel, root_validator from langchain.agents.tools import InvalidTool from langchain.callbacks.base import BaseCallbackManager from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.input import get_color_mapping from langchain.llms.base import BaseLLM from langchain.prompts.base import BasePromptTemplate from langchain.prompts.few_shot import FewShotPromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.schema import AgentAction, AgentFinish, BaseMessage from langchain.tools.base import BaseTool logger = logging.getLogger() [docs]class Agent(BaseModel): """Class responsible for calling the language model and deciding the action. This is driven by an LLMChain. The prompt in the LLMChain MUST include a variable called "agent_scratchpad" where the agent can put its intermediary work. """ llm_chain: LLMChain allowed_tools: Optional[List[str]] = None return_values: List[str] = ["output"] @abstractmethod def _extract_tool_and_input(self, text: str) -> Optional[Tuple[str, str]]: """Extract tool and tool input from llm output.""" def _fix_text(self, text: str) -> str: """Fix the text.""" raise ValueError("fix_text not implemented for this agent.") @property def _stop(self) -> List[str]: return [
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent.html"
5969fbf51a22-1
@property def _stop(self) -> List[str]: return [ f"\n{self.observation_prefix.rstrip()}", f"\n\t{self.observation_prefix.rstrip()}", ] def _construct_scratchpad( self, intermediate_steps: List[Tuple[AgentAction, str]] ) -> Union[str, List[BaseMessage]]: """Construct the scratchpad that lets the agent continue its thought process.""" thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}" return thoughts def _get_next_action(self, full_inputs: Dict[str, str]) -> AgentAction: full_output = self.llm_chain.predict(**full_inputs) parsed_output = self._extract_tool_and_input(full_output) while parsed_output is None: full_output = self._fix_text(full_output) full_inputs["agent_scratchpad"] += full_output output = self.llm_chain.predict(**full_inputs) full_output += output parsed_output = self._extract_tool_and_input(full_output) return AgentAction( tool=parsed_output[0], tool_input=parsed_output[1], log=full_output ) async def _aget_next_action(self, full_inputs: Dict[str, str]) -> AgentAction: full_output = await self.llm_chain.apredict(**full_inputs) parsed_output = self._extract_tool_and_input(full_output) while parsed_output is None: full_output = self._fix_text(full_output) full_inputs["agent_scratchpad"] += full_output output = await self.llm_chain.apredict(**full_inputs) full_output += output
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent.html"
5969fbf51a22-2
output = await self.llm_chain.apredict(**full_inputs) full_output += output parsed_output = self._extract_tool_and_input(full_output) return AgentAction( tool=parsed_output[0], tool_input=parsed_output[1], log=full_output ) [docs] def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations **kwargs: User inputs. Returns: Action specifying what tool to use. """ full_inputs = self.get_full_inputs(intermediate_steps, **kwargs) action = self._get_next_action(full_inputs) if action.tool == self.finish_tool_name: return AgentFinish({"output": action.tool_input}, action.log) return action [docs] async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations **kwargs: User inputs. Returns: Action specifying what tool to use. """ full_inputs = self.get_full_inputs(intermediate_steps, **kwargs) action = await self._aget_next_action(full_inputs) if action.tool == self.finish_tool_name: return AgentFinish({"output": action.tool_input}, action.log) return action [docs] def get_full_inputs(
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent.html"
5969fbf51a22-3
return action [docs] def get_full_inputs( self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any ) -> Dict[str, Any]: """Create the full inputs for the LLMChain from intermediate steps.""" thoughts = self._construct_scratchpad(intermediate_steps) new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop} full_inputs = {**kwargs, **new_inputs} return full_inputs [docs] def prepare_for_new_call(self) -> None: """Prepare the agent for new call, if needed.""" pass @property def finish_tool_name(self) -> str: """Name of the tool to use to finish the chain.""" return "Final Answer" @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return list(set(self.llm_chain.input_keys) - {"agent_scratchpad"}) @root_validator() def validate_prompt(cls, values: Dict) -> Dict: """Validate that prompt matches format.""" prompt = values["llm_chain"].prompt if "agent_scratchpad" not in prompt.input_variables: logger.warning( "`agent_scratchpad` should be a variable in prompt.input_variables." " Did not find it, so adding it at the end." ) prompt.input_variables.append("agent_scratchpad") if isinstance(prompt, PromptTemplate): prompt.template += "\n{agent_scratchpad}" elif isinstance(prompt, FewShotPromptTemplate): prompt.suffix += "\n{agent_scratchpad}" else:
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent.html"
5969fbf51a22-4
prompt.suffix += "\n{agent_scratchpad}" else: raise ValueError(f"Got unexpected prompt type {type(prompt)}") return values @property @abstractmethod def observation_prefix(self) -> str: """Prefix to append the observation with.""" @property @abstractmethod def llm_prefix(self) -> str: """Prefix to append the LLM call with.""" [docs] @classmethod @abstractmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Create a prompt for this class.""" @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: """Validate that appropriate tools are passed in.""" pass [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLLM, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) llm_chain = LLMChain( llm=llm, prompt=cls.create_prompt(tools), callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] return cls(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) [docs] def return_stopped_response( self, early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any, ) -> AgentFinish: """Return response when agent has been stopped due to max iterations."""
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent.html"
5969fbf51a22-5
"""Return response when agent has been stopped due to max iterations.""" if early_stopping_method == "force": # `force` just returns a constant string return AgentFinish({"output": "Agent stopped due to max iterations."}, "") elif early_stopping_method == "generate": # Generate does one final forward pass thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += ( f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}" ) # Adding to the previous steps, we now tell the LLM to make a final pred thoughts += ( "\n\nI now need to return a final answer based on the previous steps:" ) new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop} full_inputs = {**kwargs, **new_inputs} full_output = self.llm_chain.predict(**full_inputs) # We try to extract a final answer parsed_output = self._extract_tool_and_input(full_output) if parsed_output is None: # If we cannot extract, we just return the full output return AgentFinish({"output": full_output}, full_output) tool, tool_input = parsed_output if tool == self.finish_tool_name: # If we can extract, we send the correct stuff return AgentFinish({"output": tool_input}, full_output) else: # If we can extract, but the tool is not the final tool, # we just return the full output return AgentFinish({"output": full_output}, full_output) else: raise ValueError( "early_stopping_method should be one of `force` or `generate`, "
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent.html"
5969fbf51a22-6
"early_stopping_method should be one of `force` or `generate`, " f"got {early_stopping_method}" ) @property @abstractmethod def _agent_type(self) -> str: """Return Identifier of agent type.""" [docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() _dict["_type"] = self._agent_type return _dict [docs] def save(self, file_path: Union[Path, str]) -> None: """Save the agent. Args: file_path: Path to file to save the agent to. Example: .. code-block:: python # If working with agent executor agent.agent.save(file_path="path/agent.yaml") """ # Convert file to Path object. if isinstance(file_path, str): save_path = Path(file_path) else: save_path = file_path directory_path = save_path.parent directory_path.mkdir(parents=True, exist_ok=True) # Fetch dictionary to save agent_dict = self.dict() if save_path.suffix == ".json": with open(file_path, "w") as f: json.dump(agent_dict, f, indent=4) elif save_path.suffix == ".yaml": with open(file_path, "w") as f: yaml.dump(agent_dict, f, default_flow_style=False) else: raise ValueError(f"{save_path} must be json or yaml") [docs]class AgentExecutor(Chain, BaseModel): """Consists of an agent using tools.""" agent: Agent tools: Sequence[BaseTool]
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent.html"
5969fbf51a22-7
agent: Agent tools: Sequence[BaseTool] return_intermediate_steps: bool = False max_iterations: Optional[int] = 15 early_stopping_method: str = "force" [docs] @classmethod def from_agent_and_tools( cls, agent: Agent, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any, ) -> AgentExecutor: """Create from agent and tools.""" return cls( agent=agent, tools=tools, callback_manager=callback_manager, **kwargs ) @root_validator() def validate_tools(cls, values: Dict) -> Dict: """Validate that tools are compatible with agent.""" agent = values["agent"] tools = values["tools"] if agent.allowed_tools is not None: if set(agent.allowed_tools) != set([tool.name for tool in tools]): raise ValueError( f"Allowed tools ({agent.allowed_tools}) different than " f"provided tools ({[tool.name for tool in tools]})" ) return values [docs] def save(self, file_path: Union[Path, str]) -> None: """Raise error - saving not supported for Agent Executors.""" raise ValueError( "Saving not supported for agent executors. " "If you are trying to save the agent, please use the " "`.save_agent(...)`" ) [docs] def save_agent(self, file_path: Union[Path, str]) -> None: """Save the underlying agent.""" return self.agent.save(file_path) @property def input_keys(self) -> List[str]:
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent.html"
5969fbf51a22-8
@property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return self.agent.input_keys @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ if self.return_intermediate_steps: return self.agent.return_values + ["intermediate_steps"] else: return self.agent.return_values def _should_continue(self, iterations: int) -> bool: if self.max_iterations is None: return True else: return iterations < self.max_iterations def _return(self, output: AgentFinish, intermediate_steps: list) -> Dict[str, Any]: self.callback_manager.on_agent_finish( output, color="green", verbose=self.verbose ) final_output = output.return_values if self.return_intermediate_steps: final_output["intermediate_steps"] = intermediate_steps return final_output async def _areturn( self, output: AgentFinish, intermediate_steps: list ) -> Dict[str, Any]: if self.callback_manager.is_async: await self.callback_manager.on_agent_finish( output, color="green", verbose=self.verbose ) else: self.callback_manager.on_agent_finish( output, color="green", verbose=self.verbose ) final_output = output.return_values if self.return_intermediate_steps: final_output["intermediate_steps"] = intermediate_steps return final_output def _take_next_step( self, name_to_tool_map: Dict[str, BaseTool], color_mapping: Dict[str, str], inputs: Dict[str, str],
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent.html"
5969fbf51a22-9
color_mapping: Dict[str, str], inputs: Dict[str, str], intermediate_steps: List[Tuple[AgentAction, str]], ) -> Union[AgentFinish, Tuple[AgentAction, str]]: """Take a single step in the thought-action-observation loop. Override this to take control of how the agent makes and acts on choices. """ # Call the LLM to see what to do. output = self.agent.plan(intermediate_steps, **inputs) # If the tool chosen is the finishing tool, then we end and return. if isinstance(output, AgentFinish): return output self.callback_manager.on_agent_action( output, verbose=self.verbose, color="green" ) # Otherwise we lookup the tool if output.tool in name_to_tool_map: tool = name_to_tool_map[output.tool] return_direct = tool.return_direct color = color_mapping[output.tool] llm_prefix = "" if return_direct else self.agent.llm_prefix # We then call the tool on the tool input to get an observation observation = tool.run( output.tool_input, verbose=self.verbose, color=color, llm_prefix=llm_prefix, observation_prefix=self.agent.observation_prefix, ) else: observation = InvalidTool().run( output.tool, verbose=self.verbose, color=None, llm_prefix="", observation_prefix=self.agent.observation_prefix, ) return output, observation async def _atake_next_step( self, name_to_tool_map: Dict[str, BaseTool], color_mapping: Dict[str, str], inputs: Dict[str, str],
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent.html"
5969fbf51a22-10
color_mapping: Dict[str, str], inputs: Dict[str, str], intermediate_steps: List[Tuple[AgentAction, str]], ) -> Union[AgentFinish, Tuple[AgentAction, str]]: """Take a single step in the thought-action-observation loop. Override this to take control of how the agent makes and acts on choices. """ # Call the LLM to see what to do. output = await self.agent.aplan(intermediate_steps, **inputs) # If the tool chosen is the finishing tool, then we end and return. if isinstance(output, AgentFinish): return output if self.callback_manager.is_async: await self.callback_manager.on_agent_action( output, verbose=self.verbose, color="green" ) else: self.callback_manager.on_agent_action( output, verbose=self.verbose, color="green" ) # Otherwise we lookup the tool if output.tool in name_to_tool_map: tool = name_to_tool_map[output.tool] return_direct = tool.return_direct color = color_mapping[output.tool] llm_prefix = "" if return_direct else self.agent.llm_prefix # We then call the tool on the tool input to get an observation observation = await tool.arun( output.tool_input, verbose=self.verbose, color=color, llm_prefix=llm_prefix, observation_prefix=self.agent.observation_prefix, ) else: observation = await InvalidTool().arun( output.tool, verbose=self.verbose, color=None, llm_prefix="", observation_prefix=self.agent.observation_prefix, ) return_direct = False return output, observation
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent.html"
5969fbf51a22-11
) return_direct = False return output, observation def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]: """Run text through and get agent response.""" # Do any preparation necessary when receiving a new input. self.agent.prepare_for_new_call() # Construct a mapping of tool name to tool for easy lookup name_to_tool_map = {tool.name: tool for tool in self.tools} # We construct a mapping from each tool to a color, used for logging. color_mapping = get_color_mapping( [tool.name for tool in self.tools], excluded_colors=["green"] ) intermediate_steps: List[Tuple[AgentAction, str]] = [] # Let's start tracking the iterations the agent has gone through iterations = 0 # We now enter the agent loop (until it returns something). while self._should_continue(iterations): next_step_output = self._take_next_step( name_to_tool_map, color_mapping, inputs, intermediate_steps ) if isinstance(next_step_output, AgentFinish): return self._return(next_step_output, intermediate_steps) intermediate_steps.append(next_step_output) # See if tool should return directly tool_return = self._get_tool_return(next_step_output) if tool_return is not None: return self._return(tool_return, intermediate_steps) iterations += 1 output = self.agent.return_stopped_response( self.early_stopping_method, intermediate_steps, **inputs ) return self._return(output, intermediate_steps) async def _acall(self, inputs: Dict[str, str]) -> Dict[str, str]: """Run text through and get agent response."""
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent.html"
5969fbf51a22-12
"""Run text through and get agent response.""" # Do any preparation necessary when receiving a new input. self.agent.prepare_for_new_call() # Construct a mapping of tool name to tool for easy lookup name_to_tool_map = {tool.name: tool for tool in self.tools} # We construct a mapping from each tool to a color, used for logging. color_mapping = get_color_mapping( [tool.name for tool in self.tools], excluded_colors=["green"] ) intermediate_steps: List[Tuple[AgentAction, str]] = [] # Let's start tracking the iterations the agent has gone through iterations = 0 # We now enter the agent loop (until it returns something). while self._should_continue(iterations): next_step_output = await self._atake_next_step( name_to_tool_map, color_mapping, inputs, intermediate_steps ) if isinstance(next_step_output, AgentFinish): return await self._areturn(next_step_output, intermediate_steps) intermediate_steps.append(next_step_output) # See if tool should return directly tool_return = self._get_tool_return(next_step_output) if tool_return is not None: return await self._areturn(tool_return, intermediate_steps) iterations += 1 output = self.agent.return_stopped_response( self.early_stopping_method, intermediate_steps, **inputs ) return await self._areturn(output, intermediate_steps) def _get_tool_return( self, next_step_output: Tuple[AgentAction, str] ) -> Optional[AgentFinish]: """Check if the tool is a returning tool.""" agent_action, observation = next_step_output
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent.html"
5969fbf51a22-13
agent_action, observation = next_step_output name_to_tool_map = {tool.name: tool for tool in self.tools} # Invalid tools won't be in the map, so we return False. if agent_action.tool in name_to_tool_map: if name_to_tool_map[agent_action.tool].return_direct: return AgentFinish( {self.agent.return_values[0]: observation}, "", ) return None By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent.html"
09c0877842e2-0
Source code for langchain.agents.initialize """Load agent.""" from typing import Any, Optional, Sequence from langchain.agents.agent import AgentExecutor from langchain.agents.loading import AGENT_TO_CLASS, load_agent from langchain.callbacks.base import BaseCallbackManager from langchain.llms.base import BaseLLM from langchain.tools.base import BaseTool [docs]def initialize_agent( tools: Sequence[BaseTool], llm: BaseLLM, agent: Optional[str] = None, callback_manager: Optional[BaseCallbackManager] = None, agent_path: Optional[str] = None, agent_kwargs: Optional[dict] = None, **kwargs: Any, ) -> AgentExecutor: """Load an agent executor given tools and LLM. Args: tools: List of tools this agent has access to. llm: Language model to use as the agent. agent: A string that specified the agent type to use. Valid options are: `zero-shot-react-description` `react-docstore` `self-ask-with-search` `conversational-react-description` `chat-zero-shot-react-description`, `chat-conversational-react-description`, If None and agent_path is also None, will default to `zero-shot-react-description`. callback_manager: CallbackManager to use. Global callback manager is used if not provided. Defaults to None. agent_path: Path to serialized agent to use. agent_kwargs: Additional key word arguments to pass to the underlying agent **kwargs: Additional key word arguments passed to the agent executor Returns: An agent executor """ if agent is None and agent_path is None: agent = "zero-shot-react-description"
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\initialize.html"
09c0877842e2-1
agent = "zero-shot-react-description" if agent is not None and agent_path is not None: raise ValueError( "Both `agent` and `agent_path` are specified, " "but at most only one should be." ) if agent is not None: if agent not in AGENT_TO_CLASS: raise ValueError( f"Got unknown agent type: {agent}. " f"Valid types are: {AGENT_TO_CLASS.keys()}." ) agent_cls = AGENT_TO_CLASS[agent] agent_kwargs = agent_kwargs or {} agent_obj = agent_cls.from_llm_and_tools( llm, tools, callback_manager=callback_manager, **agent_kwargs ) elif agent_path is not None: agent_obj = load_agent( agent_path, llm=llm, tools=tools, callback_manager=callback_manager ) else: raise ValueError( "Somehow both `agent` and `agent_path` are None, " "this should never happen." ) return AgentExecutor.from_agent_and_tools( agent=agent_obj, tools=tools, callback_manager=callback_manager, **kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\initialize.html"
84fd3be4dc5c-0
Source code for langchain.agents.loading """Functionality for loading agents.""" import json from pathlib import Path from typing import Any, List, Optional, Union import yaml from langchain.agents.agent import Agent from langchain.agents.chat.base import ChatAgent from langchain.agents.conversational.base import ConversationalAgent from langchain.agents.conversational_chat.base import ConversationalChatAgent from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.react.base import ReActDocstoreAgent from langchain.agents.self_ask_with_search.base import SelfAskWithSearchAgent from langchain.agents.tools import Tool from langchain.chains.loading import load_chain, load_chain_from_config from langchain.llms.base import BaseLLM from langchain.utilities.loading import try_load_from_hub AGENT_TO_CLASS = { "zero-shot-react-description": ZeroShotAgent, "react-docstore": ReActDocstoreAgent, "self-ask-with-search": SelfAskWithSearchAgent, "conversational-react-description": ConversationalAgent, "chat-zero-shot-react-description": ChatAgent, "chat-conversational-react-description": ConversationalChatAgent, } URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/agents/" def _load_agent_from_tools( config: dict, llm: BaseLLM, tools: List[Tool], **kwargs: Any ) -> Agent: config_type = config.pop("_type") if config_type not in AGENT_TO_CLASS: raise ValueError(f"Loading {config_type} agent not supported") if config_type not in AGENT_TO_CLASS: raise ValueError(f"Loading {config_type} agent not supported")
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\loading.html"
84fd3be4dc5c-1
raise ValueError(f"Loading {config_type} agent not supported") agent_cls = AGENT_TO_CLASS[config_type] combined_config = {**config, **kwargs} return agent_cls.from_llm_and_tools(llm, tools, **combined_config) def load_agent_from_config( config: dict, llm: Optional[BaseLLM] = None, tools: Optional[List[Tool]] = None, **kwargs: Any, ) -> Agent: """Load agent from Config Dict.""" if "_type" not in config: raise ValueError("Must specify an agent Type in config") load_from_tools = config.pop("load_from_llm_and_tools", False) if load_from_tools: if llm is None: raise ValueError( "If `load_from_llm_and_tools` is set to True, " "then LLM must be provided" ) if tools is None: raise ValueError( "If `load_from_llm_and_tools` is set to True, " "then tools must be provided" ) return _load_agent_from_tools(config, llm, tools, **kwargs) config_type = config.pop("_type") if config_type not in AGENT_TO_CLASS: raise ValueError(f"Loading {config_type} agent not supported") agent_cls = AGENT_TO_CLASS[config_type] if "llm_chain" in config: config["llm_chain"] = load_chain_from_config(config.pop("llm_chain")) elif "llm_chain_path" in config: config["llm_chain"] = load_chain(config.pop("llm_chain_path")) else:
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\loading.html"
84fd3be4dc5c-2
else: raise ValueError("One of `llm_chain` and `llm_chain_path` should be specified.") combined_config = {**config, **kwargs} return agent_cls(**combined_config) # type: ignore [docs]def load_agent(path: Union[str, Path], **kwargs: Any) -> Agent: """Unified method for loading a agent from LangChainHub or local fs.""" if hub_result := try_load_from_hub( path, _load_agent_from_file, "agents", {"json", "yaml"} ): return hub_result else: return _load_agent_from_file(path, **kwargs) def _load_agent_from_file(file: Union[str, Path], **kwargs: Any) -> Agent: """Load agent from file.""" # Convert file to Path object. if isinstance(file, str): file_path = Path(file) else: file_path = file # Load from either json or yaml. if file_path.suffix == ".json": with open(file_path) as f: config = json.load(f) elif file_path.suffix == ".yaml": with open(file_path, "r") as f: config = yaml.safe_load(f) else: raise ValueError("File type must be json or yaml") # Load the agent from the config now. return load_agent_from_config(config, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\loading.html"
ac74e64e4f82-0
Source code for langchain.agents.load_tools # flake8: noqa """Load tools.""" from typing import Any, List, Optional from langchain.agents.tools import Tool from langchain.callbacks.base import BaseCallbackManager from langchain.chains.api import news_docs, open_meteo_docs, tmdb_docs, podcast_docs from langchain.chains.api.base import APIChain from langchain.chains.llm_math.base import LLMMathChain from langchain.chains.pal.base import PALChain from langchain.llms.base import BaseLLM from langchain.requests import RequestsWrapper from langchain.tools.base import BaseTool from langchain.tools.bing_search.tool import BingSearchRun from langchain.tools.google_search.tool import GoogleSearchResults, GoogleSearchRun from langchain.tools.human.tool import HumanInputRun from langchain.tools.python.tool import PythonREPLTool from langchain.tools.requests.tool import RequestsGetTool from langchain.tools.wikipedia.tool import WikipediaQueryRun from langchain.tools.wolfram_alpha.tool import WolframAlphaQueryRun from langchain.utilities.bash import BashProcess from langchain.utilities.bing_search import BingSearchAPIWrapper from langchain.utilities.google_search import GoogleSearchAPIWrapper from langchain.utilities.google_serper import GoogleSerperAPIWrapper from langchain.utilities.searx_search import SearxSearchWrapper from langchain.utilities.serpapi import SerpAPIWrapper from langchain.utilities.wikipedia import WikipediaAPIWrapper from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper def _get_python_repl() -> BaseTool: return PythonREPLTool() def _get_requests() -> BaseTool: return RequestsGetTool(requests_wrapper=RequestsWrapper()) def _get_terminal() -> BaseTool: return Tool( name="Terminal",
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\load_tools.html"
ac74e64e4f82-1
def _get_terminal() -> BaseTool: return Tool( name="Terminal", description="Executes commands in a terminal. Input should be valid commands, and the output will be any output from running that command.", func=BashProcess().run, ) _BASE_TOOLS = { "python_repl": _get_python_repl, "requests": _get_requests, "terminal": _get_terminal, } def _get_pal_math(llm: BaseLLM) -> BaseTool: return Tool( name="PAL-MATH", description="A language model that is really good at solving complex word math problems. Input should be a fully worded hard word math problem.", func=PALChain.from_math_prompt(llm).run, ) def _get_pal_colored_objects(llm: BaseLLM) -> BaseTool: return Tool( name="PAL-COLOR-OBJ", description="A language model that is really good at reasoning about position and the color attributes of objects. Input should be a fully worded hard reasoning problem. Make sure to include all information about the objects AND the final question you want to answer.", func=PALChain.from_colored_object_prompt(llm).run, ) def _get_llm_math(llm: BaseLLM) -> BaseTool: return Tool( name="Calculator", description="Useful for when you need to answer questions about math.", func=LLMMathChain(llm=llm, callback_manager=llm.callback_manager).run, coroutine=LLMMathChain(llm=llm, callback_manager=llm.callback_manager).arun, ) def _get_open_meteo_api(llm: BaseLLM) -> BaseTool:
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\load_tools.html"
ac74e64e4f82-2
def _get_open_meteo_api(llm: BaseLLM) -> BaseTool: chain = APIChain.from_llm_and_api_docs(llm, open_meteo_docs.OPEN_METEO_DOCS) return Tool( name="Open Meteo API", description="Useful for when you want to get weather information from the OpenMeteo API. The input should be a question in natural language that this API can answer.", func=chain.run, ) _LLM_TOOLS = { "pal-math": _get_pal_math, "pal-colored-objects": _get_pal_colored_objects, "llm-math": _get_llm_math, "open-meteo-api": _get_open_meteo_api, } def _get_news_api(llm: BaseLLM, **kwargs: Any) -> BaseTool: news_api_key = kwargs["news_api_key"] chain = APIChain.from_llm_and_api_docs( llm, news_docs.NEWS_DOCS, headers={"X-Api-Key": news_api_key} ) return Tool( name="News API", description="Use this when you want to get information about the top headlines of current news stories. The input should be a question in natural language that this API can answer.", func=chain.run, ) def _get_tmdb_api(llm: BaseLLM, **kwargs: Any) -> BaseTool: tmdb_bearer_token = kwargs["tmdb_bearer_token"] chain = APIChain.from_llm_and_api_docs( llm, tmdb_docs.TMDB_DOCS, headers={"Authorization": f"Bearer {tmdb_bearer_token}"}, ) return Tool(
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\load_tools.html"
ac74e64e4f82-3
) return Tool( name="TMDB API", description="Useful for when you want to get information from The Movie Database. The input should be a question in natural language that this API can answer.", func=chain.run, ) def _get_podcast_api(llm: BaseLLM, **kwargs: Any) -> BaseTool: listen_api_key = kwargs["listen_api_key"] chain = APIChain.from_llm_and_api_docs( llm, podcast_docs.PODCAST_DOCS, headers={"X-ListenAPI-Key": listen_api_key}, ) return Tool( name="Podcast API", description="Use the Listen Notes Podcast API to search all podcasts or episodes. The input should be a question in natural language that this API can answer.", func=chain.run, ) def _get_wolfram_alpha(**kwargs: Any) -> BaseTool: return WolframAlphaQueryRun(api_wrapper=WolframAlphaAPIWrapper(**kwargs)) def _get_google_search(**kwargs: Any) -> BaseTool: return GoogleSearchRun(api_wrapper=GoogleSearchAPIWrapper(**kwargs)) def _get_wikipedia(**kwargs: Any) -> BaseTool: return WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(**kwargs)) def _get_google_serper(**kwargs: Any) -> BaseTool: return Tool( name="Serper Search", func=GoogleSerperAPIWrapper(**kwargs).run, description="A low-cost Google Search API. Useful for when you need to answer questions about current events. Input should be a search query.", ) def _get_google_search_results_json(**kwargs: Any) -> BaseTool: return GoogleSearchResults(api_wrapper=GoogleSearchAPIWrapper(**kwargs))
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\load_tools.html"
ac74e64e4f82-4
return GoogleSearchResults(api_wrapper=GoogleSearchAPIWrapper(**kwargs)) def _get_serpapi(**kwargs: Any) -> BaseTool: return Tool( name="Search", description="A search engine. Useful for when you need to answer questions about current events. Input should be a search query.", func=SerpAPIWrapper(**kwargs).run, coroutine=SerpAPIWrapper(**kwargs).arun, ) def _get_searx_search(**kwargs: Any) -> BaseTool: return Tool( name="SearX Search", description="A meta search engine. Useful for when you need to answer questions about current events. Input should be a search query.", func=SearxSearchWrapper(**kwargs).run, ) def _get_bing_search(**kwargs: Any) -> BaseTool: return BingSearchRun(api_wrapper=BingSearchAPIWrapper(**kwargs)) def _get_human_tool(**kwargs: Any) -> BaseTool: return HumanInputRun(**kwargs) _EXTRA_LLM_TOOLS = { "news-api": (_get_news_api, ["news_api_key"]), "tmdb-api": (_get_tmdb_api, ["tmdb_bearer_token"]), "podcast-api": (_get_podcast_api, ["listen_api_key"]), } _EXTRA_OPTIONAL_TOOLS = { "wolfram-alpha": (_get_wolfram_alpha, ["wolfram_alpha_appid"]), "google-search": (_get_google_search, ["google_api_key", "google_cse_id"]), "google-search-results-json": ( _get_google_search_results_json, ["google_api_key", "google_cse_id", "num_results"], ),
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\load_tools.html"
ac74e64e4f82-5
["google_api_key", "google_cse_id", "num_results"], ), "bing-search": (_get_bing_search, ["bing_subscription_key", "bing_search_url"]), "google-serper": (_get_google_serper, ["serper_api_key"]), "serpapi": (_get_serpapi, ["serpapi_api_key", "aiosession"]), "searx-search": (_get_searx_search, ["searx_host"]), "wikipedia": (_get_wikipedia, ["top_k_results"]), "human": (_get_human_tool, ["prompt_func", "input_func"]), } [docs]def load_tools( tool_names: List[str], llm: Optional[BaseLLM] = None, callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any, ) -> List[BaseTool]: """Load tools based on their name. Args: tool_names: name of tools to load. llm: Optional language model, may be needed to initialize certain tools. callback_manager: Optional callback manager. If not provided, default global callback manager will be used. Returns: List of tools. """ tools = [] for name in tool_names: if name in _BASE_TOOLS: tools.append(_BASE_TOOLS[name]()) elif name in _LLM_TOOLS: if llm is None: raise ValueError(f"Tool {name} requires an LLM to be provided") tool = _LLM_TOOLS[name](llm) if callback_manager is not None: tool.callback_manager = callback_manager tools.append(tool) elif name in _EXTRA_LLM_TOOLS:
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\load_tools.html"
ac74e64e4f82-6
tools.append(tool) elif name in _EXTRA_LLM_TOOLS: if llm is None: raise ValueError(f"Tool {name} requires an LLM to be provided") _get_llm_tool_func, extra_keys = _EXTRA_LLM_TOOLS[name] missing_keys = set(extra_keys).difference(kwargs) if missing_keys: raise ValueError( f"Tool {name} requires some parameters that were not " f"provided: {missing_keys}" ) sub_kwargs = {k: kwargs[k] for k in extra_keys} tool = _get_llm_tool_func(llm=llm, **sub_kwargs) if callback_manager is not None: tool.callback_manager = callback_manager tools.append(tool) elif name in _EXTRA_OPTIONAL_TOOLS: _get_tool_func, extra_keys = _EXTRA_OPTIONAL_TOOLS[name] sub_kwargs = {k: kwargs[k] for k in extra_keys if k in kwargs} tool = _get_tool_func(**sub_kwargs) if callback_manager is not None: tool.callback_manager = callback_manager tools.append(tool) else: raise ValueError(f"Got unknown tool {name}") return tools [docs]def get_all_tool_names() -> List[str]: """Get a list of all possible tool names.""" return ( list(_BASE_TOOLS) + list(_EXTRA_OPTIONAL_TOOLS) + list(_EXTRA_LLM_TOOLS) + list(_LLM_TOOLS) ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\load_tools.html"
354f0fe486a4-0
Source code for langchain.agents.tools """Interface for tools.""" from inspect import signature from typing import Any, Awaitable, Callable, Optional, Union from langchain.tools.base import BaseTool [docs]class Tool(BaseTool): """Tool that takes in function or coroutine directly.""" description: str = "" func: Callable[[str], str] coroutine: Optional[Callable[[str], Awaitable[str]]] = None def _run(self, tool_input: str) -> str: """Use the tool.""" return self.func(tool_input) async def _arun(self, tool_input: str) -> str: """Use the tool asynchronously.""" if self.coroutine: return await self.coroutine(tool_input) raise NotImplementedError("Tool does not support async") # TODO: this is for backwards compatibility, remove in future def __init__( self, name: str, func: Callable[[str], str], description: str, **kwargs: Any ) -> None: """Initialize tool.""" super(Tool, self).__init__( name=name, func=func, description=description, **kwargs ) class InvalidTool(BaseTool): """Tool that is run when invalid tool name is encountered by agent.""" name = "invalid_tool" description = "Called when tool name is invalid." def _run(self, tool_name: str) -> str: """Use the tool.""" return f"{tool_name} is not a valid tool, try another one." async def _arun(self, tool_name: str) -> str: """Use the tool asynchronously.""" return f"{tool_name} is not a valid tool, try another one."
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\tools.html"
354f0fe486a4-1
return f"{tool_name} is not a valid tool, try another one." [docs]def tool(*args: Union[str, Callable], return_direct: bool = False) -> Callable: """Make tools out of functions, can be used with or without arguments. Requires: - Function must be of type (str) -> str - Function must have a docstring Examples: .. code-block:: python @tool def search_api(query: str) -> str: # Searches the API for the query. return @tool("search", return_direct=True) def search_api(query: str) -> str: # Searches the API for the query. return """ def _make_with_name(tool_name: str) -> Callable: def _make_tool(func: Callable[[str], str]) -> Tool: assert func.__doc__, "Function must have a docstring" # Description example: # search_api(query: str) - Searches the API for the query. description = f"{tool_name}{signature(func)} - {func.__doc__.strip()}" tool_ = Tool( name=tool_name, func=func, description=description, return_direct=return_direct, ) return tool_ return _make_tool if len(args) == 1 and isinstance(args[0], str): # if the argument is a string, then we use the string as the tool name # Example usage: @tool("search", return_direct=True) return _make_with_name(args[0]) elif len(args) == 1 and callable(args[0]): # if the argument is a function, then we use the function name as the tool name
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\tools.html"
354f0fe486a4-2
# if the argument is a function, then we use the function name as the tool name # Example usage: @tool return _make_with_name(args[0].__name__)(args[0]) elif len(args) == 0: # if there are no arguments, then we use the function name as the tool name # Example usage: @tool(return_direct=True) def _partial(func: Callable[[str], str]) -> BaseTool: return _make_with_name(func.__name__)(func) return _partial else: raise ValueError("Too many arguments for tool decorator") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\tools.html"
1bf5fbe2e4b2-0
Source code for langchain.agents.agent_toolkits.csv.base """Agent for working with csvs.""" from typing import Any, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent from langchain.llms.base import BaseLLM [docs]def create_csv_agent( llm: BaseLLM, path: str, pandas_kwargs: Optional[dict] = None, **kwargs: Any ) -> AgentExecutor: """Create csv agent by loading to a dataframe and using pandas agent.""" import pandas as pd _kwargs = pandas_kwargs or {} df = pd.read_csv(path, **_kwargs) return create_pandas_dataframe_agent(llm, df, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent_toolkits\\csv\\base.html"
1aa598ece489-0
Source code for langchain.agents.agent_toolkits.json.base """Json agent.""" from typing import Any, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.json.prompt import JSON_PREFIX, JSON_SUFFIX from langchain.agents.agent_toolkits.json.toolkit import JsonToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.llms.base import BaseLLM [docs]def create_json_agent( llm: BaseLLM, toolkit: JsonToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = JSON_PREFIX, suffix: str = JSON_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, verbose: bool = False, **kwargs: Any, ) -> AgentExecutor: """Construct a json agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=toolkit.get_tools(), verbose=verbose ) By Harrison Chase
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent_toolkits\\json\\base.html"
1aa598ece489-1
) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent_toolkits\\json\\base.html"
58e5351230ae-0
Source code for langchain.agents.agent_toolkits.openapi.base """OpenAPI spec agent.""" from typing import Any, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.openapi.prompt import ( OPENAPI_PREFIX, OPENAPI_SUFFIX, ) from langchain.agents.agent_toolkits.openapi.toolkit import OpenAPIToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.llms.base import BaseLLM [docs]def create_openapi_agent( llm: BaseLLM, toolkit: OpenAPIToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = OPENAPI_PREFIX, suffix: str = OPENAPI_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, verbose: bool = False, **kwargs: Any, ) -> AgentExecutor: """Construct a json agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools(
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent_toolkits\\openapi\\base.html"
58e5351230ae-1
return AgentExecutor.from_agent_and_tools( agent=agent, tools=toolkit.get_tools(), verbose=verbose ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent_toolkits\\openapi\\base.html"
712912f8eeeb-0
Source code for langchain.agents.agent_toolkits.pandas.base """Agent for working with pandas objects.""" from typing import Any, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.pandas.prompt import PREFIX, SUFFIX from langchain.agents.mrkl.base import ZeroShotAgent from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.llms.base import BaseLLM from langchain.tools.python.tool import PythonAstREPLTool [docs]def create_pandas_dataframe_agent( llm: BaseLLM, df: Any, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = PREFIX, suffix: str = SUFFIX, input_variables: Optional[List[str]] = None, verbose: bool = False, **kwargs: Any, ) -> AgentExecutor: """Construct a pandas agent from an LLM and dataframe.""" import pandas as pd if not isinstance(df, pd.DataFrame): raise ValueError(f"Expected pandas object, got {type(df)}") if input_variables is None: input_variables = ["df", "input", "agent_scratchpad"] tools = [PythonAstREPLTool(locals={"df": df})] prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=input_variables ) partial_prompt = prompt.partial(df=str(df.head())) llm_chain = LLMChain( llm=llm, prompt=partial_prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools]
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent_toolkits\\pandas\\base.html"
712912f8eeeb-1
) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=verbose) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent_toolkits\\pandas\\base.html"
9f7cfe57cf4a-0
Source code for langchain.agents.agent_toolkits.sql.base """SQL agent.""" from typing import Any, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.sql.prompt import SQL_PREFIX, SQL_SUFFIX from langchain.agents.agent_toolkits.sql.toolkit import SQLDatabaseToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.llms.base import BaseLLM [docs]def create_sql_agent( llm: BaseLLM, toolkit: SQLDatabaseToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = SQL_PREFIX, suffix: str = SQL_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, top_k: int = 10, verbose: bool = False, **kwargs: Any, ) -> AgentExecutor: """Construct a sql agent from an LLM and tools.""" tools = toolkit.get_tools() prefix = prefix.format(dialect=toolkit.dialect, top_k=top_k) prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent_toolkits\\sql\\base.html"
9f7cfe57cf4a-1
return AgentExecutor.from_agent_and_tools( agent=agent, tools=toolkit.get_tools(), verbose=verbose ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent_toolkits\\sql\\base.html"
82c4709952fd-0
Source code for langchain.agents.agent_toolkits.vectorstore.base """VectorStore agent.""" from typing import Any, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.vectorstore.prompt import PREFIX, ROUTER_PREFIX from langchain.agents.agent_toolkits.vectorstore.toolkit import ( VectorStoreRouterToolkit, VectorStoreToolkit, ) from langchain.agents.mrkl.base import ZeroShotAgent from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.llms.base import BaseLLM [docs]def create_vectorstore_agent( llm: BaseLLM, toolkit: VectorStoreToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = PREFIX, verbose: bool = False, **kwargs: Any, ) -> AgentExecutor: """Construct a vectorstore agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=verbose) [docs]def create_vectorstore_router_agent( llm: BaseLLM, toolkit: VectorStoreRouterToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = ROUTER_PREFIX, verbose: bool = False,
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent_toolkits\\vectorstore\\base.html"
82c4709952fd-1
prefix: str = ROUTER_PREFIX, verbose: bool = False, **kwargs: Any, ) -> AgentExecutor: """Construct a vectorstore router agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=verbose) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\agent_toolkits\\vectorstore\\base.html"
a1ebc10cc63f-0
Source code for langchain.agents.conversational.base """An agent designed to hold a conversation in addition to using tools.""" from __future__ import annotations import re from typing import Any, List, Optional, Sequence, Tuple from langchain.agents.agent import Agent from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX from langchain.callbacks.base import BaseCallbackManager from langchain.chains import LLMChain from langchain.llms import BaseLLM from langchain.prompts import PromptTemplate from langchain.tools.base import BaseTool [docs]class ConversationalAgent(Agent): """An agent designed to hold a conversation in addition to using tools.""" ai_prefix: str = "AI" @property def _agent_type(self) -> str: """Return Identifier of agent type.""" return "conversational-react-description" @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" [docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, ai_prefix: str = "AI", human_prefix: str = "Human", input_variables: Optional[List[str]] = None, ) -> PromptTemplate: """Create prompt in the style of the zero shot agent. Args: tools: List of tools the agent will have access to, used to format the prompt.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\conversational\\base.html"
a1ebc10cc63f-1
prompt. prefix: String to put before the list of tools. suffix: String to put after the list of tools. ai_prefix: String to use before AI output. human_prefix: String to use before human output. input_variables: List of input variables the final prompt will expect. Returns: A PromptTemplate with the template assembled from the pieces here. """ tool_strings = "\n".join( [f"> {tool.name}: {tool.description}" for tool in tools] ) tool_names = ", ".join([tool.name for tool in tools]) format_instructions = format_instructions.format( tool_names=tool_names, ai_prefix=ai_prefix, human_prefix=human_prefix ) template = "\n\n".join([prefix, tool_strings, format_instructions, suffix]) if input_variables is None: input_variables = ["input", "chat_history", "agent_scratchpad"] return PromptTemplate(template=template, input_variables=input_variables) @property def finish_tool_name(self) -> str: """Name of the tool to use to finish the chain.""" return self.ai_prefix def _extract_tool_and_input(self, llm_output: str) -> Optional[Tuple[str, str]]: if f"{self.ai_prefix}:" in llm_output: return self.ai_prefix, llm_output.split(f"{self.ai_prefix}:")[-1].strip() regex = r"Action: (.*?)[\n]*Action Input: (.*)" match = re.search(regex, llm_output) if not match: raise ValueError(f"Could not parse LLM output: `{llm_output}`") action = match.group(1)
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\conversational\\base.html"
a1ebc10cc63f-2
action = match.group(1) action_input = match.group(2) return action.strip(), action_input.strip(" ").strip('"') [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLLM, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, ai_prefix: str = "AI", human_prefix: str = "Human", input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) prompt = cls.create_prompt( tools, ai_prefix=ai_prefix, human_prefix=human_prefix, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] return cls( llm_chain=llm_chain, allowed_tools=tool_names, ai_prefix=ai_prefix, **kwargs ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\conversational\\base.html"
e41001678fb6-0
Source code for langchain.agents.mrkl.base """Attempt to implement MRKL systems as described in arxiv.org/pdf/2205.00445.pdf.""" from __future__ import annotations import re from typing import Any, Callable, List, NamedTuple, Optional, Sequence, Tuple from langchain.agents.agent import Agent, AgentExecutor from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX from langchain.agents.tools import Tool from langchain.callbacks.base import BaseCallbackManager from langchain.chains import LLMChain from langchain.llms.base import BaseLLM from langchain.prompts import PromptTemplate from langchain.tools.base import BaseTool FINAL_ANSWER_ACTION = "Final Answer:" class ChainConfig(NamedTuple): """Configuration for chain to use in MRKL system. Args: action_name: Name of the action. action: Action function to call. action_description: Description of the action. """ action_name: str action: Callable action_description: str def get_action_and_input(llm_output: str) -> Tuple[str, str]: """Parse out the action and input from the LLM output. Note: if you're specifying a custom prompt for the ZeroShotAgent, you will need to ensure that it meets the following Regex requirements. The string starting with "Action:" and the following string starting with "Action Input:" should be separated by a newline. """ if FINAL_ANSWER_ACTION in llm_output: return "Final Answer", llm_output.split(FINAL_ANSWER_ACTION)[-1].strip() regex = r"Action: (.*?)[\n]*Action Input: (.*)"
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\mrkl\\base.html"
e41001678fb6-1
regex = r"Action: (.*?)[\n]*Action Input: (.*)" match = re.search(regex, llm_output, re.DOTALL) if not match: raise ValueError(f"Could not parse LLM output: `{llm_output}`") action = match.group(1).strip() action_input = match.group(2) return action, action_input.strip(" ").strip('"') [docs]class ZeroShotAgent(Agent): """Agent for the MRKL chain.""" @property def _agent_type(self) -> str: """Return Identifier of agent type.""" return "zero-shot-react-description" @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" [docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, ) -> PromptTemplate: """Create prompt in the style of the zero shot agent. Args: tools: List of tools the agent will have access to, used to format the prompt. prefix: String to put before the list of tools. suffix: String to put after the list of tools. input_variables: List of input variables the final prompt will expect. Returns: A PromptTemplate with the template assembled from the pieces here. """
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\mrkl\\base.html"
e41001678fb6-2
Returns: A PromptTemplate with the template assembled from the pieces here. """ tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools]) tool_names = ", ".join([tool.name for tool in tools]) format_instructions = format_instructions.format(tool_names=tool_names) template = "\n\n".join([prefix, tool_strings, format_instructions, suffix]) if input_variables is None: input_variables = ["input", "agent_scratchpad"] return PromptTemplate(template=template, input_variables=input_variables) [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLLM, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) prompt = cls.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] return cls(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: for tool in tools:
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\mrkl\\base.html"
e41001678fb6-3
for tool in tools: if tool.description is None: raise ValueError( f"Got a tool {tool.name} without a description. For this agent, " f"a description must always be provided." ) def _extract_tool_and_input(self, text: str) -> Optional[Tuple[str, str]]: return get_action_and_input(text) [docs]class MRKLChain(AgentExecutor): """Chain that implements the MRKL system. Example: .. code-block:: python from langchain import OpenAI, MRKLChain from langchain.chains.mrkl.base import ChainConfig llm = OpenAI(temperature=0) prompt = PromptTemplate(...) chains = [...] mrkl = MRKLChain.from_chains(llm=llm, prompt=prompt) """ [docs] @classmethod def from_chains( cls, llm: BaseLLM, chains: List[ChainConfig], **kwargs: Any ) -> AgentExecutor: """User friendly way to initialize the MRKL chain. This is intended to be an easy way to get up and running with the MRKL chain. Args: llm: The LLM to use as the agent LLM. chains: The chains the MRKL system has access to. **kwargs: parameters to be passed to initialization. Returns: An initialized MRKL chain. Example: .. code-block:: python from langchain import LLMMathChain, OpenAI, SerpAPIWrapper, MRKLChain from langchain.chains.mrkl.base import ChainConfig llm = OpenAI(temperature=0) search = SerpAPIWrapper()
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\mrkl\\base.html"
e41001678fb6-4
llm = OpenAI(temperature=0) search = SerpAPIWrapper() llm_math_chain = LLMMathChain(llm=llm) chains = [ ChainConfig( action_name = "Search", action=search.search, action_description="useful for searching" ), ChainConfig( action_name="Calculator", action=llm_math_chain.run, action_description="useful for doing math" ) ] mrkl = MRKLChain.from_chains(llm, chains) """ tools = [ Tool( name=c.action_name, func=c.action, description=c.action_description, ) for c in chains ] agent = ZeroShotAgent.from_llm_and_tools(llm, tools) return cls(agent=agent, tools=tools, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 24, 2023.
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\mrkl\\base.html"
33c5a200824a-0
Source code for langchain.agents.react.base """Chain that implements the ReAct paper from https://arxiv.org/pdf/2210.03629.pdf.""" import re from typing import Any, List, Optional, Sequence, Tuple from pydantic import BaseModel from langchain.agents.agent import Agent, AgentExecutor from langchain.agents.react.textworld_prompt import TEXTWORLD_PROMPT from langchain.agents.react.wiki_prompt import WIKI_PROMPT from langchain.agents.tools import Tool from langchain.docstore.base import Docstore from langchain.docstore.document import Document from langchain.llms.base import BaseLLM from langchain.prompts.base import BasePromptTemplate from langchain.tools.base import BaseTool class ReActDocstoreAgent(Agent, BaseModel): """Agent for the ReAct chain.""" @property def _agent_type(self) -> str: """Return Identifier of agent type.""" return "react-docstore" @classmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Return default prompt.""" return WIKI_PROMPT i: int = 1 @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: if len(tools) != 2: raise ValueError(f"Exactly two tools must be specified, but got {tools}") tool_names = {tool.name for tool in tools} if tool_names != {"Lookup", "Search"}: raise ValueError( f"Tool names should be Lookup and Search, got {tool_names}" ) def _prepare_for_new_call(self) -> None: self.i = 1 def _fix_text(self, text: str) -> str:
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\react\\base.html"
33c5a200824a-1
def _fix_text(self, text: str) -> str: return text + f"\nAction {self.i}:" def _extract_tool_and_input(self, text: str) -> Optional[Tuple[str, str]]: action_prefix = f"Action {self.i}: " if not text.split("\n")[-1].startswith(action_prefix): return None self.i += 1 action_block = text.split("\n")[-1] action_str = action_block[len(action_prefix) :] # Parse out the action and the directive. re_matches = re.search(r"(.*?)\[(.*?)\]", action_str) if re_matches is None: raise ValueError(f"Could not parse action directive: {action_str}") return re_matches.group(1), re_matches.group(2) @property def finish_tool_name(self) -> str: """Name of the tool of when to finish the chain.""" return "Finish" @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return f"Observation {self.i - 1}: " @property def _stop(self) -> List[str]: return [f"\nObservation {self.i}:"] @property def llm_prefix(self) -> str: """Prefix to append the LLM call with.""" return f"Thought {self.i}:" class DocstoreExplorer: """Class to assist with exploration of a document store.""" def __init__(self, docstore: Docstore): """Initialize with a docstore, and set initial document to None.""" self.docstore = docstore self.document: Optional[Document] = None
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\react\\base.html"
33c5a200824a-2
self.docstore = docstore self.document: Optional[Document] = None def search(self, term: str) -> str: """Search for a term in the docstore, and if found save.""" result = self.docstore.search(term) if isinstance(result, Document): self.document = result return self.document.summary else: self.document = None return result def lookup(self, term: str) -> str: """Lookup a term in document (if saved).""" if self.document is None: raise ValueError("Cannot lookup without a successful search first") return self.document.lookup(term) [docs]class ReActTextWorldAgent(ReActDocstoreAgent, BaseModel): """Agent for the ReAct TextWorld chain.""" [docs] @classmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Return default prompt.""" return TEXTWORLD_PROMPT @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: if len(tools) != 1: raise ValueError(f"Exactly one tool must be specified, but got {tools}") tool_names = {tool.name for tool in tools} if tool_names != {"Play"}: raise ValueError(f"Tool name should be Play, got {tool_names}") [docs]class ReActChain(AgentExecutor): """Chain that implements the ReAct paper. Example: .. code-block:: python from langchain import ReActChain, OpenAI react = ReAct(llm=OpenAI()) """ def __init__(self, llm: BaseLLM, docstore: Docstore, **kwargs: Any):
ERROR: type should be string, got "https://langchain.readthedocs.io\\en\\latest\\_modules\\langchain\\agents\\react\\base.html"