id
stringlengths
14
15
text
stringlengths
44
2.47k
source
stringlengths
61
181
dba2dae987f7-0
langchain API Reference¶ langchain.adapters¶ Classes¶ adapters.openai.ChatCompletion() Functions¶ adapters.openai.aenumerate(iterable[, start]) Async version of enumerate. adapters.openai.convert_dict_to_message(_dict) adapters.openai.convert_message_to_dict(message) adapters.openai.convert_messages_for_finetuning(...) Convert messages to a list of lists of dictionaries for fine-tuning. adapters.openai.convert_openai_messages(messages) Convert dictionaries representing OpenAI messages to LangChain format. langchain.agents¶ Agent is a class that uses an LLM to choose a sequence of actions to take. In Chains, a sequence of actions is hardcoded. In Agents, a language model is used as a reasoning engine to determine which actions to take and in which order. Agents select and use Tools and Toolkits for actions. Class hierarchy: BaseSingleActionAgent --> LLMSingleActionAgent OpenAIFunctionsAgent XMLAgent Agent --> <name>Agent # Examples: ZeroShotAgent, ChatAgent BaseMultiActionAgent --> OpenAIMultiFunctionsAgent Main helpers: AgentType, AgentExecutor, AgentOutputParser, AgentExecutorIterator, AgentAction, AgentFinish Classes¶ agents.agent.Agent Agent that calls the language model and deciding the action. agents.agent.AgentExecutor Agent that is using tools. agents.agent.AgentOutputParser Base class for parsing agent output into agent action/finish. agents.agent.BaseMultiActionAgent Base Multi Action Agent class. agents.agent.BaseSingleActionAgent Base Single Action Agent class. agents.agent.ExceptionTool Tool that just returns the query. agents.agent.LLMSingleActionAgent Base class for single action agents. agents.agent.RunnableAgent Agent powered by runnables.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-1
agents.agent.RunnableAgent Agent powered by runnables. agents.agent_iterator.AgentExecutorIterator(...) Iterator for AgentExecutor. agents.agent_iterator.BaseAgentExecutorIterator() Base class for AgentExecutorIterator. agents.agent_toolkits.ainetwork.toolkit.AINetworkToolkit Toolkit for interacting with AINetwork Blockchain. agents.agent_toolkits.amadeus.toolkit.AmadeusToolkit Toolkit for interacting with Office365. agents.agent_toolkits.azure_cognitive_services.AzureCognitiveServicesToolkit Toolkit for Azure Cognitive Services. agents.agent_toolkits.base.BaseToolkit Base Toolkit representing a collection of related tools. agents.agent_toolkits.file_management.toolkit.FileManagementToolkit Toolkit for interacting with a Local Files. agents.agent_toolkits.github.toolkit.GitHubToolkit GitHub Toolkit. agents.agent_toolkits.gitlab.toolkit.GitLabToolkit GitLab Toolkit. agents.agent_toolkits.gmail.toolkit.GmailToolkit Toolkit for interacting with Gmail. agents.agent_toolkits.jira.toolkit.JiraToolkit Jira Toolkit. agents.agent_toolkits.json.toolkit.JsonToolkit Toolkit for interacting with a JSON spec. agents.agent_toolkits.multion.toolkit.MultionToolkit Toolkit for interacting with the Browser Agent agents.agent_toolkits.nla.tool.NLATool Natural Language API Tool. agents.agent_toolkits.nla.toolkit.NLAToolkit Natural Language API Toolkit. agents.agent_toolkits.office365.toolkit.O365Toolkit Toolkit for interacting with Office 365. agents.agent_toolkits.openapi.planner.RequestsDeleteToolWithParsing A tool that sends a DELETE request and parses the response. agents.agent_toolkits.openapi.planner.RequestsGetToolWithParsing Requests GET tool with LLM-instructed extraction of truncated responses. agents.agent_toolkits.openapi.planner.RequestsPatchToolWithParsing
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-2
agents.agent_toolkits.openapi.planner.RequestsPatchToolWithParsing Requests PATCH tool with LLM-instructed extraction of truncated responses. agents.agent_toolkits.openapi.planner.RequestsPostToolWithParsing Requests POST tool with LLM-instructed extraction of truncated responses. agents.agent_toolkits.openapi.planner.RequestsPutToolWithParsing Requests PUT tool with LLM-instructed extraction of truncated responses. agents.agent_toolkits.openapi.spec.ReducedOpenAPISpec(...) A reduced OpenAPI spec. agents.agent_toolkits.openapi.toolkit.OpenAPIToolkit Toolkit for interacting with an OpenAPI API. agents.agent_toolkits.openapi.toolkit.RequestsToolkit Toolkit for making REST requests. agents.agent_toolkits.playwright.toolkit.PlayWrightBrowserToolkit Toolkit for PlayWright browser tools. agents.agent_toolkits.powerbi.toolkit.PowerBIToolkit Toolkit for interacting with Power BI dataset. agents.agent_toolkits.spark_sql.toolkit.SparkSQLToolkit Toolkit for interacting with Spark SQL. agents.agent_toolkits.sql.toolkit.SQLDatabaseToolkit Toolkit for interacting with SQL databases. agents.agent_toolkits.vectorstore.toolkit.VectorStoreInfo Information about a VectorStore. agents.agent_toolkits.vectorstore.toolkit.VectorStoreRouterToolkit Toolkit for routing between Vector Stores. agents.agent_toolkits.vectorstore.toolkit.VectorStoreToolkit Toolkit for interacting with a Vector Store. agents.agent_toolkits.zapier.toolkit.ZapierToolkit Zapier Toolkit. agents.agent_types.AgentType(value[, names, ...]) Enumerator with the Agent types. agents.chat.base.ChatAgent Chat Agent. agents.chat.output_parser.ChatOutputParser Output parser for the chat agent. agents.conversational.base.ConversationalAgent An agent that holds a conversation in addition to using tools. agents.conversational.output_parser.ConvoOutputParser
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-3
agents.conversational.output_parser.ConvoOutputParser Output parser for the conversational agent. agents.conversational_chat.base.ConversationalChatAgent An agent designed to hold a conversation in addition to using tools. agents.conversational_chat.output_parser.ConvoOutputParser Output parser for the conversational agent. agents.mrkl.base.ChainConfig(action_name, ...) Configuration for chain to use in MRKL system. agents.mrkl.base.MRKLChain [Deprecated] Chain that implements the MRKL system. agents.mrkl.base.ZeroShotAgent Agent for the MRKL chain. agents.mrkl.output_parser.MRKLOutputParser MRKL Output parser for the chat agent. agents.openai_functions_agent.agent_token_buffer_memory.AgentTokenBufferMemory Memory used to save agent output AND intermediate steps. agents.openai_functions_agent.base.OpenAIFunctionsAgent An Agent driven by OpenAIs function powered API. agents.openai_functions_multi_agent.base.OpenAIMultiFunctionsAgent An Agent driven by OpenAIs function powered API. agents.output_parsers.json.JSONAgentOutputParser Parses tool invocations and final answers in XML format. agents.output_parsers.openai_functions.OpenAIFunctionsAgentOutputParser Parses a message into agent action/finish. agents.output_parsers.react_json_single_input.ReActJsonSingleInputOutputParser Parses ReAct-style LLM calls that have a single tool input in json format. agents.output_parsers.react_single_input.ReActSingleInputOutputParser Parses ReAct-style LLM calls that have a single tool input. agents.output_parsers.self_ask.SelfAskOutputParser Parses self-ask style LLM calls. agents.output_parsers.xml.XMLAgentOutputParser Parses tool invocations and final answers in XML format.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-4
Parses tool invocations and final answers in XML format. agents.react.base.DocstoreExplorer(docstore) Class to assist with exploration of a document store. agents.react.base.ReActChain [Deprecated] Chain that implements the ReAct paper. agents.react.base.ReActDocstoreAgent Agent for the ReAct chain. agents.react.base.ReActTextWorldAgent Agent for the ReAct TextWorld chain. agents.react.output_parser.ReActOutputParser Output parser for the ReAct agent. agents.schema.AgentScratchPadChatPromptTemplate Chat prompt template for the agent scratchpad. agents.self_ask_with_search.base.SelfAskWithSearchAgent Agent for the self-ask-with-search paper. agents.self_ask_with_search.base.SelfAskWithSearchChain [Deprecated] Chain that does self-ask with search. agents.structured_chat.base.StructuredChatAgent Structured Chat Agent. agents.structured_chat.output_parser.StructuredChatOutputParser Output parser for the structured chat agent. agents.structured_chat.output_parser.StructuredChatOutputParserWithRetries Output parser with retries for the structured chat agent. agents.tools.InvalidTool Tool that is run when invalid tool name is encountered by agent. agents.xml.base.XMLAgent Agent that uses XML tags. Functions¶ agents.agent_iterator.rebuild_callback_manager_on_set(...) Decorator to force setters to rebuild callback mgr agents.agent_toolkits.conversational_retrieval.openai_functions.create_conversational_retrieval_agent(...) A convenience method for creating a conversational retrieval agent. agents.agent_toolkits.conversational_retrieval.tool.create_retriever_tool(...) Create a tool to do retrieval of documents. agents.agent_toolkits.csv.base.create_csv_agent(...) Create csv agent by loading to a dataframe and using pandas agent. agents.agent_toolkits.json.base.create_json_agent(...)
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-5
agents.agent_toolkits.json.base.create_json_agent(...) Construct a json agent from an LLM and tools. agents.agent_toolkits.openapi.base.create_openapi_agent(...) Construct an OpenAPI agent from an LLM and tools. agents.agent_toolkits.openapi.planner.create_openapi_agent(...) Instantiate OpenAI API planner and controller for a given spec. agents.agent_toolkits.openapi.spec.reduce_openapi_spec(spec) Simplify/distill/minify a spec somehow. agents.agent_toolkits.pandas.base.create_pandas_dataframe_agent(llm, df) Construct a pandas agent from an LLM and dataframe. agents.agent_toolkits.powerbi.base.create_pbi_agent(llm) Construct a Power BI agent from an LLM and tools. agents.agent_toolkits.powerbi.chat_base.create_pbi_chat_agent(llm) Construct a Power BI agent from a Chat LLM and tools. agents.agent_toolkits.python.base.create_python_agent(...) Construct a python agent from an LLM and tool. agents.agent_toolkits.spark.base.create_spark_dataframe_agent(llm, df) Construct a Spark agent from an LLM and dataframe. agents.agent_toolkits.spark_sql.base.create_spark_sql_agent(...) Construct a Spark SQL agent from an LLM and tools. agents.agent_toolkits.sql.base.create_sql_agent(...) Construct an SQL agent from an LLM and tools. agents.agent_toolkits.vectorstore.base.create_vectorstore_agent(...) Construct a VectorStore agent from an LLM and tools. agents.agent_toolkits.vectorstore.base.create_vectorstore_router_agent(...) Construct a VectorStore router agent from an LLM and tools. agents.agent_toolkits.xorbits.base.create_xorbits_agent(...) Construct a xorbits agent from an LLM and dataframe. agents.format_scratchpad.log.format_log_to_str(...) Construct the scratchpad that lets the agent continue its thought process.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-6
Construct the scratchpad that lets the agent continue its thought process. agents.format_scratchpad.log_to_messages.format_log_to_messages(...) Construct the scratchpad that lets the agent continue its thought process. agents.format_scratchpad.openai_functions.format_to_openai_functions(...) Format intermediate steps. agents.format_scratchpad.xml.format_xml(...) agents.initialize.initialize_agent(tools, llm) Load an agent executor given tools and LLM. agents.load_tools.get_all_tool_names() Get a list of all possible tool names. agents.load_tools.load_huggingface_tool(...) Loads a tool from the HuggingFace Hub. agents.load_tools.load_tools(tool_names[, ...]) Load tools based on their name. agents.loading.load_agent(path, **kwargs) Unified method for loading an agent from LangChainHub or local fs. agents.loading.load_agent_from_config(config) Load agent from Config Dict. agents.utils.validate_tools_single_input(...) Validate tools for single input. langchain.agents.format_scratchpad¶ Logic for formatting intermediate steps into an agent scratchpad. Intermediate steps refers to the list of (AgentAction, observation) tuples that result from previous iterations of the agent. Depending on the prompting strategy you are using, you may want to format these differently before passing them into the LLM. Functions¶ agents.format_scratchpad.log.format_log_to_str(...) Construct the scratchpad that lets the agent continue its thought process. agents.format_scratchpad.log_to_messages.format_log_to_messages(...) Construct the scratchpad that lets the agent continue its thought process. agents.format_scratchpad.openai_functions.format_to_openai_functions(...) Format intermediate steps. agents.format_scratchpad.xml.format_xml(...) langchain.agents.output_parsers¶ Parsing utils to go from string to AgentAction or Agent Finish.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-7
Parsing utils to go from string to AgentAction or Agent Finish. AgentAction means that an action should be taken. This contains the name of the tool to use, the input to pass to that tool, and a log variable (which contains a log of the agent’s thinking). AgentFinish means that a response should be given. This contains a return_values dictionary. This usually contains a single output key, but can be extended to contain more. This also contains a log variable (which contains a log of the agent’s thinking). Classes¶ agents.output_parsers.json.JSONAgentOutputParser Parses tool invocations and final answers in XML format. agents.output_parsers.openai_functions.OpenAIFunctionsAgentOutputParser Parses a message into agent action/finish. agents.output_parsers.react_json_single_input.ReActJsonSingleInputOutputParser Parses ReAct-style LLM calls that have a single tool input in json format. agents.output_parsers.react_single_input.ReActSingleInputOutputParser Parses ReAct-style LLM calls that have a single tool input. agents.output_parsers.self_ask.SelfAskOutputParser Parses self-ask style LLM calls. agents.output_parsers.xml.XMLAgentOutputParser Parses tool invocations and final answers in XML format. langchain.cache¶ Warning Beta Feature! Cache provides an optional caching layer for LLMs. Cache is useful for two reasons: It can save you money by reducing the number of API calls you make to the LLM provider if you’re often requesting the same completion multiple times. It can speed up your application by reducing the number of API calls you make to the LLM provider. Cache directly competes with Memory. See documentation for Pros and Cons. Class hierarchy:
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-8
Cache directly competes with Memory. See documentation for Pros and Cons. Class hierarchy: BaseCache --> <name>Cache # Examples: InMemoryCache, RedisCache, GPTCache Classes¶ cache.CassandraCache([session, keyspace, ...]) Cache that uses Cassandra / Astra DB as a backend. cache.CassandraSemanticCache(session, ...[, ...]) Cache that uses Cassandra as a vector-store backend for semantic (i.e. cache.FullLLMCache(**kwargs) SQLite table for full LLM Cache (all generations). cache.GPTCache([init_func]) Cache that uses GPTCache as a backend. cache.InMemoryCache() Cache that stores things in memory. cache.MomentoCache(cache_client, cache_name, *) Cache that uses Momento as a backend. cache.RedisCache(redis_, *[, ttl]) Cache that uses Redis as a backend. cache.RedisSemanticCache(redis_url, embedding) Cache that uses Redis as a vector-store backend. cache.SQLAlchemyCache(engine, cache_schema) Cache that uses SQAlchemy as a backend. cache.SQLiteCache([database_path]) Cache that uses SQLite as a backend. Functions¶ langchain.callbacks¶ Callback handlers allow listening to events in LangChain. Class hierarchy: BaseCallbackHandler --> <name>CallbackHandler # Example: AimCallbackHandler Classes¶ callbacks.aim_callback.AimCallbackHandler([...]) Callback Handler that logs to Aim. callbacks.aim_callback.BaseMetadataCallbackHandler() This class handles the metadata and associated function states for callbacks. callbacks.argilla_callback.ArgillaCallbackHandler(...) Callback Handler that logs into Argilla. callbacks.arize_callback.ArizeCallbackHandler([...]) Callback Handler that logs to Arize. callbacks.arthur_callback.ArthurCallbackHandler(...)
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-9
Callback Handler that logs to Arize. callbacks.arthur_callback.ArthurCallbackHandler(...) Callback Handler that logs to Arthur platform. callbacks.base.AsyncCallbackHandler() Async callback handler that can be used to handle callbacks from langchain. callbacks.base.BaseCallbackHandler() Base callback handler that can be used to handle callbacks from langchain. callbacks.base.BaseCallbackManager(handlers) Base callback manager that handles callbacks from LangChain. callbacks.base.CallbackManagerMixin() Mixin for callback manager. callbacks.base.ChainManagerMixin() Mixin for chain callbacks. callbacks.base.LLMManagerMixin() Mixin for LLM callbacks. callbacks.base.RetrieverManagerMixin() Mixin for Retriever callbacks. callbacks.base.RunManagerMixin() Mixin for run manager. callbacks.base.ToolManagerMixin() Mixin for tool callbacks. callbacks.clearml_callback.ClearMLCallbackHandler([...]) Callback Handler that logs to ClearML. callbacks.comet_ml_callback.CometCallbackHandler([...]) Callback Handler that logs to Comet. callbacks.confident_callback.DeepEvalCallbackHandler(metrics) Callback Handler that logs into deepeval. callbacks.context_callback.ContextCallbackHandler([...]) Callback Handler that records transcripts to the Context service. callbacks.file.FileCallbackHandler(filename) Callback Handler that writes to a file. callbacks.flyte_callback.FlyteCallbackHandler() This callback handler that is used within a Flyte task. callbacks.human.HumanApprovalCallbackHandler(...) Callback for manually validating values. callbacks.human.HumanRejectedException Exception to raise when a person manually review and rejects a value. callbacks.infino_callback.InfinoCallbackHandler([...]) Callback Handler that logs to Infino. callbacks.labelstudio_callback.LabelStudioCallbackHandler([...]) Label Studio callback handler. callbacks.labelstudio_callback.LabelStudioMode(value) callbacks.llmonitor_callback.LLMonitorCallbackHandler([...])
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-10
callbacks.llmonitor_callback.LLMonitorCallbackHandler([...]) Initializes the LLMonitorCallbackHandler. #### Parameters: - app_id: The app id of the app you want to report to. Defaults to None, which means that LLMONITOR_APP_ID will be used. - api_url: The url of the LLMonitor API. Defaults to None, which means that either LLMONITOR_API_URL environment variable or https://app.llmonitor.com will be used. callbacks.llmonitor_callback.UserContextManager(user_id) callbacks.manager.AsyncCallbackManager(handlers) Async callback manager that handles callbacks from LangChain. callbacks.manager.AsyncCallbackManagerForChainGroup(...) Initialize callback manager. callbacks.manager.AsyncCallbackManagerForChainRun(*, ...) Async callback manager for chain run. callbacks.manager.AsyncCallbackManagerForLLMRun(*, ...) Async callback manager for LLM run. callbacks.manager.AsyncCallbackManagerForRetrieverRun(*, ...) Async callback manager for retriever run. callbacks.manager.AsyncCallbackManagerForToolRun(*, ...) Async callback manager for tool run. callbacks.manager.AsyncParentRunManager(*, ...) Async Parent Run Manager. callbacks.manager.AsyncRunManager(*, run_id, ...) Async Run Manager. callbacks.manager.BaseRunManager(*, run_id, ...) Base class for run manager (a bound callback manager). callbacks.manager.CallbackManager(handlers) Callback manager that handles callbacks from langchain. callbacks.manager.CallbackManagerForChainGroup(...) Initialize callback manager. callbacks.manager.CallbackManagerForChainRun(*, ...) Callback manager for chain run. callbacks.manager.CallbackManagerForLLMRun(*, ...) Callback manager for LLM run. callbacks.manager.CallbackManagerForRetrieverRun(*, ...) Callback manager for retriever run.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-11
Callback manager for retriever run. callbacks.manager.CallbackManagerForToolRun(*, ...) Callback manager for tool run. callbacks.manager.ParentRunManager(*, ...[, ...]) Sync Parent Run Manager. callbacks.manager.RunManager(*, run_id, ...) Sync Run Manager. callbacks.mlflow_callback.MlflowCallbackHandler([...]) Callback Handler that logs metrics and artifacts to mlflow server. callbacks.mlflow_callback.MlflowLogger(**kwargs) Callback Handler that logs metrics and artifacts to mlflow server. callbacks.openai_info.OpenAICallbackHandler() Callback Handler that tracks OpenAI info. callbacks.promptlayer_callback.PromptLayerCallbackHandler([...]) Callback handler for promptlayer. callbacks.sagemaker_callback.SageMakerCallbackHandler(run) Callback Handler that logs prompt artifacts and metrics to SageMaker Experiments. callbacks.stdout.StdOutCallbackHandler([color]) Callback Handler that prints to std out. callbacks.streaming_aiter.AsyncIteratorCallbackHandler() Callback handler that returns an async iterator. callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler(*) Callback handler that returns an async iterator. callbacks.streaming_stdout.StreamingStdOutCallbackHandler() Callback handler for streaming. callbacks.streaming_stdout_final_only.FinalStreamingStdOutCallbackHandler(*) Callback handler for streaming in agents. callbacks.streamlit.mutable_expander.ChildRecord(...) The child record as a NamedTuple. callbacks.streamlit.mutable_expander.ChildType(value) The enumerator of the child type. callbacks.streamlit.mutable_expander.MutableExpander(...) A Streamlit expander that can be renamed and dynamically expanded/collapsed. callbacks.streamlit.streamlit_callback_handler.LLMThought(...) A thought in the LLM's thought stream. callbacks.streamlit.streamlit_callback_handler.LLMThoughtLabeler() Generates markdown labels for LLMThought containers.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-12
Generates markdown labels for LLMThought containers. callbacks.streamlit.streamlit_callback_handler.LLMThoughtState(value) Enumerator of the LLMThought state. callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler(...) A callback handler that writes to a Streamlit app. callbacks.streamlit.streamlit_callback_handler.ToolRecord(...) The tool record as a NamedTuple. callbacks.tracers.base.BaseTracer(**kwargs) Base interface for tracers. callbacks.tracers.base.TracerException Base class for exceptions in tracers module. callbacks.tracers.evaluation.EvaluatorCallbackHandler(...) A tracer that runs a run evaluator whenever a run is persisted. callbacks.tracers.langchain.LangChainTracer([...]) An implementation of the SharedTracer that POSTS to the langchain endpoint. callbacks.tracers.langchain_v1.LangChainTracerV1(...) An implementation of the SharedTracer that POSTS to the langchain endpoint. callbacks.tracers.log_stream.LogEntry callbacks.tracers.log_stream.LogStreamCallbackHandler(*) callbacks.tracers.log_stream.RunLog(*ops, state) callbacks.tracers.log_stream.RunLogPatch(*ops) callbacks.tracers.log_stream.RunState callbacks.tracers.run_collector.RunCollectorCallbackHandler([...]) A tracer that collects all nested runs in a list. callbacks.tracers.schemas.BaseRun Base class for Run. callbacks.tracers.schemas.ChainRun Class for ChainRun. callbacks.tracers.schemas.LLMRun Class for LLMRun. callbacks.tracers.schemas.Run Run schema for the V2 API in the Tracer. callbacks.tracers.schemas.ToolRun Class for ToolRun. callbacks.tracers.schemas.TracerSession TracerSessionV1 schema for the V2 API. callbacks.tracers.schemas.TracerSessionBase Base class for TracerSession.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-13
callbacks.tracers.schemas.TracerSessionBase Base class for TracerSession. callbacks.tracers.schemas.TracerSessionV1 TracerSessionV1 schema. callbacks.tracers.schemas.TracerSessionV1Base Base class for TracerSessionV1. callbacks.tracers.schemas.TracerSessionV1Create Create class for TracerSessionV1. callbacks.tracers.stdout.ConsoleCallbackHandler(...) Tracer that prints to the console. callbacks.tracers.stdout.FunctionCallbackHandler(...) Tracer that calls a function with a single str parameter. callbacks.tracers.wandb.RunProcessor(...) Handles the conversion of a LangChain Runs into a WBTraceTree. callbacks.tracers.wandb.WandbRunArgs Arguments for the WandbTracer. callbacks.tracers.wandb.WandbTracer([run_args]) Callback Handler that logs to Weights and Biases. callbacks.trubrics_callback.TrubricsCallbackHandler([...]) Callback handler for Trubrics. callbacks.utils.BaseMetadataCallbackHandler() This class handles the metadata and associated function states for callbacks. callbacks.wandb_callback.WandbCallbackHandler([...]) Callback Handler that logs to Weights and Biases. callbacks.whylabs_callback.WhyLabsCallbackHandler(...) Callback Handler for logging to WhyLabs. Functions¶ callbacks.aim_callback.import_aim() Import the aim python package and raise an error if it is not installed. callbacks.clearml_callback.import_clearml() Import the clearml python package and raise an error if it is not installed. callbacks.comet_ml_callback.import_comet_ml() Import comet_ml and raise an error if it is not installed. callbacks.context_callback.import_context() Import the getcontext package. callbacks.flyte_callback.analyze_text(text) Analyze text using textstat and spacy.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-14
Analyze text using textstat and spacy. callbacks.flyte_callback.import_flytekit() Import flytekit and flytekitplugins-deck-standard. callbacks.infino_callback.import_infino() Import the infino client. callbacks.labelstudio_callback.get_default_label_configs(mode) callbacks.llmonitor_callback.identify(user_id) callbacks.manager.atrace_as_chain_group(...) Get an async callback manager for a chain group in a context manager. callbacks.manager.collect_runs() Collect all run traces in context. callbacks.manager.env_var_is_set(env_var) Check if an environment variable is set. callbacks.manager.get_openai_callback() Get the OpenAI callback handler in a context manager. callbacks.manager.trace_as_chain_group(...) Get a callback manager for a chain group in a context manager. callbacks.manager.tracing_enabled([session_name]) Get the Deprecated LangChainTracer in a context manager. callbacks.manager.tracing_v2_enabled([...]) Instruct LangChain to log all runs in context to LangSmith. callbacks.manager.wandb_tracing_enabled([...]) Get the WandbTracer in a context manager. callbacks.mlflow_callback.analyze_text(text) Analyze text using textstat and spacy. callbacks.mlflow_callback.construct_html_from_prompt_and_generation(...) Construct an html element from a prompt and a generation. callbacks.mlflow_callback.import_mlflow() Import the mlflow python package and raise an error if it is not installed. callbacks.openai_info.get_openai_token_cost_for_model(...) Get the cost in USD for a given model and number of tokens. callbacks.openai_info.standardize_model_name(...) Standardize the model name to a format that can be used in the OpenAI API. callbacks.sagemaker_callback.save_json(data, ...) Save dict to local file path.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-15
callbacks.sagemaker_callback.save_json(data, ...) Save dict to local file path. callbacks.tracers.evaluation.wait_for_all_evaluators() Wait for all tracers to finish. callbacks.tracers.langchain.get_client() Get the client. callbacks.tracers.langchain.log_error_once(...) Log an error once. callbacks.tracers.langchain.wait_for_all_tracers() Wait for all tracers to finish. callbacks.tracers.langchain_v1.get_headers() Get the headers for the LangChain API. callbacks.tracers.schemas.RunTypeEnum() RunTypeEnum. callbacks.tracers.stdout.elapsed(run) Get the elapsed time of a run. callbacks.tracers.stdout.try_json_stringify(...) Try to stringify an object to JSON. callbacks.utils.flatten_dict(nested_dict[, ...]) Flattens a nested dictionary into a flat dictionary. callbacks.utils.hash_string(s) Hash a string using sha1. callbacks.utils.import_pandas() Import the pandas python package and raise an error if it is not installed. callbacks.utils.import_spacy() Import the spacy python package and raise an error if it is not installed. callbacks.utils.import_textstat() Import the textstat python package and raise an error if it is not installed. callbacks.utils.load_json(json_path) Load json file to a string. callbacks.wandb_callback.analyze_text(text) Analyze text using textstat and spacy. callbacks.wandb_callback.construct_html_from_prompt_and_generation(...) Construct an html element from a prompt and a generation. callbacks.wandb_callback.import_wandb() Import the wandb python package and raise an error if it is not installed. callbacks.wandb_callback.load_json_to_dict(...) Load json file to a dictionary. callbacks.whylabs_callback.import_langkit([...])
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-16
Load json file to a dictionary. callbacks.whylabs_callback.import_langkit([...]) Import the langkit python package and raise an error if it is not installed. langchain.chains¶ Chains are easily reusable components linked together. Chains encode a sequence of calls to components like models, document retrievers, other Chains, etc., and provide a simple interface to this sequence. The Chain interface makes it easy to create apps that are: Stateful: add Memory to any Chain to give it state, Observable: pass Callbacks to a Chain to execute additional functionality, like logging, outside the main sequence of component calls, Composable: combine Chains with other components, including other Chains. Class hierarchy: Chain --> <name>Chain # Examples: LLMChain, MapReduceChain, RouterChain Classes¶ chains.api.base.APIChain Chain that makes API calls and summarizes the responses to answer a question. chains.api.openapi.chain.OpenAPIEndpointChain Chain interacts with an OpenAPI endpoint using natural language. chains.api.openapi.requests_chain.APIRequesterChain Get the request parser. chains.api.openapi.requests_chain.APIRequesterOutputParser Parse the request and error tags. chains.api.openapi.response_chain.APIResponderChain Get the response parser. chains.api.openapi.response_chain.APIResponderOutputParser Parse the response and error tags. chains.base.Chain Abstract base class for creating structured sequences of calls to components. chains.combine_documents.base.AnalyzeDocumentChain Chain that splits documents, then analyzes it in pieces. chains.combine_documents.base.BaseCombineDocumentsChain Base interface for chains combining documents. chains.combine_documents.map_reduce.MapReduceDocumentsChain Combining documents by mapping a chain over them, then combining results. chains.combine_documents.map_rerank.MapRerankDocumentsChain Combining documents by mapping a chain over them, then reranking results.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-17
Combining documents by mapping a chain over them, then reranking results. chains.combine_documents.reduce.AsyncCombineDocsProtocol(...) Interface for the combine_docs method. chains.combine_documents.reduce.CombineDocsProtocol(...) Interface for the combine_docs method. chains.combine_documents.reduce.ReduceDocumentsChain Combine documents by recursively reducing them. chains.combine_documents.refine.RefineDocumentsChain Combine documents by doing a first pass and then refining on more documents. chains.combine_documents.stuff.StuffDocumentsChain Chain that combines documents by stuffing into context. chains.constitutional_ai.base.ConstitutionalChain Chain for applying constitutional principles. chains.constitutional_ai.models.ConstitutionalPrinciple Class for a constitutional principle. chains.conversation.base.ConversationChain Chain to have a conversation and load context from memory. chains.conversational_retrieval.base.BaseConversationalRetrievalChain Chain for chatting with an index. chains.conversational_retrieval.base.ChatVectorDBChain Chain for chatting with a vector database. chains.conversational_retrieval.base.ConversationalRetrievalChain Chain for having a conversation based on retrieved documents. chains.elasticsearch_database.base.ElasticsearchDatabaseChain Chain for interacting with Elasticsearch Database. chains.flare.base.FlareChain Chain that combines a retriever, a question generator, and a response generator. chains.flare.base.QuestionGeneratorChain Chain that generates questions from uncertain spans. chains.flare.prompts.FinishedOutputParser Output parser that checks if the output is finished. chains.graph_qa.arangodb.ArangoGraphQAChain Chain for question-answering against a graph by generating AQL statements. chains.graph_qa.base.GraphQAChain Chain for question-answering against a graph. chains.graph_qa.cypher.GraphCypherQAChain
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-18
chains.graph_qa.cypher.GraphCypherQAChain Chain for question-answering against a graph by generating Cypher statements. chains.graph_qa.falkordb.FalkorDBQAChain Chain for question-answering against a graph by generating Cypher statements. chains.graph_qa.hugegraph.HugeGraphQAChain Chain for question-answering against a graph by generating gremlin statements. chains.graph_qa.kuzu.KuzuQAChain Chain for question-answering against a graph by generating Cypher statements for Kùzu. chains.graph_qa.nebulagraph.NebulaGraphQAChain Chain for question-answering against a graph by generating nGQL statements. chains.graph_qa.neptune_cypher.NeptuneOpenCypherQAChain Chain for question-answering against a Neptune graph by generating openCypher statements. chains.graph_qa.sparql.GraphSparqlQAChain Chain for question-answering against an RDF or OWL graph by generating SPARQL statements. chains.hyde.base.HypotheticalDocumentEmbedder Generate hypothetical document for query, and then embed that. chains.llm.LLMChain Chain to run queries against LLMs. chains.llm_bash.base.LLMBashChain Chain that interprets a prompt and executes bash operations. chains.llm_bash.prompt.BashOutputParser Parser for bash output. chains.llm_checker.base.LLMCheckerChain Chain for question-answering with self-verification. chains.llm_math.base.LLMMathChain Chain that interprets a prompt and executes python code to do math. chains.llm_requests.LLMRequestsChain Chain that requests a URL and then uses an LLM to parse results.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-19
Chain that requests a URL and then uses an LLM to parse results. chains.llm_summarization_checker.base.LLMSummarizationCheckerChain Chain for question-answering with self-verification. chains.llm_symbolic_math.base.LLMSymbolicMathChain Chain that interprets a prompt and executes python code to do symbolic math. chains.mapreduce.MapReduceChain Map-reduce chain. chains.moderation.OpenAIModerationChain Pass input through a moderation endpoint. chains.natbot.base.NatBotChain Implement an LLM driven browser. chains.natbot.crawler.Crawler() A crawler for web pages. chains.natbot.crawler.ElementInViewPort A typed dictionary containing information about elements in the viewport. chains.openai_functions.citation_fuzzy_match.FactWithEvidence Class representing a single statement. chains.openai_functions.citation_fuzzy_match.QuestionAnswer A question and its answer as a list of facts each one should have a source. chains.openai_functions.openapi.SimpleRequestChain Chain for making a simple request to an API endpoint. chains.openai_functions.qa_with_structure.AnswerWithSources An answer to the question, with sources. chains.prompt_selector.BasePromptSelector Base class for prompt selectors. chains.prompt_selector.ConditionalPromptSelector Prompt collection that goes through conditionals. chains.qa_generation.base.QAGenerationChain Base class for question-answer generation chains. chains.qa_with_sources.base.BaseQAWithSourcesChain Question answering chain with sources over documents. chains.qa_with_sources.base.QAWithSourcesChain Question answering with sources over documents. chains.qa_with_sources.loading.LoadingCallable(...) Interface for loading the combine documents chain. chains.qa_with_sources.retrieval.RetrievalQAWithSourcesChain Question-answering with sources over an index.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-20
Question-answering with sources over an index. chains.qa_with_sources.vector_db.VectorDBQAWithSourcesChain Question-answering with sources over a vector database. chains.query_constructor.base.StructuredQueryOutputParser Output parser that parses a structured query. chains.query_constructor.ir.Comparator(value) Enumerator of the comparison operators. chains.query_constructor.ir.Comparison A comparison to a value. chains.query_constructor.ir.Expr Base class for all expressions. chains.query_constructor.ir.FilterDirective A filtering expression. chains.query_constructor.ir.Operation A logical operation over other directives. chains.query_constructor.ir.Operator(value) Enumerator of the operations. chains.query_constructor.ir.StructuredQuery A structured query. chains.query_constructor.ir.Visitor() Defines interface for IR translation using visitor pattern. chains.query_constructor.schema.AttributeInfo Information about a data source attribute. chains.retrieval_qa.base.BaseRetrievalQA Base class for question-answering chains. chains.retrieval_qa.base.RetrievalQA Chain for question-answering against an index. chains.retrieval_qa.base.VectorDBQA Chain for question-answering against a vector database. chains.router.base.MultiRouteChain Use a single chain to route an input to one of multiple candidate chains. chains.router.base.Route(destination, ...) Create new instance of Route(destination, next_inputs) chains.router.base.RouterChain Chain that outputs the name of a destination chain and the inputs to it. chains.router.embedding_router.EmbeddingRouterChain Chain that uses embeddings to route between options. chains.router.llm_router.LLMRouterChain A router chain that uses an LLM chain to perform routing. chains.router.llm_router.RouterOutputParser Parser for output of router chain in the multi-prompt chain. chains.router.multi_prompt.MultiPromptChain
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-21
chains.router.multi_prompt.MultiPromptChain A multi-route chain that uses an LLM router chain to choose amongst prompts. chains.router.multi_retrieval_qa.MultiRetrievalQAChain A multi-route chain that uses an LLM router chain to choose amongst retrieval qa chains. chains.sequential.SequentialChain Chain where the outputs of one chain feed directly into next. chains.sequential.SimpleSequentialChain Simple chain where the outputs of one step feed directly into next. chains.sql_database.query.SQLInput Input for a SQL Chain. chains.sql_database.query.SQLInputWithTables Input for a SQL Chain. chains.transform.TransformChain Chain that transforms the chain output. Functions¶ chains.example_generator.generate_example(...) Return another example given a list of examples for a prompt. chains.graph_qa.cypher.construct_schema(...) Filter the schema based on included or excluded types chains.graph_qa.cypher.extract_cypher(text) Extract Cypher code from a text. chains.graph_qa.falkordb.extract_cypher(text) Extract Cypher code from a text. chains.graph_qa.neptune_cypher.extract_cypher(text) Extract Cypher code from text using Regex. chains.graph_qa.neptune_cypher.trim_query(query) chains.graph_qa.neptune_cypher.use_simple_prompt(llm) Decides whether to use the simple prompt chains.loading.load_chain(path, **kwargs) Unified method for loading a chain from LangChainHub or local fs. chains.loading.load_chain_from_config(...) Load chain from Config Dict. chains.openai_functions.base.convert_python_function_to_openai_function(...) Convert a Python function to an OpenAI function-calling API compatible dict. chains.openai_functions.base.convert_to_openai_function(...) Convert a raw function/class to an OpenAI function.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-22
Convert a raw function/class to an OpenAI function. chains.openai_functions.base.create_openai_fn_chain(...) Create an LLM chain that uses OpenAI functions. chains.openai_functions.base.create_structured_output_chain(...) Create an LLMChain that uses an OpenAI function to get a structured output. chains.openai_functions.citation_fuzzy_match.create_citation_fuzzy_match_chain(llm) Create a citation fuzzy match chain. chains.openai_functions.extraction.create_extraction_chain(...) Creates a chain that extracts information from a passage. chains.openai_functions.extraction.create_extraction_chain_pydantic(...) Creates a chain that extracts information from a passage using pydantic schema. chains.openai_functions.openapi.get_openapi_chain(spec) Create a chain for querying an API from a OpenAPI spec. chains.openai_functions.openapi.openapi_spec_to_openai_fn(spec) Convert a valid OpenAPI spec to the JSON Schema format expected for OpenAI chains.openai_functions.qa_with_structure.create_qa_with_sources_chain(llm) Create a question answering chain that returns an answer with sources. chains.openai_functions.qa_with_structure.create_qa_with_structure_chain(...) Create a question answering chain that returns an answer with sources chains.openai_functions.tagging.create_tagging_chain(...) Creates a chain that extracts information from a passage chains.openai_functions.tagging.create_tagging_chain_pydantic(...) Creates a chain that extracts information from a passage chains.openai_functions.utils.get_llm_kwargs(...) Returns the kwargs for the LLMChain constructor. chains.prompt_selector.is_chat_model(llm) Check if the language model is a chat model. chains.prompt_selector.is_llm(llm) Check if the language model is a LLM. chains.qa_with_sources.loading.load_qa_with_sources_chain(llm) Load a question answering with sources chain.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-23
Load a question answering with sources chain. chains.query_constructor.base.load_query_constructor_chain(...) Load a query constructor chain. chains.query_constructor.parser.get_parser([...]) Returns a parser for the query language. chains.query_constructor.parser.v_args(...) Dummy decorator for when lark is not installed. chains.sql_database.query.create_sql_query_chain(llm, db) Create a chain that generates SQL queries. langchain.chat_loaders¶ Chat Loaders load chat messages from common communications platforms. Load chat messages from various communications platforms such as Facebook Messenger, Telegram, and WhatsApp. The loaded chat messages can be used for fine-tuning models. Class hierarchy: BaseChatLoader --> <name>ChatLoader # Examples: WhatsAppChatLoader, IMessageChatLoader Main helpers: ChatSession Classes¶ chat_loaders.base.BaseChatLoader() Base class for chat loaders. chat_loaders.facebook_messenger.FolderFacebookMessengerChatLoader(path) Load Facebook Messenger chat data from a folder. chat_loaders.facebook_messenger.SingleFileFacebookMessengerChatLoader(path) Load Facebook Messenger chat data from a single file. chat_loaders.gmail.GMailLoader(creds[, n, ...]) Load data from GMail. chat_loaders.imessage.IMessageChatLoader([path]) Load chat sessions from the iMessage chat.db SQLite file. chat_loaders.slack.SlackChatLoader(path) Load Slack conversations from a dump zip file. chat_loaders.telegram.TelegramChatLoader(path) Load telegram conversations to LangChain chat messages. chat_loaders.whatsapp.WhatsAppChatLoader(path) Load WhatsApp conversations from a dump zip file or directory. Functions¶ chat_loaders.utils.map_ai_messages(...) Convert messages from the specified 'sender' to AI messages. chat_loaders.utils.map_ai_messages_in_session(...)
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-24
chat_loaders.utils.map_ai_messages_in_session(...) Convert messages from the specified 'sender' to AI messages. chat_loaders.utils.merge_chat_runs(chat_sessions) Merge chat runs together. chat_loaders.utils.merge_chat_runs_in_session(...) Merge chat runs together in a chat session. langchain.chat_models¶ Chat Models are a variation on language models. While Chat Models use language models under the hood, the interface they expose is a bit different. Rather than expose a “text in, text out” API, they expose an interface where “chat messages” are the inputs and outputs. Class hierarchy: BaseLanguageModel --> BaseChatModel --> <name> # Examples: ChatOpenAI, ChatGooglePalm Main helpers: AIMessage, BaseMessage, HumanMessage Classes¶ chat_models.anthropic.ChatAnthropic Anthropic chat large language models. chat_models.anyscale.ChatAnyscale Anyscale Chat large language models. chat_models.azure_openai.AzureChatOpenAI Azure OpenAI Chat Completion API. chat_models.azureml_endpoint.AzureMLChatOnlineEndpoint AzureML Chat models API. chat_models.azureml_endpoint.LlamaContentFormatter() Content formatter for LLaMA. chat_models.baidu_qianfan_endpoint.QianfanChatEndpoint Baidu Qianfan chat models. chat_models.base.BaseChatModel Base class for Chat models. chat_models.base.SimpleChatModel Simple Chat Model. chat_models.bedrock.BedrockChat Create a new model by parsing and validating input data from keyword arguments. chat_models.bedrock.ChatPromptAdapter() Adapter class to prepare the inputs from Langchain to prompt format that Chat model expects. chat_models.ernie.ErnieBotChat ERNIE-Bot large language model. chat_models.fake.FakeListChatModel Fake ChatModel for testing purposes.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-25
chat_models.fake.FakeListChatModel Fake ChatModel for testing purposes. chat_models.fake.FakeMessagesListChatModel Create a new model by parsing and validating input data from keyword arguments. chat_models.fireworks.ChatFireworks Fireworks Chat models. chat_models.google_palm.ChatGooglePalm Google PaLM Chat models API. chat_models.google_palm.ChatGooglePalmError Error with the Google PaLM API. chat_models.human.HumanInputChatModel ChatModel which returns user input as the response. chat_models.javelin_ai_gateway.ChatJavelinAIGateway Javelin AI Gateway chat models API. chat_models.javelin_ai_gateway.ChatParams Parameters for the Javelin AI Gateway LLM. chat_models.jinachat.JinaChat Jina AI Chat models API. chat_models.konko.ChatKonko ChatKonko Chat large language models API. chat_models.litellm.ChatLiteLLM Create a new model by parsing and validating input data from keyword arguments. chat_models.litellm.ChatLiteLLMException Error with the LiteLLM I/O library chat_models.minimax.MiniMaxChat Wrapper around Minimax large language models. chat_models.mlflow_ai_gateway.ChatMLflowAIGateway MLflow AI Gateway chat models API. chat_models.mlflow_ai_gateway.ChatParams Parameters for the MLflow AI Gateway LLM. chat_models.ollama.ChatOllama Ollama locally runs large language models. chat_models.openai.ChatOpenAI OpenAI Chat large language models API. chat_models.promptlayer_openai.PromptLayerChatOpenAI PromptLayer and OpenAI Chat large language models API. chat_models.vertexai.ChatVertexAI Vertex AI Chat large language models API. Functions¶
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-26
chat_models.vertexai.ChatVertexAI Vertex AI Chat large language models API. Functions¶ chat_models.anthropic.convert_messages_to_prompt_anthropic(...) Format a list of messages into a full prompt for the Anthropic model chat_models.baidu_qianfan_endpoint.convert_message_to_dict(message) chat_models.fireworks.acompletion_with_retry(llm, *) Use tenacity to retry the async completion call. chat_models.fireworks.acompletion_with_retry_streaming(llm, *) Use tenacity to retry the completion call for streaming. chat_models.fireworks.completion_with_retry(llm, *) Use tenacity to retry the completion call. chat_models.fireworks.convert_dict_to_message(_dict) Convert a dict response to a message. chat_models.google_palm.achat_with_retry(...) Use tenacity to retry the async completion call. chat_models.google_palm.chat_with_retry(llm, ...) Use tenacity to retry the completion call. chat_models.jinachat.acompletion_with_retry(...) Use tenacity to retry the async completion call. chat_models.litellm.acompletion_with_retry(llm) Use tenacity to retry the async completion call. chat_models.openai.acompletion_with_retry(llm) Use tenacity to retry the async completion call. langchain.docstore¶ Docstores are classes to store and load Documents. The Docstore is a simplified version of the Document Loader. Class hierarchy: Docstore --> <name> # Examples: InMemoryDocstore, Wikipedia Main helpers: Document, AddableMixin Classes¶ docstore.arbitrary_fn.DocstoreFn(lookup_fn) Langchain Docstore via arbitrary lookup function. docstore.base.AddableMixin() Mixin class that supports adding texts. docstore.base.Docstore()
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-27
Mixin class that supports adding texts. docstore.base.Docstore() Interface to access to place that stores documents. docstore.in_memory.InMemoryDocstore([_dict]) Simple in memory docstore in the form of a dict. docstore.wikipedia.Wikipedia() Wrapper around wikipedia API. langchain.document_loaders¶ Document Loaders are classes to load Documents. Document Loaders are usually used to load a lot of Documents in a single run. Class hierarchy: BaseLoader --> <name>Loader # Examples: TextLoader, UnstructuredFileLoader Main helpers: Document, <name>TextSplitter Classes¶ document_loaders.acreom.AcreomLoader(path[, ...]) Load acreom vault from a directory. document_loaders.airbyte.AirbyteCDKLoader(...) Load with an Airbyte source connector implemented using the CDK. document_loaders.airbyte.AirbyteGongLoader(...) Load from Gong using an Airbyte source connector. document_loaders.airbyte.AirbyteHubspotLoader(...) Load from Hubspot using an Airbyte source connector. document_loaders.airbyte.AirbyteSalesforceLoader(...) Load from Salesforce using an Airbyte source connector. document_loaders.airbyte.AirbyteShopifyLoader(...) Load from Shopify using an Airbyte source connector. document_loaders.airbyte.AirbyteStripeLoader(...) Load from Stripe using an Airbyte source connector. document_loaders.airbyte.AirbyteTypeformLoader(...) Load from Typeform using an Airbyte source connector. document_loaders.airbyte.AirbyteZendeskSupportLoader(...) Load from Zendesk Support using an Airbyte source connector. document_loaders.airbyte_json.AirbyteJSONLoader(...) Load local Airbyte json files. document_loaders.airtable.AirtableLoader(...)
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-28
Load local Airbyte json files. document_loaders.airtable.AirtableLoader(...) Load the Airtable tables. document_loaders.apify_dataset.ApifyDatasetLoader Load datasets from Apify web scraping, crawling, and data extraction platform. document_loaders.arcgis_loader.ArcGISLoader(layer) Load records from an ArcGIS FeatureLayer. document_loaders.arxiv.ArxivLoader(query[, ...]) Load a query result from Arxiv. document_loaders.assemblyai.AssemblyAIAudioTranscriptLoader(...) Loader for AssemblyAI audio transcripts. document_loaders.assemblyai.TranscriptFormat(value) Transcript format to use for the document loader. document_loaders.async_html.AsyncHtmlLoader(...) Load HTML asynchronously. document_loaders.azlyrics.AZLyricsLoader([...]) Load AZLyrics webpages. document_loaders.azure_blob_storage_container.AzureBlobStorageContainerLoader(...) Load from Azure Blob Storage container. document_loaders.azure_blob_storage_file.AzureBlobStorageFileLoader(...) Load from Azure Blob Storage files. document_loaders.base.BaseBlobParser() Abstract interface for blob parsers. document_loaders.base.BaseLoader() Interface for Document Loader. document_loaders.base_o365.O365BaseLoader Create a new model by parsing and validating input data from keyword arguments. document_loaders.bibtex.BibtexLoader(...[, ...]) Load a bibtex file. document_loaders.bigquery.BigQueryLoader(query) Load from the Google Cloud Platform BigQuery. document_loaders.bilibili.BiliBiliLoader(...) Load BiliBili video transcripts. document_loaders.blackboard.BlackboardLoader(...) Load a Blackboard course. document_loaders.blob_loaders.file_system.FileSystemBlobLoader(path, *) Load blobs in the local file system.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-29
Load blobs in the local file system. document_loaders.blob_loaders.schema.Blob Blob represents raw data by either reference or value. document_loaders.blob_loaders.schema.BlobLoader() Abstract interface for blob loaders implementation. document_loaders.blob_loaders.youtube_audio.YoutubeAudioLoader(...) Load YouTube urls as audio file(s). document_loaders.blockchain.BlockchainDocumentLoader(...) Load elements from a blockchain smart contract. document_loaders.blockchain.BlockchainType(value) Enumerator of the supported blockchains. document_loaders.brave_search.BraveSearchLoader(...) Load with Brave Search engine. document_loaders.browserless.BrowserlessLoader(...) Load webpages with Browserless /content endpoint. document_loaders.chatgpt.ChatGPTLoader(log_file) Load conversations from exported ChatGPT data. document_loaders.chromium.AsyncChromiumLoader(urls) Scrape HTML pages from URLs using a headless instance of the Chromium. document_loaders.college_confidential.CollegeConfidentialLoader([...]) Load College Confidential webpages. document_loaders.concurrent.ConcurrentLoader(...) Load and pars Documents concurrently. document_loaders.confluence.ConfluenceLoader(url) Load Confluence pages. document_loaders.confluence.ContentFormat(value) Enumerator of the content formats of Confluence page. document_loaders.conllu.CoNLLULoader(file_path) Load CoNLL-U files. document_loaders.csv_loader.CSVLoader(file_path) Load a CSV file into a list of Documents. document_loaders.csv_loader.UnstructuredCSVLoader(...) Load CSV files using Unstructured. document_loaders.cube_semantic.CubeSemanticLoader(...) Load Cube semantic layer metadata. document_loaders.datadog_logs.DatadogLogsLoader(...) Load Datadog logs. document_loaders.dataframe.BaseDataFrameLoader(...)
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-30
Load Datadog logs. document_loaders.dataframe.BaseDataFrameLoader(...) Initialize with dataframe object. document_loaders.dataframe.DataFrameLoader(...) Load Pandas DataFrame. document_loaders.diffbot.DiffbotLoader(...) Load Diffbot json file. document_loaders.directory.DirectoryLoader(...) Load from a directory. document_loaders.discord.DiscordChatLoader(...) Load Discord chat logs. document_loaders.docugami.DocugamiLoader Load from Docugami. document_loaders.dropbox.DropboxLoader Load files from Dropbox. document_loaders.duckdb_loader.DuckDBLoader(query) Load from DuckDB. document_loaders.email.OutlookMessageLoader(...) Loads Outlook Message files using extract_msg. document_loaders.email.UnstructuredEmailLoader(...) Load email files using Unstructured. document_loaders.embaas.BaseEmbaasLoader Base loader for Embaas document extraction API. document_loaders.embaas.EmbaasBlobLoader Load Embaas blob. document_loaders.embaas.EmbaasDocumentExtractionParameters Parameters for the embaas document extraction API. document_loaders.embaas.EmbaasDocumentExtractionPayload Payload for the Embaas document extraction API. document_loaders.embaas.EmbaasLoader Load from Embaas. document_loaders.epub.UnstructuredEPubLoader(...) Load EPub files using Unstructured. document_loaders.etherscan.EtherscanLoader(...) Load transactions from Ethereum mainnet. document_loaders.evernote.EverNoteLoader(...) Load from EverNote. document_loaders.excel.UnstructuredExcelLoader(...) Load Microsoft Excel files using Unstructured. document_loaders.facebook_chat.FacebookChatLoader(path) Load Facebook Chat messages directory dump.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-31
document_loaders.facebook_chat.FacebookChatLoader(path) Load Facebook Chat messages directory dump. document_loaders.fauna.FaunaLoader(query, ...) Load from FaunaDB. document_loaders.figma.FigmaFileLoader(...) Load Figma file. document_loaders.gcs_directory.GCSDirectoryLoader(...) Load from GCS directory. document_loaders.gcs_file.GCSFileLoader(...) Load from GCS file. document_loaders.generic.GenericLoader(...) Generic Document Loader. document_loaders.geodataframe.GeoDataFrameLoader(...) Load geopandas Dataframe. document_loaders.git.GitLoader(repo_path[, ...]) Load Git repository files. document_loaders.gitbook.GitbookLoader(web_page) Load GitBook data. document_loaders.github.BaseGitHubLoader Load GitHub repository Issues. document_loaders.github.GitHubIssuesLoader Load issues of a GitHub repository. document_loaders.googledrive.GoogleDriveLoader Load Google Docs from Google Drive. document_loaders.gutenberg.GutenbergLoader(...) Load from Gutenberg.org. document_loaders.helpers.FileEncoding(...) File encoding as the NamedTuple. document_loaders.hn.HNLoader([web_path, ...]) Load Hacker News data. document_loaders.html.UnstructuredHTMLLoader(...) Load HTML files using Unstructured. document_loaders.html_bs.BSHTMLLoader(file_path) Load HTML files and parse them with beautiful soup. document_loaders.hugging_face_dataset.HuggingFaceDatasetLoader(path) Load from Hugging Face Hub datasets. document_loaders.ifixit.IFixitLoader(web_path) Load iFixit repair guides, device wikis and answers. document_loaders.image.UnstructuredImageLoader(...) Load PNG and JPG files using Unstructured. document_loaders.image_captions.ImageCaptionLoader(...)
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-32
document_loaders.image_captions.ImageCaptionLoader(...) Load image captions. document_loaders.imsdb.IMSDbLoader([...]) Load IMSDb webpages. document_loaders.iugu.IuguLoader(resource[, ...]) Load from IUGU. document_loaders.joplin.JoplinLoader([...]) Load notes from Joplin. document_loaders.json_loader.JSONLoader(...) Load a JSON file using a jq schema. document_loaders.larksuite.LarkSuiteDocLoader(...) Load from LarkSuite (FeiShu). document_loaders.markdown.UnstructuredMarkdownLoader(...) Load Markdown files using Unstructured. document_loaders.mastodon.MastodonTootsLoader(...) Load the Mastodon 'toots'. document_loaders.max_compute.MaxComputeLoader(...) Load from Alibaba Cloud MaxCompute table. document_loaders.mediawikidump.MWDumpLoader(...) Load MediaWiki dump from an XML file. document_loaders.merge.MergedDataLoader(loaders) Merge documents from a list of loaders document_loaders.mhtml.MHTMLLoader(file_path) Parse MHTML files with BeautifulSoup. document_loaders.modern_treasury.ModernTreasuryLoader(...) Load from Modern Treasury. document_loaders.mongodb.MongodbLoader(...) Load MongoDB documents. document_loaders.news.NewsURLLoader(urls[, ...]) Load news articles from URLs using Unstructured. document_loaders.notebook.NotebookLoader(path) Load Jupyter notebook (.ipynb) files. document_loaders.notion.NotionDirectoryLoader(path) Load Notion directory dump. document_loaders.notiondb.NotionDBLoader(...) Load from Notion DB. document_loaders.nuclia.NucliaLoader(path, ...) Load from any file type using Nuclia Understanding API.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-33
Load from any file type using Nuclia Understanding API. document_loaders.obs_directory.OBSDirectoryLoader(...) Load from Huawei OBS directory. document_loaders.obs_file.OBSFileLoader(...) Load from the Huawei OBS file. document_loaders.obsidian.ObsidianLoader(path) Load Obsidian files from directory. document_loaders.odt.UnstructuredODTLoader(...) Load OpenOffice ODT files using Unstructured. document_loaders.onedrive.OneDriveLoader Load from Microsoft OneDrive. document_loaders.onedrive_file.OneDriveFileLoader Load a file from Microsoft OneDrive. document_loaders.open_city_data.OpenCityDataLoader(...) Load from Open City. document_loaders.org_mode.UnstructuredOrgModeLoader(...) Load Org-Mode files using Unstructured. document_loaders.parsers.audio.OpenAIWhisperParser([...]) Transcribe and parse audio files. document_loaders.parsers.audio.OpenAIWhisperParserLocal([...]) Transcribe and parse audio files with OpenAI Whisper model. document_loaders.parsers.docai.DocAIParser(*) Initializes the parser. document_loaders.parsers.docai.DocAIParsingResults(...) A dataclass to store DocAI parsing results. document_loaders.parsers.generic.MimeTypeBasedParser(...) Parser that uses mime-types to parse a blob. document_loaders.parsers.grobid.GrobidParser(...) Load article PDF files using Grobid. document_loaders.parsers.grobid.ServerUnavailableException Exception raised when the Grobid server is unavailable. document_loaders.parsers.html.bs4.BS4HTMLParser(*) Pparse HTML files using Beautiful Soup. document_loaders.parsers.language.code_segmenter.CodeSegmenter(code) Abstract class for the code segmenter. document_loaders.parsers.language.javascript.JavaScriptSegmenter(code) Code segmenter for JavaScript.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-34
Code segmenter for JavaScript. document_loaders.parsers.language.language_parser.LanguageParser([...]) Parse using the respective programming language syntax. document_loaders.parsers.language.python.PythonSegmenter(code) Code segmenter for Python. document_loaders.parsers.msword.MsWordParser() document_loaders.parsers.pdf.AmazonTextractPDFParser([...]) Send PDF files to Amazon Textract and parse them. document_loaders.parsers.pdf.DocumentIntelligenceParser(...) Loads a PDF with Azure Document Intelligence (formerly Forms Recognizer) and chunks at character level. document_loaders.parsers.pdf.PDFMinerParser() Parse PDF using PDFMiner. document_loaders.parsers.pdf.PDFPlumberParser([...]) Parse PDF with PDFPlumber. document_loaders.parsers.pdf.PyMuPDFParser([...]) Parse PDF using PyMuPDF. document_loaders.parsers.pdf.PyPDFParser([...]) Load PDF using pypdf and chunk at character level. document_loaders.parsers.pdf.PyPDFium2Parser() Parse PDF with PyPDFium2. document_loaders.parsers.txt.TextParser() Parser for text blobs. document_loaders.pdf.AmazonTextractPDFLoader(...) Load PDF files from a local file system, HTTP or S3. document_loaders.pdf.BasePDFLoader(file_path, *) Base Loader class for PDF files. document_loaders.pdf.DocumentIntelligenceLoader(...) Loads a PDF with Azure Document Intelligence document_loaders.pdf.MathpixPDFLoader(file_path) Load PDF files using Mathpix service. document_loaders.pdf.OnlinePDFLoader(...[, ...]) Load online PDF. document_loaders.pdf.PDFMinerLoader(file_path, *) Load PDF files using PDFMiner. document_loaders.pdf.PDFMinerPDFasHTMLLoader(...) Load PDF files as HTML content using PDFMiner.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-35
Load PDF files as HTML content using PDFMiner. document_loaders.pdf.PDFPlumberLoader(file_path) Load PDF files using pdfplumber. document_loaders.pdf.PyMuPDFLoader(file_path, *) Load PDF files using PyMuPDF. document_loaders.pdf.PyPDFDirectoryLoader(path) Load a directory with PDF files using pypdf and chunks at character level. document_loaders.pdf.PyPDFLoader(file_path) Load PDF using `pypdf and chunks at character level. document_loaders.pdf.PyPDFium2Loader(...[, ...]) Load PDF using pypdfium2 and chunks at character level. document_loaders.pdf.UnstructuredPDFLoader(...) Load PDF files using Unstructured. document_loaders.polars_dataframe.PolarsDataFrameLoader(...) Load Polars DataFrame. document_loaders.powerpoint.UnstructuredPowerPointLoader(...) Load Microsoft PowerPoint files using Unstructured. document_loaders.psychic.PsychicLoader(...) Load from Psychic.dev. document_loaders.pubmed.PubMedLoader(query) Load from the PubMed biomedical library. document_loaders.pyspark_dataframe.PySparkDataFrameLoader([...]) Load PySpark DataFrames. document_loaders.python.PythonLoader(file_path) Load Python files, respecting any non-default encoding if specified. document_loaders.readthedocs.ReadTheDocsLoader(path) Load ReadTheDocs documentation directory. document_loaders.recursive_url_loader.RecursiveUrlLoader(url) Load all child links from a URL page. document_loaders.reddit.RedditPostsLoader(...) Load Reddit posts. document_loaders.roam.RoamLoader(path) Load Roam files from a directory. document_loaders.rocksetdb.ColumnNotFoundError(...) Column not found error. document_loaders.rocksetdb.RocksetLoader(...)
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-36
Column not found error. document_loaders.rocksetdb.RocksetLoader(...) Load from a Rockset database. document_loaders.rss.RSSFeedLoader([urls, ...]) Load news articles from RSS feeds using Unstructured. document_loaders.rst.UnstructuredRSTLoader(...) Load RST files using Unstructured. document_loaders.rtf.UnstructuredRTFLoader(...) Load RTF files using Unstructured. document_loaders.s3_directory.S3DirectoryLoader(bucket) Load from Amazon AWS S3 directory. document_loaders.s3_file.S3FileLoader(...[, ...]) Load from Amazon AWS S3 file. document_loaders.sharepoint.SharePointLoader Load from SharePoint. document_loaders.sitemap.SitemapLoader(web_path) Load a sitemap and its URLs. document_loaders.slack_directory.SlackDirectoryLoader(...) Load from a Slack directory dump. document_loaders.snowflake_loader.SnowflakeLoader(...) Load from Snowflake API. document_loaders.spreedly.SpreedlyLoader(...) Load from Spreedly API. document_loaders.srt.SRTLoader(file_path) Load .srt (subtitle) files. document_loaders.stripe.StripeLoader(resource) Load from Stripe API. document_loaders.telegram.TelegramChatApiLoader([...]) Load Telegram chat json directory dump. document_loaders.telegram.TelegramChatFileLoader(path) Load from Telegram chat dump. document_loaders.tencent_cos_directory.TencentCOSDirectoryLoader(...) Load from Tencent Cloud COS directory. document_loaders.tencent_cos_file.TencentCOSFileLoader(...) Load from Tencent Cloud COS file. document_loaders.tensorflow_datasets.TensorflowDatasetLoader(...) Load from TensorFlow Dataset. document_loaders.text.TextLoader(file_path) Load text file.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-37
document_loaders.text.TextLoader(file_path) Load text file. document_loaders.tomarkdown.ToMarkdownLoader(...) Load HTML using 2markdown API. document_loaders.toml.TomlLoader(source) Load TOML files. document_loaders.trello.TrelloLoader(client, ...) Load cards from a Trello board. document_loaders.tsv.UnstructuredTSVLoader(...) Load TSV files using Unstructured. document_loaders.twitter.TwitterTweetLoader(...) Load Twitter tweets. document_loaders.unstructured.UnstructuredAPIFileIOLoader(file) Load files using Unstructured API. document_loaders.unstructured.UnstructuredAPIFileLoader([...]) Load files using Unstructured API. document_loaders.unstructured.UnstructuredBaseLoader([...]) Base Loader that uses Unstructured. document_loaders.unstructured.UnstructuredFileIOLoader(file) Load files using Unstructured. document_loaders.unstructured.UnstructuredFileLoader(...) Load files using Unstructured. document_loaders.url.UnstructuredURLLoader(urls) Load files from remote URLs using Unstructured. document_loaders.url_playwright.PlaywrightEvaluator() Abstract base class for all evaluators. document_loaders.url_playwright.PlaywrightURLLoader(urls) Load HTML pages with Playwright and parse with Unstructured. document_loaders.url_playwright.UnstructuredHtmlEvaluator([...]) Evaluates the page HTML content using the unstructured library. document_loaders.url_selenium.SeleniumURLLoader(urls) Load HTML pages with Selenium and parse with Unstructured. document_loaders.weather.WeatherDataLoader(...) Load weather data with Open Weather Map API. document_loaders.web_base.WebBaseLoader([...]) Load HTML pages using urllib and parse them with `BeautifulSoup'. document_loaders.whatsapp_chat.WhatsAppChatLoader(path) Load WhatsApp messages text file.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-38
Load WhatsApp messages text file. document_loaders.wikipedia.WikipediaLoader(query) Load from Wikipedia. document_loaders.word_document.Docx2txtLoader(...) Load DOCX file using docx2txt and chunks at character level. document_loaders.word_document.UnstructuredWordDocumentLoader(...) Load Microsof Word file using Unstructured. document_loaders.xml.UnstructuredXMLLoader(...) Load XML file using Unstructured. document_loaders.xorbits.XorbitsLoader(...) Load Xorbits DataFrame. document_loaders.youtube.GoogleApiClient([...]) Generic Google API Client. document_loaders.youtube.GoogleApiYoutubeLoader(...) Load all Videos from a YouTube Channel. document_loaders.youtube.YoutubeLoader(video_id) Load YouTube transcripts. Functions¶ document_loaders.base_o365.fetch_mime_types(...) document_loaders.chatgpt.concatenate_rows(...) Combine message information in a readable format ready to be used. document_loaders.facebook_chat.concatenate_rows(row) Combine message information in a readable format ready to be used. document_loaders.helpers.detect_file_encodings(...) Try to detect the file encoding. document_loaders.notebook.concatenate_cells(...) Combine cells information in a readable format ready to be used. document_loaders.notebook.remove_newlines(x) Recursively remove newlines, no matter the data structure they are stored in. document_loaders.parsers.registry.get_parser(...) Get a parser by parser name. document_loaders.rocksetdb.default_joiner(docs) Default joiner for content columns. document_loaders.telegram.concatenate_rows(row) Combine message information in a readable format ready to be used. document_loaders.telegram.text_to_docs(text) Convert a string or list of strings to a list of Documents with metadata. document_loaders.unstructured.get_elements_from_api([...]) Retrieve a list of elements from the Unstructured API.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-39
Retrieve a list of elements from the Unstructured API. document_loaders.unstructured.satisfies_min_unstructured_version(...) Check if the installed Unstructured version exceeds the minimum version for the feature in question. document_loaders.unstructured.validate_unstructured_version(...) Raise an error if the Unstructured version does not exceed the specified minimum. document_loaders.whatsapp_chat.concatenate_rows(...) Combine message information in a readable format ready to be used. langchain.document_transformers¶ Document Transformers are classes to transform Documents. Document Transformers usually used to transform a lot of Documents in a single run. Class hierarchy: BaseDocumentTransformer --> <name> # Examples: DoctranQATransformer, DoctranTextTranslator Main helpers: Document Classes¶ document_transformers.beautiful_soup_transformer.BeautifulSoupTransformer() Transform HTML content by extracting specific tags and removing unwanted ones. document_transformers.doctran_text_extract.DoctranPropertyExtractor(...) Extract properties from text documents using doctran. document_transformers.doctran_text_qa.DoctranQATransformer([...]) Extract QA from text documents using doctran. document_transformers.doctran_text_translate.DoctranTextTranslator([...]) Translate text documents using doctran. document_transformers.embeddings_redundant_filter.EmbeddingsClusteringFilter Perform K-means clustering on document vectors. document_transformers.embeddings_redundant_filter.EmbeddingsRedundantFilter Filter that drops redundant documents by comparing their embeddings. document_transformers.html2text.Html2TextTransformer([...]) Replace occurrences of a particular search pattern with a replacement string document_transformers.long_context_reorder.LongContextReorder Lost in the middle: Performance degrades when models must access relevant information in the middle of long contexts.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-40
document_transformers.nuclia_text_transform.NucliaTextTransformer(nua) The Nuclia Understanding API splits into paragraphs and sentences, identifies entities, provides a summary of the text and generates embeddings for all sentences. document_transformers.openai_functions.OpenAIMetadataTagger Extract metadata tags from document contents using OpenAI functions. Functions¶ document_transformers.embeddings_redundant_filter.get_stateful_documents(...) Convert a list of documents to a list of documents with state. document_transformers.openai_functions.create_metadata_tagger(...) Create a DocumentTransformer that uses an OpenAI function chain to automatically langchain.embeddings¶ Embedding models are wrappers around embedding models from different APIs and services. Embedding models can be LLMs or not. Class hierarchy: Embeddings --> <name>Embeddings # Examples: OpenAIEmbeddings, HuggingFaceEmbeddings Classes¶ embeddings.aleph_alpha.AlephAlphaAsymmetricSemanticEmbedding Aleph Alpha's asymmetric semantic embedding. embeddings.aleph_alpha.AlephAlphaSymmetricSemanticEmbedding The symmetric version of the Aleph Alpha's semantic embeddings. embeddings.awa.AwaEmbeddings Embedding documents and queries with Awa DB. embeddings.baidu_qianfan_endpoint.QianfanEmbeddingsEndpoint Baidu Qianfan Embeddings embedding models. embeddings.bedrock.BedrockEmbeddings Bedrock embedding models. embeddings.cache.CacheBackedEmbeddings(...) Interface for caching results from embedding models. embeddings.clarifai.ClarifaiEmbeddings Clarifai embedding models. embeddings.cohere.CohereEmbeddings Cohere embedding models. embeddings.dashscope.DashScopeEmbeddings DashScope embedding models. embeddings.deepinfra.DeepInfraEmbeddings
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-41
DashScope embedding models. embeddings.deepinfra.DeepInfraEmbeddings Deep Infra's embedding inference service. embeddings.edenai.EdenAiEmbeddings EdenAI embedding. embeddings.elasticsearch.ElasticsearchEmbeddings(...) Elasticsearch embedding models. embeddings.embaas.EmbaasEmbeddings Embaas's embedding service. embeddings.embaas.EmbaasEmbeddingsPayload Payload for the Embaas embeddings API. embeddings.ernie.ErnieEmbeddings Ernie Embeddings V1 embedding models. embeddings.fake.DeterministicFakeEmbedding Fake embedding model that always returns the same embedding vector for the same text. embeddings.fake.FakeEmbeddings Fake embedding model. embeddings.google_palm.GooglePalmEmbeddings Google's PaLM Embeddings APIs. embeddings.gpt4all.GPT4AllEmbeddings GPT4All embedding models. embeddings.gradient_ai.GradientEmbeddings Gradient.ai Embedding models. embeddings.gradient_ai.TinyAsyncGradientEmbeddingClient([...]) A helper tool to embed Gradient. embeddings.huggingface.HuggingFaceBgeEmbeddings HuggingFace BGE sentence_transformers embedding models. embeddings.huggingface.HuggingFaceEmbeddings HuggingFace sentence_transformers embedding models. embeddings.huggingface.HuggingFaceInferenceAPIEmbeddings Embed texts using the HuggingFace API. embeddings.huggingface.HuggingFaceInstructEmbeddings Wrapper around sentence_transformers embedding models. embeddings.huggingface_hub.HuggingFaceHubEmbeddings HuggingFaceHub embedding models. embeddings.javelin_ai_gateway.JavelinAIGatewayEmbeddings Wrapper around embeddings LLMs in the Javelin AI Gateway. embeddings.jina.JinaEmbeddings Jina embedding models.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-42
embeddings.jina.JinaEmbeddings Jina embedding models. embeddings.llamacpp.LlamaCppEmbeddings llama.cpp embedding models. embeddings.llm_rails.LLMRailsEmbeddings LLMRails embedding models. embeddings.localai.LocalAIEmbeddings LocalAI embedding models. embeddings.minimax.MiniMaxEmbeddings MiniMax's embedding service. embeddings.mlflow_gateway.MlflowAIGatewayEmbeddings Wrapper around embeddings LLMs in the MLflow AI Gateway. embeddings.modelscope_hub.ModelScopeEmbeddings ModelScopeHub embedding models. embeddings.mosaicml.MosaicMLInstructorEmbeddings MosaicML embedding service. embeddings.nlpcloud.NLPCloudEmbeddings NLP Cloud embedding models. embeddings.octoai_embeddings.OctoAIEmbeddings OctoAI Compute Service embedding models. embeddings.ollama.OllamaEmbeddings Ollama locally runs large language models. embeddings.openai.OpenAIEmbeddings OpenAI embedding models. embeddings.sagemaker_endpoint.EmbeddingsContentHandler() Content handler for LLM class. embeddings.sagemaker_endpoint.SagemakerEndpointEmbeddings Custom Sagemaker Inference Endpoints. embeddings.self_hosted.SelfHostedEmbeddings Custom embedding models on self-hosted remote hardware. embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings HuggingFace embedding models on self-hosted remote hardware. embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceInstructEmbeddings HuggingFace InstructEmbedding models on self-hosted remote hardware. embeddings.spacy_embeddings.SpacyEmbeddings Embeddings by SpaCy models. embeddings.tensorflow_hub.TensorflowHubEmbeddings TensorflowHub embedding models.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-43
embeddings.tensorflow_hub.TensorflowHubEmbeddings TensorflowHub embedding models. embeddings.vertexai.VertexAIEmbeddings Google Cloud VertexAI embedding models. embeddings.xinference.XinferenceEmbeddings([...]) Wrapper around xinference embedding models. Functions¶ embeddings.dashscope.embed_with_retry(...) Use tenacity to retry the embedding call. embeddings.google_palm.embed_with_retry(...) Use tenacity to retry the completion call. embeddings.localai.async_embed_with_retry(...) Use tenacity to retry the embedding call. embeddings.localai.embed_with_retry(...) Use tenacity to retry the embedding call. embeddings.minimax.embed_with_retry(...) Use tenacity to retry the completion call. embeddings.openai.async_embed_with_retry(...) Use tenacity to retry the embedding call. embeddings.openai.embed_with_retry(...) Use tenacity to retry the embedding call. embeddings.self_hosted_hugging_face.load_embedding_model(...) Load the embedding model. langchain.evaluation¶ Evaluation chains for grading LLM and Chain outputs. This module contains off-the-shelf evaluation chains for grading the output of LangChain primitives such as language models and chains. Loading an evaluator To load an evaluator, you can use the load_evaluators or load_evaluator functions with the names of the evaluators to load. from langchain.evaluation import load_evaluator evaluator = load_evaluator("qa") evaluator.evaluate_strings( prediction="We sold more than 40,000 units last week", input="How many units did we sell last week?", reference="We sold 32,378 units", ) The evaluator must be one of EvaluatorType. Datasets To load one of the LangChain HuggingFace datasets, you can use the load_dataset function with the
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-44
name of the dataset to load. from langchain.evaluation import load_dataset ds = load_dataset("llm-math") Some common use cases for evaluation include: Grading the accuracy of a response against ground truth answers: QAEvalChain Comparing the output of two models: PairwiseStringEvalChain or LabeledPairwiseStringEvalChain when there is additionally a reference label. Judging the efficacy of an agent’s tool usage: TrajectoryEvalChain Checking whether an output complies with a set of criteria: CriteriaEvalChain or LabeledCriteriaEvalChain when there is additionally a reference label. Computing semantic difference between a prediction and reference: EmbeddingDistanceEvalChain or between two predictions: PairwiseEmbeddingDistanceEvalChain Measuring the string distance between a prediction and reference StringDistanceEvalChain or between two predictions PairwiseStringDistanceEvalChain Low-level API These evaluators implement one of the following interfaces: StringEvaluator: Evaluate a prediction string against a reference label and/or input context. PairwiseStringEvaluator: Evaluate two prediction strings against each other. Useful for scoring preferences, measuring similarity between two chain or llm agents, or comparing outputs on similar inputs. AgentTrajectoryEvaluator Evaluate the full sequence of actions taken by an agent. These interfaces enable easier composability and usage within a higher level evaluation framework. Classes¶ evaluation.agents.trajectory_eval_chain.TrajectoryEval A named tuple containing the score and reasoning for a trajectory. evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain A chain for evaluating ReAct style agents. evaluation.agents.trajectory_eval_chain.TrajectoryOutputParser Trajectory output parser. evaluation.comparison.eval_chain.LabeledPairwiseStringEvalChain A chain for comparing two outputs, such as the outputs evaluation.comparison.eval_chain.PairwiseStringEvalChain
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-45
evaluation.comparison.eval_chain.PairwiseStringEvalChain A chain for comparing two outputs, such as the outputs evaluation.comparison.eval_chain.PairwiseStringResultOutputParser A parser for the output of the PairwiseStringEvalChain. evaluation.criteria.eval_chain.Criteria(value) A Criteria to evaluate. evaluation.criteria.eval_chain.CriteriaEvalChain LLM Chain for evaluating runs against criteria. evaluation.criteria.eval_chain.CriteriaResultOutputParser A parser for the output of the CriteriaEvalChain. evaluation.criteria.eval_chain.LabeledCriteriaEvalChain Criteria evaluation chain that requires references. evaluation.embedding_distance.base.EmbeddingDistance(value) Embedding Distance Metric. evaluation.embedding_distance.base.EmbeddingDistanceEvalChain Use embedding distances to score semantic difference between a prediction and reference. evaluation.embedding_distance.base.PairwiseEmbeddingDistanceEvalChain Use embedding distances to score semantic difference between two predictions. evaluation.exact_match.base.ExactMatchStringEvaluator(*) Compute an exact match between the prediction and the reference. evaluation.parsing.base.JsonEqualityEvaluator([...]) Evaluates whether the prediction is equal to the reference after evaluation.parsing.base.JsonValidityEvaluator(...) Evaluates whether the prediction is valid JSON. evaluation.qa.eval_chain.ContextQAEvalChain LLM Chain for evaluating QA w/o GT based on context evaluation.qa.eval_chain.CotQAEvalChain LLM Chain for evaluating QA using chain of thought reasoning. evaluation.qa.eval_chain.QAEvalChain LLM Chain for evaluating question answering. evaluation.qa.generate_chain.QAGenerateChain LLM Chain for generating examples for question answering. evaluation.regex_match.base.RegexMatchStringEvaluator(*) Compute a regex match between the prediction and the reference. evaluation.schema.AgentTrajectoryEvaluator() Interface for evaluating agent trajectories. evaluation.schema.EvaluatorType(value[, ...]) The types of the evaluators.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-46
evaluation.schema.EvaluatorType(value[, ...]) The types of the evaluators. evaluation.schema.LLMEvalChain A base class for evaluators that use an LLM. evaluation.schema.PairwiseStringEvaluator() Compare the output of two models (or two outputs of the same model). evaluation.schema.StringEvaluator() Grade, tag, or otherwise evaluate predictions relative to their inputs and/or reference labels. evaluation.string_distance.base.PairwiseStringDistanceEvalChain Compute string edit distances between two predictions. evaluation.string_distance.base.StringDistance(value) Distance metric to use. evaluation.string_distance.base.StringDistanceEvalChain Compute string distances between the prediction and the reference. Functions¶ evaluation.comparison.eval_chain.resolve_pairwise_criteria(...) Resolve the criteria for the pairwise evaluator. evaluation.criteria.eval_chain.resolve_criteria(...) Resolve the criteria to evaluate. evaluation.loading.load_dataset(uri) Load a dataset from the LangChainDatasets on HuggingFace. evaluation.loading.load_evaluator(evaluator, *) Load the requested evaluation chain specified by a string. evaluation.loading.load_evaluators(evaluators, *) Load evaluators specified by a list of evaluator types. langchain.graphs¶ Graphs provide a natural language interface to graph databases. Classes¶ graphs.arangodb_graph.ArangoGraph(db) ArangoDB wrapper for graph operations. graphs.falkordb_graph.FalkorDBGraph(database) FalkorDB wrapper for graph operations. graphs.graph_document.GraphDocument Represents a graph document consisting of nodes and relationships. graphs.graph_document.Node Represents a node in a graph with associated properties. graphs.graph_document.Relationship Represents a directed relationship between two nodes in a graph. graphs.hugegraph.HugeGraph([username, ...]) HugeGraph wrapper for graph operations
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-47
HugeGraph wrapper for graph operations graphs.kuzu_graph.KuzuGraph(db[, database]) Kùzu wrapper for graph operations. graphs.memgraph_graph.MemgraphGraph(url, ...) Memgraph wrapper for graph operations. graphs.nebula_graph.NebulaGraph(space[, ...]) NebulaGraph wrapper for graph operations NebulaGraph inherits methods from Neo4jGraph to bring ease to the user space. graphs.neo4j_graph.Neo4jGraph(url, username, ...) Neo4j wrapper for graph operations. graphs.neptune_graph.NeptuneGraph(host[, ...]) Neptune wrapper for graph operations. graphs.neptune_graph.NeptuneQueryException(...) A class to handle queries that fail to execute graphs.networkx_graph.KnowledgeTriple(...) A triple in the graph. graphs.networkx_graph.NetworkxEntityGraph([graph]) Networkx wrapper for entity graph operations. graphs.rdf_graph.RdfGraph([source_file, ...]) RDFlib wrapper for graph operations. Functions¶ graphs.arangodb_graph.get_arangodb_client([...]) Get the Arango DB client from credentials. graphs.networkx_graph.get_entities(entity_str) Extract entities from entity string. graphs.networkx_graph.parse_triples(...) Parse knowledge triples from the knowledge string. langchain.hub¶ Push and pull to the LangChain Hub. Functions¶ hub.pull(owner_repo_commit, *[, api_url, ...]) Pulls an object from the hub and returns it as a LangChain object. hub.push(repo_full_name, object, *[, ...]) Pushes an object to the hub and returns the URL it can be viewed at in a browser. langchain.indexes¶ Code to support various indexing workflows. Provides code to: Create knowledge graphs from data.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-48
Code to support various indexing workflows. Provides code to: Create knowledge graphs from data. Support indexing workflows from LangChain data loaders to vectorstores. For indexing workflows, this code is used to avoid writing duplicated content into the vectostore and to avoid over-writing content if it’s unchanged. Importantly, this keeps on working even if the content being written is derived via a set of transformations from some source content (e.g., indexing children documents that were derived from parent documents by chunking.) Classes¶ indexes.base.RecordManager(namespace) An abstract base class representing the interface for a record manager. indexes.graph.GraphIndexCreator Functionality to create graph index. indexes.vectorstore.VectorStoreIndexWrapper Wrapper around a vectorstore for easy access. indexes.vectorstore.VectorstoreIndexCreator Logic for creating indexes. Functions¶ langchain.llms¶ LLM classes provide access to the large language model (LLM) APIs and services. Class hierarchy: BaseLanguageModel --> BaseLLM --> LLM --> <name> # Examples: AI21, HuggingFaceHub, OpenAI Main helpers: LLMResult, PromptValue, CallbackManagerForLLMRun, AsyncCallbackManagerForLLMRun, CallbackManager, AsyncCallbackManager, AIMessage, BaseMessage Classes¶ llms.ai21.AI21 AI21 large language models. llms.ai21.AI21PenaltyData Parameters for AI21 penalty data. llms.aleph_alpha.AlephAlpha Aleph Alpha large language models. llms.amazon_api_gateway.AmazonAPIGateway Amazon API Gateway to access LLM models hosted on AWS. llms.amazon_api_gateway.ContentHandlerAmazonAPIGateway() Adapter to prepare the inputs from Langchain to a format that LLM model expects. llms.anthropic.Anthropic
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-49
llms.anthropic.Anthropic Anthropic large language models. llms.anyscale.Anyscale Anyscale Service models. llms.aviary.Aviary Aviary hosted models. llms.aviary.AviaryBackend(backend_url, bearer) Aviary backend. llms.azureml_endpoint.AzureMLEndpointClient(...) AzureML Managed Endpoint client. llms.azureml_endpoint.AzureMLOnlineEndpoint Azure ML Online Endpoint models. llms.azureml_endpoint.ContentFormatterBase() Transform request and response of AzureML endpoint to match with required schema. llms.azureml_endpoint.DollyContentFormatter() Content handler for the Dolly-v2-12b model llms.azureml_endpoint.GPT2ContentFormatter() Content handler for GPT2 llms.azureml_endpoint.HFContentFormatter() Content handler for LLMs from the HuggingFace catalog. llms.azureml_endpoint.LlamaContentFormatter() Content formatter for LLaMa llms.azureml_endpoint.OSSContentFormatter() Deprecated: Kept for backwards compatibility llms.baidu_qianfan_endpoint.QianfanLLMEndpoint Baidu Qianfan hosted open source or customized models. llms.bananadev.Banana Banana large language models. llms.base.BaseLLM Base LLM abstract interface. llms.base.LLM Base LLM abstract class. llms.baseten.Baseten Baseten models. llms.beam.Beam Beam API for gpt2 large language model. llms.bedrock.Bedrock Bedrock models. llms.bedrock.BedrockBase Create a new model by parsing and validating input data from keyword arguments. llms.bedrock.LLMInputOutputAdapter()
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-50
llms.bedrock.LLMInputOutputAdapter() Adapter class to prepare the inputs from Langchain to a format that LLM model expects. llms.bittensor.NIBittensorLLM NIBittensorLLM is created by Neural Internet (https://neuralinternet.ai/), powered by Bittensor, a decentralized network full of different AI models. llms.cerebriumai.CerebriumAI CerebriumAI large language models. llms.chatglm.ChatGLM ChatGLM LLM service. llms.clarifai.Clarifai Clarifai large language models. llms.cohere.Cohere Cohere large language models. llms.ctransformers.CTransformers C Transformers LLM models. llms.ctranslate2.CTranslate2 CTranslate2 language model. llms.databricks.Databricks Databricks serving endpoint or a cluster driver proxy app for LLM. llms.deepinfra.DeepInfra DeepInfra models. llms.deepsparse.DeepSparse Neural Magic DeepSparse LLM interface. llms.edenai.EdenAI Wrapper around edenai models. llms.fake.FakeListLLM Fake LLM for testing purposes. llms.fake.FakeStreamingListLLM Fake streaming list LLM for testing purposes. llms.fireworks.Fireworks Fireworks models. llms.forefrontai.ForefrontAI ForefrontAI large language models. llms.google_palm.GooglePalm Google PaLM models. llms.gooseai.GooseAI GooseAI large language models. llms.gpt4all.GPT4All GPT4All language models. llms.gradient_ai.GradientLLM Gradient.ai LLM Endpoints.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-51
llms.gradient_ai.GradientLLM Gradient.ai LLM Endpoints. llms.huggingface_endpoint.HuggingFaceEndpoint HuggingFace Endpoint models. llms.huggingface_hub.HuggingFaceHub HuggingFaceHub models. llms.huggingface_pipeline.HuggingFacePipeline HuggingFace Pipeline API. llms.huggingface_text_gen_inference.HuggingFaceTextGenInference HuggingFace text generation API. llms.human.HumanInputLLM It returns user input as the response. llms.javelin_ai_gateway.JavelinAIGateway Wrapper around completions LLMs in the Javelin AI Gateway. llms.javelin_ai_gateway.Params Parameters for the Javelin AI Gateway LLM. llms.koboldai.KoboldApiLLM Kobold API language model. llms.llamacpp.LlamaCpp llama.cpp model. llms.manifest.ManifestWrapper HazyResearch's Manifest library. llms.minimax.Minimax Wrapper around Minimax large language models. llms.minimax.MinimaxCommon Create a new model by parsing and validating input data from keyword arguments. llms.mlflow_ai_gateway.MlflowAIGateway Wrapper around completions LLMs in the MLflow AI Gateway. llms.mlflow_ai_gateway.Params Parameters for the MLflow AI Gateway LLM. llms.modal.Modal Modal large language models. llms.mosaicml.MosaicML MosaicML LLM service. llms.nlpcloud.NLPCloud NLPCloud large language models. llms.octoai_endpoint.OctoAIEndpoint OctoAI LLM Endpoints. llms.ollama.Ollama Ollama locally runs large language models.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-52
llms.ollama.Ollama Ollama locally runs large language models. llms.opaqueprompts.OpaquePrompts An LLM wrapper that uses OpaquePrompts to sanitize prompts. llms.openai.AzureOpenAI Azure-specific OpenAI large language models. llms.openai.BaseOpenAI Base OpenAI large language model class. llms.openai.OpenAI OpenAI large language models. llms.openai.OpenAIChat OpenAI Chat large language models. llms.openllm.IdentifyingParams Parameters for identifying a model as a typed dict. llms.openllm.OpenLLM OpenLLM, supporting both in-process model instance and remote OpenLLM servers. llms.openlm.OpenLM OpenLM models. llms.petals.Petals Petals Bloom models. llms.pipelineai.PipelineAI PipelineAI large language models. llms.predibase.Predibase Use your Predibase models with Langchain. llms.predictionguard.PredictionGuard Prediction Guard large language models. llms.promptlayer_openai.PromptLayerOpenAI PromptLayer OpenAI large language models. llms.promptlayer_openai.PromptLayerOpenAIChat Wrapper around OpenAI large language models. llms.replicate.Replicate Replicate models. llms.rwkv.RWKV RWKV language models. llms.sagemaker_endpoint.ContentHandlerBase() A handler class to transform input from LLM to a format that SageMaker endpoint expects. llms.sagemaker_endpoint.LLMContentHandler() Content handler for LLM class. llms.sagemaker_endpoint.SagemakerEndpoint Sagemaker Inference Endpoint models. llms.self_hosted.SelfHostedPipeline Model inference on self-hosted remote hardware.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-53
Model inference on self-hosted remote hardware. llms.self_hosted_hugging_face.SelfHostedHuggingFaceLLM HuggingFace Pipeline API to run on self-hosted remote hardware. llms.stochasticai.StochasticAI StochasticAI large language models. llms.symblai_nebula.Nebula Nebula Service models. llms.textgen.TextGen text-generation-webui models. llms.titan_takeoff.TitanTakeoff Create a new model by parsing and validating input data from keyword arguments. llms.tongyi.Tongyi Tongyi Qwen large language models. llms.vertexai.VertexAI Google Vertex AI large language models. llms.vertexai.VertexAIModelGarden Large language models served from Vertex AI Model Garden. llms.vllm.VLLM VLLM language model. llms.vllm.VLLMOpenAI vLLM OpenAI-compatible API client llms.writer.Writer Writer large language models. llms.xinference.Xinference Wrapper for accessing Xinference's large-scale model inference service. Functions¶ llms.aviary.get_completions(model, prompt[, ...]) Get completions from Aviary models. llms.aviary.get_models() List available models llms.base.create_base_retry_decorator(...[, ...]) Create a retry decorator for a given LLM and provided list of error types. llms.base.get_prompts(params, prompts) Get prompts that are already cached. llms.base.update_cache(existing_prompts, ...) Update the cache and get the LLM output. llms.cohere.acompletion_with_retry(llm, **kwargs) Use tenacity to retry the completion call.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-54
Use tenacity to retry the completion call. llms.cohere.completion_with_retry(llm, **kwargs) Use tenacity to retry the completion call. llms.databricks.get_default_api_token() Gets the default Databricks personal access token. llms.databricks.get_default_host() Gets the default Databricks workspace hostname. llms.databricks.get_repl_context() Gets the notebook REPL context if running inside a Databricks notebook. llms.fireworks.acompletion_with_retry(llm, *) Use tenacity to retry the completion call. llms.fireworks.acompletion_with_retry_streaming(llm, *) Use tenacity to retry the completion call for streaming. llms.fireworks.completion_with_retry(llm, *) Use tenacity to retry the completion call. llms.google_palm.generate_with_retry(llm, ...) Use tenacity to retry the completion call. llms.koboldai.clean_url(url) Remove trailing slash and /api from url if present. llms.loading.load_llm(file) Load LLM from file. llms.loading.load_llm_from_config(config) Load LLM from Config Dict. llms.openai.acompletion_with_retry(llm[, ...]) Use tenacity to retry the async completion call. llms.openai.completion_with_retry(llm[, ...]) Use tenacity to retry the completion call. llms.openai.update_token_usage(keys, ...) Update token usage. llms.symblai_nebula.completion_with_retry(...) Use tenacity to retry the completion call. llms.symblai_nebula.make_request(self, ...) Generate text from the model. llms.tongyi.generate_with_retry(llm, **kwargs)
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-55
llms.tongyi.generate_with_retry(llm, **kwargs) Use tenacity to retry the completion call. llms.tongyi.stream_generate_with_retry(llm, ...) Use tenacity to retry the completion call. llms.utils.enforce_stop_tokens(text, stop) Cut off the text as soon as any stop words occur. llms.vertexai.acompletion_with_retry(llm, *args) Use tenacity to retry the completion call. llms.vertexai.completion_with_retry(llm, *args) Use tenacity to retry the completion call. llms.vertexai.is_codey_model(model_name) Returns True if the model name is a Codey model. llms.vertexai.stream_completion_with_retry(...) Use tenacity to retry the completion call. langchain.load¶ Serialization and deserialization. Classes¶ load.load.Reviver([secrets_map, ...]) Reviver for JSON objects. load.serializable.BaseSerialized Base class for serialized objects. load.serializable.Serializable Serializable base class. load.serializable.SerializedConstructor Serialized constructor. load.serializable.SerializedNotImplemented Serialized not implemented. load.serializable.SerializedSecret Serialized secret. Functions¶ load.dump.default(obj) Return a default value for a Serializable object or a SerializedNotImplemented object. load.dump.dumpd(obj) Return a json dict representation of an object. load.dump.dumps(obj, *[, pretty]) Return a json string representation of an object. load.load.load(obj, *[, secrets_map, ...]) Revive a LangChain class from a JSON object. load.load.loads(text, *[, secrets_map, ...]) Revive a LangChain class from a JSON string.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-56
Revive a LangChain class from a JSON string. load.serializable.to_json_not_implemented(obj) Serialize a "not implemented" object. langchain.memory¶ Memory maintains Chain state, incorporating context from past runs. Class hierarchy for Memory: BaseMemory --> BaseChatMemory --> <name>Memory # Examples: ZepMemory, MotorheadMemory Main helpers: BaseChatMessageHistory Chat Message History stores the chat message history in different stores. Class hierarchy for ChatMessageHistory: BaseChatMessageHistory --> <name>ChatMessageHistory # Example: ZepChatMessageHistory Main helpers: AIMessage, BaseMessage, HumanMessage Classes¶ memory.buffer.ConversationBufferMemory Buffer for storing conversation memory. memory.buffer.ConversationStringBufferMemory Buffer for storing conversation memory. memory.buffer_window.ConversationBufferWindowMemory Buffer for storing conversation memory inside a limited size window. memory.chat_memory.BaseChatMemory Abstract base class for chat memory. memory.chat_message_histories.cassandra.CassandraChatMessageHistory(...) Chat message history that stores history in Cassandra. memory.chat_message_histories.cosmos_db.CosmosDBChatMessageHistory(...) Chat message history backed by Azure CosmosDB. memory.chat_message_histories.dynamodb.DynamoDBChatMessageHistory(...) Chat message history that stores history in AWS DynamoDB. memory.chat_message_histories.file.FileChatMessageHistory(...) Chat message history that stores history in a local file. memory.chat_message_histories.firestore.FirestoreChatMessageHistory(...) Chat message history backed by Google Firestore. memory.chat_message_histories.in_memory.ChatMessageHistory In memory implementation of chat message history. memory.chat_message_histories.momento.MomentoChatMessageHistory(...) Chat message history cache that uses Momento as a backend. memory.chat_message_histories.mongodb.MongoDBChatMessageHistory(...)
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-57
memory.chat_message_histories.mongodb.MongoDBChatMessageHistory(...) Chat message history that stores history in MongoDB. memory.chat_message_histories.postgres.PostgresChatMessageHistory(...) Chat message history stored in a Postgres database. memory.chat_message_histories.redis.RedisChatMessageHistory(...) Chat message history stored in a Redis database. memory.chat_message_histories.rocksetdb.RocksetChatMessageHistory(...) Uses Rockset to store chat messages. memory.chat_message_histories.sql.BaseMessageConverter() The class responsible for converting BaseMessage to your SQLAlchemy model. memory.chat_message_histories.sql.DefaultMessageConverter(...) The default message converter for SQLChatMessageHistory. memory.chat_message_histories.sql.SQLChatMessageHistory(...) Chat message history stored in an SQL database. memory.chat_message_histories.streamlit.StreamlitChatMessageHistory([key]) Chat message history that stores messages in Streamlit session state. memory.chat_message_histories.xata.XataChatMessageHistory(...) Chat message history stored in a Xata database. memory.chat_message_histories.zep.ZepChatMessageHistory(...) Chat message history that uses Zep as a backend. memory.combined.CombinedMemory Combining multiple memories' data together. memory.entity.BaseEntityStore Abstract base class for Entity store. memory.entity.ConversationEntityMemory Entity extractor & summarizer memory. memory.entity.InMemoryEntityStore In-memory Entity store. memory.entity.RedisEntityStore Redis-backed Entity store. memory.entity.SQLiteEntityStore SQLite-backed Entity store memory.kg.ConversationKGMemory Knowledge graph conversation memory. memory.motorhead_memory.MotorheadMemory Chat message memory backed by Motorhead service. memory.readonly.ReadOnlySharedMemory A memory wrapper that is read-only and cannot be changed. memory.simple.SimpleMemory
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-58
A memory wrapper that is read-only and cannot be changed. memory.simple.SimpleMemory Simple memory for storing context or other information that shouldn't ever change between prompts. memory.summary.ConversationSummaryMemory Conversation summarizer to chat memory. memory.summary.SummarizerMixin Mixin for summarizer. memory.summary_buffer.ConversationSummaryBufferMemory Buffer with summarizer for storing conversation memory. memory.token_buffer.ConversationTokenBufferMemory Conversation chat memory with token limit. memory.vectorstore.VectorStoreRetrieverMemory VectorStoreRetriever-backed memory. memory.zep_memory.ZepMemory Persist your chain history to the Zep Memory Server. Functions¶ memory.chat_message_histories.sql.create_message_model(...) Create a message model for a given table name. memory.utils.get_prompt_input_key(inputs, ...) Get the prompt input key. langchain.model_laboratory¶ Experiment with different models. Classes¶ model_laboratory.ModelLaboratory(chains[, names]) Experiment with different models. langchain.output_parsers¶ OutputParser classes parse the output of an LLM call. Class hierarchy: BaseLLMOutputParser --> BaseOutputParser --> <name>OutputParser # ListOutputParser, PydanticOutputParser Main helpers: Serializable, Generation, PromptValue Classes¶ output_parsers.boolean.BooleanOutputParser Parse the output of an LLM call to a boolean. output_parsers.combining.CombiningOutputParser Combine multiple output parsers into one. output_parsers.datetime.DatetimeOutputParser Parse the output of an LLM call to a datetime. output_parsers.enum.EnumOutputParser Parse an output that is one of a set of values. output_parsers.fix.OutputFixingParser Wraps a parser and tries to fix parsing errors. output_parsers.json.SimpleJsonOutputParser
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-59
output_parsers.json.SimpleJsonOutputParser Parse the output of an LLM call to a JSON object. output_parsers.list.CommaSeparatedListOutputParser Parse the output of an LLM call to a comma-separated list. output_parsers.list.ListOutputParser Parse the output of an LLM call to a list. output_parsers.list.NumberedListOutputParser Parse a numbered list. output_parsers.openai_functions.JsonKeyOutputFunctionsParser Parse an output as the element of the Json object. output_parsers.openai_functions.JsonOutputFunctionsParser Parse an output as the Json object. output_parsers.openai_functions.OutputFunctionsParser Parse an output that is one of sets of values. output_parsers.openai_functions.PydanticAttrOutputFunctionsParser Parse an output as an attribute of a pydantic object. output_parsers.openai_functions.PydanticOutputFunctionsParser Parse an output as a pydantic object. output_parsers.pydantic.PydanticOutputParser Parse an output using a pydantic model. output_parsers.rail_parser.GuardrailsOutputParser Parse the output of an LLM call using Guardrails. output_parsers.regex.RegexParser Parse the output of an LLM call using a regex. output_parsers.regex_dict.RegexDictParser Parse the output of an LLM call into a Dictionary using a regex. output_parsers.retry.RetryOutputParser Wraps a parser and tries to fix parsing errors. output_parsers.retry.RetryWithErrorOutputParser Wraps a parser and tries to fix parsing errors. output_parsers.structured.ResponseSchema A schema for a response from a structured output parser. output_parsers.structured.StructuredOutputParser Parse the output of an LLM call to a structured output. output_parsers.xml.XMLOutputParser
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-60
output_parsers.xml.XMLOutputParser Parse an output using xml format. Functions¶ output_parsers.json.parse_and_check_json_markdown(...) Parse a JSON string from a Markdown string and check that it contains the expected keys. output_parsers.json.parse_json_markdown(...) Parse a JSON string from a Markdown string. output_parsers.json.parse_partial_json(s, *) output_parsers.loading.load_output_parser(config) Load an output parser. langchain.prompts¶ Prompt is the input to the model. Prompt is often constructed from multiple components. Prompt classes and functions make constructing and working with prompts easy. Class hierarchy: BasePromptTemplate --> PipelinePromptTemplate StringPromptTemplate --> PromptTemplate FewShotPromptTemplate FewShotPromptWithTemplates BaseChatPromptTemplate --> AutoGPTPrompt ChatPromptTemplate --> AgentScratchPadChatPromptTemplate BaseMessagePromptTemplate --> MessagesPlaceholder BaseStringMessagePromptTemplate --> ChatMessagePromptTemplate HumanMessagePromptTemplate AIMessagePromptTemplate SystemMessagePromptTemplate PromptValue --> StringPromptValue ChatPromptValue Classes¶ prompts.base.StringPromptTemplate String prompt that exposes the format method, returning a prompt. prompts.base.StringPromptValue String prompt value. prompts.chat.AIMessagePromptTemplate AI message prompt template. prompts.chat.BaseChatPromptTemplate Base class for chat prompt templates. prompts.chat.BaseMessagePromptTemplate Base class for message prompt templates. prompts.chat.BaseStringMessagePromptTemplate Base class for message prompt templates that use a string prompt template. prompts.chat.ChatMessagePromptTemplate Chat message prompt template. prompts.chat.ChatPromptTemplate A prompt template for chat models. prompts.chat.ChatPromptValue Chat prompt value. prompts.chat.ChatPromptValueConcrete
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-61
prompts.chat.ChatPromptValue Chat prompt value. prompts.chat.ChatPromptValueConcrete Chat prompt value which explicitly lists out the message types it accepts. prompts.chat.HumanMessagePromptTemplate Human message prompt template. prompts.chat.MessagesPlaceholder Prompt template that assumes variable is already list of messages. prompts.chat.SystemMessagePromptTemplate System message prompt template. prompts.example_selector.base.BaseExampleSelector() Interface for selecting examples to include in prompts. prompts.example_selector.length_based.LengthBasedExampleSelector Select examples based on length. prompts.example_selector.ngram_overlap.NGramOverlapExampleSelector Select and order examples based on ngram overlap score (sentence_bleu score). prompts.example_selector.semantic_similarity.MaxMarginalRelevanceExampleSelector ExampleSelector that selects examples based on Max Marginal Relevance. prompts.example_selector.semantic_similarity.SemanticSimilarityExampleSelector Example selector that selects examples based on SemanticSimilarity. prompts.few_shot.FewShotChatMessagePromptTemplate Chat prompt template that supports few-shot examples. prompts.few_shot.FewShotPromptTemplate Prompt template that contains few shot examples. prompts.few_shot_with_templates.FewShotPromptWithTemplates Prompt template that contains few shot examples. prompts.pipeline.PipelinePromptTemplate A prompt template for composing multiple prompt templates together. prompts.prompt.Prompt alias of PromptTemplate prompts.prompt.PromptTemplate A prompt template for a language model. Functions¶ prompts.base.check_valid_template(template, ...) Check that template string is valid. prompts.base.jinja2_formatter(template, **kwargs) Format a template using jinja2. prompts.base.validate_jinja2(template, ...) Validate that the input variables are valid for the template. prompts.example_selector.ngram_overlap.ngram_overlap_score(...)
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-62
prompts.example_selector.ngram_overlap.ngram_overlap_score(...) Compute ngram overlap score of source and example as sentence_bleu score. prompts.example_selector.semantic_similarity.sorted_values(values) Return a list of values in dict sorted by key. prompts.loading.load_prompt(path) Unified method for loading a prompt from LangChainHub or local fs. prompts.loading.load_prompt_from_config(config) Load prompt from Config Dict. langchain.retrievers¶ Retriever class returns Documents given a text query. It is more general than a vector store. A retriever does not need to be able to store documents, only to return (or retrieve) it. Vector stores can be used as the backbone of a retriever, but there are other types of retrievers as well. Class hierarchy: BaseRetriever --> <name>Retriever # Examples: ArxivRetriever, MergerRetriever Main helpers: Document, Serializable, Callbacks, CallbackManagerForRetrieverRun, AsyncCallbackManagerForRetrieverRun Classes¶ retrievers.arxiv.ArxivRetriever Arxiv retriever. retrievers.azure_cognitive_search.AzureCognitiveSearchRetriever Azure Cognitive Search service retriever. retrievers.bm25.BM25Retriever BM25 retriever without Elasticsearch. retrievers.chaindesk.ChaindeskRetriever Chaindesk API retriever. retrievers.chatgpt_plugin_retriever.ChatGPTPluginRetriever ChatGPT plugin retriever. retrievers.contextual_compression.ContextualCompressionRetriever Retriever that wraps a base retriever and compresses the results. retrievers.databerry.DataberryRetriever Databerry API retriever. retrievers.docarray.DocArrayRetriever
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-63
Databerry API retriever. retrievers.docarray.DocArrayRetriever DocArray Document Indices retriever. retrievers.docarray.SearchType(value[, ...]) Enumerator of the types of search to perform. retrievers.document_compressors.base.BaseDocumentCompressor Base class for document compressors. retrievers.document_compressors.base.DocumentCompressorPipeline Document compressor that uses a pipeline of Transformers. retrievers.document_compressors.chain_extract.LLMChainExtractor Document compressor that uses an LLM chain to extract the relevant parts of documents. retrievers.document_compressors.chain_extract.NoOutputParser Parse outputs that could return a null string of some sort. retrievers.document_compressors.chain_filter.LLMChainFilter Filter that drops documents that aren't relevant to the query. retrievers.document_compressors.cohere_rerank.CohereRerank Document compressor that uses Cohere Rerank API. retrievers.document_compressors.embeddings_filter.EmbeddingsFilter Document compressor that uses embeddings to drop documents unrelated to the query. retrievers.elastic_search_bm25.ElasticSearchBM25Retriever Elasticsearch retriever that uses BM25. retrievers.ensemble.EnsembleRetriever Retriever that ensembles the multiple retrievers. retrievers.google_cloud_enterprise_search.GoogleCloudEnterpriseSearchRetriever Google Cloud Enterprise Search API retriever. retrievers.kay.KayAiRetriever Retriever for Kay.ai datasets. retrievers.kendra.AdditionalResultAttribute Additional result attribute. retrievers.kendra.AdditionalResultAttributeValue Value of an additional result attribute. retrievers.kendra.AmazonKendraRetriever Amazon Kendra Index retriever. retrievers.kendra.DocumentAttribute Document attribute.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-64
Amazon Kendra Index retriever. retrievers.kendra.DocumentAttribute Document attribute. retrievers.kendra.DocumentAttributeValue Value of a document attribute. retrievers.kendra.Highlight Information that highlights the key words in the excerpt. retrievers.kendra.QueryResult Amazon Kendra Query API search result. retrievers.kendra.QueryResultItem Query API result item. retrievers.kendra.ResultItem Base class of a result item. retrievers.kendra.RetrieveResult Amazon Kendra Retrieve API search result. retrievers.kendra.RetrieveResultItem Retrieve API result item. retrievers.kendra.TextWithHighLights Text with highlights. retrievers.knn.KNNRetriever KNN retriever. retrievers.llama_index.LlamaIndexGraphRetriever LlamaIndex graph data structure retriever. retrievers.llama_index.LlamaIndexRetriever LlamaIndex retriever. retrievers.merger_retriever.MergerRetriever Retriever that merges the results of multiple retrievers. retrievers.metal.MetalRetriever Metal API retriever. retrievers.milvus.MilvusRetriever Milvus API retriever. retrievers.multi_query.LineList List of lines. retrievers.multi_query.LineListOutputParser Output parser for a list of lines. retrievers.multi_query.MultiQueryRetriever Given a query, use an LLM to write a set of queries. retrievers.multi_vector.MultiVectorRetriever Retrieve from a set of multiple embeddings for the same document. retrievers.parent_document_retriever.ParentDocumentRetriever Retrieve small chunks then retrieve their parent documents.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-65
Retrieve small chunks then retrieve their parent documents. retrievers.pinecone_hybrid_search.PineconeHybridSearchRetriever Pinecone Hybrid Search retriever. retrievers.pubmed.PubMedRetriever PubMed API retriever. retrievers.re_phraser.RePhraseQueryRetriever Given a query, use an LLM to re-phrase it. retrievers.remote_retriever.RemoteLangChainRetriever LangChain API retriever. retrievers.self_query.base.SelfQueryRetriever Retriever that uses a vector store and an LLM to generate the vector store queries. retrievers.self_query.chroma.ChromaTranslator() Translate Chroma internal query language elements to valid filters. retrievers.self_query.dashvector.DashvectorTranslator() Logic for converting internal query language elements to valid filters. retrievers.self_query.deeplake.DeepLakeTranslator() Translate DeepLake internal query language elements to valid filters. retrievers.self_query.elasticsearch.ElasticsearchTranslator() Translate Elasticsearch internal query language elements to valid filters. retrievers.self_query.milvus.MilvusTranslator() Translate Milvus internal query language elements to valid filters. retrievers.self_query.myscale.MyScaleTranslator([...]) Translate MyScale internal query language elements to valid filters. retrievers.self_query.opensearch.OpenSearchTranslator() Translate OpenSearch internal query domain-specific language elements to valid filters. retrievers.self_query.pinecone.PineconeTranslator() Translate Pinecone internal query language elements to valid filters. retrievers.self_query.qdrant.QdrantTranslator(...) Translate Qdrant internal query language elements to valid filters. retrievers.self_query.redis.RedisTranslator(schema) Translate retrievers.self_query.supabase.SupabaseVectorTranslator()
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-66
Translate retrievers.self_query.supabase.SupabaseVectorTranslator() Translate Langchain filters to Supabase PostgREST filters. retrievers.self_query.timescalevector.TimescaleVectorTranslator() Translate the internal query language elements to valid filters. retrievers.self_query.vectara.VectaraTranslator() Translate Vectara internal query language elements to valid filters. retrievers.self_query.weaviate.WeaviateTranslator() Translate Weaviate internal query language elements to valid filters. retrievers.svm.SVMRetriever SVM retriever. retrievers.tfidf.TFIDFRetriever TF-IDF retriever. retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever Retriever that combines embedding similarity with recency in retrieving values. retrievers.vespa_retriever.VespaRetriever Vespa retriever. retrievers.weaviate_hybrid_search.WeaviateHybridSearchRetriever Weaviate hybrid search retriever. retrievers.web_research.LineList List of questions. retrievers.web_research.QuestionListOutputParser Output parser for a list of numbered questions. retrievers.web_research.SearchQueries Search queries to research for the user's goal. retrievers.web_research.WebResearchRetriever Google Search API retriever. retrievers.wikipedia.WikipediaRetriever Wikipedia API retriever. retrievers.zep.ZepRetriever Zep long-term memory store retriever. retrievers.zilliz.ZillizRetriever Zilliz API retriever. Functions¶ retrievers.bm25.default_preprocessing_func(text) retrievers.document_compressors.chain_extract.default_get_input(...) Return the compression chain input.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-67
retrievers.document_compressors.chain_extract.default_get_input(...) Return the compression chain input. retrievers.document_compressors.chain_filter.default_get_input(...) Return the compression chain input. retrievers.kendra.clean_excerpt(excerpt) Clean an excerpt from Kendra. retrievers.kendra.combined_text(item) Combine a ResultItem title and excerpt into a single string. retrievers.knn.create_index(contexts, embeddings) Create an index of embeddings for a list of contexts. retrievers.milvus.MilvusRetreiver(*args, ...) Deprecated MilvusRetreiver. retrievers.pinecone_hybrid_search.create_index(...) Create an index from a list of contexts. retrievers.pinecone_hybrid_search.hash_text(text) Hash a text using SHA256. retrievers.self_query.deeplake.can_cast_to_float(string) Check if a string can be cast to a float. retrievers.self_query.milvus.process_value(value) retrievers.self_query.vectara.process_value(value) retrievers.svm.create_index(contexts, embeddings) Create an index of embeddings for a list of contexts. retrievers.zilliz.ZillizRetreiver(*args, ...) Deprecated ZillizRetreiver. langchain.runnables¶ Classes¶ runnables.openai_functions.OpenAIFunction A function description for ChatOpenAI runnables.openai_functions.OpenAIFunctionsRouter A runnable that routes to the selected function. langchain.schema¶ Schemas are the LangChain Base Classes and Interfaces. Classes¶ schema.agent.AgentAction A full description of an action for an ActionAgent to execute. schema.agent.AgentActionMessageLog
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-68
schema.agent.AgentActionMessageLog Create a new model by parsing and validating input data from keyword arguments. schema.agent.AgentFinish The final return value of an ActionAgent. schema.cache.BaseCache() Base interface for cache. schema.chat.ChatSession Chat Session represents a single conversation, channel, or other group of messages. schema.chat_history.BaseChatMessageHistory() Abstract base class for storing chat message history. schema.document.BaseDocumentTransformer() Abstract base class for document transformation systems. schema.document.Document Class for storing a piece of text and associated metadata. schema.embeddings.Embeddings() Interface for embedding models. schema.exceptions.LangChainException General LangChain exception. schema.language_model.BaseLanguageModel Abstract base class for interfacing with language models. schema.memory.BaseMemory Abstract base class for memory in Chains. schema.messages.AIMessage A Message from an AI. schema.messages.AIMessageChunk A Message chunk from an AI. schema.messages.BaseMessage The base abstract Message class. schema.messages.BaseMessageChunk A Message chunk, which can be concatenated with other Message chunks. schema.messages.ChatMessage A Message that can be assigned an arbitrary speaker (i.e. schema.messages.ChatMessageChunk A Chat Message chunk. schema.messages.FunctionMessage A Message for passing the result of executing a function back to a model. schema.messages.FunctionMessageChunk A Function Message chunk. schema.messages.HumanMessage A Message from a human. schema.messages.HumanMessageChunk A Human Message chunk. schema.messages.SystemMessage A Message for priming AI behavior, usually passed in as the first of a sequence of input messages. schema.messages.SystemMessageChunk A System Message chunk. schema.output.ChatGeneration A single chat generation output. schema.output.ChatGenerationChunk A ChatGeneration chunk, which can be concatenated with other
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-69
schema.output.ChatGenerationChunk A ChatGeneration chunk, which can be concatenated with other schema.output.ChatResult Class that contains all results for a single chat model call. schema.output.Generation A single text generation output. schema.output.GenerationChunk A Generation chunk, which can be concatenated with other Generation chunks. schema.output.LLMResult Class that contains all results for a batched LLM call. schema.output.RunInfo Class that contains metadata for a single execution of a Chain or model. schema.output_parser.BaseCumulativeTransformOutputParser Base class for an output parser that can handle streaming input. schema.output_parser.BaseGenerationOutputParser Base class to parse the output of an LLM call. schema.output_parser.BaseLLMOutputParser Abstract base class for parsing the outputs of a model. schema.output_parser.BaseOutputParser Base class to parse the output of an LLM call. schema.output_parser.BaseTransformOutputParser Base class for an output parser that can handle streaming input. schema.output_parser.NoOpOutputParser alias of StrOutputParser schema.output_parser.OutputParserException(error) Exception that output parsers should raise to signify a parsing error. schema.output_parser.StrOutputParser OutputParser that parses LLMResult into the top likely string. schema.prompt.PromptValue Base abstract class for inputs to any language model. schema.prompt_template.BasePromptTemplate Base class for all prompt templates, returning a prompt. schema.retriever.BaseRetriever Abstract base class for a Document retrieval system. schema.runnable.base.Runnable() A Runnable is a unit of work that can be invoked, batched, streamed, or transformed. schema.runnable.base.RunnableBinding A runnable that delegates calls to another runnable with a set of kwargs. schema.runnable.base.RunnableBranch A Runnable that selects which branch to run based on a condition.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-70
A Runnable that selects which branch to run based on a condition. schema.runnable.base.RunnableEach A runnable that delegates calls to another runnable with each element of the input sequence. schema.runnable.base.RunnableGenerator(transform) A runnable that runs a generator function. schema.runnable.base.RunnableLambda(func[, ...]) A runnable that runs a callable. schema.runnable.base.RunnableMap A runnable that runs a mapping of runnables in parallel, and returns a mapping of their outputs. schema.runnable.base.RunnableSequence A sequence of runnables, where the output of each is the input of the next. schema.runnable.base.RunnableWithFallbacks A Runnable that can fallback to other Runnables if it fails. schema.runnable.config.RunnableConfig Configuration for a Runnable. schema.runnable.passthrough.RunnableAssign A runnable that assigns key-value pairs to Dict[str, Any] inputs. schema.runnable.passthrough.RunnablePassthrough A runnable that passes through the input. schema.runnable.retry.RunnableRetry Retry a Runnable if it fails. schema.runnable.router.RouterInput A Router input. schema.runnable.router.RouterRunnable A runnable that routes to a set of runnables based on Input['key']. schema.runnable.utils.AddableDict Dictionary that can be added to another dictionary. schema.runnable.utils.GetLambdaSource() schema.runnable.utils.IsFunctionArgDict() schema.runnable.utils.IsLocalDict(name, keys) schema.runnable.utils.SupportsAdd(*args, ...) schema.storage.BaseStore() Abstract interface for a key-value store. schema.vectorstore.VectorStore() Interface for vector store. schema.vectorstore.VectorStoreRetriever Base Retriever class for VectorStore. Functions¶ schema.messages.get_buffer_string(messages)
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-71
Functions¶ schema.messages.get_buffer_string(messages) Convert sequence of Messages to strings and concatenate them into one string. schema.messages.messages_from_dict(messages) Convert a sequence of messages from dicts to Message objects. schema.messages.messages_to_dict(messages) Convert a sequence of Messages to a list of dictionaries. schema.prompt_template.format_document(doc, ...) Format a document into a string based on a prompt template. schema.runnable.base.coerce_to_runnable(thing) schema.runnable.config.acall_func_with_variable_args(...) Call function that may optionally accept a run_manager and/or config. schema.runnable.config.call_func_with_variable_args(...) Call function that may optionally accept a run_manager and/or config. schema.runnable.config.ensure_config([config]) schema.runnable.config.get_async_callback_manager_for_config(config) schema.runnable.config.get_callback_manager_for_config(config) schema.runnable.config.get_config_list(...) Helper method to get a list of configs from a single config or a list of configs, useful for subclasses overriding batch() or abatch(). schema.runnable.config.get_executor_for_config(config) schema.runnable.config.patch_config(config, *) schema.runnable.passthrough.aidentity(x) schema.runnable.passthrough.identity(x) schema.runnable.utils.aadd(addables) schema.runnable.utils.accepts_config(callable) schema.runnable.utils.accepts_run_manager(...) schema.runnable.utils.add(addables) schema.runnable.utils.gated_coro(semaphore, coro) schema.runnable.utils.gather_with_concurrency(n, ...) schema.runnable.utils.get_function_first_arg_dict_keys(func) schema.runnable.utils.get_lambda_source(func) Get the source code of a lambda function. schema.runnable.utils.indent_lines_after_first(...) Indent all lines of text after the first line. langchain.smith¶
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-72
Indent all lines of text after the first line. langchain.smith¶ LangSmith utilities. This module provides utilities for connecting to LangSmith. For more information on LangSmith, see the LangSmith documentation. Evaluation LangSmith helps you evaluate Chains and other language model application components using a number of LangChain evaluators. An example of this is shown below, assuming you’ve created a LangSmith dataset called <my_dataset_name>: from langsmith import Client from langchain.chat_models import ChatOpenAI from langchain.chains import LLMChain from langchain.smith import RunEvalConfig, run_on_dataset # Chains may have memory. Passing in a constructor function lets the # evaluation framework avoid cross-contamination between runs. def construct_chain(): llm = ChatOpenAI(temperature=0) chain = LLMChain.from_string( llm, "What's the answer to {your_input_key}" ) return chain # Load off-the-shelf evaluators via config or the EvaluatorType (string or enum) evaluation_config = RunEvalConfig( evaluators=[ "qa", # "Correctness" against a reference answer "embedding_distance", RunEvalConfig.Criteria("helpfulness"), RunEvalConfig.Criteria({ "fifth-grader-score": "Do you have to be smarter than a fifth grader to answer this question?" }), ] ) client = Client() run_on_dataset( client, "<my_dataset_name>", construct_chain, evaluation=evaluation_config, ) You can also create custom evaluators by subclassing the StringEvaluator or LangSmith’s RunEvaluator classes. from typing import Optional from langchain.evaluation import StringEvaluator class MyStringEvaluator(StringEvaluator):
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-73
from langchain.evaluation import StringEvaluator class MyStringEvaluator(StringEvaluator): @property def requires_input(self) -> bool: return False @property def requires_reference(self) -> bool: return True @property def evaluation_name(self) -> str: return "exact_match" def _evaluate_strings(self, prediction, reference=None, input=None, **kwargs) -> dict: return {"score": prediction == reference} evaluation_config = RunEvalConfig( custom_evaluators = [MyStringEvaluator()], ) run_on_dataset( client, "<my_dataset_name>", construct_chain, evaluation=evaluation_config, ) Primary Functions arun_on_dataset: Asynchronous function to evaluate a chain, agent, or other LangChain component over a dataset. run_on_dataset: Function to evaluate a chain, agent, or other LangChain component over a dataset. RunEvalConfig: Class representing the configuration for running evaluation. You can select evaluators by EvaluatorType or config, or you can pass in custom_evaluators Classes¶ smith.evaluation.config.EvalConfig Configuration for a given run evaluator. smith.evaluation.config.RunEvalConfig Configuration for a run evaluation. smith.evaluation.progress.ProgressBarCallback(total) A simple progress bar for the console. smith.evaluation.runner_utils.InputFormatError Raised when the input format is invalid. smith.evaluation.runner_utils.TestResult A dictionary of the results of a single test run. smith.evaluation.string_run_evaluator.ChainStringRunMapper Extract items to evaluate from the run object from a chain. smith.evaluation.string_run_evaluator.LLMStringRunMapper Extract items to evaluate from the run object. smith.evaluation.string_run_evaluator.StringExampleMapper
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-74
smith.evaluation.string_run_evaluator.StringExampleMapper Map an example, or row in the dataset, to the inputs of an evaluation. smith.evaluation.string_run_evaluator.StringRunEvaluatorChain Evaluate Run and optional examples. smith.evaluation.string_run_evaluator.StringRunMapper Extract items to evaluate from the run object. smith.evaluation.string_run_evaluator.ToolStringRunMapper Map an input to the tool. Functions¶ smith.evaluation.name_generation.random_name([...]) Generate a random name. smith.evaluation.runner_utils.arun_on_dataset(...) Run the Chain or language model on a dataset and store traces to the specified project name. smith.evaluation.runner_utils.run_on_dataset(...) Run the Chain or language model on a dataset and store traces to the specified project name. langchain.storage¶ Implementations of key-value stores and storage helpers. Module provides implementations of various key-value stores that conform to a simple key-value interface. The primary goal of these storages is to support implementation of caching. Classes¶ storage.encoder_backed.EncoderBackedStore(...) Wraps a store with key and value encoders/decoders. storage.exceptions.InvalidKeyException Raised when a key is invalid; e.g., uses incorrect characters. storage.file_system.LocalFileStore(root_path) BaseStore interface that works on the local file system. storage.in_memory.InMemoryStore() In-memory implementation of the BaseStore using a dictionary. storage.redis.RedisStore(*[, client, ...]) BaseStore implementation using Redis as the underlying store. langchain.text_splitter¶ Text Splitters are classes for splitting text. Class hierarchy: BaseDocumentTransformer --> TextSplitter --> <name>TextSplitter # Example: CharacterTextSplitter RecursiveCharacterTextSplitter --> <name>TextSplitter
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-75
RecursiveCharacterTextSplitter --> <name>TextSplitter Note: MarkdownHeaderTextSplitter does not derive from TextSplitter. Main helpers: Document, Tokenizer, Language, LineType, HeaderType Classes¶ text_splitter.CharacterTextSplitter([...]) Splitting text that looks at characters. text_splitter.HeaderType Header type as typed dict. text_splitter.Language(value[, names, ...]) Enum of the programming languages. text_splitter.LatexTextSplitter(**kwargs) Attempts to split the text along Latex-formatted layout elements. text_splitter.LineType Line type as typed dict. text_splitter.MarkdownHeaderTextSplitter(...) Splitting markdown files based on specified headers. text_splitter.MarkdownTextSplitter(**kwargs) Attempts to split the text along Markdown-formatted headings. text_splitter.NLTKTextSplitter([separator, ...]) Splitting text using NLTK package. text_splitter.PythonCodeTextSplitter(**kwargs) Attempts to split the text along Python syntax. text_splitter.RecursiveCharacterTextSplitter([...]) Splitting text by recursively look at characters. text_splitter.SentenceTransformersTokenTextSplitter([...]) Splitting text to tokens using sentence model tokenizer. text_splitter.SpacyTextSplitter([separator, ...]) Splitting text using Spacy package. text_splitter.TextSplitter(chunk_size, ...) Interface for splitting text into chunks. text_splitter.TokenTextSplitter([...]) Splitting text to tokens using model tokenizer. text_splitter.Tokenizer(chunk_overlap, ...) Functions¶ text_splitter.split_text_on_tokens(*, text, ...) Split incoming text and return chunks using tokenizer. langchain.tools¶
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-76
Split incoming text and return chunks using tokenizer. langchain.tools¶ Tools are classes that an Agent uses to interact with the world. Each tool has a description. Agent uses the description to choose the right tool for the job. Class hierarchy: ToolMetaclass --> BaseTool --> <name>Tool # Examples: AIPluginTool, BaseGraphQLTool <name> # Examples: BraveSearch, HumanInputRun Main helpers: CallbackManagerForToolRun, AsyncCallbackManagerForToolRun Classes¶ tools.ainetwork.app.AINAppOps Create a new model by parsing and validating input data from keyword arguments. tools.ainetwork.app.AppOperationType(value) tools.ainetwork.app.AppSchema Create a new model by parsing and validating input data from keyword arguments. tools.ainetwork.base.AINBaseTool Base class for the AINetwork tools. tools.ainetwork.base.OperationType(value[, ...]) tools.ainetwork.owner.AINOwnerOps Create a new model by parsing and validating input data from keyword arguments. tools.ainetwork.owner.RuleSchema Create a new model by parsing and validating input data from keyword arguments. tools.ainetwork.rule.AINRuleOps Create a new model by parsing and validating input data from keyword arguments. tools.ainetwork.rule.RuleSchema Create a new model by parsing and validating input data from keyword arguments. tools.ainetwork.transfer.AINTransfer Create a new model by parsing and validating input data from keyword arguments. tools.ainetwork.transfer.TransferSchema Create a new model by parsing and validating input data from keyword arguments. tools.ainetwork.value.AINValueOps Create a new model by parsing and validating input data from keyword arguments. tools.ainetwork.value.ValueSchema Create a new model by parsing and validating input data from keyword arguments.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-77
Create a new model by parsing and validating input data from keyword arguments. tools.amadeus.base.AmadeusBaseTool Base Tool for Amadeus. tools.amadeus.closest_airport.AmadeusClosestAirport Tool for finding the closest airport to a particular location. tools.amadeus.closest_airport.ClosestAirportSchema Schema for the AmadeusClosestAirport tool. tools.amadeus.flight_search.AmadeusFlightSearch Tool for searching for a single flight between two airports. tools.amadeus.flight_search.FlightSearchSchema Schema for the AmadeusFlightSearch tool. tools.arxiv.tool.ArxivQueryRun Tool that searches the Arxiv API. tools.azure_cognitive_services.form_recognizer.AzureCogsFormRecognizerTool Tool that queries the Azure Cognitive Services Form Recognizer API. tools.azure_cognitive_services.image_analysis.AzureCogsImageAnalysisTool Tool that queries the Azure Cognitive Services Image Analysis API. tools.azure_cognitive_services.speech2text.AzureCogsSpeech2TextTool Tool that queries the Azure Cognitive Services Speech2Text API. tools.azure_cognitive_services.text2speech.AzureCogsText2SpeechTool Tool that queries the Azure Cognitive Services Text2Speech API. tools.base.BaseTool Interface LangChain tools must implement. tools.base.SchemaAnnotationError Raised when 'args_schema' is missing or has an incorrect type annotation. tools.base.StructuredTool Tool that can operate on any number of inputs. tools.base.Tool Tool that takes in function or coroutine directly. tools.base.ToolException An optional exception that tool throws when execution error occurs. tools.bing_search.tool.BingSearchResults Tool that queries the Bing Search API and gets back json. tools.bing_search.tool.BingSearchRun Tool that queries the Bing search API. tools.brave_search.tool.BraveSearch
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-78
Tool that queries the Bing search API. tools.brave_search.tool.BraveSearch Tool that queries the BraveSearch. tools.dataforseo_api_search.tool.DataForSeoAPISearchResults Tool that queries the DataForSeo Google Search API and get back json. tools.dataforseo_api_search.tool.DataForSeoAPISearchRun Tool that queries the DataForSeo Google search API. tools.ddg_search.tool.DuckDuckGoSearchResults Tool that queries the DuckDuckGo search API and gets back json. tools.ddg_search.tool.DuckDuckGoSearchRun Tool that queries the DuckDuckGo search API. tools.edenai.audio_speech_to_text.EdenAiSpeechToTextTool Tool that queries the Eden AI Speech To Text API. tools.edenai.audio_text_to_speech.EdenAiTextToSpeechTool Tool that queries the Eden AI Text to speech API. tools.edenai.edenai_base_tool.EdenaiTool the base tool for all the EdenAI Tools . tools.edenai.image_explicitcontent.EdenAiExplicitImageTool Tool that queries the Eden AI Explicit image detection. tools.edenai.image_objectdetection.EdenAiObjectDetectionTool Tool that queries the Eden AI Object detection API. tools.edenai.ocr_identityparser.EdenAiParsingIDTool Tool that queries the Eden AI Identity parsing API. tools.edenai.ocr_invoiceparser.EdenAiParsingInvoiceTool Tool that queries the Eden AI Invoice parsing API. tools.edenai.text_moderation.EdenAiTextModerationTool Tool that queries the Eden AI Explicit text detection. tools.eleven_labs.models.ElevenLabsModel(value) Models available for Eleven Labs Text2Speech.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-79
Models available for Eleven Labs Text2Speech. tools.eleven_labs.text2speech.ElevenLabsModel(value) Models available for Eleven Labs Text2Speech. tools.eleven_labs.text2speech.ElevenLabsText2SpeechTool Tool that queries the Eleven Labs Text2Speech API. tools.file_management.copy.CopyFileTool Tool that copies a file. tools.file_management.copy.FileCopyInput Input for CopyFileTool. tools.file_management.delete.DeleteFileTool Tool that deletes a file. tools.file_management.delete.FileDeleteInput Input for DeleteFileTool. tools.file_management.file_search.FileSearchInput Input for FileSearchTool. tools.file_management.file_search.FileSearchTool Tool that searches for files in a subdirectory that match a regex pattern. tools.file_management.list_dir.DirectoryListingInput Input for ListDirectoryTool. tools.file_management.list_dir.ListDirectoryTool Tool that lists files and directories in a specified folder. tools.file_management.move.FileMoveInput Input for MoveFileTool. tools.file_management.move.MoveFileTool Tool that moves a file. tools.file_management.read.ReadFileInput Input for ReadFileTool. tools.file_management.read.ReadFileTool Tool that reads a file. tools.file_management.utils.BaseFileToolMixin Mixin for file system tools. tools.file_management.utils.FileValidationError Error for paths outside the root directory. tools.file_management.write.WriteFileInput Input for WriteFileTool. tools.file_management.write.WriteFileTool Tool that writes a file to disk. tools.github.tool.GitHubAction Tool for interacting with the GitHub API. tools.gitlab.tool.GitLabAction Tool for interacting with the GitLab API. tools.gmail.base.GmailBaseTool Base class for Gmail tools. tools.gmail.create_draft.CreateDraftSchema Input for CreateDraftTool.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-80
tools.gmail.create_draft.CreateDraftSchema Input for CreateDraftTool. tools.gmail.create_draft.GmailCreateDraft Tool that creates a draft email for Gmail. tools.gmail.get_message.GmailGetMessage Tool that gets a message by ID from Gmail. tools.gmail.get_message.SearchArgsSchema Input for GetMessageTool. tools.gmail.get_thread.GetThreadSchema Input for GetMessageTool. tools.gmail.get_thread.GmailGetThread Tool that gets a thread by ID from Gmail. tools.gmail.search.GmailSearch Tool that searches for messages or threads in Gmail. tools.gmail.search.Resource(value[, names, ...]) Enumerator of Resources to search. tools.gmail.search.SearchArgsSchema Input for SearchGmailTool. tools.gmail.send_message.GmailSendMessage Tool that sends a message to Gmail. tools.gmail.send_message.SendMessageSchema Input for SendMessageTool. tools.golden_query.tool.GoldenQueryRun Tool that adds the capability to query using the Golden API and get back JSON. tools.google_places.tool.GooglePlacesSchema Input for GooglePlacesTool. tools.google_places.tool.GooglePlacesTool Tool that queries the Google places API. tools.google_search.tool.GoogleSearchResults Tool that queries the Google Search API and gets back json. tools.google_search.tool.GoogleSearchRun Tool that queries the Google search API. tools.google_serper.tool.GoogleSerperResults Tool that queries the Serper.dev Google Search API and get back json. tools.google_serper.tool.GoogleSerperRun Tool that queries the Serper.dev Google search API. tools.graphql.tool.BaseGraphQLTool Base tool for querying a GraphQL API. tools.human.tool.HumanInputRun Tool that asks user for input. tools.ifttt.IFTTTWebhook IFTTT Webhook. tools.jira.tool.JiraAction Tool that queries the Atlassian Jira API.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-81
tools.jira.tool.JiraAction Tool that queries the Atlassian Jira API. tools.json.tool.JsonGetValueTool Tool for getting a value in a JSON spec. tools.json.tool.JsonListKeysTool Tool for listing keys in a JSON spec. tools.json.tool.JsonSpec Base class for JSON spec. tools.metaphor_search.tool.MetaphorSearchResults Tool that queries the Metaphor Search API and gets back json. tools.multion.create_session.CreateSessionSchema Input for CreateSessionTool. tools.multion.create_session.MultionCreateSession Tool that creates a new Multion Browser Window with provided fields. tools.multion.update_session.MultionUpdateSession Tool that updates an existing Multion Browser Window with provided fields. tools.multion.update_session.UpdateSessionSchema Input for UpdateSessionTool. tools.nuclia.tool.NUASchema Input for Nuclia Understanding API. tools.nuclia.tool.NucliaUnderstandingAPI Tool to process files with the Nuclia Understanding API. tools.office365.base.O365BaseTool Base class for the Office 365 tools. tools.office365.create_draft_message.CreateDraftMessageSchema Input for SendMessageTool. tools.office365.create_draft_message.O365CreateDraftMessage Tool for creating a draft email in Office 365. tools.office365.events_search.O365SearchEvents Class for searching calendar events in Office 365 tools.office365.events_search.SearchEventsInput Input for SearchEmails Tool. tools.office365.messages_search.O365SearchEmails Class for searching email messages in Office 365 tools.office365.messages_search.SearchEmailsInput Input for SearchEmails Tool. tools.office365.send_event.O365SendEvent Tool for sending calendar events in Office 365. tools.office365.send_event.SendEventSchema Input for CreateEvent Tool.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-82
tools.office365.send_event.SendEventSchema Input for CreateEvent Tool. tools.office365.send_message.O365SendMessage Tool for sending an email in Office 365. tools.office365.send_message.SendMessageSchema Input for SendMessageTool. tools.openapi.utils.api_models.APIOperation A model for a single API operation. tools.openapi.utils.api_models.APIProperty A model for a property in the query, path, header, or cookie params. tools.openapi.utils.api_models.APIPropertyBase Base model for an API property. tools.openapi.utils.api_models.APIPropertyLocation(value) The location of the property. tools.openapi.utils.api_models.APIRequestBody A model for a request body. tools.openapi.utils.api_models.APIRequestBodyProperty A model for a request body property. tools.openweathermap.tool.OpenWeatherMapQueryRun Tool that queries the OpenWeatherMap API. tools.playwright.base.BaseBrowserTool Base class for browser tools. tools.playwright.click.ClickTool Tool for clicking on an element with the given CSS selector. tools.playwright.click.ClickToolInput Input for ClickTool. tools.playwright.current_page.CurrentWebPageTool Tool for getting the URL of the current webpage. tools.playwright.extract_hyperlinks.ExtractHyperlinksTool Extract all hyperlinks on the page. tools.playwright.extract_hyperlinks.ExtractHyperlinksToolInput Input for ExtractHyperlinksTool. tools.playwright.extract_text.ExtractTextTool Tool for extracting all the text on the current webpage. tools.playwright.get_elements.GetElementsTool Tool for getting elements in the current web page matching a CSS selector. tools.playwright.get_elements.GetElementsToolInput Input for GetElementsTool. tools.playwright.navigate.NavigateTool Tool for navigating a browser to a URL. tools.playwright.navigate.NavigateToolInput Input for NavigateToolInput. tools.playwright.navigate_back.NavigateBackTool
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-83
Input for NavigateToolInput. tools.playwright.navigate_back.NavigateBackTool Navigate back to the previous page in the browser history. tools.plugin.AIPlugin AI Plugin Definition. tools.plugin.AIPluginTool Tool for getting the OpenAPI spec for an AI Plugin. tools.plugin.AIPluginToolSchema Schema for AIPluginTool. tools.plugin.ApiConfig API Configuration. tools.powerbi.tool.InfoPowerBITool Tool for getting metadata about a PowerBI Dataset. tools.powerbi.tool.ListPowerBITool Tool for getting tables names. tools.powerbi.tool.QueryPowerBITool Tool for querying a Power BI Dataset. tools.pubmed.tool.PubmedQueryRun Tool that searches the PubMed API. tools.python.tool.PythonAstREPLTool A tool for running python code in a REPL. tools.python.tool.PythonInputs Create a new model by parsing and validating input data from keyword arguments. tools.python.tool.PythonREPLTool A tool for running python code in a REPL. tools.requests.tool.BaseRequestsTool Base class for requests tools. tools.requests.tool.RequestsDeleteTool Tool for making a DELETE request to an API endpoint. tools.requests.tool.RequestsGetTool Tool for making a GET request to an API endpoint. tools.requests.tool.RequestsPatchTool Tool for making a PATCH request to an API endpoint. tools.requests.tool.RequestsPostTool Tool for making a POST request to an API endpoint. tools.requests.tool.RequestsPutTool Tool for making a PUT request to an API endpoint. tools.scenexplain.tool.SceneXplainInput Input for SceneXplain. tools.scenexplain.tool.SceneXplainTool Tool that explains images. tools.searchapi.tool.SearchAPIResults Tool that queries the SearchApi.io search API and returns JSON. tools.searchapi.tool.SearchAPIRun
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-84
tools.searchapi.tool.SearchAPIRun Tool that queries the SearchApi.io search API. tools.searx_search.tool.SearxSearchResults Tool that queries a Searx instance and gets back json. tools.searx_search.tool.SearxSearchRun Tool that queries a Searx instance. tools.shell.tool.ShellInput Commands for the Bash Shell tool. tools.shell.tool.ShellTool Tool to run shell commands. tools.sleep.tool.SleepInput Input for CopyFileTool. tools.sleep.tool.SleepTool Tool that adds the capability to sleep. tools.spark_sql.tool.BaseSparkSQLTool Base tool for interacting with Spark SQL. tools.spark_sql.tool.InfoSparkSQLTool Tool for getting metadata about a Spark SQL. tools.spark_sql.tool.ListSparkSQLTool Tool for getting tables names. tools.spark_sql.tool.QueryCheckerTool Use an LLM to check if a query is correct. tools.spark_sql.tool.QuerySparkSQLTool Tool for querying a Spark SQL. tools.sql_database.tool.BaseSQLDatabaseTool Base tool for interacting with a SQL database. tools.sql_database.tool.InfoSQLDatabaseTool Tool for getting metadata about a SQL database. tools.sql_database.tool.ListSQLDatabaseTool Tool for getting tables names. tools.sql_database.tool.QuerySQLCheckerTool Use an LLM to check if a query is correct. tools.sql_database.tool.QuerySQLDataBaseTool Tool for querying a SQL database. tools.steamship_image_generation.tool.ModelName(value) Supported Image Models for generation. tools.steamship_image_generation.tool.SteamshipImageGenerationTool Tool used to generate images from a text-prompt. tools.vectorstore.tool.BaseVectorStoreTool Base class for tools that use a VectorStore. tools.vectorstore.tool.VectorStoreQATool Tool for the VectorDBQA chain.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-85
tools.vectorstore.tool.VectorStoreQATool Tool for the VectorDBQA chain. tools.vectorstore.tool.VectorStoreQAWithSourcesTool Tool for the VectorDBQAWithSources chain. tools.wikipedia.tool.WikipediaQueryRun Tool that searches the Wikipedia API. tools.wolfram_alpha.tool.WolframAlphaQueryRun Tool that queries using the Wolfram Alpha SDK. tools.yahoo_finance_news.YahooFinanceNewsTool Tool that searches financial news on Yahoo Finance. tools.youtube.search.YouTubeSearchTool Tool that queries YouTube. tools.zapier.tool.ZapierNLAListActions Returns a list of all exposed (enabled) actions associated with tools.zapier.tool.ZapierNLARunAction Executes an action that is identified by action_id, must be exposed Functions¶ tools.ainetwork.utils.authenticate([network]) Authenticate using the AIN Blockchain tools.amadeus.utils.authenticate() Authenticate using the Amadeus API tools.azure_cognitive_services.utils.detect_file_src_type(...) Detect if the file is local or remote. tools.azure_cognitive_services.utils.download_audio_from_url(...) Download audio from url to local. tools.base.create_schema_from_function(...) Create a pydantic schema from a function's signature. tools.base.tool(*args[, return_direct, ...]) Make tools out of functions, can be used with or without arguments. tools.ddg_search.tool.DuckDuckGoSearchTool(...) Deprecated. tools.file_management.utils.get_validated_relative_path(...) Resolve a relative path, raising an error if not within the root directory. tools.file_management.utils.is_relative_to(...) Check if path is relative to root. tools.gmail.utils.build_resource_service([...]) Build a Gmail service. tools.gmail.utils.clean_email_body(body) Clean email body. tools.gmail.utils.get_gmail_credentials([...])
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-86
Clean email body. tools.gmail.utils.get_gmail_credentials([...]) Get credentials. tools.gmail.utils.import_google() Import google libraries. tools.gmail.utils.import_googleapiclient_resource_builder() Import googleapiclient.discovery.build function. tools.gmail.utils.import_installed_app_flow() Import InstalledAppFlow class. tools.interaction.tool.StdInInquireTool(...) Tool for asking the user for input. tools.office365.utils.authenticate() Authenticate using the Microsoft Grah API tools.office365.utils.clean_body(body) Clean body of a message or event. tools.playwright.base.lazy_import_playwright_browsers() Lazy import playwright browsers. tools.playwright.utils.aget_current_page(browser) Asynchronously get the current page of the browser. tools.playwright.utils.create_async_playwright_browser([...]) Create an async playwright browser. tools.playwright.utils.create_sync_playwright_browser([...]) Create a playwright browser. tools.playwright.utils.get_current_page(browser) Get the current page of the browser. tools.playwright.utils.run_async(coro) Run an async coroutine. tools.plugin.marshal_spec(txt) Convert the yaml or json serialized spec to a dict. tools.python.tool.sanitize_input(query) Sanitize input to the python REPL. tools.render.format_tool_to_openai_function(tool) Format tool into the OpenAI function API. tools.render.render_text_description(tools) Render the tool name and description in plain text. tools.render.render_text_description_and_args(tools) Render the tool name, description, and args in plain text. tools.steamship_image_generation.utils.make_image_public(...) Upload a block to a signed URL and return the public URL. langchain.tools.render¶ Different methods for rendering Tools to be passed to LLMs.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-87
langchain.tools.render¶ Different methods for rendering Tools to be passed to LLMs. Depending on the LLM you are using and the prompting strategy you are using, you may want Tools to be rendered in a different way. This module contains various ways to render tools. Functions¶ tools.render.format_tool_to_openai_function(tool) Format tool into the OpenAI function API. tools.render.render_text_description(tools) Render the tool name and description in plain text. tools.render.render_text_description_and_args(tools) Render the tool name, description, and args in plain text. langchain.utilities¶ Utilities are the integrations with third-part systems and packages. Other LangChain classes use Utilities to interact with third-part systems and packages. Classes¶ utilities.alpha_vantage.AlphaVantageAPIWrapper Wrapper for AlphaVantage API for Currency Exchange Rate. utilities.apify.ApifyWrapper Wrapper around Apify. utilities.arxiv.ArxivAPIWrapper Wrapper around ArxivAPI. utilities.awslambda.LambdaWrapper Wrapper for AWS Lambda SDK. utilities.bash.BashProcess([strip_newlines, ...]) Wrapper class for starting subprocesses. utilities.bibtex.BibtexparserWrapper Wrapper around bibtexparser. utilities.bing_search.BingSearchAPIWrapper Wrapper for Bing Search API. utilities.brave_search.BraveSearchWrapper Wrapper around the Brave search engine. utilities.dalle_image_generator.DallEAPIWrapper Wrapper for OpenAI's DALL-E Image Generator. utilities.dataforseo_api_search.DataForSeoAPIWrapper Wrapper around the DataForSeo API. utilities.duckduckgo_search.DuckDuckGoSearchAPIWrapper Wrapper for DuckDuckGo Search API. utilities.github.GitHubAPIWrapper Wrapper for GitHub API.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-88
utilities.github.GitHubAPIWrapper Wrapper for GitHub API. utilities.gitlab.GitLabAPIWrapper Wrapper for GitLab API. utilities.golden_query.GoldenQueryAPIWrapper Wrapper for Golden. utilities.google_places_api.GooglePlacesAPIWrapper Wrapper around Google Places API. utilities.google_search.GoogleSearchAPIWrapper Wrapper for Google Search API. utilities.google_serper.GoogleSerperAPIWrapper Wrapper around the Serper.dev Google Search API. utilities.graphql.GraphQLAPIWrapper Wrapper around GraphQL API. utilities.jira.JiraAPIWrapper Wrapper for Jira API. utilities.max_compute.MaxComputeAPIWrapper(client) Interface for querying Alibaba Cloud MaxCompute tables. utilities.metaphor_search.MetaphorSearchAPIWrapper Wrapper for Metaphor Search API. utilities.openapi.HTTPVerb(value[, names, ...]) Enumerator of the HTTP verbs. utilities.openapi.OpenAPISpec() OpenAPI Model that removes mis-formatted parts of the spec. utilities.openweathermap.OpenWeatherMapAPIWrapper Wrapper for OpenWeatherMap API using PyOWM. utilities.portkey.Portkey() Portkey configuration. utilities.powerbi.PowerBIDataset Create PowerBI engine from dataset ID and credential or token. utilities.pubmed.PubMedAPIWrapper Wrapper around PubMed API. utilities.python.PythonREPL Simulates a standalone Python REPL. utilities.redis.TokenEscaper([escape_chars_re]) Escape punctuation within an input string. utilities.requests.Requests Wrapper around requests to handle auth and async. utilities.requests.RequestsWrapper alias of TextRequestsWrapper utilities.requests.TextRequestsWrapper Lightweight wrapper around requests library. utilities.scenexplain.SceneXplainAPIWrapper Wrapper for SceneXplain API. utilities.searchapi.SearchApiAPIWrapper Wrapper around SearchApi API. utilities.searx_search.SearxResults(data)
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-89
Wrapper around SearchApi API. utilities.searx_search.SearxResults(data) Dict like wrapper around search api results. utilities.searx_search.SearxSearchWrapper Wrapper for Searx API. utilities.serpapi.HiddenPrints() Context manager to hide prints. utilities.serpapi.SerpAPIWrapper Wrapper around SerpAPI. utilities.spark_sql.SparkSQL([...]) SparkSQL is a utility class for interacting with Spark SQL. utilities.sql_database.SQLDatabase(engine[, ...]) SQLAlchemy wrapper around a database. utilities.tensorflow_datasets.TensorflowDatasets Access to the TensorFlow Datasets. utilities.twilio.TwilioAPIWrapper Messaging Client using Twilio. utilities.wikipedia.WikipediaAPIWrapper Wrapper around WikipediaAPI. utilities.wolfram_alpha.WolframAlphaAPIWrapper Wrapper for Wolfram Alpha. utilities.zapier.ZapierNLAWrapper Wrapper for Zapier NLA. Functions¶ utilities.opaqueprompts.desanitize(...) Restore the original sensitive data from the sanitized text. utilities.opaqueprompts.sanitize(input) Sanitize input string or dict of strings by replacing sensitive data with placeholders. It returns the sanitized input string or dict of strings and the secure context as a dict following the format: { "sanitized_input": <sanitized input string or dict of strings>, "secure_context": <secure context> }. utilities.powerbi.fix_table_name(table) Add single quotes around table names that contain spaces. utilities.powerbi.json_to_md(json_contents) Converts a JSON object to a markdown table. utilities.redis.check_redis_module_exist(...) Check if the correct Redis modules are installed. utilities.redis.get_client(redis_url, **kwargs) Get a redis client from the connection url given. utilities.sql_database.truncate_word(...[, ...])
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-90
utilities.sql_database.truncate_word(...[, ...]) Truncate a string to a certain number of words, based on the max string length. utilities.vertexai.init_vertexai([project, ...]) Init vertexai. utilities.vertexai.raise_vertex_import_error([...]) Raise ImportError related to Vertex SDK being not available. langchain.utils¶ Utility functions for LangChain. These functions do not depend on any other LangChain module. Classes¶ utils.aiter.NoLock() Dummy lock that provides the proper interface but no protection utils.aiter.Tee(iterable[, n, lock]) Create n separate asynchronous iterators over iterable utils.aiter.atee alias of Tee utils.formatting.StrictFormatter() A subclass of formatter that checks for extra keys. utils.iter.NoLock() Dummy lock that provides the proper interface but no protection utils.iter.Tee(iterable[, n, lock]) Create n separate asynchronous iterators over iterable utils.iter.safetee alias of Tee utils.openai_functions.FunctionDescription Representation of a callable function to the OpenAI API. Functions¶ utils.aiter.py_anext(iterator[, default]) Pure-Python implementation of anext() for testing purposes. utils.aiter.tee_peer(iterator, buffer, ...) An individual iterator of a tee() utils.env.get_from_dict_or_env(data, key, ...) Get a value from a dictionary or an environment variable. utils.env.get_from_env(key, env_key[, default]) Get a value from a dictionary or an environment variable. utils.html.extract_sub_links(raw_html, url, *) Extract all links from a raw html string and convert into absolute paths. utils.html.find_all_links(raw_html, *[, pattern]) utils.input.get_bolded_text(text)
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-91
utils.input.get_bolded_text(text) Get bolded text. utils.input.get_color_mapping(items[, ...]) Get mapping for items to a support color. utils.input.get_colored_text(text, color) Get colored text. utils.input.print_text(text[, color, end, file]) Print text with highlighting and no end characters. utils.iter.batch_iterate(size, iterable) Utility batching function. utils.iter.tee_peer(iterator, buffer, peers, ...) An individual iterator of a tee() utils.json_schema.dereference_refs(schema_obj, *) Try to substitute $refs in JSON Schema. utils.loading.try_load_from_hub(path, ...) Load configuration from hub. utils.math.cosine_similarity(X, Y) Row-wise cosine similarity between two equal-width matrices. utils.math.cosine_similarity_top_k(X, Y[, ...]) Row-wise cosine similarity with optional top-k and score threshold filtering. utils.openai_functions.convert_pydantic_to_openai_function(...) utils.pydantic.get_pydantic_major_version() Get the major version of Pydantic. utils.strings.comma_list(items) Convert a list to a comma-separated string. utils.strings.stringify_dict(data) Stringify a dictionary. utils.strings.stringify_value(val) Stringify a value. utils.utils.build_extra_kwargs(extra_kwargs, ...) Build extra kwargs from values and extra_kwargs. utils.utils.check_package_version(package[, ...]) Check the version of a package. utils.utils.get_pydantic_field_names(...) Get field names, including aliases, for a pydantic class. utils.utils.guard_import(module_name, *[, ...]) Dynamically imports a module and raises a helpful exception if the module is not installed. utils.utils.mock_now(dt_value)
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-92
utils.utils.mock_now(dt_value) Context manager for mocking out datetime.now() in unit tests. utils.utils.raise_for_status_with_text(response) Raise an error with the response text. utils.utils.xor_args(*arg_groups) Validate specified keyword args are mutually exclusive. langchain.vectorstores¶ Vector store stores embedded data and performs vector search. One of the most common ways to store and search over unstructured data is to embed it and store the resulting embedding vectors, and then query the store and retrieve the data that are ‘most similar’ to the embedded query. Class hierarchy: VectorStore --> <name> # Examples: Annoy, FAISS, Milvus BaseRetriever --> VectorStoreRetriever --> <name>Retriever # Example: VespaRetriever Main helpers: Embeddings, Document Classes¶ vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch(...) Alibaba Cloud OpenSearch vector store. vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearchSettings(...) Alibaba Cloud Opensearch client configuration. vectorstores.analyticdb.AnalyticDB(...[, ...]) AnalyticDB (distributed PostgreSQL) vector store. vectorstores.annoy.Annoy(embedding_function, ...) Annoy vector store. vectorstores.atlas.AtlasDB(name[, ...]) Atlas vector store. vectorstores.awadb.AwaDB([table_name, ...]) AwaDB vector store. vectorstores.azuresearch.AzureSearch(...[, ...]) Azure Cognitive Search vector store. vectorstores.azuresearch.AzureSearchVectorStoreRetriever Retriever that uses Azure Cognitive Search. vectorstores.bageldb.Bagel([cluster_name, ...]) BagelDB.ai vector store.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-93
BagelDB.ai vector store. vectorstores.cassandra.Cassandra(embedding, ...) Wrapper around Apache Cassandra(R) for vector-store workloads. vectorstores.chroma.Chroma([...]) ChromaDB vector store. vectorstores.clarifai.Clarifai([user_id, ...]) Clarifai AI vector store. vectorstores.clickhouse.Clickhouse(embedding) ClickHouse VectorSearch vector store. vectorstores.clickhouse.ClickhouseSettings ClickHouse client configuration. vectorstores.dashvector.DashVector(...) DashVector vector store. vectorstores.deeplake.DeepLake([...]) Activeloop Deep Lake vector store. vectorstores.dingo.Dingo(embedding, text_key, *) Dingo vector store. vectorstores.docarray.base.DocArrayIndex(...) Base class for DocArray based vector stores. vectorstores.docarray.hnsw.DocArrayHnswSearch(...) HnswLib storage using DocArray package. vectorstores.docarray.in_memory.DocArrayInMemorySearch(...) In-memory DocArray storage for exact search. vectorstores.elastic_vector_search.ElasticKnnSearch(...) [Deprecated] [DEPRECATED] Elasticsearch with k-nearest neighbor search (k-NN) vector store. vectorstores.elastic_vector_search.ElasticVectorSearch(...) ElasticVectorSearch uses the brute force method of searching on vectors. vectorstores.elasticsearch.ApproxRetrievalStrategy([...]) Approximate retrieval strategy using the HNSW algorithm. vectorstores.elasticsearch.BaseRetrievalStrategy() Base class for Elasticsearch retrieval strategies. vectorstores.elasticsearch.ElasticsearchStore(...) Elasticsearch vector store. vectorstores.elasticsearch.ExactRetrievalStrategy() Exact retrieval strategy using the script_score query. vectorstores.elasticsearch.SparseRetrievalStrategy([...]) Sparse retrieval strategy using the text_expansion processor.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-94
Sparse retrieval strategy using the text_expansion processor. vectorstores.epsilla.Epsilla(client, embeddings) Wrapper around Epsilla vector database. vectorstores.faiss.FAISS(embedding_function, ...) Meta Faiss vector store. vectorstores.hologres.Hologres(...[, ndims, ...]) Hologres API vector store. vectorstores.hologres.HologresWrapper(...) Hologres API wrapper. vectorstores.lancedb.LanceDB(connection, ...) LanceDB vector store. vectorstores.llm_rails.LLMRails([...]) Implementation of Vector Store using LLMRails (https://llmrails.com/). vectorstores.llm_rails.LLMRailsRetriever Create a new model by parsing and validating input data from keyword arguments. vectorstores.llm_rails.ModelChoices(value[, ...]) vectorstores.marqo.Marqo(client, index_name) Marqo vector store. vectorstores.matching_engine.MatchingEngine(...) Google Vertex AI Matching Engine vector store. vectorstores.meilisearch.Meilisearch(embedding) Meilisearch vector store. vectorstores.milvus.Milvus(embedding_function) Milvus vector store. vectorstores.mongodb_atlas.MongoDBAtlasVectorSearch(...) MongoDB Atlas Vector Search vector store. vectorstores.myscale.MyScale(embedding[, config]) MyScale vector store. vectorstores.myscale.MyScaleSettings MyScale client configuration. vectorstores.neo4j_vector.Neo4jVector(...[, ...]) Neo4j vector index. vectorstores.neo4j_vector.SearchType(value) Enumerator of the Distance strategies. vectorstores.nucliadb.NucliaDB(...[, ...]) NucliaDB vector store.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-95
NucliaDB vector store. vectorstores.opensearch_vector_search.OpenSearchVectorSearch(...) Amazon OpenSearch Vector Engine vector store. vectorstores.pgembedding.BaseModel(**kwargs) Base model for all SQL stores. vectorstores.pgembedding.CollectionStore(...) Collection store. vectorstores.pgembedding.EmbeddingStore(**kwargs) Embedding store. vectorstores.pgembedding.PGEmbedding(...[, ...]) Postgres with the pg_embedding extension as a vector store. vectorstores.pgembedding.QueryResult() Result from a query. vectorstores.pgvector.BaseModel(**kwargs) Base model for the SQL stores. vectorstores.pgvector.DistanceStrategy(value) Enumerator of the Distance strategies. vectorstores.pgvector.PGVector(...[, ...]) Postgres/PGVector vector store. vectorstores.pinecone.Pinecone(index, ...[, ...]) Pinecone vector store. vectorstores.qdrant.Qdrant(client, ...[, ...]) Qdrant vector store. vectorstores.qdrant.QdrantException Qdrant related exceptions. vectorstores.redis.base.Redis(redis_url, ...) Wrapper around Redis vector database. vectorstores.redis.base.RedisVectorStoreRetriever Retriever for Redis VectorStore. vectorstores.redis.filters.RedisFilter() vectorstores.redis.filters.RedisFilterExpression([...]) A RedisFilterExpression is a logical expression of RedisFilterFields. vectorstores.redis.filters.RedisFilterField(field) vectorstores.redis.filters.RedisFilterOperator(value) vectorstores.redis.filters.RedisNum(field) A RedisFilterField representing a numeric field in a Redis index. vectorstores.redis.filters.RedisTag(field) A RedisTag is a RedisFilterField representing a tag in a Redis index. vectorstores.redis.filters.RedisText(field)
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-96
vectorstores.redis.filters.RedisText(field) A RedisText is a RedisFilterField representing a text field in a Redis index. vectorstores.redis.schema.FlatVectorField Create a new model by parsing and validating input data from keyword arguments. vectorstores.redis.schema.HNSWVectorField Create a new model by parsing and validating input data from keyword arguments. vectorstores.redis.schema.NumericFieldSchema Create a new model by parsing and validating input data from keyword arguments. vectorstores.redis.schema.RedisDistanceMetric(value) vectorstores.redis.schema.RedisField Create a new model by parsing and validating input data from keyword arguments. vectorstores.redis.schema.RedisModel Create a new model by parsing and validating input data from keyword arguments. vectorstores.redis.schema.RedisVectorField Create a new model by parsing and validating input data from keyword arguments. vectorstores.redis.schema.TagFieldSchema Create a new model by parsing and validating input data from keyword arguments. vectorstores.redis.schema.TextFieldSchema Create a new model by parsing and validating input data from keyword arguments. vectorstores.rocksetdb.Rockset(client, ...) Rockset vector store. vectorstores.scann.ScaNN(embedding, index, ...) ScaNN vector store. vectorstores.singlestoredb.SingleStoreDB(...) SingleStore DB vector store. vectorstores.singlestoredb.SingleStoreDBRetriever Retriever for SingleStoreDB vector stores. vectorstores.sklearn.BaseSerializer(persist_path) Base class for serializing data. vectorstores.sklearn.BsonSerializer(persist_path) Serializes data in binary json using the bson python package. vectorstores.sklearn.JsonSerializer(persist_path) Serializes data in json using the json package from python standard library. vectorstores.sklearn.ParquetSerializer(...) Serializes data in Apache Parquet format using the pyarrow package.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-97
Serializes data in Apache Parquet format using the pyarrow package. vectorstores.sklearn.SKLearnVectorStore(...) Simple in-memory vector store based on the scikit-learn library NearestNeighbors implementation. vectorstores.sklearn.SKLearnVectorStoreException Exception raised by SKLearnVectorStore. vectorstores.sqlitevss.SQLiteVSS(table, ...) Wrapper around SQLite with vss extension as a vector database. vectorstores.starrocks.StarRocks(embedding) StarRocks vector store. vectorstores.starrocks.StarRocksSettings StarRocks client configuration. vectorstores.supabase.SupabaseVectorStore(...) Supabase Postgres vector store. vectorstores.tair.Tair(embedding_function, ...) Tair vector store. vectorstores.tencentvectordb.ConnectionParams(...) Tencent vector DB Connection params. vectorstores.tencentvectordb.IndexParams(...) Tencent vector DB Index params. vectorstores.tencentvectordb.TencentVectorDB(...) Initialize wrapper around the tencent vector database. vectorstores.tigris.Tigris(client, ...) Tigris vector store. vectorstores.timescalevector.TimescaleVector(...) VectorStore implementation using the timescale vector client to store vectors in Postgres. vectorstores.typesense.Typesense(...[, ...]) Typesense vector store. vectorstores.usearch.USearch(embedding, ...) USearch vector store. vectorstores.utils.DistanceStrategy(value[, ...]) Enumerator of the Distance strategies for calculating distances between vectors. vectorstores.vald.Vald(embedding[, host, ...]) Wrapper around Vald vector database. vectorstores.vearch.Vearch(embedding_function) Initialize vearch vector store flag 1 for cluster,0 for standalone vectorstores.vectara.Vectara([...])
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-98
vectorstores.vectara.Vectara([...]) Vectara API vector store. vectorstores.vectara.VectaraRetriever Retriever class for Vectara. vectorstores.weaviate.Weaviate(client, ...) Weaviate vector store. vectorstores.xata.XataVectorStore(api_key, ...) Xata vector store. vectorstores.zep.CollectionConfig(name, ...) Configuration for a Zep Collection. vectorstores.zep.ZepVectorStore(...[, ...]) Zep vector store. vectorstores.zilliz.Zilliz(embedding_function) Zilliz vector store. Functions¶ vectorstores.alibabacloud_opensearch.create_metadata(fields) Create metadata from fields. vectorstores.annoy.dependable_annoy_import() Import annoy if available, otherwise raise error. vectorstores.clickhouse.has_mul_sub_str(s, *args) Check if a string contains multiple substrings. vectorstores.faiss.dependable_faiss_import([...]) Import faiss if available, otherwise raise error. vectorstores.myscale.has_mul_sub_str(s, *args) Check if a string contains multiple substrings. vectorstores.neo4j_vector.check_if_not_null(...) vectorstores.neo4j_vector.sort_by_index_name(...) Sort first element to match the index_name if exists vectorstores.qdrant.sync_call_fallback(method) Decorator to call the synchronous method of the class if the async method is not implemented. vectorstores.redis.base.check_index_exists(...) Check if Redis index exists. vectorstores.redis.filters.check_operator_misuse(func) vectorstores.redis.schema.read_schema(...) vectorstores.scann.dependable_scann_import() Import scann if available, otherwise raise error. vectorstores.scann.normalize(x) Normalize vectors to unit length.
https://api.python.langchain.com/en/latest/api_reference.html
dba2dae987f7-99
vectorstores.scann.normalize(x) Normalize vectors to unit length. vectorstores.starrocks.debug_output(s) Print a debug message if DEBUG is True. vectorstores.starrocks.get_named_result(...) Get a named result from a query. vectorstores.starrocks.has_mul_sub_str(s, *args) Check if a string has multiple substrings. vectorstores.usearch.dependable_usearch_import() Import usearch if available, otherwise raise error. vectorstores.utils.filter_complex_metadata(...) Filter out metadata types that are not supported for a vector store. vectorstores.utils.maximal_marginal_relevance(...) Calculate maximal marginal relevance.
https://api.python.langchain.com/en/latest/api_reference.html

No dataset card yet

New: Create and edit this dataset card directly on the website!

Contribute a Dataset Card
Downloads last month
13
Add dataset card