effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let a_spec (a:fixed_len_alg) (i:nat) = Seq.lseq uint8 (if i = 0 then 0 else hash_length a)
let a_spec (a: fixed_len_alg) (i: nat) =
false
null
false
Seq.lseq uint8 (if i = 0 then 0 else hash_length a)
{ "checked_file": "Spec.Agile.HKDF.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HMAC.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Integers.fst.checked" ], "interface_file": true, "source_file": "Spec.Agile.HKDF.fst" }
[ "total" ]
[ "Spec.Hash.Definitions.fixed_len_alg", "FStar.Integers.nat", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims.op_Equality", "Prims.int", "Prims.bool", "Spec.Hash.Definitions.hash_length", "Lib.IntTypes.size_nat" ]
[]
module Spec.Agile.HKDF open FStar.Integers open Spec.Hash.Definitions /// FUNCTIONAL SPECIFICATION: /// /// * extraction is just HMAC using the salt as key and the input /// keying materials as text. /// /// * expansion does its own formatting of input key materials. open FStar.Seq #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" let extract = Spec.Agile.HMAC.hmac module Seq = Lib.Sequence open Lib.IntTypes /// HKDF-Expand(PRK, info, L) /// /// N = ceil(L/HashLen) /// T = T(1) | T(2) | T(3) | ... | T(N) /// OKM = first L octets of T /// /// where: /// T(0) = empty string (zero length) /// T(1) = HMAC-Hash(PRK, T(0) | info | 0x01) /// T(2) = HMAC-Hash(PRK, T(1) | info | 0x02) /// T(3) = HMAC-Hash(PRK, T(2) | info | 0x03) /// /// See https://tools.ietf.org/html/rfc5869#section-2.3 /// The type of T(i) is [a_spec a i]
false
true
Spec.Agile.HKDF.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val a_spec : a: Spec.Hash.Definitions.fixed_len_alg -> i: FStar.Integers.nat -> Type0
[]
Spec.Agile.HKDF.a_spec
{ "file_name": "specs/Spec.Agile.HKDF.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.fixed_len_alg -> i: FStar.Integers.nat -> Type0
{ "end_col": 53, "end_line": 38, "start_col": 2, "start_line": 38 }
Prims.Pure
val extract: a: fixed_len_alg -> key: bytes -> data: bytes -> Pure (lbytes (hash_length a)) (requires Spec.Agile.HMAC.keysized a (Seq.length key) /\ extract_ikm_length_pred a (Seq.length data)) (ensures fun _ -> True)
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let extract = Spec.Agile.HMAC.hmac
val extract: a: fixed_len_alg -> key: bytes -> data: bytes -> Pure (lbytes (hash_length a)) (requires Spec.Agile.HMAC.keysized a (Seq.length key) /\ extract_ikm_length_pred a (Seq.length data)) (ensures fun _ -> True) let extract =
false
null
false
Spec.Agile.HMAC.hmac
{ "checked_file": "Spec.Agile.HKDF.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HMAC.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Integers.fst.checked" ], "interface_file": true, "source_file": "Spec.Agile.HKDF.fst" }
[]
[ "Spec.Agile.HMAC.hmac" ]
[]
module Spec.Agile.HKDF open FStar.Integers open Spec.Hash.Definitions /// FUNCTIONAL SPECIFICATION: /// /// * extraction is just HMAC using the salt as key and the input /// keying materials as text. /// /// * expansion does its own formatting of input key materials. open FStar.Seq #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
false
false
Spec.Agile.HKDF.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val extract: a: fixed_len_alg -> key: bytes -> data: bytes -> Pure (lbytes (hash_length a)) (requires Spec.Agile.HMAC.keysized a (Seq.length key) /\ extract_ikm_length_pred a (Seq.length data)) (ensures fun _ -> True)
[]
Spec.Agile.HKDF.extract
{ "file_name": "specs/Spec.Agile.HKDF.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.fixed_len_alg -> key: Spec.Hash.Definitions.bytes -> data: Spec.Hash.Definitions.bytes -> Prims.Pure (Spec.Agile.HKDF.lbytes (Spec.Hash.Definitions.hash_length a))
{ "end_col": 34, "end_line": 17, "start_col": 14, "start_line": 17 }
Prims.Pure
val expand_loop: a:fixed_len_alg -> prk:bytes -> info:bytes -> n:nat -> i:nat{i < n} -> a_spec a i -> Pure (a_spec a (i + 1) & Seq.lseq uint8 (hash_length a)) (requires hash_length a <= Seq.length prk /\ HMAC.keysized a (Seq.length prk) /\ (hash_length a + Seq.length info + 1 + block_length a) `less_than_max_input_length` a /\ n <= 255) (ensures fun _ -> True)
[ { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let expand_loop a prk info n i tag = let t = Spec.Agile.HMAC.hmac a prk (tag @| info @| Seq.create 1 (u8 (i + 1))) in t, t
val expand_loop: a:fixed_len_alg -> prk:bytes -> info:bytes -> n:nat -> i:nat{i < n} -> a_spec a i -> Pure (a_spec a (i + 1) & Seq.lseq uint8 (hash_length a)) (requires hash_length a <= Seq.length prk /\ HMAC.keysized a (Seq.length prk) /\ (hash_length a + Seq.length info + 1 + block_length a) `less_than_max_input_length` a /\ n <= 255) (ensures fun _ -> True) let expand_loop a prk info n i tag =
false
null
false
let t = Spec.Agile.HMAC.hmac a prk (tag @| info @| Seq.create 1 (u8 (i + 1))) in t, t
{ "checked_file": "Spec.Agile.HKDF.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HMAC.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Integers.fst.checked" ], "interface_file": true, "source_file": "Spec.Agile.HKDF.fst" }
[]
[ "Spec.Hash.Definitions.fixed_len_alg", "Spec.Hash.Definitions.bytes", "FStar.Integers.nat", "Prims.b2t", "FStar.Integers.op_Less", "FStar.Integers.Signed", "FStar.Integers.Winfinite", "Spec.Agile.HKDF.a_spec", "FStar.Pervasives.Native.Mktuple2", "FStar.Integers.op_Plus", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Spec.Hash.Definitions.hash_length", "Spec.Agile.HMAC.lbytes", "Spec.Agile.HMAC.hmac", "FStar.Seq.Base.op_At_Bar", "Lib.Sequence.create", "Lib.IntTypes.u8", "FStar.Pervasives.Native.tuple2" ]
[]
module Spec.Agile.HKDF open FStar.Integers open Spec.Hash.Definitions /// FUNCTIONAL SPECIFICATION: /// /// * extraction is just HMAC using the salt as key and the input /// keying materials as text. /// /// * expansion does its own formatting of input key materials. open FStar.Seq #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" let extract = Spec.Agile.HMAC.hmac module Seq = Lib.Sequence open Lib.IntTypes /// HKDF-Expand(PRK, info, L) /// /// N = ceil(L/HashLen) /// T = T(1) | T(2) | T(3) | ... | T(N) /// OKM = first L octets of T /// /// where: /// T(0) = empty string (zero length) /// T(1) = HMAC-Hash(PRK, T(0) | info | 0x01) /// T(2) = HMAC-Hash(PRK, T(1) | info | 0x02) /// T(3) = HMAC-Hash(PRK, T(2) | info | 0x03) /// /// See https://tools.ietf.org/html/rfc5869#section-2.3 /// The type of T(i) is [a_spec a i] let a_spec (a:fixed_len_alg) (i:nat) = Seq.lseq uint8 (if i = 0 then 0 else hash_length a) /// The main loop that computes T(i) val expand_loop: a:fixed_len_alg -> prk:bytes -> info:bytes -> n:nat -> i:nat{i < n} -> a_spec a i -> Pure (a_spec a (i + 1) & Seq.lseq uint8 (hash_length a)) (requires hash_length a <= Seq.length prk /\ HMAC.keysized a (Seq.length prk) /\ (hash_length a + Seq.length info + 1 + block_length a) `less_than_max_input_length` a /\ n <= 255)
false
false
Spec.Agile.HKDF.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val expand_loop: a:fixed_len_alg -> prk:bytes -> info:bytes -> n:nat -> i:nat{i < n} -> a_spec a i -> Pure (a_spec a (i + 1) & Seq.lseq uint8 (hash_length a)) (requires hash_length a <= Seq.length prk /\ HMAC.keysized a (Seq.length prk) /\ (hash_length a + Seq.length info + 1 + block_length a) `less_than_max_input_length` a /\ n <= 255) (ensures fun _ -> True)
[]
Spec.Agile.HKDF.expand_loop
{ "file_name": "specs/Spec.Agile.HKDF.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.fixed_len_alg -> prk: Spec.Hash.Definitions.bytes -> info: Spec.Hash.Definitions.bytes -> n: FStar.Integers.nat -> i: FStar.Integers.nat{i < n} -> tag: Spec.Agile.HKDF.a_spec a i -> Prims.Pure (Spec.Agile.HKDF.a_spec a (i + 1) * Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.Hash.Definitions.hash_length a))
{ "end_col": 6, "end_line": 57, "start_col": 36, "start_line": 55 }
Prims.Pure
val expand: a: fixed_len_alg -> prk: bytes -> info: bytes -> len: nat -> Pure (lbytes len) (requires hash_length a <= Seq.length prk /\ HMAC.keysized a (Seq.length prk) /\ expand_info_length_pred a (Seq.length info) /\ expand_output_length_pred a len) (ensures fun _ -> True)
[ { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let expand a prk info len = let open Spec.Agile.HMAC in let tlen = hash_length a in let n = len / tlen in let tag, output = Seq.generate_blocks tlen n n (a_spec a) (expand_loop a prk info n) FStar.Seq.empty in if n * tlen < len then let t = hmac a prk (tag @| info @| Seq.create 1 (u8 (n + 1))) in output @| Seq.sub #_ #tlen t 0 (len - (n * tlen)) else output
val expand: a: fixed_len_alg -> prk: bytes -> info: bytes -> len: nat -> Pure (lbytes len) (requires hash_length a <= Seq.length prk /\ HMAC.keysized a (Seq.length prk) /\ expand_info_length_pred a (Seq.length info) /\ expand_output_length_pred a len) (ensures fun _ -> True) let expand a prk info len =
false
null
false
let open Spec.Agile.HMAC in let tlen = hash_length a in let n = len / tlen in let tag, output = Seq.generate_blocks tlen n n (a_spec a) (expand_loop a prk info n) FStar.Seq.empty in if n * tlen < len then let t = hmac a prk (tag @| info @| Seq.create 1 (u8 (n + 1))) in output @| Seq.sub #_ #tlen t 0 (len - (n * tlen)) else output
{ "checked_file": "Spec.Agile.HKDF.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HMAC.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Integers.fst.checked" ], "interface_file": true, "source_file": "Spec.Agile.HKDF.fst" }
[]
[ "Spec.Hash.Definitions.fixed_len_alg", "Spec.Hash.Definitions.bytes", "FStar.Integers.nat", "Spec.Agile.HKDF.a_spec", "Lib.Sequence.seq", "Lib.IntTypes.uint8", "Prims.eq2", "Prims.int", "Lib.Sequence.length", "FStar.Mul.op_Star", "FStar.Integers.op_Less", "FStar.Integers.Signed", "FStar.Integers.Winfinite", "FStar.Integers.op_Star", "FStar.Seq.Base.op_At_Bar", "Lib.Sequence.sub", "FStar.Integers.op_Subtraction", "Spec.Agile.HMAC.lbytes", "Spec.Hash.Definitions.hash_length", "Spec.Agile.HMAC.hmac", "Lib.Sequence.create", "Lib.IntTypes.u8", "FStar.Integers.op_Plus", "Prims.bool", "Spec.Agile.HKDF.lbytes", "FStar.Pervasives.Native.tuple2", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_Multiply", "Lib.Sequence.generate_blocks", "Spec.Agile.HKDF.expand_loop", "FStar.Seq.Base.empty", "FStar.Integers.int_t", "FStar.Integers.op_Slash", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_GreaterThan" ]
[]
module Spec.Agile.HKDF open FStar.Integers open Spec.Hash.Definitions /// FUNCTIONAL SPECIFICATION: /// /// * extraction is just HMAC using the salt as key and the input /// keying materials as text. /// /// * expansion does its own formatting of input key materials. open FStar.Seq #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" let extract = Spec.Agile.HMAC.hmac module Seq = Lib.Sequence open Lib.IntTypes /// HKDF-Expand(PRK, info, L) /// /// N = ceil(L/HashLen) /// T = T(1) | T(2) | T(3) | ... | T(N) /// OKM = first L octets of T /// /// where: /// T(0) = empty string (zero length) /// T(1) = HMAC-Hash(PRK, T(0) | info | 0x01) /// T(2) = HMAC-Hash(PRK, T(1) | info | 0x02) /// T(3) = HMAC-Hash(PRK, T(2) | info | 0x03) /// /// See https://tools.ietf.org/html/rfc5869#section-2.3 /// The type of T(i) is [a_spec a i] let a_spec (a:fixed_len_alg) (i:nat) = Seq.lseq uint8 (if i = 0 then 0 else hash_length a) /// The main loop that computes T(i) val expand_loop: a:fixed_len_alg -> prk:bytes -> info:bytes -> n:nat -> i:nat{i < n} -> a_spec a i -> Pure (a_spec a (i + 1) & Seq.lseq uint8 (hash_length a)) (requires hash_length a <= Seq.length prk /\ HMAC.keysized a (Seq.length prk) /\ (hash_length a + Seq.length info + 1 + block_length a) `less_than_max_input_length` a /\ n <= 255) (ensures fun _ -> True) let expand_loop a prk info n i tag = let t = Spec.Agile.HMAC.hmac a prk (tag @| info @| Seq.create 1 (u8 (i + 1))) in t, t /// Expands first computes T(0) | T(1) | ... | T(floor(L/HashLen)) in a loop and then /// if needed computes T(N) and appends as many bytes as required to complete OKM
false
false
Spec.Agile.HKDF.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val expand: a: fixed_len_alg -> prk: bytes -> info: bytes -> len: nat -> Pure (lbytes len) (requires hash_length a <= Seq.length prk /\ HMAC.keysized a (Seq.length prk) /\ expand_info_length_pred a (Seq.length info) /\ expand_output_length_pred a len) (ensures fun _ -> True)
[]
Spec.Agile.HKDF.expand
{ "file_name": "specs/Spec.Agile.HKDF.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.fixed_len_alg -> prk: Spec.Hash.Definitions.bytes -> info: Spec.Hash.Definitions.bytes -> len: FStar.Integers.nat -> Prims.Pure (Spec.Agile.HKDF.lbytes len)
{ "end_col": 10, "end_line": 72, "start_col": 2, "start_line": 62 }
Prims.Tot
val bn_sub_eq_len_u32 (aLen: size_t) : bn_sub_eq_len_st U32 aLen
[ { "abbrev": true, "full_module": "Hacl.Spec.Lib", "short_module": "SL" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Addition", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub_eq_len_u32 (aLen:size_t) : bn_sub_eq_len_st U32 aLen = bn_sub_eq_len aLen
val bn_sub_eq_len_u32 (aLen: size_t) : bn_sub_eq_len_st U32 aLen let bn_sub_eq_len_u32 (aLen: size_t) : bn_sub_eq_len_st U32 aLen =
false
null
false
bn_sub_eq_len aLen
{ "checked_file": "Hacl.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "Hacl.Impl.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Addition.fst" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Hacl.Bignum.Addition.bn_sub_eq_len", "Lib.IntTypes.U32", "Hacl.Bignum.Addition.bn_sub_eq_len_st" ]
[]
module Hacl.Bignum.Addition open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Hacl.Bignum.Definitions open Hacl.Bignum.Base open Hacl.Impl.Lib open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Hacl.Spec.Bignum.Addition module LSeq = Lib.Sequence module SL = Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_sub_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_sub_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> aLen:size_t -> bn_sub_eq_len_st t aLen let bn_sub_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res
false
false
Hacl.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_eq_len_u32 (aLen: size_t) : bn_sub_eq_len_st U32 aLen
[]
Hacl.Bignum.Addition.bn_sub_eq_len_u32
{ "file_name": "code/bignum/Hacl.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
aLen: Lib.IntTypes.size_t -> Hacl.Bignum.Addition.bn_sub_eq_len_st Lib.IntTypes.U32 aLen
{ "end_col": 84, "end_line": 104, "start_col": 66, "start_line": 104 }
Prims.Tot
val bn_sub_eq_len_u64 (aLen: size_t) : bn_sub_eq_len_st U64 aLen
[ { "abbrev": true, "full_module": "Hacl.Spec.Lib", "short_module": "SL" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Addition", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub_eq_len_u64 (aLen:size_t) : bn_sub_eq_len_st U64 aLen = bn_sub_eq_len aLen
val bn_sub_eq_len_u64 (aLen: size_t) : bn_sub_eq_len_st U64 aLen let bn_sub_eq_len_u64 (aLen: size_t) : bn_sub_eq_len_st U64 aLen =
false
null
false
bn_sub_eq_len aLen
{ "checked_file": "Hacl.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "Hacl.Impl.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Addition.fst" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Hacl.Bignum.Addition.bn_sub_eq_len", "Lib.IntTypes.U64", "Hacl.Bignum.Addition.bn_sub_eq_len_st" ]
[]
module Hacl.Bignum.Addition open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Hacl.Bignum.Definitions open Hacl.Bignum.Base open Hacl.Impl.Lib open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Hacl.Spec.Bignum.Addition module LSeq = Lib.Sequence module SL = Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_sub_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_sub_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> aLen:size_t -> bn_sub_eq_len_st t aLen let bn_sub_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res
false
false
Hacl.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_eq_len_u64 (aLen: size_t) : bn_sub_eq_len_st U64 aLen
[]
Hacl.Bignum.Addition.bn_sub_eq_len_u64
{ "file_name": "code/bignum/Hacl.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
aLen: Lib.IntTypes.size_t -> Hacl.Bignum.Addition.bn_sub_eq_len_st Lib.IntTypes.U64 aLen
{ "end_col": 84, "end_line": 105, "start_col": 66, "start_line": 105 }
Prims.Tot
val bn_add_eq_len_u64 (aLen: size_t) : bn_add_eq_len_st U64 aLen
[ { "abbrev": true, "full_module": "Hacl.Spec.Lib", "short_module": "SL" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Addition", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add_eq_len_u64 (aLen:size_t) : bn_add_eq_len_st U64 aLen = bn_add_eq_len aLen
val bn_add_eq_len_u64 (aLen: size_t) : bn_add_eq_len_st U64 aLen let bn_add_eq_len_u64 (aLen: size_t) : bn_add_eq_len_st U64 aLen =
false
null
false
bn_add_eq_len aLen
{ "checked_file": "Hacl.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "Hacl.Impl.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Addition.fst" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Hacl.Bignum.Addition.bn_add_eq_len", "Lib.IntTypes.U64", "Hacl.Bignum.Addition.bn_add_eq_len_st" ]
[]
module Hacl.Bignum.Addition open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Hacl.Bignum.Definitions open Hacl.Bignum.Base open Hacl.Impl.Lib open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Hacl.Spec.Bignum.Addition module LSeq = Lib.Sequence module SL = Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_sub_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_sub_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> aLen:size_t -> bn_sub_eq_len_st t aLen let bn_sub_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res let bn_sub_eq_len_u32 (aLen:size_t) : bn_sub_eq_len_st U32 aLen = bn_sub_eq_len aLen let bn_sub_eq_len_u64 (aLen:size_t) : bn_sub_eq_len_st U64 aLen = bn_sub_eq_len aLen inline_for_extraction noextract let bn_sub_eq_len_u (#t:limb_t) (aLen:size_t) : bn_sub_eq_len_st t aLen = match t with | U32 -> bn_sub_eq_len_u32 aLen | U64 -> bn_sub_eq_len_u64 aLen inline_for_extraction noextract val bn_sub: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub (as_seq h0 a) (as_seq h0 b) in c_out == c /\ as_seq h1 res == r)) let bn_sub #t aLen a bLen b res = let h0 = ST.get () in let a0 = sub a 0ul bLen in let res0 = sub res 0ul bLen in let h1 = ST.get () in let c0 = bn_sub_eq_len bLen a0 b res0 in let h1 = ST.get () in if bLen <. aLen then begin [@inline_let] let rLen = aLen -! bLen in let a1 = sub a bLen rLen in let res1 = sub res bLen rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h2 = ST.get () in LSeq.lemma_concat2 (v bLen) (as_seq h1 res0) (v rLen) (as_seq h2 res1) (as_seq h2 res); c1 end else c0 inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) let bn_sub1 #t aLen a b1 res = let c0 = subborrow_st (uint #t 0) a.(0ul) b1 (sub res 0ul 1ul) in let h0 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h0 res) 0 1) (LSeq.create 1 (LSeq.index (as_seq h0 res) 0)); if 1ul <. aLen then begin [@inline_let] let rLen = aLen -! 1ul in let a1 = sub a 1ul rLen in let res1 = sub res 1ul rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h = ST.get () in LSeq.lemma_concat2 1 (LSeq.sub (as_seq h0 res) 0 1) (v rLen) (as_seq h res1) (as_seq h res); c1 end else c0 inline_for_extraction noextract val bn_add_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_add_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_add_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- addcarry_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_add_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_add_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_add_eq_len: #t:limb_t -> aLen:size_t -> bn_add_eq_len_st t aLen let bn_add_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_add_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- addcarry_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res
false
false
Hacl.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_eq_len_u64 (aLen: size_t) : bn_add_eq_len_st U64 aLen
[]
Hacl.Bignum.Addition.bn_add_eq_len_u64
{ "file_name": "code/bignum/Hacl.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
aLen: Lib.IntTypes.size_t -> Hacl.Bignum.Addition.bn_add_eq_len_st Lib.IntTypes.U64 aLen
{ "end_col": 84, "end_line": 262, "start_col": 66, "start_line": 262 }
Prims.Tot
val bn_add_eq_len_u32 (aLen: size_t) : bn_add_eq_len_st U32 aLen
[ { "abbrev": true, "full_module": "Hacl.Spec.Lib", "short_module": "SL" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Addition", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add_eq_len_u32 (aLen:size_t) : bn_add_eq_len_st U32 aLen = bn_add_eq_len aLen
val bn_add_eq_len_u32 (aLen: size_t) : bn_add_eq_len_st U32 aLen let bn_add_eq_len_u32 (aLen: size_t) : bn_add_eq_len_st U32 aLen =
false
null
false
bn_add_eq_len aLen
{ "checked_file": "Hacl.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "Hacl.Impl.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Addition.fst" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Hacl.Bignum.Addition.bn_add_eq_len", "Lib.IntTypes.U32", "Hacl.Bignum.Addition.bn_add_eq_len_st" ]
[]
module Hacl.Bignum.Addition open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Hacl.Bignum.Definitions open Hacl.Bignum.Base open Hacl.Impl.Lib open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Hacl.Spec.Bignum.Addition module LSeq = Lib.Sequence module SL = Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_sub_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_sub_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> aLen:size_t -> bn_sub_eq_len_st t aLen let bn_sub_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res let bn_sub_eq_len_u32 (aLen:size_t) : bn_sub_eq_len_st U32 aLen = bn_sub_eq_len aLen let bn_sub_eq_len_u64 (aLen:size_t) : bn_sub_eq_len_st U64 aLen = bn_sub_eq_len aLen inline_for_extraction noextract let bn_sub_eq_len_u (#t:limb_t) (aLen:size_t) : bn_sub_eq_len_st t aLen = match t with | U32 -> bn_sub_eq_len_u32 aLen | U64 -> bn_sub_eq_len_u64 aLen inline_for_extraction noextract val bn_sub: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub (as_seq h0 a) (as_seq h0 b) in c_out == c /\ as_seq h1 res == r)) let bn_sub #t aLen a bLen b res = let h0 = ST.get () in let a0 = sub a 0ul bLen in let res0 = sub res 0ul bLen in let h1 = ST.get () in let c0 = bn_sub_eq_len bLen a0 b res0 in let h1 = ST.get () in if bLen <. aLen then begin [@inline_let] let rLen = aLen -! bLen in let a1 = sub a bLen rLen in let res1 = sub res bLen rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h2 = ST.get () in LSeq.lemma_concat2 (v bLen) (as_seq h1 res0) (v rLen) (as_seq h2 res1) (as_seq h2 res); c1 end else c0 inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) let bn_sub1 #t aLen a b1 res = let c0 = subborrow_st (uint #t 0) a.(0ul) b1 (sub res 0ul 1ul) in let h0 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h0 res) 0 1) (LSeq.create 1 (LSeq.index (as_seq h0 res) 0)); if 1ul <. aLen then begin [@inline_let] let rLen = aLen -! 1ul in let a1 = sub a 1ul rLen in let res1 = sub res 1ul rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h = ST.get () in LSeq.lemma_concat2 1 (LSeq.sub (as_seq h0 res) 0 1) (v rLen) (as_seq h res1) (as_seq h res); c1 end else c0 inline_for_extraction noextract val bn_add_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_add_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_add_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- addcarry_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_add_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_add_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_add_eq_len: #t:limb_t -> aLen:size_t -> bn_add_eq_len_st t aLen let bn_add_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_add_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- addcarry_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res
false
false
Hacl.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_eq_len_u32 (aLen: size_t) : bn_add_eq_len_st U32 aLen
[]
Hacl.Bignum.Addition.bn_add_eq_len_u32
{ "file_name": "code/bignum/Hacl.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
aLen: Lib.IntTypes.size_t -> Hacl.Bignum.Addition.bn_add_eq_len_st Lib.IntTypes.U32 aLen
{ "end_col": 84, "end_line": 261, "start_col": 66, "start_line": 261 }
Prims.Tot
val bn_sub_eq_len_u (#t: limb_t) (aLen: size_t) : bn_sub_eq_len_st t aLen
[ { "abbrev": true, "full_module": "Hacl.Spec.Lib", "short_module": "SL" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Addition", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub_eq_len_u (#t:limb_t) (aLen:size_t) : bn_sub_eq_len_st t aLen = match t with | U32 -> bn_sub_eq_len_u32 aLen | U64 -> bn_sub_eq_len_u64 aLen
val bn_sub_eq_len_u (#t: limb_t) (aLen: size_t) : bn_sub_eq_len_st t aLen let bn_sub_eq_len_u (#t: limb_t) (aLen: size_t) : bn_sub_eq_len_st t aLen =
false
null
false
match t with | U32 -> bn_sub_eq_len_u32 aLen | U64 -> bn_sub_eq_len_u64 aLen
{ "checked_file": "Hacl.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "Hacl.Impl.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Addition.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Addition.bn_sub_eq_len_u32", "Hacl.Bignum.Addition.bn_sub_eq_len_u64", "Hacl.Bignum.Addition.bn_sub_eq_len_st" ]
[]
module Hacl.Bignum.Addition open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Hacl.Bignum.Definitions open Hacl.Bignum.Base open Hacl.Impl.Lib open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Hacl.Spec.Bignum.Addition module LSeq = Lib.Sequence module SL = Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_sub_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_sub_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> aLen:size_t -> bn_sub_eq_len_st t aLen let bn_sub_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res let bn_sub_eq_len_u32 (aLen:size_t) : bn_sub_eq_len_st U32 aLen = bn_sub_eq_len aLen let bn_sub_eq_len_u64 (aLen:size_t) : bn_sub_eq_len_st U64 aLen = bn_sub_eq_len aLen inline_for_extraction noextract
false
false
Hacl.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_eq_len_u (#t: limb_t) (aLen: size_t) : bn_sub_eq_len_st t aLen
[]
Hacl.Bignum.Addition.bn_sub_eq_len_u
{ "file_name": "code/bignum/Hacl.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
aLen: Lib.IntTypes.size_t -> Hacl.Bignum.Addition.bn_sub_eq_len_st t aLen
{ "end_col": 33, "end_line": 111, "start_col": 2, "start_line": 109 }
Prims.Tot
val bn_add_eq_len_u (#t: limb_t) (aLen: size_t) : bn_add_eq_len_st t aLen
[ { "abbrev": true, "full_module": "Hacl.Spec.Lib", "short_module": "SL" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Addition", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add_eq_len_u (#t:limb_t) (aLen:size_t) : bn_add_eq_len_st t aLen = match t with | U32 -> bn_add_eq_len_u32 aLen | U64 -> bn_add_eq_len_u64 aLen
val bn_add_eq_len_u (#t: limb_t) (aLen: size_t) : bn_add_eq_len_st t aLen let bn_add_eq_len_u (#t: limb_t) (aLen: size_t) : bn_add_eq_len_st t aLen =
false
null
false
match t with | U32 -> bn_add_eq_len_u32 aLen | U64 -> bn_add_eq_len_u64 aLen
{ "checked_file": "Hacl.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "Hacl.Impl.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Addition.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Addition.bn_add_eq_len_u32", "Hacl.Bignum.Addition.bn_add_eq_len_u64", "Hacl.Bignum.Addition.bn_add_eq_len_st" ]
[]
module Hacl.Bignum.Addition open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Hacl.Bignum.Definitions open Hacl.Bignum.Base open Hacl.Impl.Lib open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Hacl.Spec.Bignum.Addition module LSeq = Lib.Sequence module SL = Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_sub_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_sub_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> aLen:size_t -> bn_sub_eq_len_st t aLen let bn_sub_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res let bn_sub_eq_len_u32 (aLen:size_t) : bn_sub_eq_len_st U32 aLen = bn_sub_eq_len aLen let bn_sub_eq_len_u64 (aLen:size_t) : bn_sub_eq_len_st U64 aLen = bn_sub_eq_len aLen inline_for_extraction noextract let bn_sub_eq_len_u (#t:limb_t) (aLen:size_t) : bn_sub_eq_len_st t aLen = match t with | U32 -> bn_sub_eq_len_u32 aLen | U64 -> bn_sub_eq_len_u64 aLen inline_for_extraction noextract val bn_sub: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub (as_seq h0 a) (as_seq h0 b) in c_out == c /\ as_seq h1 res == r)) let bn_sub #t aLen a bLen b res = let h0 = ST.get () in let a0 = sub a 0ul bLen in let res0 = sub res 0ul bLen in let h1 = ST.get () in let c0 = bn_sub_eq_len bLen a0 b res0 in let h1 = ST.get () in if bLen <. aLen then begin [@inline_let] let rLen = aLen -! bLen in let a1 = sub a bLen rLen in let res1 = sub res bLen rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h2 = ST.get () in LSeq.lemma_concat2 (v bLen) (as_seq h1 res0) (v rLen) (as_seq h2 res1) (as_seq h2 res); c1 end else c0 inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) let bn_sub1 #t aLen a b1 res = let c0 = subborrow_st (uint #t 0) a.(0ul) b1 (sub res 0ul 1ul) in let h0 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h0 res) 0 1) (LSeq.create 1 (LSeq.index (as_seq h0 res) 0)); if 1ul <. aLen then begin [@inline_let] let rLen = aLen -! 1ul in let a1 = sub a 1ul rLen in let res1 = sub res 1ul rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h = ST.get () in LSeq.lemma_concat2 1 (LSeq.sub (as_seq h0 res) 0 1) (v rLen) (as_seq h res1) (as_seq h res); c1 end else c0 inline_for_extraction noextract val bn_add_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_add_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_add_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- addcarry_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_add_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_add_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_add_eq_len: #t:limb_t -> aLen:size_t -> bn_add_eq_len_st t aLen let bn_add_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_add_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- addcarry_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res let bn_add_eq_len_u32 (aLen:size_t) : bn_add_eq_len_st U32 aLen = bn_add_eq_len aLen let bn_add_eq_len_u64 (aLen:size_t) : bn_add_eq_len_st U64 aLen = bn_add_eq_len aLen inline_for_extraction noextract
false
false
Hacl.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_eq_len_u (#t: limb_t) (aLen: size_t) : bn_add_eq_len_st t aLen
[]
Hacl.Bignum.Addition.bn_add_eq_len_u
{ "file_name": "code/bignum/Hacl.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
aLen: Lib.IntTypes.size_t -> Hacl.Bignum.Addition.bn_add_eq_len_st t aLen
{ "end_col": 33, "end_line": 268, "start_col": 2, "start_line": 266 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Spec.Lib", "short_module": "SL" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Addition", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_sub_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r))
let bn_sub_eq_len_st (t: limb_t) (aLen: size_t) =
false
null
false
a: lbignum t aLen -> b: lbignum t aLen -> res: lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_sub_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r))
{ "checked_file": "Hacl.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "Hacl.Impl.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Addition.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.eq_or_disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Lib.Sequence.seq", "Hacl.Spec.Bignum.Definitions.limb", "Prims.eq2", "Prims.nat", "Lib.Sequence.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.l_or", "FStar.Seq.Base.length", "Lib.Buffer.as_seq", "Prims.logical", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Lib.generate_elems", "Hacl.Spec.Bignum.Addition.bn_sub_f", "Lib.IntTypes.uint", "Lib.IntTypes.SEC" ]
[]
module Hacl.Bignum.Addition open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Hacl.Bignum.Definitions open Hacl.Bignum.Base open Hacl.Impl.Lib open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Hacl.Spec.Bignum.Addition module LSeq = Lib.Sequence module SL = Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_sub_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract
false
true
Hacl.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_eq_len_st : t: Hacl.Bignum.Definitions.limb_t -> aLen: Lib.IntTypes.size_t -> Type0
[]
Hacl.Bignum.Addition.bn_sub_eq_len_st
{ "file_name": "code/bignum/Hacl.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> aLen: Lib.IntTypes.size_t -> Type0
{ "end_col": 38, "end_line": 72, "start_col": 4, "start_line": 63 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Spec.Lib", "short_module": "SL" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Addition", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_add_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r))
let bn_add_eq_len_st (t: limb_t) (aLen: size_t) =
false
null
false
a: lbignum t aLen -> b: lbignum t aLen -> res: lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_add_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r))
{ "checked_file": "Hacl.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "Hacl.Impl.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Addition.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.eq_or_disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Lib.Sequence.seq", "Hacl.Spec.Bignum.Definitions.limb", "Prims.eq2", "Prims.nat", "Lib.Sequence.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.l_or", "FStar.Seq.Base.length", "Lib.Buffer.as_seq", "Prims.logical", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Lib.generate_elems", "Hacl.Spec.Bignum.Addition.bn_add_f", "Lib.IntTypes.uint", "Lib.IntTypes.SEC" ]
[]
module Hacl.Bignum.Addition open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Hacl.Bignum.Definitions open Hacl.Bignum.Base open Hacl.Impl.Lib open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Hacl.Spec.Bignum.Addition module LSeq = Lib.Sequence module SL = Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_sub_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_sub_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> aLen:size_t -> bn_sub_eq_len_st t aLen let bn_sub_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res let bn_sub_eq_len_u32 (aLen:size_t) : bn_sub_eq_len_st U32 aLen = bn_sub_eq_len aLen let bn_sub_eq_len_u64 (aLen:size_t) : bn_sub_eq_len_st U64 aLen = bn_sub_eq_len aLen inline_for_extraction noextract let bn_sub_eq_len_u (#t:limb_t) (aLen:size_t) : bn_sub_eq_len_st t aLen = match t with | U32 -> bn_sub_eq_len_u32 aLen | U64 -> bn_sub_eq_len_u64 aLen inline_for_extraction noextract val bn_sub: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub (as_seq h0 a) (as_seq h0 b) in c_out == c /\ as_seq h1 res == r)) let bn_sub #t aLen a bLen b res = let h0 = ST.get () in let a0 = sub a 0ul bLen in let res0 = sub res 0ul bLen in let h1 = ST.get () in let c0 = bn_sub_eq_len bLen a0 b res0 in let h1 = ST.get () in if bLen <. aLen then begin [@inline_let] let rLen = aLen -! bLen in let a1 = sub a bLen rLen in let res1 = sub res bLen rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h2 = ST.get () in LSeq.lemma_concat2 (v bLen) (as_seq h1 res0) (v rLen) (as_seq h2 res1) (as_seq h2 res); c1 end else c0 inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) let bn_sub1 #t aLen a b1 res = let c0 = subborrow_st (uint #t 0) a.(0ul) b1 (sub res 0ul 1ul) in let h0 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h0 res) 0 1) (LSeq.create 1 (LSeq.index (as_seq h0 res) 0)); if 1ul <. aLen then begin [@inline_let] let rLen = aLen -! 1ul in let a1 = sub a 1ul rLen in let res1 = sub res 1ul rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h = ST.get () in LSeq.lemma_concat2 1 (LSeq.sub (as_seq h0 res) 0 1) (v rLen) (as_seq h res1) (as_seq h res); c1 end else c0 inline_for_extraction noextract val bn_add_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_add_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_add_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- addcarry_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract
false
true
Hacl.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_eq_len_st : t: Hacl.Bignum.Definitions.limb_t -> aLen: Lib.IntTypes.size_t -> Type0
[]
Hacl.Bignum.Addition.bn_add_eq_len_st
{ "file_name": "code/bignum/Hacl.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> aLen: Lib.IntTypes.size_t -> Type0
{ "end_col": 38, "end_line": 228, "start_col": 4, "start_line": 219 }
FStar.HyperStack.ST.Stack
val bn_sub: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub (as_seq h0 a) (as_seq h0 b) in c_out == c /\ as_seq h1 res == r))
[ { "abbrev": true, "full_module": "Hacl.Spec.Lib", "short_module": "SL" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Addition", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub #t aLen a bLen b res = let h0 = ST.get () in let a0 = sub a 0ul bLen in let res0 = sub res 0ul bLen in let h1 = ST.get () in let c0 = bn_sub_eq_len bLen a0 b res0 in let h1 = ST.get () in if bLen <. aLen then begin [@inline_let] let rLen = aLen -! bLen in let a1 = sub a bLen rLen in let res1 = sub res bLen rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h2 = ST.get () in LSeq.lemma_concat2 (v bLen) (as_seq h1 res0) (v rLen) (as_seq h2 res1) (as_seq h2 res); c1 end else c0
val bn_sub: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub (as_seq h0 a) (as_seq h0 b) in c_out == c /\ as_seq h1 res == r)) let bn_sub #t aLen a bLen b res =
true
null
false
let h0 = ST.get () in let a0 = sub a 0ul bLen in let res0 = sub res 0ul bLen in let h1 = ST.get () in let c0 = bn_sub_eq_len bLen a0 b res0 in let h1 = ST.get () in if bLen <. aLen then [@@ inline_let ]let rLen = aLen -! bLen in let a1 = sub a bLen rLen in let res1 = sub res bLen rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h2 = ST.get () in LSeq.lemma_concat2 (v bLen) (as_seq h1 res0) (v rLen) (as_seq h2 res1) (as_seq h2 res); c1 else c0
{ "checked_file": "Hacl.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "Hacl.Impl.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Addition.fst" }
[]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.op_Less_Dot", "Prims.unit", "Lib.Sequence.lemma_concat2", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.Bignum.Base.carry", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Bignum.Addition.bn_sub_carry", "Lib.Buffer.lbuffer_t", "Lib.Buffer.sub", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Subtraction_Bang", "Prims.bool", "Hacl.Bignum.Addition.bn_sub_eq_len", "FStar.UInt32.__uint_to_t" ]
[]
module Hacl.Bignum.Addition open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Hacl.Bignum.Definitions open Hacl.Bignum.Base open Hacl.Impl.Lib open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Hacl.Spec.Bignum.Addition module LSeq = Lib.Sequence module SL = Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_sub_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_sub_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> aLen:size_t -> bn_sub_eq_len_st t aLen let bn_sub_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res let bn_sub_eq_len_u32 (aLen:size_t) : bn_sub_eq_len_st U32 aLen = bn_sub_eq_len aLen let bn_sub_eq_len_u64 (aLen:size_t) : bn_sub_eq_len_st U64 aLen = bn_sub_eq_len aLen inline_for_extraction noextract let bn_sub_eq_len_u (#t:limb_t) (aLen:size_t) : bn_sub_eq_len_st t aLen = match t with | U32 -> bn_sub_eq_len_u32 aLen | U64 -> bn_sub_eq_len_u64 aLen inline_for_extraction noextract val bn_sub: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub (as_seq h0 a) (as_seq h0 b) in c_out == c /\ as_seq h1 res == r))
false
false
Hacl.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub (as_seq h0 a) (as_seq h0 b) in c_out == c /\ as_seq h1 res == r))
[]
Hacl.Bignum.Addition.bn_sub
{ "file_name": "code/bignum/Hacl.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
aLen: Lib.IntTypes.size_t -> a: Hacl.Bignum.Definitions.lbignum t aLen -> bLen: Lib.IntTypes.size_t{Lib.IntTypes.v bLen <= Lib.IntTypes.v aLen} -> b: Hacl.Bignum.Definitions.lbignum t bLen -> res: Hacl.Bignum.Definitions.lbignum t aLen -> FStar.HyperStack.ST.Stack (Hacl.Spec.Bignum.Base.carry t)
{ "end_col": 9, "end_line": 145, "start_col": 33, "start_line": 130 }
FStar.HyperStack.ST.Stack
val bn_add: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add (as_seq h0 a) (as_seq h0 b) in c_out == c /\ as_seq h1 res == r))
[ { "abbrev": true, "full_module": "Hacl.Spec.Lib", "short_module": "SL" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Addition", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add #t aLen a bLen b res = let h0 = ST.get () in let a0 = sub a 0ul bLen in let res0 = sub res 0ul bLen in let c0 = bn_add_eq_len bLen a0 b res0 in let h1 = ST.get () in if bLen <. aLen then begin [@inline_let] let rLen = aLen -! bLen in let a1 = sub a bLen rLen in let res1 = sub res bLen rLen in let c1 = bn_add_carry rLen a1 c0 res1 in let h2 = ST.get () in LSeq.lemma_concat2 (v bLen) (as_seq h1 res0) (v rLen) (as_seq h2 res1) (as_seq h2 res); c1 end else c0
val bn_add: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add (as_seq h0 a) (as_seq h0 b) in c_out == c /\ as_seq h1 res == r)) let bn_add #t aLen a bLen b res =
true
null
false
let h0 = ST.get () in let a0 = sub a 0ul bLen in let res0 = sub res 0ul bLen in let c0 = bn_add_eq_len bLen a0 b res0 in let h1 = ST.get () in if bLen <. aLen then [@@ inline_let ]let rLen = aLen -! bLen in let a1 = sub a bLen rLen in let res1 = sub res bLen rLen in let c1 = bn_add_carry rLen a1 c0 res1 in let h2 = ST.get () in LSeq.lemma_concat2 (v bLen) (as_seq h1 res0) (v rLen) (as_seq h2 res1) (as_seq h2 res); c1 else c0
{ "checked_file": "Hacl.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "Hacl.Impl.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Addition.fst" }
[]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.op_Less_Dot", "Prims.unit", "Lib.Sequence.lemma_concat2", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.Bignum.Base.carry", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Bignum.Addition.bn_add_carry", "Lib.Buffer.lbuffer_t", "Lib.Buffer.sub", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Subtraction_Bang", "Prims.bool", "Hacl.Bignum.Addition.bn_add_eq_len", "FStar.UInt32.__uint_to_t" ]
[]
module Hacl.Bignum.Addition open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Hacl.Bignum.Definitions open Hacl.Bignum.Base open Hacl.Impl.Lib open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Hacl.Spec.Bignum.Addition module LSeq = Lib.Sequence module SL = Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_sub_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_sub_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> aLen:size_t -> bn_sub_eq_len_st t aLen let bn_sub_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res let bn_sub_eq_len_u32 (aLen:size_t) : bn_sub_eq_len_st U32 aLen = bn_sub_eq_len aLen let bn_sub_eq_len_u64 (aLen:size_t) : bn_sub_eq_len_st U64 aLen = bn_sub_eq_len aLen inline_for_extraction noextract let bn_sub_eq_len_u (#t:limb_t) (aLen:size_t) : bn_sub_eq_len_st t aLen = match t with | U32 -> bn_sub_eq_len_u32 aLen | U64 -> bn_sub_eq_len_u64 aLen inline_for_extraction noextract val bn_sub: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub (as_seq h0 a) (as_seq h0 b) in c_out == c /\ as_seq h1 res == r)) let bn_sub #t aLen a bLen b res = let h0 = ST.get () in let a0 = sub a 0ul bLen in let res0 = sub res 0ul bLen in let h1 = ST.get () in let c0 = bn_sub_eq_len bLen a0 b res0 in let h1 = ST.get () in if bLen <. aLen then begin [@inline_let] let rLen = aLen -! bLen in let a1 = sub a bLen rLen in let res1 = sub res bLen rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h2 = ST.get () in LSeq.lemma_concat2 (v bLen) (as_seq h1 res0) (v rLen) (as_seq h2 res1) (as_seq h2 res); c1 end else c0 inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) let bn_sub1 #t aLen a b1 res = let c0 = subborrow_st (uint #t 0) a.(0ul) b1 (sub res 0ul 1ul) in let h0 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h0 res) 0 1) (LSeq.create 1 (LSeq.index (as_seq h0 res) 0)); if 1ul <. aLen then begin [@inline_let] let rLen = aLen -! 1ul in let a1 = sub a 1ul rLen in let res1 = sub res 1ul rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h = ST.get () in LSeq.lemma_concat2 1 (LSeq.sub (as_seq h0 res) 0 1) (v rLen) (as_seq h res1) (as_seq h res); c1 end else c0 inline_for_extraction noextract val bn_add_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_add_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_add_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- addcarry_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_add_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_add_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_add_eq_len: #t:limb_t -> aLen:size_t -> bn_add_eq_len_st t aLen let bn_add_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_add_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- addcarry_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res let bn_add_eq_len_u32 (aLen:size_t) : bn_add_eq_len_st U32 aLen = bn_add_eq_len aLen let bn_add_eq_len_u64 (aLen:size_t) : bn_add_eq_len_st U64 aLen = bn_add_eq_len aLen inline_for_extraction noextract let bn_add_eq_len_u (#t:limb_t) (aLen:size_t) : bn_add_eq_len_st t aLen = match t with | U32 -> bn_add_eq_len_u32 aLen | U64 -> bn_add_eq_len_u64 aLen inline_for_extraction noextract val bn_add: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add (as_seq h0 a) (as_seq h0 b) in c_out == c /\ as_seq h1 res == r))
false
false
Hacl.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add (as_seq h0 a) (as_seq h0 b) in c_out == c /\ as_seq h1 res == r))
[]
Hacl.Bignum.Addition.bn_add
{ "file_name": "code/bignum/Hacl.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
aLen: Lib.IntTypes.size_t -> a: Hacl.Bignum.Definitions.lbignum t aLen -> bLen: Lib.IntTypes.size_t{Lib.IntTypes.v bLen <= Lib.IntTypes.v aLen} -> b: Hacl.Bignum.Definitions.lbignum t bLen -> res: Hacl.Bignum.Definitions.lbignum t aLen -> FStar.HyperStack.ST.Stack (Hacl.Spec.Bignum.Base.carry t)
{ "end_col": 9, "end_line": 301, "start_col": 33, "start_line": 287 }
FStar.HyperStack.ST.Stack
val bn_add1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r))
[ { "abbrev": true, "full_module": "Hacl.Spec.Lib", "short_module": "SL" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Addition", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add1 #t aLen a b1 res = let c0 = addcarry_st (uint #t 0) a.(0ul) b1 (sub res 0ul 1ul) in let h0 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h0 res) 0 1) (LSeq.create 1 (LSeq.index (as_seq h0 res) 0)); if 1ul <. aLen then begin [@inline_let] let rLen = aLen -! 1ul in let a1 = sub a 1ul rLen in let res1 = sub res 1ul rLen in let c1 = bn_add_carry rLen a1 c0 res1 in let h = ST.get () in LSeq.lemma_concat2 1 (LSeq.sub (as_seq h0 res) 0 1) (v rLen) (as_seq h res1) (as_seq h res); c1 end else c0
val bn_add1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) let bn_add1 #t aLen a b1 res =
true
null
false
let c0 = addcarry_st (uint #t 0) a.(0ul) b1 (sub res 0ul 1ul) in let h0 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h0 res) 0 1) (LSeq.create 1 (LSeq.index (as_seq h0 res) 0)); if 1ul <. aLen then [@@ inline_let ]let rLen = aLen -! 1ul in let a1 = sub a 1ul rLen in let res1 = sub res 1ul rLen in let c1 = bn_add_carry rLen a1 c0 res1 in let h = ST.get () in LSeq.lemma_concat2 1 (LSeq.sub (as_seq h0 res) 0 1) (v rLen) (as_seq h res1) (as_seq h res); c1 else c0
{ "checked_file": "Hacl.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "Hacl.Impl.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Addition.fst" }
[]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.Definitions.limb", "Lib.IntTypes.op_Less_Dot", "FStar.UInt32.__uint_to_t", "Prims.unit", "Lib.Sequence.lemma_concat2", "Lib.Sequence.sub", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.Bignum.Base.carry", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Bignum.Addition.bn_add_carry", "Lib.Buffer.lbuffer_t", "Lib.Buffer.sub", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Subtraction_Bang", "Prims.bool", "Lib.Sequence.eq_intro", "Lib.Sequence.create", "Lib.Sequence.index", "Hacl.Bignum.Base.addcarry_st", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.op_Array_Access" ]
[]
module Hacl.Bignum.Addition open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Hacl.Bignum.Definitions open Hacl.Bignum.Base open Hacl.Impl.Lib open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Hacl.Spec.Bignum.Addition module LSeq = Lib.Sequence module SL = Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_sub_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_sub_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> aLen:size_t -> bn_sub_eq_len_st t aLen let bn_sub_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res let bn_sub_eq_len_u32 (aLen:size_t) : bn_sub_eq_len_st U32 aLen = bn_sub_eq_len aLen let bn_sub_eq_len_u64 (aLen:size_t) : bn_sub_eq_len_st U64 aLen = bn_sub_eq_len aLen inline_for_extraction noextract let bn_sub_eq_len_u (#t:limb_t) (aLen:size_t) : bn_sub_eq_len_st t aLen = match t with | U32 -> bn_sub_eq_len_u32 aLen | U64 -> bn_sub_eq_len_u64 aLen inline_for_extraction noextract val bn_sub: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub (as_seq h0 a) (as_seq h0 b) in c_out == c /\ as_seq h1 res == r)) let bn_sub #t aLen a bLen b res = let h0 = ST.get () in let a0 = sub a 0ul bLen in let res0 = sub res 0ul bLen in let h1 = ST.get () in let c0 = bn_sub_eq_len bLen a0 b res0 in let h1 = ST.get () in if bLen <. aLen then begin [@inline_let] let rLen = aLen -! bLen in let a1 = sub a bLen rLen in let res1 = sub res bLen rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h2 = ST.get () in LSeq.lemma_concat2 (v bLen) (as_seq h1 res0) (v rLen) (as_seq h2 res1) (as_seq h2 res); c1 end else c0 inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) let bn_sub1 #t aLen a b1 res = let c0 = subborrow_st (uint #t 0) a.(0ul) b1 (sub res 0ul 1ul) in let h0 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h0 res) 0 1) (LSeq.create 1 (LSeq.index (as_seq h0 res) 0)); if 1ul <. aLen then begin [@inline_let] let rLen = aLen -! 1ul in let a1 = sub a 1ul rLen in let res1 = sub res 1ul rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h = ST.get () in LSeq.lemma_concat2 1 (LSeq.sub (as_seq h0 res) 0 1) (v rLen) (as_seq h res1) (as_seq h res); c1 end else c0 inline_for_extraction noextract val bn_add_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_add_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_add_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- addcarry_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_add_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_add_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_add_eq_len: #t:limb_t -> aLen:size_t -> bn_add_eq_len_st t aLen let bn_add_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_add_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- addcarry_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res let bn_add_eq_len_u32 (aLen:size_t) : bn_add_eq_len_st U32 aLen = bn_add_eq_len aLen let bn_add_eq_len_u64 (aLen:size_t) : bn_add_eq_len_st U64 aLen = bn_add_eq_len aLen inline_for_extraction noextract let bn_add_eq_len_u (#t:limb_t) (aLen:size_t) : bn_add_eq_len_st t aLen = match t with | U32 -> bn_add_eq_len_u32 aLen | U64 -> bn_add_eq_len_u64 aLen inline_for_extraction noextract val bn_add: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add (as_seq h0 a) (as_seq h0 b) in c_out == c /\ as_seq h1 res == r)) let bn_add #t aLen a bLen b res = let h0 = ST.get () in let a0 = sub a 0ul bLen in let res0 = sub res 0ul bLen in let c0 = bn_add_eq_len bLen a0 b res0 in let h1 = ST.get () in if bLen <. aLen then begin [@inline_let] let rLen = aLen -! bLen in let a1 = sub a bLen rLen in let res1 = sub res bLen rLen in let c1 = bn_add_carry rLen a1 c0 res1 in let h2 = ST.get () in LSeq.lemma_concat2 (v bLen) (as_seq h1 res0) (v rLen) (as_seq h2 res1) (as_seq h2 res); c1 end else c0 inline_for_extraction noextract val bn_add1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r))
false
false
Hacl.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r))
[]
Hacl.Bignum.Addition.bn_add1
{ "file_name": "code/bignum/Hacl.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
aLen: Lib.IntTypes.size_t{0 < Lib.IntTypes.v aLen} -> a: Hacl.Bignum.Definitions.lbignum t aLen -> b1: Hacl.Bignum.Definitions.limb t -> res: Hacl.Bignum.Definitions.lbignum t aLen -> FStar.HyperStack.ST.Stack (Hacl.Spec.Bignum.Base.carry t)
{ "end_col": 9, "end_line": 331, "start_col": 30, "start_line": 318 }
FStar.HyperStack.ST.Stack
val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r))
[ { "abbrev": true, "full_module": "Hacl.Spec.Lib", "short_module": "SL" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Addition", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub1 #t aLen a b1 res = let c0 = subborrow_st (uint #t 0) a.(0ul) b1 (sub res 0ul 1ul) in let h0 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h0 res) 0 1) (LSeq.create 1 (LSeq.index (as_seq h0 res) 0)); if 1ul <. aLen then begin [@inline_let] let rLen = aLen -! 1ul in let a1 = sub a 1ul rLen in let res1 = sub res 1ul rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h = ST.get () in LSeq.lemma_concat2 1 (LSeq.sub (as_seq h0 res) 0 1) (v rLen) (as_seq h res1) (as_seq h res); c1 end else c0
val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) let bn_sub1 #t aLen a b1 res =
true
null
false
let c0 = subborrow_st (uint #t 0) a.(0ul) b1 (sub res 0ul 1ul) in let h0 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h0 res) 0 1) (LSeq.create 1 (LSeq.index (as_seq h0 res) 0)); if 1ul <. aLen then [@@ inline_let ]let rLen = aLen -! 1ul in let a1 = sub a 1ul rLen in let res1 = sub res 1ul rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h = ST.get () in LSeq.lemma_concat2 1 (LSeq.sub (as_seq h0 res) 0 1) (v rLen) (as_seq h res1) (as_seq h res); c1 else c0
{ "checked_file": "Hacl.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "Hacl.Impl.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Addition.fst" }
[]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.Definitions.limb", "Lib.IntTypes.op_Less_Dot", "FStar.UInt32.__uint_to_t", "Prims.unit", "Lib.Sequence.lemma_concat2", "Lib.Sequence.sub", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.Bignum.Base.carry", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Bignum.Addition.bn_sub_carry", "Lib.Buffer.lbuffer_t", "Lib.Buffer.sub", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Subtraction_Bang", "Prims.bool", "Lib.Sequence.eq_intro", "Lib.Sequence.create", "Lib.Sequence.index", "Hacl.Bignum.Base.subborrow_st", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.op_Array_Access" ]
[]
module Hacl.Bignum.Addition open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Hacl.Bignum.Definitions open Hacl.Bignum.Base open Hacl.Impl.Lib open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Hacl.Spec.Bignum.Addition module LSeq = Lib.Sequence module SL = Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_sub_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_sub_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> aLen:size_t -> bn_sub_eq_len_st t aLen let bn_sub_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res let bn_sub_eq_len_u32 (aLen:size_t) : bn_sub_eq_len_st U32 aLen = bn_sub_eq_len aLen let bn_sub_eq_len_u64 (aLen:size_t) : bn_sub_eq_len_st U64 aLen = bn_sub_eq_len aLen inline_for_extraction noextract let bn_sub_eq_len_u (#t:limb_t) (aLen:size_t) : bn_sub_eq_len_st t aLen = match t with | U32 -> bn_sub_eq_len_u32 aLen | U64 -> bn_sub_eq_len_u64 aLen inline_for_extraction noextract val bn_sub: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub (as_seq h0 a) (as_seq h0 b) in c_out == c /\ as_seq h1 res == r)) let bn_sub #t aLen a bLen b res = let h0 = ST.get () in let a0 = sub a 0ul bLen in let res0 = sub res 0ul bLen in let h1 = ST.get () in let c0 = bn_sub_eq_len bLen a0 b res0 in let h1 = ST.get () in if bLen <. aLen then begin [@inline_let] let rLen = aLen -! bLen in let a1 = sub a bLen rLen in let res1 = sub res bLen rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h2 = ST.get () in LSeq.lemma_concat2 (v bLen) (as_seq h1 res0) (v rLen) (as_seq h2 res1) (as_seq h2 res); c1 end else c0 inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r))
false
false
Hacl.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r))
[]
Hacl.Bignum.Addition.bn_sub1
{ "file_name": "code/bignum/Hacl.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
aLen: Lib.IntTypes.size_t{0 < Lib.IntTypes.v aLen} -> a: Hacl.Bignum.Definitions.lbignum t aLen -> b1: Hacl.Bignum.Definitions.limb t -> res: Hacl.Bignum.Definitions.lbignum t aLen -> FStar.HyperStack.ST.Stack (Hacl.Spec.Bignum.Base.carry t)
{ "end_col": 9, "end_line": 175, "start_col": 30, "start_line": 162 }
Prims.Tot
val bn_add_eq_len: #t:limb_t -> aLen:size_t -> bn_add_eq_len_st t aLen
[ { "abbrev": true, "full_module": "Hacl.Spec.Lib", "short_module": "SL" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Addition", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_add_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- addcarry_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res
val bn_add_eq_len: #t:limb_t -> aLen:size_t -> bn_add_eq_len_st t aLen let bn_add_eq_len #t aLen a b res =
false
null
false
push_frame (); let c = create 1ul (uint #t 0) in [@@ inline_let ]let refl h i = LSeq.index (as_seq h c) 0 in [@@ inline_let ]let footprint (i: size_nat{i <= v aLen}) : GTot (l: B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@@ inline_let ]let spec h = S.bn_add_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- addcarry_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1); let res = c.(0ul) in pop_frame (); res
{ "checked_file": "Hacl.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "Hacl.Impl.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Addition.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Lib.fill_elems4", "Hacl.Bignum.Definitions.limb", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Lib.lemma_eq_disjoint", "Lib.Buffer.op_Array_Assignment", "Hacl.Bignum.Base.addcarry_st", "Lib.Buffer.lbuffer_t", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Prims.nat", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Addition.bn_add_f", "Lib.Buffer.as_seq", "LowStar.Monotonic.Buffer.loc", "Prims.l_and", "LowStar.Monotonic.Buffer.loc_disjoint", "Lib.Buffer.loc", "LowStar.Monotonic.Buffer.loc_includes", "LowStar.Monotonic.Buffer.address_liveness_insensitive_locs", "Lib.IntTypes.size_nat", "Prims.eq2", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Buffer.create", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Bignum.Addition open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Hacl.Bignum.Definitions open Hacl.Bignum.Base open Hacl.Impl.Lib open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Hacl.Spec.Bignum.Addition module LSeq = Lib.Sequence module SL = Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_sub_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_sub_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> aLen:size_t -> bn_sub_eq_len_st t aLen let bn_sub_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res let bn_sub_eq_len_u32 (aLen:size_t) : bn_sub_eq_len_st U32 aLen = bn_sub_eq_len aLen let bn_sub_eq_len_u64 (aLen:size_t) : bn_sub_eq_len_st U64 aLen = bn_sub_eq_len aLen inline_for_extraction noextract let bn_sub_eq_len_u (#t:limb_t) (aLen:size_t) : bn_sub_eq_len_st t aLen = match t with | U32 -> bn_sub_eq_len_u32 aLen | U64 -> bn_sub_eq_len_u64 aLen inline_for_extraction noextract val bn_sub: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub (as_seq h0 a) (as_seq h0 b) in c_out == c /\ as_seq h1 res == r)) let bn_sub #t aLen a bLen b res = let h0 = ST.get () in let a0 = sub a 0ul bLen in let res0 = sub res 0ul bLen in let h1 = ST.get () in let c0 = bn_sub_eq_len bLen a0 b res0 in let h1 = ST.get () in if bLen <. aLen then begin [@inline_let] let rLen = aLen -! bLen in let a1 = sub a bLen rLen in let res1 = sub res bLen rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h2 = ST.get () in LSeq.lemma_concat2 (v bLen) (as_seq h1 res0) (v rLen) (as_seq h2 res1) (as_seq h2 res); c1 end else c0 inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) let bn_sub1 #t aLen a b1 res = let c0 = subborrow_st (uint #t 0) a.(0ul) b1 (sub res 0ul 1ul) in let h0 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h0 res) 0 1) (LSeq.create 1 (LSeq.index (as_seq h0 res) 0)); if 1ul <. aLen then begin [@inline_let] let rLen = aLen -! 1ul in let a1 = sub a 1ul rLen in let res1 = sub res 1ul rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h = ST.get () in LSeq.lemma_concat2 1 (LSeq.sub (as_seq h0 res) 0 1) (v rLen) (as_seq h res1) (as_seq h res); c1 end else c0 inline_for_extraction noextract val bn_add_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_add_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_add_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- addcarry_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_add_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_add_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_add_eq_len: #t:limb_t -> aLen:size_t -> bn_add_eq_len_st t aLen
false
false
Hacl.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_eq_len: #t:limb_t -> aLen:size_t -> bn_add_eq_len_st t aLen
[]
Hacl.Bignum.Addition.bn_add_eq_len
{ "file_name": "code/bignum/Hacl.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
aLen: Lib.IntTypes.size_t -> Hacl.Bignum.Addition.bn_add_eq_len_st t aLen
{ "end_col": 5, "end_line": 258, "start_col": 2, "start_line": 234 }
Prims.Tot
val bn_sub_eq_len: #t:limb_t -> aLen:size_t -> bn_sub_eq_len_st t aLen
[ { "abbrev": true, "full_module": "Hacl.Spec.Lib", "short_module": "SL" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Addition", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res
val bn_sub_eq_len: #t:limb_t -> aLen:size_t -> bn_sub_eq_len_st t aLen let bn_sub_eq_len #t aLen a b res =
false
null
false
push_frame (); let c = create 1ul (uint #t 0) in [@@ inline_let ]let refl h i = LSeq.index (as_seq h c) 0 in [@@ inline_let ]let footprint (i: size_nat{i <= v aLen}) : GTot (l: B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@@ inline_let ]let spec h = S.bn_sub_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1); let res = c.(0ul) in pop_frame (); res
{ "checked_file": "Hacl.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "Hacl.Impl.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Addition.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Lib.fill_elems4", "Hacl.Bignum.Definitions.limb", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Lib.lemma_eq_disjoint", "Lib.Buffer.op_Array_Assignment", "Hacl.Bignum.Base.subborrow_st", "Lib.Buffer.lbuffer_t", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Prims.nat", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Addition.bn_sub_f", "Lib.Buffer.as_seq", "LowStar.Monotonic.Buffer.loc", "Prims.l_and", "LowStar.Monotonic.Buffer.loc_disjoint", "Lib.Buffer.loc", "LowStar.Monotonic.Buffer.loc_includes", "LowStar.Monotonic.Buffer.address_liveness_insensitive_locs", "Lib.IntTypes.size_nat", "Prims.eq2", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Buffer.create", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Bignum.Addition open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Hacl.Bignum.Definitions open Hacl.Bignum.Base open Hacl.Impl.Lib open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Hacl.Spec.Bignum.Addition module LSeq = Lib.Sequence module SL = Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_sub_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_sub_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> aLen:size_t -> bn_sub_eq_len_st t aLen
false
false
Hacl.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_eq_len: #t:limb_t -> aLen:size_t -> bn_sub_eq_len_st t aLen
[]
Hacl.Bignum.Addition.bn_sub_eq_len
{ "file_name": "code/bignum/Hacl.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
aLen: Lib.IntTypes.size_t -> Hacl.Bignum.Addition.bn_sub_eq_len_st t aLen
{ "end_col": 5, "end_line": 102, "start_col": 2, "start_line": 78 }
FStar.HyperStack.ST.Stack
val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r))
[ { "abbrev": true, "full_module": "Hacl.Spec.Lib", "short_module": "SL" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Addition", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res
val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_sub_carry #t aLen a c_in res =
true
null
false
push_frame (); let c = create 1ul c_in in [@@ inline_let ]let refl h i = LSeq.index (as_seq h c) 0 in [@@ inline_let ]let footprint (i: size_nat{i <= v aLen}) : GTot (l: B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@@ inline_let ]let spec h = S.bn_sub_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1); let res = c.(0ul) in pop_frame (); res
{ "checked_file": "Hacl.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "Hacl.Impl.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Addition.fst" }
[]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Lib.fill_elems4", "Hacl.Bignum.Definitions.limb", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Lib.lemma_eq_disjoint", "Lib.Buffer.op_Array_Assignment", "Hacl.Bignum.Base.subborrow_st", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "Lib.Buffer.lbuffer_t", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Prims.nat", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Addition.bn_sub_carry_f", "Lib.Buffer.as_seq", "LowStar.Monotonic.Buffer.loc", "Prims.l_and", "LowStar.Monotonic.Buffer.loc_disjoint", "Lib.Buffer.loc", "LowStar.Monotonic.Buffer.loc_includes", "LowStar.Monotonic.Buffer.address_liveness_insensitive_locs", "Lib.IntTypes.size_nat", "Prims.eq2", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Buffer.create", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Bignum.Addition open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Hacl.Bignum.Definitions open Hacl.Bignum.Base open Hacl.Impl.Lib open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Hacl.Spec.Bignum.Addition module LSeq = Lib.Sequence module SL = Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r))
false
false
Hacl.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r))
[]
Hacl.Bignum.Addition.bn_sub_carry
{ "file_name": "code/bignum/Hacl.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
aLen: Lib.IntTypes.size_t -> a: Hacl.Bignum.Definitions.lbignum t aLen -> c_in: Hacl.Spec.Bignum.Base.carry t -> res: Hacl.Bignum.Definitions.lbignum t aLen -> FStar.HyperStack.ST.Stack (Hacl.Spec.Bignum.Base.carry t)
{ "end_col": 5, "end_line": 58, "start_col": 2, "start_line": 36 }
FStar.HyperStack.ST.Stack
val bn_add_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r))
[ { "abbrev": true, "full_module": "Hacl.Spec.Lib", "short_module": "SL" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Addition", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_add_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- addcarry_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res
val bn_add_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_add_carry #t aLen a c_in res =
true
null
false
push_frame (); let c = create 1ul c_in in [@@ inline_let ]let refl h i = LSeq.index (as_seq h c) 0 in [@@ inline_let ]let footprint (i: size_nat{i <= v aLen}) : GTot (l: B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@@ inline_let ]let spec h = S.bn_add_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- addcarry_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1); let res = c.(0ul) in pop_frame (); res
{ "checked_file": "Hacl.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "Hacl.Impl.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Addition.fst" }
[]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Lib.fill_elems4", "Hacl.Bignum.Definitions.limb", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Lib.lemma_eq_disjoint", "Lib.Buffer.op_Array_Assignment", "Hacl.Bignum.Base.addcarry_st", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "Lib.Buffer.lbuffer_t", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Prims.nat", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Addition.bn_add_carry_f", "Lib.Buffer.as_seq", "LowStar.Monotonic.Buffer.loc", "Prims.l_and", "LowStar.Monotonic.Buffer.loc_disjoint", "Lib.Buffer.loc", "LowStar.Monotonic.Buffer.loc_includes", "LowStar.Monotonic.Buffer.address_liveness_insensitive_locs", "Lib.IntTypes.size_nat", "Prims.eq2", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Buffer.create", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Bignum.Addition open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Hacl.Bignum.Definitions open Hacl.Bignum.Base open Hacl.Impl.Lib open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Hacl.Spec.Bignum.Addition module LSeq = Lib.Sequence module SL = Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_sub_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r)) let bn_sub_carry #t aLen a c_in res = push_frame (); let c = create 1ul c_in in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_carry_f (as_seq h a) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 (uint #t 0) res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1 ); let res = c.(0ul) in pop_frame (); res inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (aLen:size_t) = a:lbignum t aLen -> b:lbignum t aLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = SL.generate_elems (v aLen) (v aLen) (S.bn_sub_f (as_seq h0 a) (as_seq h0 b)) (uint #t 0) in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> aLen:size_t -> bn_sub_eq_len_st t aLen let bn_sub_eq_len #t aLen a b res = push_frame (); let c = create 1ul (uint #t 0) in [@inline_let] let refl h i = LSeq.index (as_seq h c) 0 in [@inline_let] let footprint (i:size_nat{i <= v aLen}) : GTot (l:B.loc{B.loc_disjoint l (loc res) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}) = loc c in [@inline_let] let spec h = S.bn_sub_f (as_seq h a) (as_seq h b) in let h0 = ST.get () in fill_elems4 h0 aLen res refl footprint spec (fun i -> let h1 = ST.get () in let t1 = a.(i) in let t2 = b.(i) in let res_i = sub res i 1ul in c.(0ul) <- subborrow_st c.(0ul) t1 t2 res_i; lemma_eq_disjoint aLen aLen 1ul res a c i h0 h1; lemma_eq_disjoint aLen aLen 1ul res b c i h0 h1 ); let res = c.(0ul) in pop_frame (); res let bn_sub_eq_len_u32 (aLen:size_t) : bn_sub_eq_len_st U32 aLen = bn_sub_eq_len aLen let bn_sub_eq_len_u64 (aLen:size_t) : bn_sub_eq_len_st U64 aLen = bn_sub_eq_len aLen inline_for_extraction noextract let bn_sub_eq_len_u (#t:limb_t) (aLen:size_t) : bn_sub_eq_len_st t aLen = match t with | U32 -> bn_sub_eq_len_u32 aLen | U64 -> bn_sub_eq_len_u64 aLen inline_for_extraction noextract val bn_sub: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub (as_seq h0 a) (as_seq h0 b) in c_out == c /\ as_seq h1 res == r)) let bn_sub #t aLen a bLen b res = let h0 = ST.get () in let a0 = sub a 0ul bLen in let res0 = sub res 0ul bLen in let h1 = ST.get () in let c0 = bn_sub_eq_len bLen a0 b res0 in let h1 = ST.get () in if bLen <. aLen then begin [@inline_let] let rLen = aLen -! bLen in let a1 = sub a bLen rLen in let res1 = sub res bLen rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h2 = ST.get () in LSeq.lemma_concat2 (v bLen) (as_seq h1 res0) (v rLen) (as_seq h2 res1) (as_seq h2 res); c1 end else c0 inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) let bn_sub1 #t aLen a b1 res = let c0 = subborrow_st (uint #t 0) a.(0ul) b1 (sub res 0ul 1ul) in let h0 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h0 res) 0 1) (LSeq.create 1 (LSeq.index (as_seq h0 res) 0)); if 1ul <. aLen then begin [@inline_let] let rLen = aLen -! 1ul in let a1 = sub a 1ul rLen in let res1 = sub res 1ul rLen in let c1 = bn_sub_carry rLen a1 c0 res1 in let h = ST.get () in LSeq.lemma_concat2 1 (LSeq.sub (as_seq h0 res) 0 1) (v rLen) (as_seq h res1) (as_seq h res); c1 end else c0 inline_for_extraction noextract val bn_add_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r))
false
false
Hacl.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_carry: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> c_in:carry t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add_carry (as_seq h0 a) c_in in c_out == c /\ as_seq h1 res == r))
[]
Hacl.Bignum.Addition.bn_add_carry
{ "file_name": "code/bignum/Hacl.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
aLen: Lib.IntTypes.size_t -> a: Hacl.Bignum.Definitions.lbignum t aLen -> c_in: Hacl.Spec.Bignum.Base.carry t -> res: Hacl.Bignum.Definitions.lbignum t aLen -> FStar.HyperStack.ST.Stack (Hacl.Spec.Bignum.Base.carry t)
{ "end_col": 5, "end_line": 214, "start_col": 2, "start_line": 192 }
Prims.Tot
val varray (#elt: Type) (a: array elt) : Tot vprop
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm
val varray (#elt: Type) (a: array elt) : Tot vprop let varray (#elt: Type) (a: array elt) : Tot vprop =
false
null
false
varrayp a P.full_perm
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[ "total" ]
[ "Steel.ST.Array.array", "Steel.Array.varrayp", "Steel.FractionalPermission.full_perm", "Steel.Effect.Common.vprop" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt)
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val varray (#elt: Type) (a: array elt) : Tot vprop
[]
Steel.Array.varray
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Steel.ST.Array.array elt -> Steel.Effect.Common.vprop
{ "end_col": 23, "end_line": 74, "start_col": 2, "start_line": 74 }
Prims.Tot
val varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; })
val varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop =
false
null
false
VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p })
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[ "total" ]
[ "Steel.ST.Array.array", "Steel.FractionalPermission.perm", "Steel.Effect.Common.VUnit", "Steel.Effect.Common.Mkvprop'", "Steel.Array.varrayp_hp", "FStar.Seq.Properties.lseq", "Steel.ST.Array.length", "Steel.Array.varrayp_sel", "Steel.Effect.Common.vprop" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm)
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop
[]
Steel.Array.varrayp
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Steel.ST.Array.array elt -> p: Steel.FractionalPermission.perm -> Steel.Effect.Common.vprop
{ "end_col": 4, "end_line": 59, "start_col": 2, "start_line": 55 }
Prims.GTot
val asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp {FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True)}) : GTot (Seq.lseq elt (length a))
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varray a)
val asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp {FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True)}) : GTot (Seq.lseq elt (length a)) let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp {FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True)}) : GTot (Seq.lseq elt (length a)) =
false
null
false
h (varray a)
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[ "sometrivial" ]
[ "Steel.Effect.Common.vprop", "Steel.ST.Array.array", "Steel.Effect.Common.rmem", "FStar.Tactics.Effect.with_tactic", "Steel.Effect.Common.selector_tactic", "Prims.l_and", "Steel.Effect.Common.can_be_split", "Steel.Array.varray", "Prims.l_True", "FStar.Seq.Properties.lseq", "Steel.ST.Array.length" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm [@@ __steel_reduce__] let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) })
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp {FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True)}) : GTot (Seq.lseq elt (length a))
[]
Steel.Array.asel
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Steel.ST.Array.array elt -> h: Steel.Effect.Common.rmem vp { FStar.Tactics.Effect.with_tactic Steel.Effect.Common.selector_tactic (Steel.Effect.Common.can_be_split vp (Steel.Array.varray a) /\ Prims.l_True) } -> Prims.GTot (FStar.Seq.Properties.lseq elt (Steel.ST.Array.length a))
{ "end_col": 14, "end_line": 80, "start_col": 2, "start_line": 80 }
Prims.GTot
val aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp {FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True)}) : GTot (Seq.lseq elt (length a))
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p)
val aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp {FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True)}) : GTot (Seq.lseq elt (length a)) let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp {FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True)}) : GTot (Seq.lseq elt (length a)) =
false
null
false
h (varrayp a p)
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[ "sometrivial" ]
[ "Steel.Effect.Common.vprop", "Steel.ST.Array.array", "Steel.FractionalPermission.perm", "Steel.Effect.Common.rmem", "FStar.Tactics.Effect.with_tactic", "Steel.Effect.Common.selector_tactic", "Prims.l_and", "Steel.Effect.Common.can_be_split", "Steel.Array.varrayp", "Prims.l_True", "FStar.Seq.Properties.lseq", "Steel.ST.Array.length" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) })
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp {FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True)}) : GTot (Seq.lseq elt (length a))
[]
Steel.Array.aselp
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Steel.ST.Array.array elt -> p: Steel.FractionalPermission.perm -> h: Steel.Effect.Common.rmem vp { FStar.Tactics.Effect.with_tactic Steel.Effect.Common.selector_tactic (Steel.Effect.Common.can_be_split vp (Steel.Array.varrayp a p) /\ Prims.l_True) } -> Prims.GTot (FStar.Seq.Properties.lseq elt (Steel.ST.Array.length a))
{ "end_col": 17, "end_line": 68, "start_col": 2, "start_line": 68 }
Steel.Effect.Atomic.SteelGhost
val elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h)
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h ) = elim_varrayp _ _
val elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h) let elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h) =
true
null
false
elim_varrayp _ _
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[]
[ "Steel.Memory.inames", "Steel.ST.Array.array", "Steel.Array.elim_varrayp", "Steel.FractionalPermission.full_perm", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Steel.Array.varray", "Steel.ST.Array.pts_to", "FStar.Ghost.reveal", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Prims.l_True", "Prims.eq2", "Steel.Array.asel" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm [@@ __steel_reduce__] let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varray a) /// Converting a `pts_to` to a `varrayp` val intro_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a p s) (fun _ -> varrayp a p) (fun _ -> True) (fun _ _ h' -> aselp a p h' == s ) let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s ) = intro_varrayp _ _ _ /// Converting a `varrayp` into a `pts_to` val elim_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varrayp a p) (fun res -> pts_to a p res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == aselp a p h ) let elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h)
[]
Steel.Array.elim_varray
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Steel.ST.Array.array elt -> Steel.Effect.Atomic.SteelGhost (FStar.Ghost.erased (FStar.Seq.Base.seq elt))
{ "end_col": 18, "end_line": 124, "start_col": 2, "start_line": 124 }
Steel.Effect.Atomic.SteelGhost
val intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s)
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s ) = intro_varrayp _ _ _
val intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s) let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s) =
true
null
false
intro_varrayp _ _ _
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[]
[ "Steel.Memory.inames", "Steel.ST.Array.array", "FStar.Seq.Base.seq", "Steel.Array.intro_varrayp", "Steel.FractionalPermission.full_perm", "Prims.unit", "Steel.ST.Array.pts_to", "Steel.Array.varray", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Prims.l_True", "Prims.eq2", "Steel.Array.asel" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm [@@ __steel_reduce__] let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varray a) /// Converting a `pts_to` to a `varrayp` val intro_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a p s) (fun _ -> varrayp a p) (fun _ -> True) (fun _ _ h' -> aselp a p h' == s ) let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s)
[]
Steel.Array.intro_varray
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Steel.ST.Array.array elt -> s: FStar.Seq.Base.seq elt -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 21, "end_line": 102, "start_col": 2, "start_line": 102 }
Steel.Effect.SteelT
val intro_fits_ptrdiff64: unit -> SteelT (squash (UP.fits (FStar.Int.max_int 64))) emp (fun _ -> emp)
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intro_fits_ptrdiff64 (_:unit) : SteelT (squash (UP.fits (FStar.Int.max_int 64))) emp (fun _ -> emp) = A.intro_fits_ptrdiff64 ()
val intro_fits_ptrdiff64: unit -> SteelT (squash (UP.fits (FStar.Int.max_int 64))) emp (fun _ -> emp) let intro_fits_ptrdiff64 (_: unit) : SteelT (squash (UP.fits (FStar.Int.max_int 64))) emp (fun _ -> emp) =
true
null
true
A.intro_fits_ptrdiff64 ()
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[]
[ "Prims.unit", "Steel.ST.Array.intro_fits_ptrdiff64", "Prims.squash", "FStar.PtrdiffT.fits", "FStar.Int.max_int", "Steel.Effect.Common.emp", "Steel.Effect.Common.vprop" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm [@@ __steel_reduce__] let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varray a) /// Converting a `pts_to` to a `varrayp` val intro_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a p s) (fun _ -> varrayp a p) (fun _ -> True) (fun _ _ h' -> aselp a p h' == s ) let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s ) = intro_varrayp _ _ _ /// Converting a `varrayp` into a `pts_to` val elim_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varrayp a p) (fun res -> pts_to a p res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == aselp a p h ) let elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h ) = elim_varrayp _ _ let varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null ) = let _ = elim_varrayp a p in pts_to_not_null a _; intro_varrayp a p _ /// Allocating a new array of size n, where each cell is initialized /// with value x. We define the non-selector version of this operation /// (and others) with a _pt suffix in the name. inline_for_extraction [@@noextract_to "krml"] let malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x ) = let res = A.malloc x n in intro_varray res _; return res /// Freeing a full array. inline_for_extraction [@@ noextract_to "krml"; warn_on_use "Steel.Array.free is currently unsound in the presence of zero-size subarrays, have you collected them all?"] let free (#elt: Type) (a: array elt) : Steel unit (varray a) (fun _ -> emp) (fun _ -> is_full_array a ) (fun _ _ _ -> True) = let _ = elim_varray a in A.free a /// Sharing and gathering permissions on an array. Those only /// manipulate permissions, so they are nothing more than stateful /// lemmas. inline_for_extraction // FIXME: F* bug. This attribute is not necessary here, but if removed, F* complains about duplicate declaration and definition let share (#opened: _) (#elt: Type) (a: array elt) (p p1 p2: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p1 `star` varrayp a p2) (fun _ -> p == p1 `P.sum_perm` p2) (fun h _ h' -> aselp a p1 h' == aselp a p h /\ aselp a p2 h' == aselp a p h ) = let _ = elim_varrayp a p in A.share a p p1 p2; intro_varrayp a p1 _; intro_varrayp a p2 _ inline_for_extraction // same here let gather (#opened: _) (#elt: Type) (a: array elt) (p1: P.perm) (p2: P.perm) : SteelGhost unit opened (varrayp a p1 `star` varrayp a p2) (fun _ -> varrayp a (p1 `P.sum_perm` p2)) (fun _ -> True) (fun h _ h' -> aselp a (p1 `P.sum_perm` p2) h' == aselp a p1 h /\ aselp a (p1 `P.sum_perm` p2) h' == aselp a p2 h ) = let _ = elim_varrayp a p1 in let _ = elim_varrayp a p2 in A.gather a p1 p2; intro_varrayp a _ _ /// Reading the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let index (#t: Type) (#p: P.perm) (a: array t) (i: US.t) : Steel t (varrayp a p) (fun _ -> varrayp a p) (fun _ -> US.v i < length a) (fun h res h' -> let s = aselp a p h in aselp a p h' == s /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i) ) = let _ = elim_varrayp a p in let res = A.index a i in intro_varrayp a _ _; return res /// Writing the value v at the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let upd (#t: Type) (a: array t) (i: US.t) (v: t) : Steel unit (varray a) (fun _ -> varray a) (fun _ -> US.v i < length a) (fun h _ h' -> US.v i < length a /\ asel a h' == Seq.upd (asel a h) (US.v i) v ) = let s = elim_varray a in A.pts_to_length a _; A.upd a i v; intro_varray a _ /// Spatial merging of two arrays, expressed in terms of `merge`. inline_for_extraction // same as above let ghost_join (#opened: _) (#elt: Type) (#p: P.perm) (a1 a2: array elt) (sq: squash (adjacent a1 a2)) : SteelGhost unit opened (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp (merge a1 a2) p) (fun _ -> True) (fun h _ h' -> aselp (merge a1 a2) p h' == aselp a1 p h `Seq.append` aselp a2 p h ) = let _ = elim_varrayp a1 p in let _ = elim_varrayp a2 p in A.ghost_join a1 a2 (); intro_varrayp _ _ _ /// Spatial merging, combining the use of `merge` and the call to the /// stateful lemma. Since the only operations are calls to stateful /// lemmas and pure computations, the overall computation is atomic /// and unobservable, so can be used anywhere in atomic contexts. By /// virtue of the length being ghost, Karamel will extract this to /// "let res = a1" inline_for_extraction // this will extract to "let res = a1" [@@noextract_to "krml"] let join (#opened: _) (#elt: Type) (#p: P.perm) (a1: array elt) (a2: Ghost.erased (array elt)) : SteelAtomicBase (array elt) false opened Unobservable (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp res p) (fun _ -> adjacent a1 a2) (fun h res h' -> merge_into a1 a2 res /\ aselp res p h' == aselp a1 p h `Seq.append` aselp a2 p h ) = let _ = elim_varrayp a1 _ in let _ = elim_varrayp a2 _ in let res = A.join a1 a2 in intro_varrayp res _ _; return res /// Splitting an array a at offset i, as a stateful lemma expressed in /// terms of split_l, split_r. In the non-selector case, this stateful /// lemma returns a proof that offset i is in bounds of the value /// sequence, which is needed to typecheck the post-resource. inline_for_extraction // same as above let ghost_split (#opened: _) (#elt: Type) (#p: P.perm) (a: array elt) (i: US.t { US.v i <= length a }) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp (split_l a i) p `star` varrayp (split_r a i) p) (fun _ -> True) (fun h _ h' -> let x = aselp a p h in let xl = Seq.slice x 0 (US.v i) in let xr = Seq.slice x (US.v i) (Seq.length x) in aselp (split_l a i) p h' == xl /\ aselp (split_r a i) p h' == xr /\ x == Seq.append xl xr ) = let _ = elim_varrayp a _ in A.ghost_split a i; intro_varrayp (split_l a i) _ _; intro_varrayp (split_r a i) _ _ /// NOTE: we could implement a SteelAtomicBase Unobservable "split" /// operation, just like "join", but we don't want it to return a pair /// of arrays. For now we settle on explicit use of split_l, split_r. /// Copies the contents of a0 to a1 inline_for_extraction let memcpy (#t:_) (#p0:P.perm) (a0 a1:array t) (i:US.t) : Steel unit (varrayp a0 p0 `star` varray a1) (fun _ -> varrayp a0 p0 `star` varray a1) (requires fun _ -> US.v i == length a0 /\ length a0 == length a1) (ensures fun h0 _ h1 -> length a0 == length a1 /\ aselp a0 p0 h0 == aselp a0 p0 h1 /\ asel a1 h1 == aselp a0 p0 h1) = let _ = elim_varrayp a0 _ in let _ = elim_varray a1 in A.memcpy a0 a1 i; intro_varrayp a0 _ _; intro_varray a1 _ /// Decides whether the contents of a0 and a1 are equal inline_for_extraction let compare (#t:eqtype) (#p0 #p1:P.perm) (a0 a1:array t) (l:US.t { length a0 == length a1 /\ US.v l == length a0}) : Steel bool (varrayp a0 p0 `star` varrayp a1 p1) (fun _ -> varrayp a0 p0 `star` varrayp a1 p1) (requires fun _ -> True) (ensures fun h0 b h1 -> aselp a0 p0 h0 == aselp a0 p0 h1 /\ aselp a1 p1 h0 == aselp a1 p1 h1 /\ b = (aselp a0 p0 h1 = aselp a1 p1 h1)) = let _ = elim_varrayp a0 _ in let _ = elim_varrayp a1 _ in let res = A.compare a0 a1 l in intro_varrayp a0 _ _; intro_varrayp a1 _ _; return res /// An introduction function for the fits_u32 predicate. /// It will be natively extracted to static_assert (UINT32_MAX <= SIZE_T_MAX) by krml inline_for_extraction [@@noextract_to "krml"] let intro_fits_u32 (_:unit) : SteelT (squash (US.fits_u32)) emp (fun _ -> emp) = A.intro_fits_u32 () /// An introduction function for the fits_u64 predicate. /// It will be natively extracted to static_assert (UINT64_MAX <= SIZE_T_MAX) by krml inline_for_extraction [@@noextract_to "krml"] let intro_fits_u64 (_:unit) : SteelT (squash (US.fits_u64)) emp (fun _ -> emp) = A.intro_fits_u64 () /// Determining whether int32 values fit in a ptrdiff /// It will be natively extracted to static_assert (INT32_MAX <= PTRDIFF_MAX) by krml inline_for_extraction [@@noextract_to "krml"] let intro_fits_ptrdiff32 (_:unit) : SteelT (squash (UP.fits (FStar.Int.max_int 32))) emp (fun _ -> emp) = A.intro_fits_ptrdiff32 () /// Determining whether int64 values fit in a ptrdiff /// It will be natively extracted to static_assert (INT64_MAX <= PTRDIFF_MAX) by krml inline_for_extraction [@@noextract_to "krml"] let intro_fits_ptrdiff64 (_:unit) : SteelT (squash (UP.fits (FStar.Int.max_int 64)))
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intro_fits_ptrdiff64: unit -> SteelT (squash (UP.fits (FStar.Int.max_int 64))) emp (fun _ -> emp)
[]
Steel.Array.intro_fits_ptrdiff64
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
_: Prims.unit -> Steel.Effect.SteelT (Prims.squash (FStar.PtrdiffT.fits (FStar.Int.max_int 64)))
{ "end_col": 29, "end_line": 423, "start_col": 4, "start_line": 423 }
Steel.Effect.SteelT
val intro_fits_u64: unit -> SteelT (squash (US.fits_u64)) emp (fun _ -> emp)
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intro_fits_u64 (_:unit) : SteelT (squash (US.fits_u64)) emp (fun _ -> emp) = A.intro_fits_u64 ()
val intro_fits_u64: unit -> SteelT (squash (US.fits_u64)) emp (fun _ -> emp) let intro_fits_u64 (_: unit) : SteelT (squash (US.fits_u64)) emp (fun _ -> emp) =
true
null
true
A.intro_fits_u64 ()
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[]
[ "Prims.unit", "Steel.ST.Array.intro_fits_u64", "Prims.squash", "FStar.SizeT.fits_u64", "Steel.Effect.Common.emp", "Steel.Effect.Common.vprop" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm [@@ __steel_reduce__] let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varray a) /// Converting a `pts_to` to a `varrayp` val intro_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a p s) (fun _ -> varrayp a p) (fun _ -> True) (fun _ _ h' -> aselp a p h' == s ) let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s ) = intro_varrayp _ _ _ /// Converting a `varrayp` into a `pts_to` val elim_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varrayp a p) (fun res -> pts_to a p res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == aselp a p h ) let elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h ) = elim_varrayp _ _ let varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null ) = let _ = elim_varrayp a p in pts_to_not_null a _; intro_varrayp a p _ /// Allocating a new array of size n, where each cell is initialized /// with value x. We define the non-selector version of this operation /// (and others) with a _pt suffix in the name. inline_for_extraction [@@noextract_to "krml"] let malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x ) = let res = A.malloc x n in intro_varray res _; return res /// Freeing a full array. inline_for_extraction [@@ noextract_to "krml"; warn_on_use "Steel.Array.free is currently unsound in the presence of zero-size subarrays, have you collected them all?"] let free (#elt: Type) (a: array elt) : Steel unit (varray a) (fun _ -> emp) (fun _ -> is_full_array a ) (fun _ _ _ -> True) = let _ = elim_varray a in A.free a /// Sharing and gathering permissions on an array. Those only /// manipulate permissions, so they are nothing more than stateful /// lemmas. inline_for_extraction // FIXME: F* bug. This attribute is not necessary here, but if removed, F* complains about duplicate declaration and definition let share (#opened: _) (#elt: Type) (a: array elt) (p p1 p2: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p1 `star` varrayp a p2) (fun _ -> p == p1 `P.sum_perm` p2) (fun h _ h' -> aselp a p1 h' == aselp a p h /\ aselp a p2 h' == aselp a p h ) = let _ = elim_varrayp a p in A.share a p p1 p2; intro_varrayp a p1 _; intro_varrayp a p2 _ inline_for_extraction // same here let gather (#opened: _) (#elt: Type) (a: array elt) (p1: P.perm) (p2: P.perm) : SteelGhost unit opened (varrayp a p1 `star` varrayp a p2) (fun _ -> varrayp a (p1 `P.sum_perm` p2)) (fun _ -> True) (fun h _ h' -> aselp a (p1 `P.sum_perm` p2) h' == aselp a p1 h /\ aselp a (p1 `P.sum_perm` p2) h' == aselp a p2 h ) = let _ = elim_varrayp a p1 in let _ = elim_varrayp a p2 in A.gather a p1 p2; intro_varrayp a _ _ /// Reading the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let index (#t: Type) (#p: P.perm) (a: array t) (i: US.t) : Steel t (varrayp a p) (fun _ -> varrayp a p) (fun _ -> US.v i < length a) (fun h res h' -> let s = aselp a p h in aselp a p h' == s /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i) ) = let _ = elim_varrayp a p in let res = A.index a i in intro_varrayp a _ _; return res /// Writing the value v at the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let upd (#t: Type) (a: array t) (i: US.t) (v: t) : Steel unit (varray a) (fun _ -> varray a) (fun _ -> US.v i < length a) (fun h _ h' -> US.v i < length a /\ asel a h' == Seq.upd (asel a h) (US.v i) v ) = let s = elim_varray a in A.pts_to_length a _; A.upd a i v; intro_varray a _ /// Spatial merging of two arrays, expressed in terms of `merge`. inline_for_extraction // same as above let ghost_join (#opened: _) (#elt: Type) (#p: P.perm) (a1 a2: array elt) (sq: squash (adjacent a1 a2)) : SteelGhost unit opened (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp (merge a1 a2) p) (fun _ -> True) (fun h _ h' -> aselp (merge a1 a2) p h' == aselp a1 p h `Seq.append` aselp a2 p h ) = let _ = elim_varrayp a1 p in let _ = elim_varrayp a2 p in A.ghost_join a1 a2 (); intro_varrayp _ _ _ /// Spatial merging, combining the use of `merge` and the call to the /// stateful lemma. Since the only operations are calls to stateful /// lemmas and pure computations, the overall computation is atomic /// and unobservable, so can be used anywhere in atomic contexts. By /// virtue of the length being ghost, Karamel will extract this to /// "let res = a1" inline_for_extraction // this will extract to "let res = a1" [@@noextract_to "krml"] let join (#opened: _) (#elt: Type) (#p: P.perm) (a1: array elt) (a2: Ghost.erased (array elt)) : SteelAtomicBase (array elt) false opened Unobservable (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp res p) (fun _ -> adjacent a1 a2) (fun h res h' -> merge_into a1 a2 res /\ aselp res p h' == aselp a1 p h `Seq.append` aselp a2 p h ) = let _ = elim_varrayp a1 _ in let _ = elim_varrayp a2 _ in let res = A.join a1 a2 in intro_varrayp res _ _; return res /// Splitting an array a at offset i, as a stateful lemma expressed in /// terms of split_l, split_r. In the non-selector case, this stateful /// lemma returns a proof that offset i is in bounds of the value /// sequence, which is needed to typecheck the post-resource. inline_for_extraction // same as above let ghost_split (#opened: _) (#elt: Type) (#p: P.perm) (a: array elt) (i: US.t { US.v i <= length a }) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp (split_l a i) p `star` varrayp (split_r a i) p) (fun _ -> True) (fun h _ h' -> let x = aselp a p h in let xl = Seq.slice x 0 (US.v i) in let xr = Seq.slice x (US.v i) (Seq.length x) in aselp (split_l a i) p h' == xl /\ aselp (split_r a i) p h' == xr /\ x == Seq.append xl xr ) = let _ = elim_varrayp a _ in A.ghost_split a i; intro_varrayp (split_l a i) _ _; intro_varrayp (split_r a i) _ _ /// NOTE: we could implement a SteelAtomicBase Unobservable "split" /// operation, just like "join", but we don't want it to return a pair /// of arrays. For now we settle on explicit use of split_l, split_r. /// Copies the contents of a0 to a1 inline_for_extraction let memcpy (#t:_) (#p0:P.perm) (a0 a1:array t) (i:US.t) : Steel unit (varrayp a0 p0 `star` varray a1) (fun _ -> varrayp a0 p0 `star` varray a1) (requires fun _ -> US.v i == length a0 /\ length a0 == length a1) (ensures fun h0 _ h1 -> length a0 == length a1 /\ aselp a0 p0 h0 == aselp a0 p0 h1 /\ asel a1 h1 == aselp a0 p0 h1) = let _ = elim_varrayp a0 _ in let _ = elim_varray a1 in A.memcpy a0 a1 i; intro_varrayp a0 _ _; intro_varray a1 _ /// Decides whether the contents of a0 and a1 are equal inline_for_extraction let compare (#t:eqtype) (#p0 #p1:P.perm) (a0 a1:array t) (l:US.t { length a0 == length a1 /\ US.v l == length a0}) : Steel bool (varrayp a0 p0 `star` varrayp a1 p1) (fun _ -> varrayp a0 p0 `star` varrayp a1 p1) (requires fun _ -> True) (ensures fun h0 b h1 -> aselp a0 p0 h0 == aselp a0 p0 h1 /\ aselp a1 p1 h0 == aselp a1 p1 h1 /\ b = (aselp a0 p0 h1 = aselp a1 p1 h1)) = let _ = elim_varrayp a0 _ in let _ = elim_varrayp a1 _ in let res = A.compare a0 a1 l in intro_varrayp a0 _ _; intro_varrayp a1 _ _; return res /// An introduction function for the fits_u32 predicate. /// It will be natively extracted to static_assert (UINT32_MAX <= SIZE_T_MAX) by krml inline_for_extraction [@@noextract_to "krml"] let intro_fits_u32 (_:unit) : SteelT (squash (US.fits_u32)) emp (fun _ -> emp) = A.intro_fits_u32 () /// An introduction function for the fits_u64 predicate. /// It will be natively extracted to static_assert (UINT64_MAX <= SIZE_T_MAX) by krml inline_for_extraction [@@noextract_to "krml"] let intro_fits_u64 (_:unit) : SteelT (squash (US.fits_u64))
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intro_fits_u64: unit -> SteelT (squash (US.fits_u64)) emp (fun _ -> emp)
[]
Steel.Array.intro_fits_u64
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
_: Prims.unit -> Steel.Effect.SteelT (Prims.squash FStar.SizeT.fits_u64)
{ "end_col": 23, "end_line": 405, "start_col": 4, "start_line": 405 }
Steel.Effect.SteelT
val intro_fits_ptrdiff32: unit -> SteelT (squash (UP.fits (FStar.Int.max_int 32))) emp (fun _ -> emp)
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intro_fits_ptrdiff32 (_:unit) : SteelT (squash (UP.fits (FStar.Int.max_int 32))) emp (fun _ -> emp) = A.intro_fits_ptrdiff32 ()
val intro_fits_ptrdiff32: unit -> SteelT (squash (UP.fits (FStar.Int.max_int 32))) emp (fun _ -> emp) let intro_fits_ptrdiff32 (_: unit) : SteelT (squash (UP.fits (FStar.Int.max_int 32))) emp (fun _ -> emp) =
true
null
true
A.intro_fits_ptrdiff32 ()
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[]
[ "Prims.unit", "Steel.ST.Array.intro_fits_ptrdiff32", "Prims.squash", "FStar.PtrdiffT.fits", "FStar.Int.max_int", "Steel.Effect.Common.emp", "Steel.Effect.Common.vprop" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm [@@ __steel_reduce__] let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varray a) /// Converting a `pts_to` to a `varrayp` val intro_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a p s) (fun _ -> varrayp a p) (fun _ -> True) (fun _ _ h' -> aselp a p h' == s ) let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s ) = intro_varrayp _ _ _ /// Converting a `varrayp` into a `pts_to` val elim_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varrayp a p) (fun res -> pts_to a p res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == aselp a p h ) let elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h ) = elim_varrayp _ _ let varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null ) = let _ = elim_varrayp a p in pts_to_not_null a _; intro_varrayp a p _ /// Allocating a new array of size n, where each cell is initialized /// with value x. We define the non-selector version of this operation /// (and others) with a _pt suffix in the name. inline_for_extraction [@@noextract_to "krml"] let malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x ) = let res = A.malloc x n in intro_varray res _; return res /// Freeing a full array. inline_for_extraction [@@ noextract_to "krml"; warn_on_use "Steel.Array.free is currently unsound in the presence of zero-size subarrays, have you collected them all?"] let free (#elt: Type) (a: array elt) : Steel unit (varray a) (fun _ -> emp) (fun _ -> is_full_array a ) (fun _ _ _ -> True) = let _ = elim_varray a in A.free a /// Sharing and gathering permissions on an array. Those only /// manipulate permissions, so they are nothing more than stateful /// lemmas. inline_for_extraction // FIXME: F* bug. This attribute is not necessary here, but if removed, F* complains about duplicate declaration and definition let share (#opened: _) (#elt: Type) (a: array elt) (p p1 p2: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p1 `star` varrayp a p2) (fun _ -> p == p1 `P.sum_perm` p2) (fun h _ h' -> aselp a p1 h' == aselp a p h /\ aselp a p2 h' == aselp a p h ) = let _ = elim_varrayp a p in A.share a p p1 p2; intro_varrayp a p1 _; intro_varrayp a p2 _ inline_for_extraction // same here let gather (#opened: _) (#elt: Type) (a: array elt) (p1: P.perm) (p2: P.perm) : SteelGhost unit opened (varrayp a p1 `star` varrayp a p2) (fun _ -> varrayp a (p1 `P.sum_perm` p2)) (fun _ -> True) (fun h _ h' -> aselp a (p1 `P.sum_perm` p2) h' == aselp a p1 h /\ aselp a (p1 `P.sum_perm` p2) h' == aselp a p2 h ) = let _ = elim_varrayp a p1 in let _ = elim_varrayp a p2 in A.gather a p1 p2; intro_varrayp a _ _ /// Reading the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let index (#t: Type) (#p: P.perm) (a: array t) (i: US.t) : Steel t (varrayp a p) (fun _ -> varrayp a p) (fun _ -> US.v i < length a) (fun h res h' -> let s = aselp a p h in aselp a p h' == s /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i) ) = let _ = elim_varrayp a p in let res = A.index a i in intro_varrayp a _ _; return res /// Writing the value v at the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let upd (#t: Type) (a: array t) (i: US.t) (v: t) : Steel unit (varray a) (fun _ -> varray a) (fun _ -> US.v i < length a) (fun h _ h' -> US.v i < length a /\ asel a h' == Seq.upd (asel a h) (US.v i) v ) = let s = elim_varray a in A.pts_to_length a _; A.upd a i v; intro_varray a _ /// Spatial merging of two arrays, expressed in terms of `merge`. inline_for_extraction // same as above let ghost_join (#opened: _) (#elt: Type) (#p: P.perm) (a1 a2: array elt) (sq: squash (adjacent a1 a2)) : SteelGhost unit opened (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp (merge a1 a2) p) (fun _ -> True) (fun h _ h' -> aselp (merge a1 a2) p h' == aselp a1 p h `Seq.append` aselp a2 p h ) = let _ = elim_varrayp a1 p in let _ = elim_varrayp a2 p in A.ghost_join a1 a2 (); intro_varrayp _ _ _ /// Spatial merging, combining the use of `merge` and the call to the /// stateful lemma. Since the only operations are calls to stateful /// lemmas and pure computations, the overall computation is atomic /// and unobservable, so can be used anywhere in atomic contexts. By /// virtue of the length being ghost, Karamel will extract this to /// "let res = a1" inline_for_extraction // this will extract to "let res = a1" [@@noextract_to "krml"] let join (#opened: _) (#elt: Type) (#p: P.perm) (a1: array elt) (a2: Ghost.erased (array elt)) : SteelAtomicBase (array elt) false opened Unobservable (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp res p) (fun _ -> adjacent a1 a2) (fun h res h' -> merge_into a1 a2 res /\ aselp res p h' == aselp a1 p h `Seq.append` aselp a2 p h ) = let _ = elim_varrayp a1 _ in let _ = elim_varrayp a2 _ in let res = A.join a1 a2 in intro_varrayp res _ _; return res /// Splitting an array a at offset i, as a stateful lemma expressed in /// terms of split_l, split_r. In the non-selector case, this stateful /// lemma returns a proof that offset i is in bounds of the value /// sequence, which is needed to typecheck the post-resource. inline_for_extraction // same as above let ghost_split (#opened: _) (#elt: Type) (#p: P.perm) (a: array elt) (i: US.t { US.v i <= length a }) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp (split_l a i) p `star` varrayp (split_r a i) p) (fun _ -> True) (fun h _ h' -> let x = aselp a p h in let xl = Seq.slice x 0 (US.v i) in let xr = Seq.slice x (US.v i) (Seq.length x) in aselp (split_l a i) p h' == xl /\ aselp (split_r a i) p h' == xr /\ x == Seq.append xl xr ) = let _ = elim_varrayp a _ in A.ghost_split a i; intro_varrayp (split_l a i) _ _; intro_varrayp (split_r a i) _ _ /// NOTE: we could implement a SteelAtomicBase Unobservable "split" /// operation, just like "join", but we don't want it to return a pair /// of arrays. For now we settle on explicit use of split_l, split_r. /// Copies the contents of a0 to a1 inline_for_extraction let memcpy (#t:_) (#p0:P.perm) (a0 a1:array t) (i:US.t) : Steel unit (varrayp a0 p0 `star` varray a1) (fun _ -> varrayp a0 p0 `star` varray a1) (requires fun _ -> US.v i == length a0 /\ length a0 == length a1) (ensures fun h0 _ h1 -> length a0 == length a1 /\ aselp a0 p0 h0 == aselp a0 p0 h1 /\ asel a1 h1 == aselp a0 p0 h1) = let _ = elim_varrayp a0 _ in let _ = elim_varray a1 in A.memcpy a0 a1 i; intro_varrayp a0 _ _; intro_varray a1 _ /// Decides whether the contents of a0 and a1 are equal inline_for_extraction let compare (#t:eqtype) (#p0 #p1:P.perm) (a0 a1:array t) (l:US.t { length a0 == length a1 /\ US.v l == length a0}) : Steel bool (varrayp a0 p0 `star` varrayp a1 p1) (fun _ -> varrayp a0 p0 `star` varrayp a1 p1) (requires fun _ -> True) (ensures fun h0 b h1 -> aselp a0 p0 h0 == aselp a0 p0 h1 /\ aselp a1 p1 h0 == aselp a1 p1 h1 /\ b = (aselp a0 p0 h1 = aselp a1 p1 h1)) = let _ = elim_varrayp a0 _ in let _ = elim_varrayp a1 _ in let res = A.compare a0 a1 l in intro_varrayp a0 _ _; intro_varrayp a1 _ _; return res /// An introduction function for the fits_u32 predicate. /// It will be natively extracted to static_assert (UINT32_MAX <= SIZE_T_MAX) by krml inline_for_extraction [@@noextract_to "krml"] let intro_fits_u32 (_:unit) : SteelT (squash (US.fits_u32)) emp (fun _ -> emp) = A.intro_fits_u32 () /// An introduction function for the fits_u64 predicate. /// It will be natively extracted to static_assert (UINT64_MAX <= SIZE_T_MAX) by krml inline_for_extraction [@@noextract_to "krml"] let intro_fits_u64 (_:unit) : SteelT (squash (US.fits_u64)) emp (fun _ -> emp) = A.intro_fits_u64 () /// Determining whether int32 values fit in a ptrdiff /// It will be natively extracted to static_assert (INT32_MAX <= PTRDIFF_MAX) by krml inline_for_extraction [@@noextract_to "krml"] let intro_fits_ptrdiff32 (_:unit) : SteelT (squash (UP.fits (FStar.Int.max_int 32)))
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intro_fits_ptrdiff32: unit -> SteelT (squash (UP.fits (FStar.Int.max_int 32))) emp (fun _ -> emp)
[]
Steel.Array.intro_fits_ptrdiff32
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
_: Prims.unit -> Steel.Effect.SteelT (Prims.squash (FStar.PtrdiffT.fits (FStar.Int.max_int 32)))
{ "end_col": 29, "end_line": 414, "start_col": 4, "start_line": 414 }
Steel.Effect.SteelT
val intro_fits_u32: unit -> SteelT (squash (US.fits_u32)) emp (fun _ -> emp)
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intro_fits_u32 (_:unit) : SteelT (squash (US.fits_u32)) emp (fun _ -> emp) = A.intro_fits_u32 ()
val intro_fits_u32: unit -> SteelT (squash (US.fits_u32)) emp (fun _ -> emp) let intro_fits_u32 (_: unit) : SteelT (squash (US.fits_u32)) emp (fun _ -> emp) =
true
null
true
A.intro_fits_u32 ()
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[]
[ "Prims.unit", "Steel.ST.Array.intro_fits_u32", "Prims.squash", "FStar.SizeT.fits_u32", "Steel.Effect.Common.emp", "Steel.Effect.Common.vprop" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm [@@ __steel_reduce__] let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varray a) /// Converting a `pts_to` to a `varrayp` val intro_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a p s) (fun _ -> varrayp a p) (fun _ -> True) (fun _ _ h' -> aselp a p h' == s ) let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s ) = intro_varrayp _ _ _ /// Converting a `varrayp` into a `pts_to` val elim_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varrayp a p) (fun res -> pts_to a p res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == aselp a p h ) let elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h ) = elim_varrayp _ _ let varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null ) = let _ = elim_varrayp a p in pts_to_not_null a _; intro_varrayp a p _ /// Allocating a new array of size n, where each cell is initialized /// with value x. We define the non-selector version of this operation /// (and others) with a _pt suffix in the name. inline_for_extraction [@@noextract_to "krml"] let malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x ) = let res = A.malloc x n in intro_varray res _; return res /// Freeing a full array. inline_for_extraction [@@ noextract_to "krml"; warn_on_use "Steel.Array.free is currently unsound in the presence of zero-size subarrays, have you collected them all?"] let free (#elt: Type) (a: array elt) : Steel unit (varray a) (fun _ -> emp) (fun _ -> is_full_array a ) (fun _ _ _ -> True) = let _ = elim_varray a in A.free a /// Sharing and gathering permissions on an array. Those only /// manipulate permissions, so they are nothing more than stateful /// lemmas. inline_for_extraction // FIXME: F* bug. This attribute is not necessary here, but if removed, F* complains about duplicate declaration and definition let share (#opened: _) (#elt: Type) (a: array elt) (p p1 p2: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p1 `star` varrayp a p2) (fun _ -> p == p1 `P.sum_perm` p2) (fun h _ h' -> aselp a p1 h' == aselp a p h /\ aselp a p2 h' == aselp a p h ) = let _ = elim_varrayp a p in A.share a p p1 p2; intro_varrayp a p1 _; intro_varrayp a p2 _ inline_for_extraction // same here let gather (#opened: _) (#elt: Type) (a: array elt) (p1: P.perm) (p2: P.perm) : SteelGhost unit opened (varrayp a p1 `star` varrayp a p2) (fun _ -> varrayp a (p1 `P.sum_perm` p2)) (fun _ -> True) (fun h _ h' -> aselp a (p1 `P.sum_perm` p2) h' == aselp a p1 h /\ aselp a (p1 `P.sum_perm` p2) h' == aselp a p2 h ) = let _ = elim_varrayp a p1 in let _ = elim_varrayp a p2 in A.gather a p1 p2; intro_varrayp a _ _ /// Reading the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let index (#t: Type) (#p: P.perm) (a: array t) (i: US.t) : Steel t (varrayp a p) (fun _ -> varrayp a p) (fun _ -> US.v i < length a) (fun h res h' -> let s = aselp a p h in aselp a p h' == s /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i) ) = let _ = elim_varrayp a p in let res = A.index a i in intro_varrayp a _ _; return res /// Writing the value v at the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let upd (#t: Type) (a: array t) (i: US.t) (v: t) : Steel unit (varray a) (fun _ -> varray a) (fun _ -> US.v i < length a) (fun h _ h' -> US.v i < length a /\ asel a h' == Seq.upd (asel a h) (US.v i) v ) = let s = elim_varray a in A.pts_to_length a _; A.upd a i v; intro_varray a _ /// Spatial merging of two arrays, expressed in terms of `merge`. inline_for_extraction // same as above let ghost_join (#opened: _) (#elt: Type) (#p: P.perm) (a1 a2: array elt) (sq: squash (adjacent a1 a2)) : SteelGhost unit opened (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp (merge a1 a2) p) (fun _ -> True) (fun h _ h' -> aselp (merge a1 a2) p h' == aselp a1 p h `Seq.append` aselp a2 p h ) = let _ = elim_varrayp a1 p in let _ = elim_varrayp a2 p in A.ghost_join a1 a2 (); intro_varrayp _ _ _ /// Spatial merging, combining the use of `merge` and the call to the /// stateful lemma. Since the only operations are calls to stateful /// lemmas and pure computations, the overall computation is atomic /// and unobservable, so can be used anywhere in atomic contexts. By /// virtue of the length being ghost, Karamel will extract this to /// "let res = a1" inline_for_extraction // this will extract to "let res = a1" [@@noextract_to "krml"] let join (#opened: _) (#elt: Type) (#p: P.perm) (a1: array elt) (a2: Ghost.erased (array elt)) : SteelAtomicBase (array elt) false opened Unobservable (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp res p) (fun _ -> adjacent a1 a2) (fun h res h' -> merge_into a1 a2 res /\ aselp res p h' == aselp a1 p h `Seq.append` aselp a2 p h ) = let _ = elim_varrayp a1 _ in let _ = elim_varrayp a2 _ in let res = A.join a1 a2 in intro_varrayp res _ _; return res /// Splitting an array a at offset i, as a stateful lemma expressed in /// terms of split_l, split_r. In the non-selector case, this stateful /// lemma returns a proof that offset i is in bounds of the value /// sequence, which is needed to typecheck the post-resource. inline_for_extraction // same as above let ghost_split (#opened: _) (#elt: Type) (#p: P.perm) (a: array elt) (i: US.t { US.v i <= length a }) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp (split_l a i) p `star` varrayp (split_r a i) p) (fun _ -> True) (fun h _ h' -> let x = aselp a p h in let xl = Seq.slice x 0 (US.v i) in let xr = Seq.slice x (US.v i) (Seq.length x) in aselp (split_l a i) p h' == xl /\ aselp (split_r a i) p h' == xr /\ x == Seq.append xl xr ) = let _ = elim_varrayp a _ in A.ghost_split a i; intro_varrayp (split_l a i) _ _; intro_varrayp (split_r a i) _ _ /// NOTE: we could implement a SteelAtomicBase Unobservable "split" /// operation, just like "join", but we don't want it to return a pair /// of arrays. For now we settle on explicit use of split_l, split_r. /// Copies the contents of a0 to a1 inline_for_extraction let memcpy (#t:_) (#p0:P.perm) (a0 a1:array t) (i:US.t) : Steel unit (varrayp a0 p0 `star` varray a1) (fun _ -> varrayp a0 p0 `star` varray a1) (requires fun _ -> US.v i == length a0 /\ length a0 == length a1) (ensures fun h0 _ h1 -> length a0 == length a1 /\ aselp a0 p0 h0 == aselp a0 p0 h1 /\ asel a1 h1 == aselp a0 p0 h1) = let _ = elim_varrayp a0 _ in let _ = elim_varray a1 in A.memcpy a0 a1 i; intro_varrayp a0 _ _; intro_varray a1 _ /// Decides whether the contents of a0 and a1 are equal inline_for_extraction let compare (#t:eqtype) (#p0 #p1:P.perm) (a0 a1:array t) (l:US.t { length a0 == length a1 /\ US.v l == length a0}) : Steel bool (varrayp a0 p0 `star` varrayp a1 p1) (fun _ -> varrayp a0 p0 `star` varrayp a1 p1) (requires fun _ -> True) (ensures fun h0 b h1 -> aselp a0 p0 h0 == aselp a0 p0 h1 /\ aselp a1 p1 h0 == aselp a1 p1 h1 /\ b = (aselp a0 p0 h1 = aselp a1 p1 h1)) = let _ = elim_varrayp a0 _ in let _ = elim_varrayp a1 _ in let res = A.compare a0 a1 l in intro_varrayp a0 _ _; intro_varrayp a1 _ _; return res /// An introduction function for the fits_u32 predicate. /// It will be natively extracted to static_assert (UINT32_MAX <= SIZE_T_MAX) by krml inline_for_extraction [@@noextract_to "krml"] let intro_fits_u32 (_:unit) : SteelT (squash (US.fits_u32))
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intro_fits_u32: unit -> SteelT (squash (US.fits_u32)) emp (fun _ -> emp)
[]
Steel.Array.intro_fits_u32
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
_: Prims.unit -> Steel.Effect.SteelT (Prims.squash FStar.SizeT.fits_u32)
{ "end_col": 23, "end_line": 396, "start_col": 4, "start_line": 396 }
Steel.Effect.Atomic.SteelGhost
val varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null)
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null ) = let _ = elim_varrayp a p in pts_to_not_null a _; intro_varrayp a p _
val varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null) let varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null) =
true
null
false
let _ = elim_varrayp a p in pts_to_not_null a _; intro_varrayp a p _
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[]
[ "Steel.Memory.inames", "Steel.ST.Array.array", "Steel.FractionalPermission.perm", "Steel.Array.intro_varrayp", "FStar.Ghost.reveal", "FStar.Seq.Base.seq", "Prims.unit", "Steel.ST.Array.pts_to_not_null", "FStar.Ghost.erased", "Steel.Array.elim_varrayp", "Steel.Array.varrayp", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Prims.l_True", "Prims.l_and", "Prims.eq2", "FStar.Seq.Properties.lseq", "Steel.ST.Array.length", "Steel.Array.aselp", "Prims.l_not", "Steel.ST.Array.null" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm [@@ __steel_reduce__] let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varray a) /// Converting a `pts_to` to a `varrayp` val intro_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a p s) (fun _ -> varrayp a p) (fun _ -> True) (fun _ _ h' -> aselp a p h' == s ) let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s ) = intro_varrayp _ _ _ /// Converting a `varrayp` into a `pts_to` val elim_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varrayp a p) (fun res -> pts_to a p res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == aselp a p h ) let elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h ) = elim_varrayp _ _ let varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null)
[]
Steel.Array.varrayp_not_null
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Steel.ST.Array.array elt -> p: Steel.FractionalPermission.perm -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 21, "end_line": 138, "start_col": 1, "start_line": 136 }
Steel.Effect.Steel
val malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x)
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x ) = let res = A.malloc x n in intro_varray res _; return res
val malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x) let malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x) =
true
null
false
let res = A.malloc x n in intro_varray res _; return res
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[]
[ "FStar.SizeT.t", "Steel.Effect.Atomic.return", "Steel.ST.Array.array", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Array.varrayp", "Steel.FractionalPermission.full_perm", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.Array.intro_varray", "FStar.Seq.Base.create", "FStar.SizeT.v", "Steel.ST.Array.malloc", "Steel.Effect.Common.emp", "Steel.Array.varray", "Steel.Effect.Common.rmem", "Prims.l_True", "Prims.l_and", "Prims.eq2", "Prims.nat", "Steel.ST.Array.length", "Steel.ST.Array.is_full_array", "FStar.Seq.Base.seq", "Steel.Array.asel" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm [@@ __steel_reduce__] let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varray a) /// Converting a `pts_to` to a `varrayp` val intro_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a p s) (fun _ -> varrayp a p) (fun _ -> True) (fun _ _ h' -> aselp a p h' == s ) let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s ) = intro_varrayp _ _ _ /// Converting a `varrayp` into a `pts_to` val elim_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varrayp a p) (fun res -> pts_to a p res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == aselp a p h ) let elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h ) = elim_varrayp _ _ let varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null ) = let _ = elim_varrayp a p in pts_to_not_null a _; intro_varrayp a p _ /// Allocating a new array of size n, where each cell is initialized /// with value x. We define the non-selector version of this operation /// (and others) with a _pt suffix in the name. inline_for_extraction [@@noextract_to "krml"] let malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x)
[]
Steel.Array.malloc
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
x: elt -> n: FStar.SizeT.t -> Steel.Effect.Steel (Steel.ST.Array.array elt)
{ "end_col": 12, "end_line": 160, "start_col": 1, "start_line": 158 }
Steel.Effect.Atomic.SteelGhost
val share (#opened: _) (#elt: Type) (a: array elt) (p p1 p2: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> (varrayp a p1) `star` (varrayp a p2)) (fun _ -> p == p1 `P.sum_perm` p2) (fun h _ h' -> aselp a p1 h' == aselp a p h /\ aselp a p2 h' == aselp a p h)
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let share (#opened: _) (#elt: Type) (a: array elt) (p p1 p2: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p1 `star` varrayp a p2) (fun _ -> p == p1 `P.sum_perm` p2) (fun h _ h' -> aselp a p1 h' == aselp a p h /\ aselp a p2 h' == aselp a p h ) = let _ = elim_varrayp a p in A.share a p p1 p2; intro_varrayp a p1 _; intro_varrayp a p2 _
val share (#opened: _) (#elt: Type) (a: array elt) (p p1 p2: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> (varrayp a p1) `star` (varrayp a p2)) (fun _ -> p == p1 `P.sum_perm` p2) (fun h _ h' -> aselp a p1 h' == aselp a p h /\ aselp a p2 h' == aselp a p h) let share (#opened: _) (#elt: Type) (a: array elt) (p p1 p2: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> (varrayp a p1) `star` (varrayp a p2)) (fun _ -> p == p1 `P.sum_perm` p2) (fun h _ h' -> aselp a p1 h' == aselp a p h /\ aselp a p2 h' == aselp a p h) =
true
null
false
let _ = elim_varrayp a p in A.share a p p1 p2; intro_varrayp a p1 _; intro_varrayp a p2 _
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[]
[ "Steel.Memory.inames", "Steel.ST.Array.array", "Steel.FractionalPermission.perm", "Steel.Array.intro_varrayp", "FStar.Ghost.reveal", "FStar.Seq.Base.seq", "Prims.unit", "Steel.ST.Array.share", "FStar.Ghost.erased", "Steel.Array.elim_varrayp", "Steel.Array.varrayp", "Steel.Effect.Common.star", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Prims.eq2", "Steel.FractionalPermission.sum_perm", "Prims.l_and", "FStar.Seq.Properties.lseq", "Steel.ST.Array.length", "Steel.Array.aselp" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm [@@ __steel_reduce__] let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varray a) /// Converting a `pts_to` to a `varrayp` val intro_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a p s) (fun _ -> varrayp a p) (fun _ -> True) (fun _ _ h' -> aselp a p h' == s ) let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s ) = intro_varrayp _ _ _ /// Converting a `varrayp` into a `pts_to` val elim_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varrayp a p) (fun res -> pts_to a p res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == aselp a p h ) let elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h ) = elim_varrayp _ _ let varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null ) = let _ = elim_varrayp a p in pts_to_not_null a _; intro_varrayp a p _ /// Allocating a new array of size n, where each cell is initialized /// with value x. We define the non-selector version of this operation /// (and others) with a _pt suffix in the name. inline_for_extraction [@@noextract_to "krml"] let malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x ) = let res = A.malloc x n in intro_varray res _; return res /// Freeing a full array. inline_for_extraction [@@ noextract_to "krml"; warn_on_use "Steel.Array.free is currently unsound in the presence of zero-size subarrays, have you collected them all?"] let free (#elt: Type) (a: array elt) : Steel unit (varray a) (fun _ -> emp) (fun _ -> is_full_array a ) (fun _ _ _ -> True) = let _ = elim_varray a in A.free a /// Sharing and gathering permissions on an array. Those only /// manipulate permissions, so they are nothing more than stateful /// lemmas. inline_for_extraction // FIXME: F* bug. This attribute is not necessary here, but if removed, F* complains about duplicate declaration and definition let share (#opened: _) (#elt: Type) (a: array elt) (p p1 p2: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p1 `star` varrayp a p2) (fun _ -> p == p1 `P.sum_perm` p2) (fun h _ h' -> aselp a p1 h' == aselp a p h /\ aselp a p2 h' == aselp a p h
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val share (#opened: _) (#elt: Type) (a: array elt) (p p1 p2: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> (varrayp a p1) `star` (varrayp a p2)) (fun _ -> p == p1 `P.sum_perm` p2) (fun h _ h' -> aselp a p1 h' == aselp a p h /\ aselp a p2 h' == aselp a p h)
[]
Steel.Array.share
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Steel.ST.Array.array elt -> p: Steel.FractionalPermission.perm -> p1: Steel.FractionalPermission.perm -> p2: Steel.FractionalPermission.perm -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 22, "end_line": 199, "start_col": 1, "start_line": 196 }
Steel.Effect.Atomic.SteelGhost
val gather (#opened: _) (#elt: Type) (a: array elt) (p1 p2: P.perm) : SteelGhost unit opened ((varrayp a p1) `star` (varrayp a p2)) (fun _ -> varrayp a (p1 `P.sum_perm` p2)) (fun _ -> True) (fun h _ h' -> aselp a (p1 `P.sum_perm` p2) h' == aselp a p1 h /\ aselp a (p1 `P.sum_perm` p2) h' == aselp a p2 h)
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gather (#opened: _) (#elt: Type) (a: array elt) (p1: P.perm) (p2: P.perm) : SteelGhost unit opened (varrayp a p1 `star` varrayp a p2) (fun _ -> varrayp a (p1 `P.sum_perm` p2)) (fun _ -> True) (fun h _ h' -> aselp a (p1 `P.sum_perm` p2) h' == aselp a p1 h /\ aselp a (p1 `P.sum_perm` p2) h' == aselp a p2 h ) = let _ = elim_varrayp a p1 in let _ = elim_varrayp a p2 in A.gather a p1 p2; intro_varrayp a _ _
val gather (#opened: _) (#elt: Type) (a: array elt) (p1 p2: P.perm) : SteelGhost unit opened ((varrayp a p1) `star` (varrayp a p2)) (fun _ -> varrayp a (p1 `P.sum_perm` p2)) (fun _ -> True) (fun h _ h' -> aselp a (p1 `P.sum_perm` p2) h' == aselp a p1 h /\ aselp a (p1 `P.sum_perm` p2) h' == aselp a p2 h) let gather (#opened: _) (#elt: Type) (a: array elt) (p1 p2: P.perm) : SteelGhost unit opened ((varrayp a p1) `star` (varrayp a p2)) (fun _ -> varrayp a (p1 `P.sum_perm` p2)) (fun _ -> True) (fun h _ h' -> aselp a (p1 `P.sum_perm` p2) h' == aselp a p1 h /\ aselp a (p1 `P.sum_perm` p2) h' == aselp a p2 h) =
true
null
false
let _ = elim_varrayp a p1 in let _ = elim_varrayp a p2 in A.gather a p1 p2; intro_varrayp a _ _
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[]
[ "Steel.Memory.inames", "Steel.ST.Array.array", "Steel.FractionalPermission.perm", "Steel.Array.intro_varrayp", "Steel.FractionalPermission.sum_perm", "FStar.Ghost.reveal", "FStar.Seq.Base.seq", "Prims.unit", "Steel.ST.Array.gather", "FStar.Ghost.erased", "Steel.Array.elim_varrayp", "Steel.Effect.Common.star", "Steel.Array.varrayp", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Prims.l_True", "Prims.l_and", "Prims.eq2", "FStar.Seq.Properties.lseq", "Steel.ST.Array.length", "Steel.Array.aselp" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm [@@ __steel_reduce__] let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varray a) /// Converting a `pts_to` to a `varrayp` val intro_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a p s) (fun _ -> varrayp a p) (fun _ -> True) (fun _ _ h' -> aselp a p h' == s ) let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s ) = intro_varrayp _ _ _ /// Converting a `varrayp` into a `pts_to` val elim_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varrayp a p) (fun res -> pts_to a p res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == aselp a p h ) let elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h ) = elim_varrayp _ _ let varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null ) = let _ = elim_varrayp a p in pts_to_not_null a _; intro_varrayp a p _ /// Allocating a new array of size n, where each cell is initialized /// with value x. We define the non-selector version of this operation /// (and others) with a _pt suffix in the name. inline_for_extraction [@@noextract_to "krml"] let malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x ) = let res = A.malloc x n in intro_varray res _; return res /// Freeing a full array. inline_for_extraction [@@ noextract_to "krml"; warn_on_use "Steel.Array.free is currently unsound in the presence of zero-size subarrays, have you collected them all?"] let free (#elt: Type) (a: array elt) : Steel unit (varray a) (fun _ -> emp) (fun _ -> is_full_array a ) (fun _ _ _ -> True) = let _ = elim_varray a in A.free a /// Sharing and gathering permissions on an array. Those only /// manipulate permissions, so they are nothing more than stateful /// lemmas. inline_for_extraction // FIXME: F* bug. This attribute is not necessary here, but if removed, F* complains about duplicate declaration and definition let share (#opened: _) (#elt: Type) (a: array elt) (p p1 p2: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p1 `star` varrayp a p2) (fun _ -> p == p1 `P.sum_perm` p2) (fun h _ h' -> aselp a p1 h' == aselp a p h /\ aselp a p2 h' == aselp a p h ) = let _ = elim_varrayp a p in A.share a p p1 p2; intro_varrayp a p1 _; intro_varrayp a p2 _ inline_for_extraction // same here let gather (#opened: _) (#elt: Type) (a: array elt) (p1: P.perm) (p2: P.perm) : SteelGhost unit opened (varrayp a p1 `star` varrayp a p2) (fun _ -> varrayp a (p1 `P.sum_perm` p2)) (fun _ -> True) (fun h _ h' -> aselp a (p1 `P.sum_perm` p2) h' == aselp a p1 h /\ aselp a (p1 `P.sum_perm` p2) h' == aselp a p2 h
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gather (#opened: _) (#elt: Type) (a: array elt) (p1 p2: P.perm) : SteelGhost unit opened ((varrayp a p1) `star` (varrayp a p2)) (fun _ -> varrayp a (p1 `P.sum_perm` p2)) (fun _ -> True) (fun h _ h' -> aselp a (p1 `P.sum_perm` p2) h' == aselp a p1 h /\ aselp a (p1 `P.sum_perm` p2) h' == aselp a p2 h)
[]
Steel.Array.gather
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Steel.ST.Array.array elt -> p1: Steel.FractionalPermission.perm -> p2: Steel.FractionalPermission.perm -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 21, "end_line": 219, "start_col": 1, "start_line": 216 }
Steel.Effect.Steel
val index (#t: Type) (#p: P.perm) (a: array t) (i: US.t) : Steel t (varrayp a p) (fun _ -> varrayp a p) (fun _ -> US.v i < length a) (fun h res h' -> let s = aselp a p h in aselp a p h' == s /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i))
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let index (#t: Type) (#p: P.perm) (a: array t) (i: US.t) : Steel t (varrayp a p) (fun _ -> varrayp a p) (fun _ -> US.v i < length a) (fun h res h' -> let s = aselp a p h in aselp a p h' == s /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i) ) = let _ = elim_varrayp a p in let res = A.index a i in intro_varrayp a _ _; return res
val index (#t: Type) (#p: P.perm) (a: array t) (i: US.t) : Steel t (varrayp a p) (fun _ -> varrayp a p) (fun _ -> US.v i < length a) (fun h res h' -> let s = aselp a p h in aselp a p h' == s /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i)) let index (#t: Type) (#p: P.perm) (a: array t) (i: US.t) : Steel t (varrayp a p) (fun _ -> varrayp a p) (fun _ -> US.v i < length a) (fun h res h' -> let s = aselp a p h in aselp a p h' == s /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i)) =
true
null
false
let _ = elim_varrayp a p in let res = A.index a i in intro_varrayp a _ _; return res
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[]
[ "Steel.FractionalPermission.perm", "Steel.ST.Array.array", "FStar.SizeT.t", "Steel.Effect.Atomic.return", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Array.varrayp", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.Array.intro_varrayp", "FStar.Ghost.reveal", "FStar.Seq.Base.seq", "Steel.ST.Array.index", "FStar.Ghost.erased", "Steel.Array.elim_varrayp", "Steel.Effect.Common.rmem", "Prims.b2t", "Prims.op_LessThan", "FStar.SizeT.v", "Steel.ST.Array.length", "Prims.l_and", "Prims.eq2", "FStar.Seq.Properties.lseq", "Steel.Array.aselp", "FStar.Seq.Base.length", "FStar.Seq.Base.index" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm [@@ __steel_reduce__] let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varray a) /// Converting a `pts_to` to a `varrayp` val intro_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a p s) (fun _ -> varrayp a p) (fun _ -> True) (fun _ _ h' -> aselp a p h' == s ) let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s ) = intro_varrayp _ _ _ /// Converting a `varrayp` into a `pts_to` val elim_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varrayp a p) (fun res -> pts_to a p res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == aselp a p h ) let elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h ) = elim_varrayp _ _ let varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null ) = let _ = elim_varrayp a p in pts_to_not_null a _; intro_varrayp a p _ /// Allocating a new array of size n, where each cell is initialized /// with value x. We define the non-selector version of this operation /// (and others) with a _pt suffix in the name. inline_for_extraction [@@noextract_to "krml"] let malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x ) = let res = A.malloc x n in intro_varray res _; return res /// Freeing a full array. inline_for_extraction [@@ noextract_to "krml"; warn_on_use "Steel.Array.free is currently unsound in the presence of zero-size subarrays, have you collected them all?"] let free (#elt: Type) (a: array elt) : Steel unit (varray a) (fun _ -> emp) (fun _ -> is_full_array a ) (fun _ _ _ -> True) = let _ = elim_varray a in A.free a /// Sharing and gathering permissions on an array. Those only /// manipulate permissions, so they are nothing more than stateful /// lemmas. inline_for_extraction // FIXME: F* bug. This attribute is not necessary here, but if removed, F* complains about duplicate declaration and definition let share (#opened: _) (#elt: Type) (a: array elt) (p p1 p2: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p1 `star` varrayp a p2) (fun _ -> p == p1 `P.sum_perm` p2) (fun h _ h' -> aselp a p1 h' == aselp a p h /\ aselp a p2 h' == aselp a p h ) = let _ = elim_varrayp a p in A.share a p p1 p2; intro_varrayp a p1 _; intro_varrayp a p2 _ inline_for_extraction // same here let gather (#opened: _) (#elt: Type) (a: array elt) (p1: P.perm) (p2: P.perm) : SteelGhost unit opened (varrayp a p1 `star` varrayp a p2) (fun _ -> varrayp a (p1 `P.sum_perm` p2)) (fun _ -> True) (fun h _ h' -> aselp a (p1 `P.sum_perm` p2) h' == aselp a p1 h /\ aselp a (p1 `P.sum_perm` p2) h' == aselp a p2 h ) = let _ = elim_varrayp a p1 in let _ = elim_varrayp a p2 in A.gather a p1 p2; intro_varrayp a _ _ /// Reading the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let index (#t: Type) (#p: P.perm) (a: array t) (i: US.t) : Steel t (varrayp a p) (fun _ -> varrayp a p) (fun _ -> US.v i < length a) (fun h res h' -> let s = aselp a p h in aselp a p h' == s /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i)
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val index (#t: Type) (#p: P.perm) (a: array t) (i: US.t) : Steel t (varrayp a p) (fun _ -> varrayp a p) (fun _ -> US.v i < length a) (fun h res h' -> let s = aselp a p h in aselp a p h' == s /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i))
[]
Steel.Array.index
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Steel.ST.Array.array t -> i: FStar.SizeT.t -> Steel.Effect.Steel t
{ "end_col": 12, "end_line": 242, "start_col": 1, "start_line": 239 }
Steel.Effect.Atomic.SteelGhost
val ghost_join (#opened: _) (#elt: Type) (#p: P.perm) (a1 a2: array elt) (sq: squash (adjacent a1 a2)) : SteelGhost unit opened ((varrayp a1 p) `star` (varrayp a2 p)) (fun res -> varrayp (merge a1 a2) p) (fun _ -> True) (fun h _ h' -> aselp (merge a1 a2) p h' == (aselp a1 p h) `Seq.append` (aselp a2 p h))
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_join (#opened: _) (#elt: Type) (#p: P.perm) (a1 a2: array elt) (sq: squash (adjacent a1 a2)) : SteelGhost unit opened (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp (merge a1 a2) p) (fun _ -> True) (fun h _ h' -> aselp (merge a1 a2) p h' == aselp a1 p h `Seq.append` aselp a2 p h ) = let _ = elim_varrayp a1 p in let _ = elim_varrayp a2 p in A.ghost_join a1 a2 (); intro_varrayp _ _ _
val ghost_join (#opened: _) (#elt: Type) (#p: P.perm) (a1 a2: array elt) (sq: squash (adjacent a1 a2)) : SteelGhost unit opened ((varrayp a1 p) `star` (varrayp a2 p)) (fun res -> varrayp (merge a1 a2) p) (fun _ -> True) (fun h _ h' -> aselp (merge a1 a2) p h' == (aselp a1 p h) `Seq.append` (aselp a2 p h)) let ghost_join (#opened: _) (#elt: Type) (#p: P.perm) (a1 a2: array elt) (sq: squash (adjacent a1 a2)) : SteelGhost unit opened ((varrayp a1 p) `star` (varrayp a2 p)) (fun res -> varrayp (merge a1 a2) p) (fun _ -> True) (fun h _ h' -> aselp (merge a1 a2) p h' == (aselp a1 p h) `Seq.append` (aselp a2 p h)) =
true
null
false
let _ = elim_varrayp a1 p in let _ = elim_varrayp a2 p in A.ghost_join a1 a2 (); intro_varrayp _ _ _
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "Steel.ST.Array.array", "Prims.squash", "Steel.ST.Array.adjacent", "Steel.Array.intro_varrayp", "Steel.ST.Array.merge", "FStar.Ghost.hide", "FStar.Seq.Base.append", "FStar.Ghost.reveal", "FStar.Seq.Base.seq", "Prims.unit", "Steel.ST.Array.ghost_join", "FStar.Ghost.erased", "Steel.Array.elim_varrayp", "Steel.Effect.Common.star", "Steel.Array.varrayp", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Prims.l_True", "Prims.eq2", "Steel.Array.aselp" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm [@@ __steel_reduce__] let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varray a) /// Converting a `pts_to` to a `varrayp` val intro_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a p s) (fun _ -> varrayp a p) (fun _ -> True) (fun _ _ h' -> aselp a p h' == s ) let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s ) = intro_varrayp _ _ _ /// Converting a `varrayp` into a `pts_to` val elim_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varrayp a p) (fun res -> pts_to a p res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == aselp a p h ) let elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h ) = elim_varrayp _ _ let varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null ) = let _ = elim_varrayp a p in pts_to_not_null a _; intro_varrayp a p _ /// Allocating a new array of size n, where each cell is initialized /// with value x. We define the non-selector version of this operation /// (and others) with a _pt suffix in the name. inline_for_extraction [@@noextract_to "krml"] let malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x ) = let res = A.malloc x n in intro_varray res _; return res /// Freeing a full array. inline_for_extraction [@@ noextract_to "krml"; warn_on_use "Steel.Array.free is currently unsound in the presence of zero-size subarrays, have you collected them all?"] let free (#elt: Type) (a: array elt) : Steel unit (varray a) (fun _ -> emp) (fun _ -> is_full_array a ) (fun _ _ _ -> True) = let _ = elim_varray a in A.free a /// Sharing and gathering permissions on an array. Those only /// manipulate permissions, so they are nothing more than stateful /// lemmas. inline_for_extraction // FIXME: F* bug. This attribute is not necessary here, but if removed, F* complains about duplicate declaration and definition let share (#opened: _) (#elt: Type) (a: array elt) (p p1 p2: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p1 `star` varrayp a p2) (fun _ -> p == p1 `P.sum_perm` p2) (fun h _ h' -> aselp a p1 h' == aselp a p h /\ aselp a p2 h' == aselp a p h ) = let _ = elim_varrayp a p in A.share a p p1 p2; intro_varrayp a p1 _; intro_varrayp a p2 _ inline_for_extraction // same here let gather (#opened: _) (#elt: Type) (a: array elt) (p1: P.perm) (p2: P.perm) : SteelGhost unit opened (varrayp a p1 `star` varrayp a p2) (fun _ -> varrayp a (p1 `P.sum_perm` p2)) (fun _ -> True) (fun h _ h' -> aselp a (p1 `P.sum_perm` p2) h' == aselp a p1 h /\ aselp a (p1 `P.sum_perm` p2) h' == aselp a p2 h ) = let _ = elim_varrayp a p1 in let _ = elim_varrayp a p2 in A.gather a p1 p2; intro_varrayp a _ _ /// Reading the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let index (#t: Type) (#p: P.perm) (a: array t) (i: US.t) : Steel t (varrayp a p) (fun _ -> varrayp a p) (fun _ -> US.v i < length a) (fun h res h' -> let s = aselp a p h in aselp a p h' == s /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i) ) = let _ = elim_varrayp a p in let res = A.index a i in intro_varrayp a _ _; return res /// Writing the value v at the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let upd (#t: Type) (a: array t) (i: US.t) (v: t) : Steel unit (varray a) (fun _ -> varray a) (fun _ -> US.v i < length a) (fun h _ h' -> US.v i < length a /\ asel a h' == Seq.upd (asel a h) (US.v i) v ) = let s = elim_varray a in A.pts_to_length a _; A.upd a i v; intro_varray a _ /// Spatial merging of two arrays, expressed in terms of `merge`. inline_for_extraction // same as above let ghost_join (#opened: _) (#elt: Type) (#p: P.perm) (a1 a2: array elt) (sq: squash (adjacent a1 a2)) : SteelGhost unit opened (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp (merge a1 a2) p) (fun _ -> True) (fun h _ h' -> aselp (merge a1 a2) p h' == aselp a1 p h `Seq.append` aselp a2 p h
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_join (#opened: _) (#elt: Type) (#p: P.perm) (a1 a2: array elt) (sq: squash (adjacent a1 a2)) : SteelGhost unit opened ((varrayp a1 p) `star` (varrayp a2 p)) (fun res -> varrayp (merge a1 a2) p) (fun _ -> True) (fun h _ h' -> aselp (merge a1 a2) p h' == (aselp a1 p h) `Seq.append` (aselp a2 p h))
[]
Steel.Array.ghost_join
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a1: Steel.ST.Array.array elt -> a2: Steel.ST.Array.array elt -> sq: Prims.squash (Steel.ST.Array.adjacent a1 a2) -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 21, "end_line": 284, "start_col": 1, "start_line": 281 }
Steel.Effect.Steel
val upd (#t: Type) (a: array t) (i: US.t) (v: t) : Steel unit (varray a) (fun _ -> varray a) (fun _ -> US.v i < length a) (fun h _ h' -> US.v i < length a /\ asel a h' == Seq.upd (asel a h) (US.v i) v)
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let upd (#t: Type) (a: array t) (i: US.t) (v: t) : Steel unit (varray a) (fun _ -> varray a) (fun _ -> US.v i < length a) (fun h _ h' -> US.v i < length a /\ asel a h' == Seq.upd (asel a h) (US.v i) v ) = let s = elim_varray a in A.pts_to_length a _; A.upd a i v; intro_varray a _
val upd (#t: Type) (a: array t) (i: US.t) (v: t) : Steel unit (varray a) (fun _ -> varray a) (fun _ -> US.v i < length a) (fun h _ h' -> US.v i < length a /\ asel a h' == Seq.upd (asel a h) (US.v i) v) let upd (#t: Type) (a: array t) (i: US.t) (v: t) : Steel unit (varray a) (fun _ -> varray a) (fun _ -> US.v i < length a) (fun h _ h' -> US.v i < length a /\ asel a h' == Seq.upd (asel a h) (US.v i) v) =
true
null
false
let s = elim_varray a in A.pts_to_length a _; A.upd a i v; intro_varray a _
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[]
[ "Steel.ST.Array.array", "FStar.SizeT.t", "Steel.Array.intro_varray", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "FStar.Seq.Base.upd", "FStar.Ghost.reveal", "FStar.Seq.Base.seq", "FStar.SizeT.v", "Prims.unit", "Steel.ST.Array.upd", "Steel.ST.Array.pts_to_length", "Steel.FractionalPermission.full_perm", "FStar.Ghost.erased", "Steel.Array.elim_varray", "Steel.Array.varray", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Prims.b2t", "Prims.op_LessThan", "Steel.ST.Array.length", "Prims.l_and", "Prims.eq2", "Steel.Array.asel" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm [@@ __steel_reduce__] let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varray a) /// Converting a `pts_to` to a `varrayp` val intro_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a p s) (fun _ -> varrayp a p) (fun _ -> True) (fun _ _ h' -> aselp a p h' == s ) let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s ) = intro_varrayp _ _ _ /// Converting a `varrayp` into a `pts_to` val elim_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varrayp a p) (fun res -> pts_to a p res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == aselp a p h ) let elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h ) = elim_varrayp _ _ let varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null ) = let _ = elim_varrayp a p in pts_to_not_null a _; intro_varrayp a p _ /// Allocating a new array of size n, where each cell is initialized /// with value x. We define the non-selector version of this operation /// (and others) with a _pt suffix in the name. inline_for_extraction [@@noextract_to "krml"] let malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x ) = let res = A.malloc x n in intro_varray res _; return res /// Freeing a full array. inline_for_extraction [@@ noextract_to "krml"; warn_on_use "Steel.Array.free is currently unsound in the presence of zero-size subarrays, have you collected them all?"] let free (#elt: Type) (a: array elt) : Steel unit (varray a) (fun _ -> emp) (fun _ -> is_full_array a ) (fun _ _ _ -> True) = let _ = elim_varray a in A.free a /// Sharing and gathering permissions on an array. Those only /// manipulate permissions, so they are nothing more than stateful /// lemmas. inline_for_extraction // FIXME: F* bug. This attribute is not necessary here, but if removed, F* complains about duplicate declaration and definition let share (#opened: _) (#elt: Type) (a: array elt) (p p1 p2: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p1 `star` varrayp a p2) (fun _ -> p == p1 `P.sum_perm` p2) (fun h _ h' -> aselp a p1 h' == aselp a p h /\ aselp a p2 h' == aselp a p h ) = let _ = elim_varrayp a p in A.share a p p1 p2; intro_varrayp a p1 _; intro_varrayp a p2 _ inline_for_extraction // same here let gather (#opened: _) (#elt: Type) (a: array elt) (p1: P.perm) (p2: P.perm) : SteelGhost unit opened (varrayp a p1 `star` varrayp a p2) (fun _ -> varrayp a (p1 `P.sum_perm` p2)) (fun _ -> True) (fun h _ h' -> aselp a (p1 `P.sum_perm` p2) h' == aselp a p1 h /\ aselp a (p1 `P.sum_perm` p2) h' == aselp a p2 h ) = let _ = elim_varrayp a p1 in let _ = elim_varrayp a p2 in A.gather a p1 p2; intro_varrayp a _ _ /// Reading the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let index (#t: Type) (#p: P.perm) (a: array t) (i: US.t) : Steel t (varrayp a p) (fun _ -> varrayp a p) (fun _ -> US.v i < length a) (fun h res h' -> let s = aselp a p h in aselp a p h' == s /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i) ) = let _ = elim_varrayp a p in let res = A.index a i in intro_varrayp a _ _; return res /// Writing the value v at the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let upd (#t: Type) (a: array t) (i: US.t) (v: t) : Steel unit (varray a) (fun _ -> varray a) (fun _ -> US.v i < length a) (fun h _ h' -> US.v i < length a /\ asel a h' == Seq.upd (asel a h) (US.v i) v
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val upd (#t: Type) (a: array t) (i: US.t) (v: t) : Steel unit (varray a) (fun _ -> varray a) (fun _ -> US.v i < length a) (fun h _ h' -> US.v i < length a /\ asel a h' == Seq.upd (asel a h) (US.v i) v)
[]
Steel.Array.upd
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Steel.ST.Array.array t -> i: FStar.SizeT.t -> v: t -> Steel.Effect.Steel Prims.unit
{ "end_col": 18, "end_line": 264, "start_col": 1, "start_line": 261 }
Steel.Effect.Atomic.SteelAtomicBase
val join (#opened: _) (#elt: Type) (#p: P.perm) (a1: array elt) (a2: Ghost.erased (array elt)) : SteelAtomicBase (array elt) false opened Unobservable ((varrayp a1 p) `star` (varrayp a2 p)) (fun res -> varrayp res p) (fun _ -> adjacent a1 a2) (fun h res h' -> merge_into a1 a2 res /\ aselp res p h' == (aselp a1 p h) `Seq.append` (aselp a2 p h))
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let join (#opened: _) (#elt: Type) (#p: P.perm) (a1: array elt) (a2: Ghost.erased (array elt)) : SteelAtomicBase (array elt) false opened Unobservable (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp res p) (fun _ -> adjacent a1 a2) (fun h res h' -> merge_into a1 a2 res /\ aselp res p h' == aselp a1 p h `Seq.append` aselp a2 p h ) = let _ = elim_varrayp a1 _ in let _ = elim_varrayp a2 _ in let res = A.join a1 a2 in intro_varrayp res _ _; return res
val join (#opened: _) (#elt: Type) (#p: P.perm) (a1: array elt) (a2: Ghost.erased (array elt)) : SteelAtomicBase (array elt) false opened Unobservable ((varrayp a1 p) `star` (varrayp a2 p)) (fun res -> varrayp res p) (fun _ -> adjacent a1 a2) (fun h res h' -> merge_into a1 a2 res /\ aselp res p h' == (aselp a1 p h) `Seq.append` (aselp a2 p h)) let join (#opened: _) (#elt: Type) (#p: P.perm) (a1: array elt) (a2: Ghost.erased (array elt)) : SteelAtomicBase (array elt) false opened Unobservable ((varrayp a1 p) `star` (varrayp a2 p)) (fun res -> varrayp res p) (fun _ -> adjacent a1 a2) (fun h res h' -> merge_into a1 a2 res /\ aselp res p h' == (aselp a1 p h) `Seq.append` (aselp a2 p h)) =
true
null
false
let _ = elim_varrayp a1 _ in let _ = elim_varrayp a2 _ in let res = A.join a1 a2 in intro_varrayp res _ _; return res
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "Steel.ST.Array.array", "FStar.Ghost.erased", "Steel.Effect.Atomic.return", "Steel.Array.varrayp", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.Array.intro_varrayp", "FStar.Seq.Base.append", "FStar.Ghost.reveal", "FStar.Seq.Base.seq", "Steel.ST.Array.join", "Steel.Array.elim_varrayp", "Steel.Effect.Common.Unobservable", "Steel.Effect.Common.star", "Steel.Effect.Common.rmem", "Steel.ST.Array.adjacent", "Prims.l_and", "Steel.ST.Array.merge_into", "Prims.eq2", "Steel.Array.aselp" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm [@@ __steel_reduce__] let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varray a) /// Converting a `pts_to` to a `varrayp` val intro_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a p s) (fun _ -> varrayp a p) (fun _ -> True) (fun _ _ h' -> aselp a p h' == s ) let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s ) = intro_varrayp _ _ _ /// Converting a `varrayp` into a `pts_to` val elim_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varrayp a p) (fun res -> pts_to a p res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == aselp a p h ) let elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h ) = elim_varrayp _ _ let varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null ) = let _ = elim_varrayp a p in pts_to_not_null a _; intro_varrayp a p _ /// Allocating a new array of size n, where each cell is initialized /// with value x. We define the non-selector version of this operation /// (and others) with a _pt suffix in the name. inline_for_extraction [@@noextract_to "krml"] let malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x ) = let res = A.malloc x n in intro_varray res _; return res /// Freeing a full array. inline_for_extraction [@@ noextract_to "krml"; warn_on_use "Steel.Array.free is currently unsound in the presence of zero-size subarrays, have you collected them all?"] let free (#elt: Type) (a: array elt) : Steel unit (varray a) (fun _ -> emp) (fun _ -> is_full_array a ) (fun _ _ _ -> True) = let _ = elim_varray a in A.free a /// Sharing and gathering permissions on an array. Those only /// manipulate permissions, so they are nothing more than stateful /// lemmas. inline_for_extraction // FIXME: F* bug. This attribute is not necessary here, but if removed, F* complains about duplicate declaration and definition let share (#opened: _) (#elt: Type) (a: array elt) (p p1 p2: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p1 `star` varrayp a p2) (fun _ -> p == p1 `P.sum_perm` p2) (fun h _ h' -> aselp a p1 h' == aselp a p h /\ aselp a p2 h' == aselp a p h ) = let _ = elim_varrayp a p in A.share a p p1 p2; intro_varrayp a p1 _; intro_varrayp a p2 _ inline_for_extraction // same here let gather (#opened: _) (#elt: Type) (a: array elt) (p1: P.perm) (p2: P.perm) : SteelGhost unit opened (varrayp a p1 `star` varrayp a p2) (fun _ -> varrayp a (p1 `P.sum_perm` p2)) (fun _ -> True) (fun h _ h' -> aselp a (p1 `P.sum_perm` p2) h' == aselp a p1 h /\ aselp a (p1 `P.sum_perm` p2) h' == aselp a p2 h ) = let _ = elim_varrayp a p1 in let _ = elim_varrayp a p2 in A.gather a p1 p2; intro_varrayp a _ _ /// Reading the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let index (#t: Type) (#p: P.perm) (a: array t) (i: US.t) : Steel t (varrayp a p) (fun _ -> varrayp a p) (fun _ -> US.v i < length a) (fun h res h' -> let s = aselp a p h in aselp a p h' == s /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i) ) = let _ = elim_varrayp a p in let res = A.index a i in intro_varrayp a _ _; return res /// Writing the value v at the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let upd (#t: Type) (a: array t) (i: US.t) (v: t) : Steel unit (varray a) (fun _ -> varray a) (fun _ -> US.v i < length a) (fun h _ h' -> US.v i < length a /\ asel a h' == Seq.upd (asel a h) (US.v i) v ) = let s = elim_varray a in A.pts_to_length a _; A.upd a i v; intro_varray a _ /// Spatial merging of two arrays, expressed in terms of `merge`. inline_for_extraction // same as above let ghost_join (#opened: _) (#elt: Type) (#p: P.perm) (a1 a2: array elt) (sq: squash (adjacent a1 a2)) : SteelGhost unit opened (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp (merge a1 a2) p) (fun _ -> True) (fun h _ h' -> aselp (merge a1 a2) p h' == aselp a1 p h `Seq.append` aselp a2 p h ) = let _ = elim_varrayp a1 p in let _ = elim_varrayp a2 p in A.ghost_join a1 a2 (); intro_varrayp _ _ _ /// Spatial merging, combining the use of `merge` and the call to the /// stateful lemma. Since the only operations are calls to stateful /// lemmas and pure computations, the overall computation is atomic /// and unobservable, so can be used anywhere in atomic contexts. By /// virtue of the length being ghost, Karamel will extract this to /// "let res = a1" inline_for_extraction // this will extract to "let res = a1" [@@noextract_to "krml"] let join (#opened: _) (#elt: Type) (#p: P.perm) (a1: array elt) (a2: Ghost.erased (array elt)) : SteelAtomicBase (array elt) false opened Unobservable (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp res p) (fun _ -> adjacent a1 a2) (fun h res h' -> merge_into a1 a2 res /\ aselp res p h' == aselp a1 p h `Seq.append` aselp a2 p h
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val join (#opened: _) (#elt: Type) (#p: P.perm) (a1: array elt) (a2: Ghost.erased (array elt)) : SteelAtomicBase (array elt) false opened Unobservable ((varrayp a1 p) `star` (varrayp a2 p)) (fun res -> varrayp res p) (fun _ -> adjacent a1 a2) (fun h res h' -> merge_into a1 a2 res /\ aselp res p h' == (aselp a1 p h) `Seq.append` (aselp a2 p h))
[]
Steel.Array.join
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a1: Steel.ST.Array.array elt -> a2: FStar.Ghost.erased (Steel.ST.Array.array elt) -> Steel.Effect.Atomic.SteelAtomicBase (Steel.ST.Array.array elt)
{ "end_col": 12, "end_line": 312, "start_col": 1, "start_line": 308 }
Steel.Effect.Steel
val memcpy (#t: _) (#p0: P.perm) (a0 a1: array t) (i: US.t) : Steel unit ((varrayp a0 p0) `star` (varray a1)) (fun _ -> (varrayp a0 p0) `star` (varray a1)) (requires fun _ -> US.v i == length a0 /\ length a0 == length a1) (ensures fun h0 _ h1 -> length a0 == length a1 /\ aselp a0 p0 h0 == aselp a0 p0 h1 /\ asel a1 h1 == aselp a0 p0 h1 )
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let memcpy (#t:_) (#p0:P.perm) (a0 a1:array t) (i:US.t) : Steel unit (varrayp a0 p0 `star` varray a1) (fun _ -> varrayp a0 p0 `star` varray a1) (requires fun _ -> US.v i == length a0 /\ length a0 == length a1) (ensures fun h0 _ h1 -> length a0 == length a1 /\ aselp a0 p0 h0 == aselp a0 p0 h1 /\ asel a1 h1 == aselp a0 p0 h1) = let _ = elim_varrayp a0 _ in let _ = elim_varray a1 in A.memcpy a0 a1 i; intro_varrayp a0 _ _; intro_varray a1 _
val memcpy (#t: _) (#p0: P.perm) (a0 a1: array t) (i: US.t) : Steel unit ((varrayp a0 p0) `star` (varray a1)) (fun _ -> (varrayp a0 p0) `star` (varray a1)) (requires fun _ -> US.v i == length a0 /\ length a0 == length a1) (ensures fun h0 _ h1 -> length a0 == length a1 /\ aselp a0 p0 h0 == aselp a0 p0 h1 /\ asel a1 h1 == aselp a0 p0 h1 ) let memcpy (#t: _) (#p0: P.perm) (a0 a1: array t) (i: US.t) : Steel unit ((varrayp a0 p0) `star` (varray a1)) (fun _ -> (varrayp a0 p0) `star` (varray a1)) (requires fun _ -> US.v i == length a0 /\ length a0 == length a1) (ensures fun h0 _ h1 -> length a0 == length a1 /\ aselp a0 p0 h0 == aselp a0 p0 h1 /\ asel a1 h1 == aselp a0 p0 h1 ) =
true
null
false
let _ = elim_varrayp a0 _ in let _ = elim_varray a1 in A.memcpy a0 a1 i; intro_varrayp a0 _ _; intro_varray a1 _
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[]
[ "Steel.FractionalPermission.perm", "Steel.ST.Array.array", "FStar.SizeT.t", "Steel.Array.intro_varray", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "FStar.Ghost.reveal", "FStar.Seq.Base.seq", "Prims.unit", "Steel.Array.intro_varrayp", "Steel.ST.Array.memcpy", "FStar.Ghost.erased", "Steel.Array.elim_varray", "Steel.Array.elim_varrayp", "Steel.Effect.Common.star", "Steel.Array.varrayp", "Steel.Array.varray", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.SizeT.v", "Steel.ST.Array.length", "FStar.Seq.Properties.lseq", "Steel.Array.aselp", "Steel.Array.asel" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm [@@ __steel_reduce__] let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varray a) /// Converting a `pts_to` to a `varrayp` val intro_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a p s) (fun _ -> varrayp a p) (fun _ -> True) (fun _ _ h' -> aselp a p h' == s ) let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s ) = intro_varrayp _ _ _ /// Converting a `varrayp` into a `pts_to` val elim_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varrayp a p) (fun res -> pts_to a p res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == aselp a p h ) let elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h ) = elim_varrayp _ _ let varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null ) = let _ = elim_varrayp a p in pts_to_not_null a _; intro_varrayp a p _ /// Allocating a new array of size n, where each cell is initialized /// with value x. We define the non-selector version of this operation /// (and others) with a _pt suffix in the name. inline_for_extraction [@@noextract_to "krml"] let malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x ) = let res = A.malloc x n in intro_varray res _; return res /// Freeing a full array. inline_for_extraction [@@ noextract_to "krml"; warn_on_use "Steel.Array.free is currently unsound in the presence of zero-size subarrays, have you collected them all?"] let free (#elt: Type) (a: array elt) : Steel unit (varray a) (fun _ -> emp) (fun _ -> is_full_array a ) (fun _ _ _ -> True) = let _ = elim_varray a in A.free a /// Sharing and gathering permissions on an array. Those only /// manipulate permissions, so they are nothing more than stateful /// lemmas. inline_for_extraction // FIXME: F* bug. This attribute is not necessary here, but if removed, F* complains about duplicate declaration and definition let share (#opened: _) (#elt: Type) (a: array elt) (p p1 p2: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p1 `star` varrayp a p2) (fun _ -> p == p1 `P.sum_perm` p2) (fun h _ h' -> aselp a p1 h' == aselp a p h /\ aselp a p2 h' == aselp a p h ) = let _ = elim_varrayp a p in A.share a p p1 p2; intro_varrayp a p1 _; intro_varrayp a p2 _ inline_for_extraction // same here let gather (#opened: _) (#elt: Type) (a: array elt) (p1: P.perm) (p2: P.perm) : SteelGhost unit opened (varrayp a p1 `star` varrayp a p2) (fun _ -> varrayp a (p1 `P.sum_perm` p2)) (fun _ -> True) (fun h _ h' -> aselp a (p1 `P.sum_perm` p2) h' == aselp a p1 h /\ aselp a (p1 `P.sum_perm` p2) h' == aselp a p2 h ) = let _ = elim_varrayp a p1 in let _ = elim_varrayp a p2 in A.gather a p1 p2; intro_varrayp a _ _ /// Reading the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let index (#t: Type) (#p: P.perm) (a: array t) (i: US.t) : Steel t (varrayp a p) (fun _ -> varrayp a p) (fun _ -> US.v i < length a) (fun h res h' -> let s = aselp a p h in aselp a p h' == s /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i) ) = let _ = elim_varrayp a p in let res = A.index a i in intro_varrayp a _ _; return res /// Writing the value v at the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let upd (#t: Type) (a: array t) (i: US.t) (v: t) : Steel unit (varray a) (fun _ -> varray a) (fun _ -> US.v i < length a) (fun h _ h' -> US.v i < length a /\ asel a h' == Seq.upd (asel a h) (US.v i) v ) = let s = elim_varray a in A.pts_to_length a _; A.upd a i v; intro_varray a _ /// Spatial merging of two arrays, expressed in terms of `merge`. inline_for_extraction // same as above let ghost_join (#opened: _) (#elt: Type) (#p: P.perm) (a1 a2: array elt) (sq: squash (adjacent a1 a2)) : SteelGhost unit opened (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp (merge a1 a2) p) (fun _ -> True) (fun h _ h' -> aselp (merge a1 a2) p h' == aselp a1 p h `Seq.append` aselp a2 p h ) = let _ = elim_varrayp a1 p in let _ = elim_varrayp a2 p in A.ghost_join a1 a2 (); intro_varrayp _ _ _ /// Spatial merging, combining the use of `merge` and the call to the /// stateful lemma. Since the only operations are calls to stateful /// lemmas and pure computations, the overall computation is atomic /// and unobservable, so can be used anywhere in atomic contexts. By /// virtue of the length being ghost, Karamel will extract this to /// "let res = a1" inline_for_extraction // this will extract to "let res = a1" [@@noextract_to "krml"] let join (#opened: _) (#elt: Type) (#p: P.perm) (a1: array elt) (a2: Ghost.erased (array elt)) : SteelAtomicBase (array elt) false opened Unobservable (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp res p) (fun _ -> adjacent a1 a2) (fun h res h' -> merge_into a1 a2 res /\ aselp res p h' == aselp a1 p h `Seq.append` aselp a2 p h ) = let _ = elim_varrayp a1 _ in let _ = elim_varrayp a2 _ in let res = A.join a1 a2 in intro_varrayp res _ _; return res /// Splitting an array a at offset i, as a stateful lemma expressed in /// terms of split_l, split_r. In the non-selector case, this stateful /// lemma returns a proof that offset i is in bounds of the value /// sequence, which is needed to typecheck the post-resource. inline_for_extraction // same as above let ghost_split (#opened: _) (#elt: Type) (#p: P.perm) (a: array elt) (i: US.t { US.v i <= length a }) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp (split_l a i) p `star` varrayp (split_r a i) p) (fun _ -> True) (fun h _ h' -> let x = aselp a p h in let xl = Seq.slice x 0 (US.v i) in let xr = Seq.slice x (US.v i) (Seq.length x) in aselp (split_l a i) p h' == xl /\ aselp (split_r a i) p h' == xr /\ x == Seq.append xl xr ) = let _ = elim_varrayp a _ in A.ghost_split a i; intro_varrayp (split_l a i) _ _; intro_varrayp (split_r a i) _ _ /// NOTE: we could implement a SteelAtomicBase Unobservable "split" /// operation, just like "join", but we don't want it to return a pair /// of arrays. For now we settle on explicit use of split_l, split_r. /// Copies the contents of a0 to a1 inline_for_extraction let memcpy (#t:_) (#p0:P.perm) (a0 a1:array t) (i:US.t) : Steel unit (varrayp a0 p0 `star` varray a1) (fun _ -> varrayp a0 p0 `star` varray a1) (requires fun _ -> US.v i == length a0 /\ length a0 == length a1) (ensures fun h0 _ h1 -> length a0 == length a1 /\ aselp a0 p0 h0 == aselp a0 p0 h1 /\
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val memcpy (#t: _) (#p0: P.perm) (a0 a1: array t) (i: US.t) : Steel unit ((varrayp a0 p0) `star` (varray a1)) (fun _ -> (varrayp a0 p0) `star` (varray a1)) (requires fun _ -> US.v i == length a0 /\ length a0 == length a1) (ensures fun h0 _ h1 -> length a0 == length a1 /\ aselp a0 p0 h0 == aselp a0 p0 h1 /\ asel a1 h1 == aselp a0 p0 h1 )
[]
Steel.Array.memcpy
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a0: Steel.ST.Array.array t -> a1: Steel.ST.Array.array t -> i: FStar.SizeT.t -> Steel.Effect.Steel Prims.unit
{ "end_col": 21, "end_line": 366, "start_col": 3, "start_line": 361 }
Steel.Effect.Steel
val ptrdiff (#a: Type) (#p1 #p2: P.perm) (arr1 arr2: array a) : Steel UP.t ((varrayp arr1 p1) `star` (varrayp arr2 p2)) (fun _ -> (varrayp arr1 p1) `star` (varrayp arr2 p2)) (requires fun _ -> base (ptr_of arr1) == base (ptr_of arr2) /\ UP.fits (offset (ptr_of arr1) - offset (ptr_of arr2))) (ensures fun h0 r h1 -> aselp arr1 p1 h1 == aselp arr1 p1 h0 /\ aselp arr2 p2 h1 == aselp arr2 p2 h0 /\ UP.v r == offset (ptr_of arr1) - offset (ptr_of arr2))
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ptrdiff (#a: Type) (#p1 #p2:P.perm) (arr1 arr2: array a) : Steel UP.t (varrayp arr1 p1 `star` varrayp arr2 p2) (fun _ -> varrayp arr1 p1 `star` varrayp arr2 p2) (requires fun _ -> base (ptr_of arr1) == base (ptr_of arr2) /\ UP.fits (offset (ptr_of arr1) - offset (ptr_of arr2))) (ensures fun h0 r h1 -> aselp arr1 p1 h1 == aselp arr1 p1 h0 /\ aselp arr2 p2 h1 == aselp arr2 p2 h0 /\ UP.v r == offset (ptr_of arr1) - offset (ptr_of arr2) ) = let _ = elim_varrayp arr1 p1 in let _ = elim_varrayp arr2 p2 in let res = A.ptrdiff arr1 arr2 in intro_varrayp arr1 _ _; intro_varrayp arr2 _ _; return res
val ptrdiff (#a: Type) (#p1 #p2: P.perm) (arr1 arr2: array a) : Steel UP.t ((varrayp arr1 p1) `star` (varrayp arr2 p2)) (fun _ -> (varrayp arr1 p1) `star` (varrayp arr2 p2)) (requires fun _ -> base (ptr_of arr1) == base (ptr_of arr2) /\ UP.fits (offset (ptr_of arr1) - offset (ptr_of arr2))) (ensures fun h0 r h1 -> aselp arr1 p1 h1 == aselp arr1 p1 h0 /\ aselp arr2 p2 h1 == aselp arr2 p2 h0 /\ UP.v r == offset (ptr_of arr1) - offset (ptr_of arr2)) let ptrdiff (#a: Type) (#p1 #p2: P.perm) (arr1 arr2: array a) : Steel UP.t ((varrayp arr1 p1) `star` (varrayp arr2 p2)) (fun _ -> (varrayp arr1 p1) `star` (varrayp arr2 p2)) (requires fun _ -> base (ptr_of arr1) == base (ptr_of arr2) /\ UP.fits (offset (ptr_of arr1) - offset (ptr_of arr2))) (ensures fun h0 r h1 -> aselp arr1 p1 h1 == aselp arr1 p1 h0 /\ aselp arr2 p2 h1 == aselp arr2 p2 h0 /\ UP.v r == offset (ptr_of arr1) - offset (ptr_of arr2)) =
true
null
false
let _ = elim_varrayp arr1 p1 in let _ = elim_varrayp arr2 p2 in let res = A.ptrdiff arr1 arr2 in intro_varrayp arr1 _ _; intro_varrayp arr2 _ _; return res
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[]
[ "Steel.FractionalPermission.perm", "Steel.ST.Array.array", "Steel.Effect.Atomic.return", "FStar.PtrdiffT.t", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Effect.Common.VStar", "Steel.Array.varrayp", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.Array.intro_varrayp", "FStar.Ghost.reveal", "FStar.Seq.Base.seq", "Steel.ST.Array.ptrdiff", "FStar.Ghost.erased", "Steel.Array.elim_varrayp", "Steel.Effect.Common.star", "Steel.Effect.Common.rmem", "Prims.l_and", "Prims.eq2", "Steel.ST.Array.base_t", "Steel.ST.Array.base", "Steel.ST.Array.ptr_of", "FStar.PtrdiffT.fits", "Prims.op_Subtraction", "Steel.ST.Array.offset", "FStar.Seq.Properties.lseq", "Steel.ST.Array.length", "Steel.Array.aselp", "Prims.int", "FStar.PtrdiffT.v" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm [@@ __steel_reduce__] let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varray a) /// Converting a `pts_to` to a `varrayp` val intro_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a p s) (fun _ -> varrayp a p) (fun _ -> True) (fun _ _ h' -> aselp a p h' == s ) let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s ) = intro_varrayp _ _ _ /// Converting a `varrayp` into a `pts_to` val elim_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varrayp a p) (fun res -> pts_to a p res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == aselp a p h ) let elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h ) = elim_varrayp _ _ let varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null ) = let _ = elim_varrayp a p in pts_to_not_null a _; intro_varrayp a p _ /// Allocating a new array of size n, where each cell is initialized /// with value x. We define the non-selector version of this operation /// (and others) with a _pt suffix in the name. inline_for_extraction [@@noextract_to "krml"] let malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x ) = let res = A.malloc x n in intro_varray res _; return res /// Freeing a full array. inline_for_extraction [@@ noextract_to "krml"; warn_on_use "Steel.Array.free is currently unsound in the presence of zero-size subarrays, have you collected them all?"] let free (#elt: Type) (a: array elt) : Steel unit (varray a) (fun _ -> emp) (fun _ -> is_full_array a ) (fun _ _ _ -> True) = let _ = elim_varray a in A.free a /// Sharing and gathering permissions on an array. Those only /// manipulate permissions, so they are nothing more than stateful /// lemmas. inline_for_extraction // FIXME: F* bug. This attribute is not necessary here, but if removed, F* complains about duplicate declaration and definition let share (#opened: _) (#elt: Type) (a: array elt) (p p1 p2: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p1 `star` varrayp a p2) (fun _ -> p == p1 `P.sum_perm` p2) (fun h _ h' -> aselp a p1 h' == aselp a p h /\ aselp a p2 h' == aselp a p h ) = let _ = elim_varrayp a p in A.share a p p1 p2; intro_varrayp a p1 _; intro_varrayp a p2 _ inline_for_extraction // same here let gather (#opened: _) (#elt: Type) (a: array elt) (p1: P.perm) (p2: P.perm) : SteelGhost unit opened (varrayp a p1 `star` varrayp a p2) (fun _ -> varrayp a (p1 `P.sum_perm` p2)) (fun _ -> True) (fun h _ h' -> aselp a (p1 `P.sum_perm` p2) h' == aselp a p1 h /\ aselp a (p1 `P.sum_perm` p2) h' == aselp a p2 h ) = let _ = elim_varrayp a p1 in let _ = elim_varrayp a p2 in A.gather a p1 p2; intro_varrayp a _ _ /// Reading the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let index (#t: Type) (#p: P.perm) (a: array t) (i: US.t) : Steel t (varrayp a p) (fun _ -> varrayp a p) (fun _ -> US.v i < length a) (fun h res h' -> let s = aselp a p h in aselp a p h' == s /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i) ) = let _ = elim_varrayp a p in let res = A.index a i in intro_varrayp a _ _; return res /// Writing the value v at the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let upd (#t: Type) (a: array t) (i: US.t) (v: t) : Steel unit (varray a) (fun _ -> varray a) (fun _ -> US.v i < length a) (fun h _ h' -> US.v i < length a /\ asel a h' == Seq.upd (asel a h) (US.v i) v ) = let s = elim_varray a in A.pts_to_length a _; A.upd a i v; intro_varray a _ /// Spatial merging of two arrays, expressed in terms of `merge`. inline_for_extraction // same as above let ghost_join (#opened: _) (#elt: Type) (#p: P.perm) (a1 a2: array elt) (sq: squash (adjacent a1 a2)) : SteelGhost unit opened (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp (merge a1 a2) p) (fun _ -> True) (fun h _ h' -> aselp (merge a1 a2) p h' == aselp a1 p h `Seq.append` aselp a2 p h ) = let _ = elim_varrayp a1 p in let _ = elim_varrayp a2 p in A.ghost_join a1 a2 (); intro_varrayp _ _ _ /// Spatial merging, combining the use of `merge` and the call to the /// stateful lemma. Since the only operations are calls to stateful /// lemmas and pure computations, the overall computation is atomic /// and unobservable, so can be used anywhere in atomic contexts. By /// virtue of the length being ghost, Karamel will extract this to /// "let res = a1" inline_for_extraction // this will extract to "let res = a1" [@@noextract_to "krml"] let join (#opened: _) (#elt: Type) (#p: P.perm) (a1: array elt) (a2: Ghost.erased (array elt)) : SteelAtomicBase (array elt) false opened Unobservable (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp res p) (fun _ -> adjacent a1 a2) (fun h res h' -> merge_into a1 a2 res /\ aselp res p h' == aselp a1 p h `Seq.append` aselp a2 p h ) = let _ = elim_varrayp a1 _ in let _ = elim_varrayp a2 _ in let res = A.join a1 a2 in intro_varrayp res _ _; return res /// Splitting an array a at offset i, as a stateful lemma expressed in /// terms of split_l, split_r. In the non-selector case, this stateful /// lemma returns a proof that offset i is in bounds of the value /// sequence, which is needed to typecheck the post-resource. inline_for_extraction // same as above let ghost_split (#opened: _) (#elt: Type) (#p: P.perm) (a: array elt) (i: US.t { US.v i <= length a }) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp (split_l a i) p `star` varrayp (split_r a i) p) (fun _ -> True) (fun h _ h' -> let x = aselp a p h in let xl = Seq.slice x 0 (US.v i) in let xr = Seq.slice x (US.v i) (Seq.length x) in aselp (split_l a i) p h' == xl /\ aselp (split_r a i) p h' == xr /\ x == Seq.append xl xr ) = let _ = elim_varrayp a _ in A.ghost_split a i; intro_varrayp (split_l a i) _ _; intro_varrayp (split_r a i) _ _ /// NOTE: we could implement a SteelAtomicBase Unobservable "split" /// operation, just like "join", but we don't want it to return a pair /// of arrays. For now we settle on explicit use of split_l, split_r. /// Copies the contents of a0 to a1 inline_for_extraction let memcpy (#t:_) (#p0:P.perm) (a0 a1:array t) (i:US.t) : Steel unit (varrayp a0 p0 `star` varray a1) (fun _ -> varrayp a0 p0 `star` varray a1) (requires fun _ -> US.v i == length a0 /\ length a0 == length a1) (ensures fun h0 _ h1 -> length a0 == length a1 /\ aselp a0 p0 h0 == aselp a0 p0 h1 /\ asel a1 h1 == aselp a0 p0 h1) = let _ = elim_varrayp a0 _ in let _ = elim_varray a1 in A.memcpy a0 a1 i; intro_varrayp a0 _ _; intro_varray a1 _ /// Decides whether the contents of a0 and a1 are equal inline_for_extraction let compare (#t:eqtype) (#p0 #p1:P.perm) (a0 a1:array t) (l:US.t { length a0 == length a1 /\ US.v l == length a0}) : Steel bool (varrayp a0 p0 `star` varrayp a1 p1) (fun _ -> varrayp a0 p0 `star` varrayp a1 p1) (requires fun _ -> True) (ensures fun h0 b h1 -> aselp a0 p0 h0 == aselp a0 p0 h1 /\ aselp a1 p1 h0 == aselp a1 p1 h1 /\ b = (aselp a0 p0 h1 = aselp a1 p1 h1)) = let _ = elim_varrayp a0 _ in let _ = elim_varrayp a1 _ in let res = A.compare a0 a1 l in intro_varrayp a0 _ _; intro_varrayp a1 _ _; return res /// An introduction function for the fits_u32 predicate. /// It will be natively extracted to static_assert (UINT32_MAX <= SIZE_T_MAX) by krml inline_for_extraction [@@noextract_to "krml"] let intro_fits_u32 (_:unit) : SteelT (squash (US.fits_u32)) emp (fun _ -> emp) = A.intro_fits_u32 () /// An introduction function for the fits_u64 predicate. /// It will be natively extracted to static_assert (UINT64_MAX <= SIZE_T_MAX) by krml inline_for_extraction [@@noextract_to "krml"] let intro_fits_u64 (_:unit) : SteelT (squash (US.fits_u64)) emp (fun _ -> emp) = A.intro_fits_u64 () /// Determining whether int32 values fit in a ptrdiff /// It will be natively extracted to static_assert (INT32_MAX <= PTRDIFF_MAX) by krml inline_for_extraction [@@noextract_to "krml"] let intro_fits_ptrdiff32 (_:unit) : SteelT (squash (UP.fits (FStar.Int.max_int 32))) emp (fun _ -> emp) = A.intro_fits_ptrdiff32 () /// Determining whether int64 values fit in a ptrdiff /// It will be natively extracted to static_assert (INT64_MAX <= PTRDIFF_MAX) by krml inline_for_extraction [@@noextract_to "krml"] let intro_fits_ptrdiff64 (_:unit) : SteelT (squash (UP.fits (FStar.Int.max_int 64))) emp (fun _ -> emp) = A.intro_fits_ptrdiff64 () inline_for_extraction [@@noextract_to "krml"] let ptrdiff (#a: Type) (#p1 #p2:P.perm) (arr1 arr2: array a) : Steel UP.t (varrayp arr1 p1 `star` varrayp arr2 p2) (fun _ -> varrayp arr1 p1 `star` varrayp arr2 p2) (requires fun _ -> base (ptr_of arr1) == base (ptr_of arr2) /\ UP.fits (offset (ptr_of arr1) - offset (ptr_of arr2))) (ensures fun h0 r h1 -> aselp arr1 p1 h1 == aselp arr1 p1 h0 /\ aselp arr2 p2 h1 == aselp arr2 p2 h0 /\ UP.v r == offset (ptr_of arr1) - offset (ptr_of arr2)
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ptrdiff (#a: Type) (#p1 #p2: P.perm) (arr1 arr2: array a) : Steel UP.t ((varrayp arr1 p1) `star` (varrayp arr2 p2)) (fun _ -> (varrayp arr1 p1) `star` (varrayp arr2 p2)) (requires fun _ -> base (ptr_of arr1) == base (ptr_of arr2) /\ UP.fits (offset (ptr_of arr1) - offset (ptr_of arr2))) (ensures fun h0 r h1 -> aselp arr1 p1 h1 == aselp arr1 p1 h0 /\ aselp arr2 p2 h1 == aselp arr2 p2 h0 /\ UP.v r == offset (ptr_of arr1) - offset (ptr_of arr2))
[]
Steel.Array.ptrdiff
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
arr1: Steel.ST.Array.array a -> arr2: Steel.ST.Array.array a -> Steel.Effect.Steel FStar.PtrdiffT.t
{ "end_col": 14, "end_line": 444, "start_col": 3, "start_line": 439 }
Steel.Effect.Steel
val compare (#t: eqtype) (#p0 #p1: P.perm) (a0 a1: array t) (l: US.t{length a0 == length a1 /\ US.v l == length a0}) : Steel bool ((varrayp a0 p0) `star` (varrayp a1 p1)) (fun _ -> (varrayp a0 p0) `star` (varrayp a1 p1)) (requires fun _ -> True) (ensures fun h0 b h1 -> aselp a0 p0 h0 == aselp a0 p0 h1 /\ aselp a1 p1 h0 == aselp a1 p1 h1 /\ b = (aselp a0 p0 h1 = aselp a1 p1 h1))
[ { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "STC" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let compare (#t:eqtype) (#p0 #p1:P.perm) (a0 a1:array t) (l:US.t { length a0 == length a1 /\ US.v l == length a0}) : Steel bool (varrayp a0 p0 `star` varrayp a1 p1) (fun _ -> varrayp a0 p0 `star` varrayp a1 p1) (requires fun _ -> True) (ensures fun h0 b h1 -> aselp a0 p0 h0 == aselp a0 p0 h1 /\ aselp a1 p1 h0 == aselp a1 p1 h1 /\ b = (aselp a0 p0 h1 = aselp a1 p1 h1)) = let _ = elim_varrayp a0 _ in let _ = elim_varrayp a1 _ in let res = A.compare a0 a1 l in intro_varrayp a0 _ _; intro_varrayp a1 _ _; return res
val compare (#t: eqtype) (#p0 #p1: P.perm) (a0 a1: array t) (l: US.t{length a0 == length a1 /\ US.v l == length a0}) : Steel bool ((varrayp a0 p0) `star` (varrayp a1 p1)) (fun _ -> (varrayp a0 p0) `star` (varrayp a1 p1)) (requires fun _ -> True) (ensures fun h0 b h1 -> aselp a0 p0 h0 == aselp a0 p0 h1 /\ aselp a1 p1 h0 == aselp a1 p1 h1 /\ b = (aselp a0 p0 h1 = aselp a1 p1 h1)) let compare (#t: eqtype) (#p0 #p1: P.perm) (a0 a1: array t) (l: US.t{length a0 == length a1 /\ US.v l == length a0}) : Steel bool ((varrayp a0 p0) `star` (varrayp a1 p1)) (fun _ -> (varrayp a0 p0) `star` (varrayp a1 p1)) (requires fun _ -> True) (ensures fun h0 b h1 -> aselp a0 p0 h0 == aselp a0 p0 h1 /\ aselp a1 p1 h0 == aselp a1 p1 h1 /\ b = (aselp a0 p0 h1 = aselp a1 p1 h1)) =
true
null
false
let _ = elim_varrayp a0 _ in let _ = elim_varrayp a1 _ in let res = A.compare a0 a1 l in intro_varrayp a0 _ _; intro_varrayp a1 _ _; return res
{ "checked_file": "Steel.Array.fsti.checked", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.PtrdiffT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Array.fsti" }
[]
[ "Prims.eqtype", "Steel.FractionalPermission.perm", "Steel.ST.Array.array", "FStar.SizeT.t", "Prims.l_and", "Prims.eq2", "Prims.nat", "Steel.ST.Array.length", "FStar.SizeT.v", "Steel.Effect.Atomic.return", "Prims.bool", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Effect.Common.VStar", "Steel.Array.varrayp", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.Array.intro_varrayp", "FStar.Ghost.reveal", "FStar.Seq.Base.seq", "Steel.ST.Array.compare", "FStar.Ghost.erased", "Steel.Array.elim_varrayp", "Steel.Effect.Common.star", "Steel.Effect.Common.rmem", "Prims.l_True", "FStar.Seq.Properties.lseq", "Steel.Array.aselp", "Prims.b2t", "Prims.op_Equality" ]
[]
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Array open Steel.Memory open Steel.Effect.Atomic open Steel.Effect include Steel.ST.Array /// C arrays of universe 0 elements, with selectors. /// Non-selector style universe 0 arrays are defined in Steel.ST, but /// we want to transparently reuse the corresponding operations in /// Steel, so we need to bring in the lift from Steel.ST to Steel, /// defined in Steel.ST.Coercions. module STC = Steel.ST.Coercions module P = Steel.FractionalPermission module US = FStar.SizeT module UP = FStar.PtrdiffT module A = Steel.ST.Array /// A selector version /// Separation logic predicate indicating the validity of the array in the current memory, p is the fractional permission on the array val varrayp_hp (#elt: Type0) (a: array elt) (p: P.perm) : Tot (slprop u#1) /// Selector for Steel arrays. It returns the contents in memory of the array val varrayp_sel (#elt: Type) (a: array elt) (p: P.perm) : Tot (selector (Seq.lseq elt (length a)) (varrayp_hp a p)) /// Combining the elements above to create an array vprop [@__steel_reduce__] // for t_of let varrayp (#elt: Type) (a: array elt) (p: P.perm) : Tot vprop = VUnit ({ hp = varrayp_hp a p; t = _; sel = varrayp_sel a p; }) /// A wrapper to access an array selector more easily. /// Ensuring that the corresponding array vprop is in the context is done by /// calling a variant of the framing tactic, as defined in Steel.Effect.Common [@@ __steel_reduce__] let aselp (#elt: Type) (#vp: vprop) (a: array elt) (p: P.perm) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varrayp a p) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varrayp a p) [@@__steel_reduce__; __reduce__] let varray (#elt: Type) (a: array elt) : Tot vprop = varrayp a P.full_perm [@@ __steel_reduce__] let asel (#elt: Type) (#vp: vprop) (a: array elt) (h: rmem vp { FStar.Tactics.with_tactic selector_tactic (can_be_split vp (varray a) /\ True) }) : GTot (Seq.lseq elt (length a)) = h (varray a) /// Converting a `pts_to` to a `varrayp` val intro_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a p s) (fun _ -> varrayp a p) (fun _ -> True) (fun _ _ h' -> aselp a p h' == s ) let intro_varray (#opened: _) (#elt: Type) (a: array elt) (s: Seq.seq elt) : SteelGhost unit opened (pts_to a P.full_perm s) (fun _ -> varray a) (fun _ -> True) (fun _ _ h' -> asel a h' == s ) = intro_varrayp _ _ _ /// Converting a `varrayp` into a `pts_to` val elim_varrayp (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varrayp a p) (fun res -> pts_to a p res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == aselp a p h ) let elim_varray (#opened: _) (#elt: Type) (a: array elt) : SteelGhost (Ghost.erased (Seq.seq elt)) opened (varray a) (fun res -> pts_to a P.full_perm res) (fun _ -> True) (fun h res _ -> Ghost.reveal res == asel a h ) = elim_varrayp _ _ let varrayp_not_null (#opened: _) (#elt: Type) (a: array elt) (p: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p) (fun _ -> True) (fun h _ h' -> aselp a p h' == aselp a p h /\ a =!= null ) = let _ = elim_varrayp a p in pts_to_not_null a _; intro_varrayp a p _ /// Allocating a new array of size n, where each cell is initialized /// with value x. We define the non-selector version of this operation /// (and others) with a _pt suffix in the name. inline_for_extraction [@@noextract_to "krml"] let malloc (#elt: Type) (x: elt) (n: US.t) : Steel (array elt) emp (fun a -> varray a) (fun _ -> True) (fun _ a h' -> length a == US.v n /\ is_full_array a /\ asel a h' == Seq.create (US.v n) x ) = let res = A.malloc x n in intro_varray res _; return res /// Freeing a full array. inline_for_extraction [@@ noextract_to "krml"; warn_on_use "Steel.Array.free is currently unsound in the presence of zero-size subarrays, have you collected them all?"] let free (#elt: Type) (a: array elt) : Steel unit (varray a) (fun _ -> emp) (fun _ -> is_full_array a ) (fun _ _ _ -> True) = let _ = elim_varray a in A.free a /// Sharing and gathering permissions on an array. Those only /// manipulate permissions, so they are nothing more than stateful /// lemmas. inline_for_extraction // FIXME: F* bug. This attribute is not necessary here, but if removed, F* complains about duplicate declaration and definition let share (#opened: _) (#elt: Type) (a: array elt) (p p1 p2: P.perm) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp a p1 `star` varrayp a p2) (fun _ -> p == p1 `P.sum_perm` p2) (fun h _ h' -> aselp a p1 h' == aselp a p h /\ aselp a p2 h' == aselp a p h ) = let _ = elim_varrayp a p in A.share a p p1 p2; intro_varrayp a p1 _; intro_varrayp a p2 _ inline_for_extraction // same here let gather (#opened: _) (#elt: Type) (a: array elt) (p1: P.perm) (p2: P.perm) : SteelGhost unit opened (varrayp a p1 `star` varrayp a p2) (fun _ -> varrayp a (p1 `P.sum_perm` p2)) (fun _ -> True) (fun h _ h' -> aselp a (p1 `P.sum_perm` p2) h' == aselp a p1 h /\ aselp a (p1 `P.sum_perm` p2) h' == aselp a p2 h ) = let _ = elim_varrayp a p1 in let _ = elim_varrayp a p2 in A.gather a p1 p2; intro_varrayp a _ _ /// Reading the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let index (#t: Type) (#p: P.perm) (a: array t) (i: US.t) : Steel t (varrayp a p) (fun _ -> varrayp a p) (fun _ -> US.v i < length a) (fun h res h' -> let s = aselp a p h in aselp a p h' == s /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i) ) = let _ = elim_varrayp a p in let res = A.index a i in intro_varrayp a _ _; return res /// Writing the value v at the i-th element of an array a. /// TODO: we should also provide an atomic version for small types. inline_for_extraction [@@noextract_to "krml"] let upd (#t: Type) (a: array t) (i: US.t) (v: t) : Steel unit (varray a) (fun _ -> varray a) (fun _ -> US.v i < length a) (fun h _ h' -> US.v i < length a /\ asel a h' == Seq.upd (asel a h) (US.v i) v ) = let s = elim_varray a in A.pts_to_length a _; A.upd a i v; intro_varray a _ /// Spatial merging of two arrays, expressed in terms of `merge`. inline_for_extraction // same as above let ghost_join (#opened: _) (#elt: Type) (#p: P.perm) (a1 a2: array elt) (sq: squash (adjacent a1 a2)) : SteelGhost unit opened (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp (merge a1 a2) p) (fun _ -> True) (fun h _ h' -> aselp (merge a1 a2) p h' == aselp a1 p h `Seq.append` aselp a2 p h ) = let _ = elim_varrayp a1 p in let _ = elim_varrayp a2 p in A.ghost_join a1 a2 (); intro_varrayp _ _ _ /// Spatial merging, combining the use of `merge` and the call to the /// stateful lemma. Since the only operations are calls to stateful /// lemmas and pure computations, the overall computation is atomic /// and unobservable, so can be used anywhere in atomic contexts. By /// virtue of the length being ghost, Karamel will extract this to /// "let res = a1" inline_for_extraction // this will extract to "let res = a1" [@@noextract_to "krml"] let join (#opened: _) (#elt: Type) (#p: P.perm) (a1: array elt) (a2: Ghost.erased (array elt)) : SteelAtomicBase (array elt) false opened Unobservable (varrayp a1 p `star` varrayp a2 p) (fun res -> varrayp res p) (fun _ -> adjacent a1 a2) (fun h res h' -> merge_into a1 a2 res /\ aselp res p h' == aselp a1 p h `Seq.append` aselp a2 p h ) = let _ = elim_varrayp a1 _ in let _ = elim_varrayp a2 _ in let res = A.join a1 a2 in intro_varrayp res _ _; return res /// Splitting an array a at offset i, as a stateful lemma expressed in /// terms of split_l, split_r. In the non-selector case, this stateful /// lemma returns a proof that offset i is in bounds of the value /// sequence, which is needed to typecheck the post-resource. inline_for_extraction // same as above let ghost_split (#opened: _) (#elt: Type) (#p: P.perm) (a: array elt) (i: US.t { US.v i <= length a }) : SteelGhost unit opened (varrayp a p) (fun _ -> varrayp (split_l a i) p `star` varrayp (split_r a i) p) (fun _ -> True) (fun h _ h' -> let x = aselp a p h in let xl = Seq.slice x 0 (US.v i) in let xr = Seq.slice x (US.v i) (Seq.length x) in aselp (split_l a i) p h' == xl /\ aselp (split_r a i) p h' == xr /\ x == Seq.append xl xr ) = let _ = elim_varrayp a _ in A.ghost_split a i; intro_varrayp (split_l a i) _ _; intro_varrayp (split_r a i) _ _ /// NOTE: we could implement a SteelAtomicBase Unobservable "split" /// operation, just like "join", but we don't want it to return a pair /// of arrays. For now we settle on explicit use of split_l, split_r. /// Copies the contents of a0 to a1 inline_for_extraction let memcpy (#t:_) (#p0:P.perm) (a0 a1:array t) (i:US.t) : Steel unit (varrayp a0 p0 `star` varray a1) (fun _ -> varrayp a0 p0 `star` varray a1) (requires fun _ -> US.v i == length a0 /\ length a0 == length a1) (ensures fun h0 _ h1 -> length a0 == length a1 /\ aselp a0 p0 h0 == aselp a0 p0 h1 /\ asel a1 h1 == aselp a0 p0 h1) = let _ = elim_varrayp a0 _ in let _ = elim_varray a1 in A.memcpy a0 a1 i; intro_varrayp a0 _ _; intro_varray a1 _ /// Decides whether the contents of a0 and a1 are equal inline_for_extraction let compare (#t:eqtype) (#p0 #p1:P.perm) (a0 a1:array t) (l:US.t { length a0 == length a1 /\ US.v l == length a0}) : Steel bool (varrayp a0 p0 `star` varrayp a1 p1) (fun _ -> varrayp a0 p0 `star` varrayp a1 p1) (requires fun _ -> True) (ensures fun h0 b h1 -> aselp a0 p0 h0 == aselp a0 p0 h1 /\ aselp a1 p1 h0 == aselp a1 p1 h1 /\
false
false
Steel.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val compare (#t: eqtype) (#p0 #p1: P.perm) (a0 a1: array t) (l: US.t{length a0 == length a1 /\ US.v l == length a0}) : Steel bool ((varrayp a0 p0) `star` (varrayp a1 p1)) (fun _ -> (varrayp a0 p0) `star` (varrayp a1 p1)) (requires fun _ -> True) (ensures fun h0 b h1 -> aselp a0 p0 h0 == aselp a0 p0 h1 /\ aselp a1 p1 h0 == aselp a1 p1 h1 /\ b = (aselp a0 p0 h1 = aselp a1 p1 h1))
[]
Steel.Array.compare
{ "file_name": "lib/steel/Steel.Array.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a0: Steel.ST.Array.array t -> a1: Steel.ST.Array.array t -> l: FStar.SizeT.t { Steel.ST.Array.length a0 == Steel.ST.Array.length a1 /\ FStar.SizeT.v l == Steel.ST.Array.length a0 } -> Steel.Effect.Steel Prims.bool
{ "end_col": 14, "end_line": 387, "start_col": 3, "start_line": 381 }
Prims.Tot
val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i]
val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c =
false
null
false
subborrow c a.[ i ] b.[ i ]
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "total" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Base.carry", "Hacl.Spec.Bignum.Base.subborrow", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "FStar.Pervasives.Native.tuple2" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t
[]
Hacl.Spec.Bignum.Addition.bn_sub_f
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> i: Lib.IntTypes.size_nat{i < aLen} -> c: Hacl.Spec.Bignum.Base.carry t -> Hacl.Spec.Bignum.Base.carry t * Hacl.Spec.Bignum.Definitions.limb t
{ "end_col": 55, "end_line": 22, "start_col": 32, "start_line": 22 }
Prims.Tot
val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i]
val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c =
false
null
false
addcarry c a.[ i ] b.[ i ]
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "total" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Base.carry", "Hacl.Spec.Bignum.Base.addcarry", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "FStar.Pervasives.Native.tuple2" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t
[]
Hacl.Spec.Bignum.Addition.bn_add_f
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> i: Lib.IntTypes.size_nat{i < aLen} -> c: Hacl.Spec.Bignum.Base.carry t -> Hacl.Spec.Bignum.Base.carry t * Hacl.Spec.Bignum.Definitions.limb t
{ "end_col": 54, "end_line": 51, "start_col": 32, "start_line": 51 }
Prims.Tot
val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in
val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in =
false
null
false
generate_elems aLen aLen (bn_add_carry_f a) c_in
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "total" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Hacl.Spec.Lib.generate_elems", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Addition.bn_add_carry_f", "FStar.Pervasives.Native.tuple2" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0)
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen)
[]
Hacl.Spec.Bignum.Addition.bn_add_carry
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> c_in: Hacl.Spec.Bignum.Base.carry t -> Hacl.Spec.Bignum.Base.carry t * Hacl.Spec.Bignum.Definitions.lbignum t aLen
{ "end_col": 83, "end_line": 48, "start_col": 35, "start_line": 48 }
Prims.Tot
val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0)
val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in =
false
null
false
addcarry c_in a.[ i ] (uint #t 0)
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "total" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Base.carry", "Hacl.Spec.Bignum.Base.addcarry", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "FStar.Pervasives.Native.tuple2" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t
[]
Hacl.Spec.Bignum.Addition.bn_add_carry_f
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> i: Lib.IntTypes.size_nat{i < aLen} -> c_in: Hacl.Spec.Bignum.Base.carry t -> Hacl.Spec.Bignum.Base.carry t * Hacl.Spec.Bignum.Definitions.limb t
{ "end_col": 70, "end_line": 45, "start_col": 39, "start_line": 45 }
Prims.Tot
val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in
val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in =
false
null
false
generate_elems aLen aLen (bn_sub_carry_f a) c_in
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "total" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Hacl.Spec.Lib.generate_elems", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Addition.bn_sub_carry_f", "FStar.Pervasives.Native.tuple2" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0)
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen)
[]
Hacl.Spec.Bignum.Addition.bn_sub_carry
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> c_in: Hacl.Spec.Bignum.Base.carry t -> Hacl.Spec.Bignum.Base.carry t * Hacl.Spec.Bignum.Definitions.lbignum t aLen
{ "end_col": 83, "end_line": 19, "start_col": 35, "start_line": 19 }
Prims.Tot
val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0)
val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in =
false
null
false
subborrow c_in a.[ i ] (uint #t 0)
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "total" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Base.carry", "Hacl.Spec.Bignum.Base.subborrow", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "FStar.Pervasives.Native.tuple2" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t
[]
Hacl.Spec.Bignum.Addition.bn_sub_carry_f
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> i: Lib.IntTypes.size_nat{i < aLen} -> c_in: Hacl.Spec.Bignum.Base.carry t -> Hacl.Spec.Bignum.Base.carry t * Hacl.Spec.Bignum.Definitions.limb t
{ "end_col": 71, "end_line": 16, "start_col": 39, "start_line": 16 }
Prims.Tot
val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0
val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b =
false
null
false
let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "total" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Lib.Sequence.seq", "Hacl.Spec.Bignum.Definitions.limb", "Prims.eq2", "Prims.nat", "Lib.Sequence.length", "Prims.op_LessThan", "Prims.op_Subtraction", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.concat", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Addition.bn_sub_carry", "Lib.Sequence.sub", "Prims.bool", "Hacl.Spec.Lib.generate_elems", "Hacl.Spec.Bignum.Addition.bn_sub_f", "Lib.IntTypes.uint", "Lib.IntTypes.SEC" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i]
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen)
[]
Hacl.Spec.Bignum.Addition.bn_sub
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> Hacl.Spec.Bignum.Base.carry t * Hacl.Spec.Bignum.Definitions.lbignum t aLen
{ "end_col": 15, "end_line": 31, "start_col": 31, "start_line": 25 }
FStar.Pervasives.Lemma
val bn_sub_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_sub_carry a c_in in bn_v res - v c_out * pow2 (bits t * aLen) == bn_v a - v c_in)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_sub_carry a c_in in bn_sub_carry_lemma_loop a c_in aLen
val bn_sub_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_sub_carry a c_in in bn_v res - v c_out * pow2 (bits t * aLen) == bn_v a - v c_in) let bn_sub_carry_lemma #t #aLen a c_in =
false
null
true
let c_out, res = bn_sub_carry a c_in in bn_sub_carry_lemma_loop a c_in aLen
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Hacl.Spec.Bignum.Addition.bn_sub_carry_lemma_loop", "Prims.unit", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Addition.bn_sub_carry" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i] val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen let bn_add #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_add1 #t #aLen a b1 = let c0, r0 = addcarry (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_add_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)) let bn_add_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1) in let c, e = bn_add_carry_f a (i - 1) c1 in assert (v e + v c * pow2 (bits t) == v a.[i - 1] + v c1); let pbits = bits t in calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in - (v e + v c * pow2 pbits - v a.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + (v e - v e - v c * pow2 pbits + v a.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + v c_in; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in) val bn_add_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in) let rec bn_add_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_carry_f a) c_in in generate_elems_unfold aLen i (bn_add_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_add_carry_f a) c_in == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_add_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1)); bn_add_carry_lemma_loop a c_in (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in); bn_add_carry_lemma_loop_step a c_in i (c1, res1); assert (v c_out * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in); () end val bn_add_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_add_carry a c_in in v c_out * pow2 (bits t * aLen) + bn_v res == bn_v a + v c_in) let bn_add_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_add_carry a c_in in bn_add_carry_lemma_loop a c_in aLen val bn_add_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1))) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i)) let bn_add_lemma_loop_step #t #aLen a b i (c1, res1) = let pbits = bits t in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in let c, e = bn_add_f a b (i - 1) c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] + v b.[i - 1] + v c1); calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) - (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v e - v e - v c * pow2 pbits + v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v b.[i - 1]) (v c1 * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + v a.[i - 1] * pow2 (pbits * (i - 1)) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + eval_ aLen b (i - 1) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen b i } eval_ aLen a i + eval_ aLen b i; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) val bn_add_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) let rec bn_add_lemma_loop #t #aLen a b i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_f a b) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 b; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0) in generate_elems_unfold aLen i (bn_add_f a b) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_add_f a b) (uint #t 0) == generate_elem_f aLen (bn_add_f a b) (i - 1) (generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1)); bn_add_lemma_loop a b (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1)); bn_add_lemma_loop_step a b i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i); () end val bn_add_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires v c0 * pow2 (bits t * bLen) + bn_v #t #bLen res0 == eval_ bLen (sub a 0 bLen) bLen + eval_ bLen b bLen) (ensures (let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (bits t * aLen))) let bn_add_concat_lemma #t #aLen #bLen a b c0 res0 = let pbits = bits t in let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c1, res1 = bn_add_carry a1 c0 in bn_add_carry_lemma a1 c0; assert (v c1 * pow2 (pbits * (aLen - bLen)) + bn_v res1 == bn_v a1 + v c0); let res = concat #_ #bLen res0 res1 in bn_concat_lemma res0 res1; assert (bn_v res == bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1); calc (==) { bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1; (==) { } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0 - v c1 * pow2 (pbits * (aLen - bLen))); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1 + v c0) (v c1 * pow2 (pbits * (aLen - bLen))) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - pow2 (pbits * bLen) * v c1 * pow2 (pbits * (aLen - bLen)); (==) { Math.Lemmas.paren_mul_right (pow2 (pbits * bLen)) (v c1) (pow2 (pbits * (aLen - bLen))); Math.Lemmas.pow2_plus (pbits * bLen) (pbits * (aLen - bLen)) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - v c1 * pow2 (pbits * aLen); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1) (v c0) } eval_ bLen a0 bLen + eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 - v c1 * pow2 (pbits * aLen); (==) { bn_eval_split_i a bLen; bn_eval_extensionality_j a (sub a 0 bLen) bLen } eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (pbits * aLen); } val bn_add_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c, res) = bn_add a b in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + bn_v b) let bn_add_lemma #t #aLen #bLen a b = let pbits = bits t in let (c, res) = bn_add a b in if bLen = aLen then bn_add_lemma_loop a b aLen else begin let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c0, res0 = generate_elems bLen bLen (bn_add_f a0 b) (uint #t 0) in bn_add_lemma_loop a0 b bLen; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #bLen res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma #t #aLen #bLen a b c0 res0 end val bn_add1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_add1 a b1 in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + v b1) let bn_add1_lemma #t #aLen a b1 = let pbits = bits t in let c0, r0 = addcarry (uint #t 0) a.[0] b1 in assert (v c0 * pow2 pbits + v r0 = v a.[0] + v b1); let res0 = create 1 r0 in let b = create 1 b1 in bn_eval1 res0; bn_eval1 b; if aLen = 1 then bn_eval1 a else begin let bLen = 1 in let a0 = sub a 0 bLen in bn_eval1 a0; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #1 res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma a b c0 res0 end val bn_sub_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) c1_res1 in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in)) let bn_sub_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let pbits = bits t in let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (c1, res1) in let c, e = bn_sub_carry_f a (i - 1) c1 in assert (v e - v c * pow2 pbits == v a.[i - 1] - v c1); calc (==) { bn_v #t #i res - v c * pow2 (pbits * i); (==) { bn_eval_snoc #t #(i - 1) res1 e } bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { } eval_ aLen a (i - 1) - v c_in + (v a.[i - 1] - v e + v c * pow2 pbits) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v c * pow2 pbits) (v e) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + (v a.[i - 1] + v c * pow2 pbits) * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) + v c * pow2 pbits * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) - v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i a i } eval_ aLen a i - v c_in; }; assert (bn_v #t #i res - v c * pow2 (pbits * i) == eval_ aLen a i - v c_in) val bn_sub_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_carry_f a) c_in in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in) let rec bn_sub_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_sub_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_sub_carry_f a) c_in in generate_elems_unfold aLen i (bn_sub_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_sub_carry_f a) c_in == generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_sub_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (c1, res1)); bn_sub_carry_lemma_loop a c_in (i - 1); assert (bn_v #t #(i - 1) res1 - v c1 * pow2 (pbits * (i - 1)) == eval_ aLen a (i - 1) - v c_in); bn_sub_carry_lemma_loop_step a c_in i (c1, res1); assert (bn_v #t #i res - v c_out * pow2 (pbits * i) == eval_ aLen a i - v c_in); () end val bn_sub_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_sub_carry a c_in in bn_v res - v c_out * pow2 (bits t * aLen) == bn_v a - v c_in)
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_sub_carry a c_in in bn_v res - v c_out * pow2 (bits t * aLen) == bn_v a - v c_in)
[]
Hacl.Spec.Bignum.Addition.bn_sub_carry_lemma
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> c_in: Hacl.Spec.Bignum.Base.carry t -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Bignum.Addition.bn_sub_carry a c_in in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c_out res = _ in Hacl.Spec.Bignum.Definitions.bn_v res - Lib.IntTypes.v c_out * Prims.pow2 (Lib.IntTypes.bits t * aLen) == Hacl.Spec.Bignum.Definitions.bn_v a - Lib.IntTypes.v c_in) <: Type0))
{ "end_col": 37, "end_line": 399, "start_col": 40, "start_line": 397 }
Prims.Tot
val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0
val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen let bn_add #t #aLen #bLen a b =
false
null
false
let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "total" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Lib.Sequence.seq", "Hacl.Spec.Bignum.Definitions.limb", "Prims.eq2", "Prims.nat", "Lib.Sequence.length", "Prims.op_LessThan", "Prims.op_Subtraction", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.concat", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Addition.bn_add_carry", "Lib.Sequence.sub", "Prims.bool", "Hacl.Spec.Lib.generate_elems", "Hacl.Spec.Bignum.Addition.bn_add_f", "Lib.IntTypes.uint", "Lib.IntTypes.SEC" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i]
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen
[]
Hacl.Spec.Bignum.Addition.bn_add
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> Hacl.Spec.Bignum.Base.carry t * Hacl.Spec.Bignum.Definitions.lbignum t aLen
{ "end_col": 15, "end_line": 60, "start_col": 31, "start_line": 54 }
FStar.Pervasives.Lemma
val bn_add_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_add_carry a c_in in v c_out * pow2 (bits t * aLen) + bn_v res == bn_v a + v c_in)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_add_carry a c_in in bn_add_carry_lemma_loop a c_in aLen
val bn_add_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_add_carry a c_in in v c_out * pow2 (bits t * aLen) + bn_v res == bn_v a + v c_in) let bn_add_carry_lemma #t #aLen a c_in =
false
null
true
let c_out, res = bn_add_carry a c_in in bn_add_carry_lemma_loop a c_in aLen
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Hacl.Spec.Bignum.Addition.bn_add_carry_lemma_loop", "Prims.unit", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Addition.bn_add_carry" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i] val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen let bn_add #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_add1 #t #aLen a b1 = let c0, r0 = addcarry (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_add_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)) let bn_add_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1) in let c, e = bn_add_carry_f a (i - 1) c1 in assert (v e + v c * pow2 (bits t) == v a.[i - 1] + v c1); let pbits = bits t in calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in - (v e + v c * pow2 pbits - v a.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + (v e - v e - v c * pow2 pbits + v a.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + v c_in; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in) val bn_add_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in) let rec bn_add_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_carry_f a) c_in in generate_elems_unfold aLen i (bn_add_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_add_carry_f a) c_in == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_add_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1)); bn_add_carry_lemma_loop a c_in (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in); bn_add_carry_lemma_loop_step a c_in i (c1, res1); assert (v c_out * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in); () end val bn_add_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_add_carry a c_in in v c_out * pow2 (bits t * aLen) + bn_v res == bn_v a + v c_in)
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_add_carry a c_in in v c_out * pow2 (bits t * aLen) + bn_v res == bn_v a + v c_in)
[]
Hacl.Spec.Bignum.Addition.bn_add_carry_lemma
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> c_in: Hacl.Spec.Bignum.Base.carry t -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Bignum.Addition.bn_add_carry a c_in in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c_out res = _ in Lib.IntTypes.v c_out * Prims.pow2 (Lib.IntTypes.bits t * aLen) + Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.bn_v a + Lib.IntTypes.v c_in) <: Type0))
{ "end_col": 37, "end_line": 149, "start_col": 40, "start_line": 147 }
Prims.Tot
val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0
val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 =
false
null
false
let c0, r0 = subborrow (uint #t 0) a.[ 0 ] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "total" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Base.carry", "Prims.op_LessThan", "Prims.op_Subtraction", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.concat", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Addition.bn_sub_carry", "Lib.Sequence.sub", "Prims.bool", "Lib.Sequence.lseq", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.create", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Lib.Sequence.index", "Lib.Sequence.create", "Hacl.Spec.Bignum.Base.subborrow", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "Lib.Sequence.op_String_Access" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen)
[]
Hacl.Spec.Bignum.Addition.bn_sub1
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b1: Hacl.Spec.Bignum.Definitions.limb t -> Hacl.Spec.Bignum.Base.carry t * Hacl.Spec.Bignum.Definitions.lbignum t aLen
{ "end_col": 15, "end_line": 41, "start_col": 27, "start_line": 34 }
Prims.Tot
val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add1 #t #aLen a b1 = let c0, r0 = addcarry (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_add_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0
val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_add1 #t #aLen a b1 =
false
null
false
let c0, r0 = addcarry (uint #t 0) a.[ 0 ] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_add_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "total" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Base.carry", "Prims.op_LessThan", "Prims.op_Subtraction", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.concat", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Addition.bn_add_carry", "Lib.Sequence.sub", "Prims.bool", "Lib.Sequence.lseq", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.create", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Lib.Sequence.index", "Lib.Sequence.create", "Hacl.Spec.Bignum.Base.addcarry", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "Lib.Sequence.op_String_Access" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i] val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen let bn_add #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen)
[]
Hacl.Spec.Bignum.Addition.bn_add1
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b1: Hacl.Spec.Bignum.Definitions.limb t -> Hacl.Spec.Bignum.Base.carry t * Hacl.Spec.Bignum.Definitions.lbignum t aLen
{ "end_col": 15, "end_line": 70, "start_col": 27, "start_line": 63 }
FStar.Pervasives.Lemma
val bn_sub_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c, res) = bn_sub a b in bn_v res - v c * pow2 (bits t * aLen) == bn_v a - bn_v b)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub_lemma #t #aLen #bLen a b = let pbits = bits t in let (c, res) = bn_sub a b in if bLen = aLen then bn_sub_lemma_loop a b aLen else begin let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c0, res0 = generate_elems bLen bLen (bn_sub_f a0 b) (uint #t 0) in bn_sub_lemma_loop a0 b bLen; assert (bn_v #t #bLen res0 - v c0 * pow2 (pbits * bLen) == eval_ bLen a0 bLen - eval_ bLen b bLen); bn_sub_concat_lemma #t #aLen #bLen a b c0 res0 end
val bn_sub_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c, res) = bn_sub a b in bn_v res - v c * pow2 (bits t * aLen) == bn_v a - bn_v b) let bn_sub_lemma #t #aLen #bLen a b =
false
null
true
let pbits = bits t in let c, res = bn_sub a b in if bLen = aLen then bn_sub_lemma_loop a b aLen else let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c0, res0 = generate_elems bLen bLen (bn_sub_f a0 b) (uint #t 0) in bn_sub_lemma_loop a0 b bLen; assert (bn_v #t #bLen res0 - v c0 * pow2 (pbits * bLen) == eval_ bLen a0 bLen - eval_ bLen b bLen); bn_sub_concat_lemma #t #aLen #bLen a b c0 res0
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Prims.op_Equality", "Hacl.Spec.Bignum.Addition.bn_sub_lemma_loop", "Prims.bool", "Lib.Sequence.seq", "Hacl.Spec.Bignum.Definitions.limb", "Prims.eq2", "Prims.nat", "Lib.Sequence.length", "Hacl.Spec.Bignum.Addition.bn_sub_concat_lemma", "Prims.unit", "Prims._assert", "Prims.int", "Prims.op_Subtraction", "Hacl.Spec.Bignum.Definitions.bn_v", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.pow2", "Hacl.Spec.Bignum.Definitions.eval_", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Lib.generate_elems", "Hacl.Spec.Bignum.Addition.bn_sub_f", "Lib.IntTypes.uint", "Lib.Sequence.lseq", "Prims.l_and", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.l_Forall", "Prims.op_LessThan", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "Hacl.Spec.Bignum.Addition.bn_sub", "Lib.IntTypes.bits" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i] val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen let bn_add #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_add1 #t #aLen a b1 = let c0, r0 = addcarry (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_add_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)) let bn_add_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1) in let c, e = bn_add_carry_f a (i - 1) c1 in assert (v e + v c * pow2 (bits t) == v a.[i - 1] + v c1); let pbits = bits t in calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in - (v e + v c * pow2 pbits - v a.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + (v e - v e - v c * pow2 pbits + v a.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + v c_in; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in) val bn_add_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in) let rec bn_add_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_carry_f a) c_in in generate_elems_unfold aLen i (bn_add_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_add_carry_f a) c_in == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_add_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1)); bn_add_carry_lemma_loop a c_in (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in); bn_add_carry_lemma_loop_step a c_in i (c1, res1); assert (v c_out * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in); () end val bn_add_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_add_carry a c_in in v c_out * pow2 (bits t * aLen) + bn_v res == bn_v a + v c_in) let bn_add_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_add_carry a c_in in bn_add_carry_lemma_loop a c_in aLen val bn_add_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1))) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i)) let bn_add_lemma_loop_step #t #aLen a b i (c1, res1) = let pbits = bits t in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in let c, e = bn_add_f a b (i - 1) c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] + v b.[i - 1] + v c1); calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) - (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v e - v e - v c * pow2 pbits + v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v b.[i - 1]) (v c1 * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + v a.[i - 1] * pow2 (pbits * (i - 1)) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + eval_ aLen b (i - 1) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen b i } eval_ aLen a i + eval_ aLen b i; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) val bn_add_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) let rec bn_add_lemma_loop #t #aLen a b i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_f a b) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 b; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0) in generate_elems_unfold aLen i (bn_add_f a b) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_add_f a b) (uint #t 0) == generate_elem_f aLen (bn_add_f a b) (i - 1) (generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1)); bn_add_lemma_loop a b (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1)); bn_add_lemma_loop_step a b i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i); () end val bn_add_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires v c0 * pow2 (bits t * bLen) + bn_v #t #bLen res0 == eval_ bLen (sub a 0 bLen) bLen + eval_ bLen b bLen) (ensures (let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (bits t * aLen))) let bn_add_concat_lemma #t #aLen #bLen a b c0 res0 = let pbits = bits t in let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c1, res1 = bn_add_carry a1 c0 in bn_add_carry_lemma a1 c0; assert (v c1 * pow2 (pbits * (aLen - bLen)) + bn_v res1 == bn_v a1 + v c0); let res = concat #_ #bLen res0 res1 in bn_concat_lemma res0 res1; assert (bn_v res == bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1); calc (==) { bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1; (==) { } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0 - v c1 * pow2 (pbits * (aLen - bLen))); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1 + v c0) (v c1 * pow2 (pbits * (aLen - bLen))) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - pow2 (pbits * bLen) * v c1 * pow2 (pbits * (aLen - bLen)); (==) { Math.Lemmas.paren_mul_right (pow2 (pbits * bLen)) (v c1) (pow2 (pbits * (aLen - bLen))); Math.Lemmas.pow2_plus (pbits * bLen) (pbits * (aLen - bLen)) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - v c1 * pow2 (pbits * aLen); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1) (v c0) } eval_ bLen a0 bLen + eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 - v c1 * pow2 (pbits * aLen); (==) { bn_eval_split_i a bLen; bn_eval_extensionality_j a (sub a 0 bLen) bLen } eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (pbits * aLen); } val bn_add_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c, res) = bn_add a b in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + bn_v b) let bn_add_lemma #t #aLen #bLen a b = let pbits = bits t in let (c, res) = bn_add a b in if bLen = aLen then bn_add_lemma_loop a b aLen else begin let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c0, res0 = generate_elems bLen bLen (bn_add_f a0 b) (uint #t 0) in bn_add_lemma_loop a0 b bLen; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #bLen res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma #t #aLen #bLen a b c0 res0 end val bn_add1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_add1 a b1 in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + v b1) let bn_add1_lemma #t #aLen a b1 = let pbits = bits t in let c0, r0 = addcarry (uint #t 0) a.[0] b1 in assert (v c0 * pow2 pbits + v r0 = v a.[0] + v b1); let res0 = create 1 r0 in let b = create 1 b1 in bn_eval1 res0; bn_eval1 b; if aLen = 1 then bn_eval1 a else begin let bLen = 1 in let a0 = sub a 0 bLen in bn_eval1 a0; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #1 res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma a b c0 res0 end val bn_sub_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) c1_res1 in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in)) let bn_sub_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let pbits = bits t in let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (c1, res1) in let c, e = bn_sub_carry_f a (i - 1) c1 in assert (v e - v c * pow2 pbits == v a.[i - 1] - v c1); calc (==) { bn_v #t #i res - v c * pow2 (pbits * i); (==) { bn_eval_snoc #t #(i - 1) res1 e } bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { } eval_ aLen a (i - 1) - v c_in + (v a.[i - 1] - v e + v c * pow2 pbits) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v c * pow2 pbits) (v e) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + (v a.[i - 1] + v c * pow2 pbits) * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) + v c * pow2 pbits * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) - v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i a i } eval_ aLen a i - v c_in; }; assert (bn_v #t #i res - v c * pow2 (pbits * i) == eval_ aLen a i - v c_in) val bn_sub_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_carry_f a) c_in in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in) let rec bn_sub_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_sub_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_sub_carry_f a) c_in in generate_elems_unfold aLen i (bn_sub_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_sub_carry_f a) c_in == generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_sub_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (c1, res1)); bn_sub_carry_lemma_loop a c_in (i - 1); assert (bn_v #t #(i - 1) res1 - v c1 * pow2 (pbits * (i - 1)) == eval_ aLen a (i - 1) - v c_in); bn_sub_carry_lemma_loop_step a c_in i (c1, res1); assert (bn_v #t #i res - v c_out * pow2 (pbits * i) == eval_ aLen a i - v c_in); () end val bn_sub_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_sub_carry a c_in in bn_v res - v c_out * pow2 (bits t * aLen) == bn_v a - v c_in) let bn_sub_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_sub_carry a c_in in bn_sub_carry_lemma_loop a c_in aLen val bn_sub_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - eval_ aLen b (i - 1))) (ensures (let (c, res) = generate_elem_f aLen (bn_sub_f a b) (i - 1) c1_res1 in bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i)) let bn_sub_lemma_loop_step #t #aLen a b i (c1, res1) = let pbits = bits t in let (c, res) = generate_elem_f aLen (bn_sub_f a b) (i - 1) (c1, res1) in let c, e = bn_sub_f a b (i - 1) c1 in assert (v e - v c * pow2 pbits == v a.[i - 1] - v b.[i - 1] - v c1); calc (==) { bn_v #t #i res - v c * pow2 (pbits * i); (==) { bn_eval_snoc #t #(i - 1) res1 e } bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1] + v c * pow2 pbits - v e) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] - v b.[i - 1] + v c * pow2 pbits) (v e) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1] + v c * pow2 pbits) * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] - v b.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)) + v c * pow2 pbits * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + v a.[i - 1] * pow2 (pbits * (i - 1)) - v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i a i } eval_ aLen a i - eval_ aLen b (i - 1) - v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i b i } eval_ aLen a i - eval_ aLen b i; }; assert (bn_v #t #i res - v c * pow2 (pbits * i) == eval_ aLen a i - eval_ aLen b i) val bn_sub_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_f a b) (uint #t 0) in bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i) let rec bn_sub_lemma_loop #t #aLen a b i = let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_f a b) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_sub_f a b) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 b; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_sub_f a b) (uint #t 0) in generate_elems_unfold aLen i (bn_sub_f a b) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_sub_f a b) (uint #t 0) == generate_elem_f aLen (bn_sub_f a b) (i - 1) (generate_elems aLen (i - 1) (bn_sub_f a b) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_sub_f a b) (i - 1) (c1, res1)); bn_sub_lemma_loop a b (i - 1); assert (bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - eval_ aLen b (i - 1)); bn_sub_lemma_loop_step a b i (c1, res1); assert (bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i); () end val bn_sub_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires bn_v #t #bLen res0 - v c0 * pow2 (bits t * bLen) == eval_ bLen (sub a 0 bLen) bLen - eval_ bLen b bLen) (ensures (let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen - eval_ bLen b bLen + v c1 * pow2 (bits t * aLen))) let bn_sub_concat_lemma #t #aLen #bLen a b c0 res0 = let pbits = bits t in let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c1, res1 = bn_sub_carry a1 c0 in bn_sub_carry_lemma a1 c0; assert (bn_v res1 - v c1 * pow2 (pbits * (aLen - bLen)) == bn_v a1 - v c0); let res = concat #_ #bLen res0 res1 in bn_concat_lemma res0 res1; assert (bn_v res == bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1); calc (==) { bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1; (==) { } eval_ bLen a0 bLen - eval_ bLen b bLen + v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 - v c0 + v c1 * pow2 (pbits * (aLen - bLen))); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1 + v c1 * pow2 (pbits * (aLen - bLen))) (v c0) } eval_ bLen a0 bLen - eval_ bLen b bLen + v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c1 * pow2 (pbits * (aLen - bLen))) - pow2 (pbits * bLen) * v c0; (==) { Math.Lemmas.distributivity_add_right (pow2 (pbits * bLen)) (bn_v a1) (v c1 * pow2 (pbits * (aLen - bLen))) } eval_ bLen a0 bLen - eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 + pow2 (pbits * bLen) * v c1 * pow2 (pbits * (aLen - bLen)); (==) { Math.Lemmas.paren_mul_right (pow2 (pbits * bLen)) (v c1) (pow2 (pbits * (aLen - bLen))); Math.Lemmas.pow2_plus (pbits * bLen) (pbits * (aLen - bLen)) } eval_ bLen a0 bLen - eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 + v c1 * pow2 (pbits * aLen); (==) { bn_eval_split_i a bLen; bn_eval_extensionality_j a (sub a 0 bLen) bLen } eval_ aLen a aLen - eval_ bLen b bLen + v c1 * pow2 (pbits * aLen); } val bn_sub_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c, res) = bn_sub a b in bn_v res - v c * pow2 (bits t * aLen) == bn_v a - bn_v b)
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c, res) = bn_sub a b in bn_v res - v c * pow2 (bits t * aLen) == bn_v a - bn_v b)
[]
Hacl.Spec.Bignum.Addition.bn_sub_lemma
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Bignum.Addition.bn_sub a b in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in Hacl.Spec.Bignum.Definitions.bn_v res - Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * aLen) == Hacl.Spec.Bignum.Definitions.bn_v a - Hacl.Spec.Bignum.Definitions.bn_v b) <: Type0))
{ "end_col": 54, "end_line": 539, "start_col": 37, "start_line": 527 }
FStar.Pervasives.Lemma
val bn_sub1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_sub1 a b1 in bn_v res - v c * pow2 (bits t * aLen) == bn_v a - v b1)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub1_lemma #t #aLen a b1 = let pbits = bits t in let c0, r0 = subborrow (uint #t 0) a.[0] b1 in assert (v r0 - v c0 * pow2 pbits = v a.[0] - v b1); let res0 = create 1 r0 in let b = create 1 b1 in bn_eval1 res0; bn_eval1 b; if aLen = 1 then bn_eval1 a else begin let bLen = 1 in let a0 = sub a 0 bLen in bn_eval1 a0; assert (bn_v #t #1 res0 - v c0 * pow2 (pbits * bLen) == eval_ bLen a0 bLen - eval_ bLen b bLen); bn_sub_concat_lemma a b c0 res0 end
val bn_sub1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_sub1 a b1 in bn_v res - v c * pow2 (bits t * aLen) == bn_v a - v b1) let bn_sub1_lemma #t #aLen a b1 =
false
null
true
let pbits = bits t in let c0, r0 = subborrow (uint #t 0) a.[ 0 ] b1 in assert (v r0 - v c0 * pow2 pbits = v a.[ 0 ] - v b1); let res0 = create 1 r0 in let b = create 1 b1 in bn_eval1 res0; bn_eval1 b; if aLen = 1 then bn_eval1 a else let bLen = 1 in let a0 = sub a 0 bLen in bn_eval1 a0; assert (bn_v #t #1 res0 - v c0 * pow2 (pbits * bLen) == eval_ bLen a0 bLen - eval_ bLen b bLen); bn_sub_concat_lemma a b c0 res0
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Base.carry", "Prims.op_Equality", "Prims.int", "Hacl.Spec.Bignum.Definitions.bn_eval1", "Prims.bool", "Hacl.Spec.Bignum.Addition.bn_sub_concat_lemma", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.op_Subtraction", "Hacl.Spec.Bignum.Definitions.bn_v", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.pow2", "Hacl.Spec.Bignum.Definitions.eval_", "Lib.Sequence.lseq", "Prims.l_and", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "FStar.Seq.Base.create", "Prims.l_imp", "Lib.Sequence.create", "Lib.Sequence.op_String_Access", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Base.subborrow", "Lib.IntTypes.uint", "Lib.IntTypes.bits" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i] val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen let bn_add #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_add1 #t #aLen a b1 = let c0, r0 = addcarry (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_add_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)) let bn_add_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1) in let c, e = bn_add_carry_f a (i - 1) c1 in assert (v e + v c * pow2 (bits t) == v a.[i - 1] + v c1); let pbits = bits t in calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in - (v e + v c * pow2 pbits - v a.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + (v e - v e - v c * pow2 pbits + v a.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + v c_in; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in) val bn_add_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in) let rec bn_add_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_carry_f a) c_in in generate_elems_unfold aLen i (bn_add_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_add_carry_f a) c_in == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_add_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1)); bn_add_carry_lemma_loop a c_in (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in); bn_add_carry_lemma_loop_step a c_in i (c1, res1); assert (v c_out * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in); () end val bn_add_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_add_carry a c_in in v c_out * pow2 (bits t * aLen) + bn_v res == bn_v a + v c_in) let bn_add_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_add_carry a c_in in bn_add_carry_lemma_loop a c_in aLen val bn_add_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1))) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i)) let bn_add_lemma_loop_step #t #aLen a b i (c1, res1) = let pbits = bits t in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in let c, e = bn_add_f a b (i - 1) c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] + v b.[i - 1] + v c1); calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) - (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v e - v e - v c * pow2 pbits + v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v b.[i - 1]) (v c1 * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + v a.[i - 1] * pow2 (pbits * (i - 1)) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + eval_ aLen b (i - 1) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen b i } eval_ aLen a i + eval_ aLen b i; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) val bn_add_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) let rec bn_add_lemma_loop #t #aLen a b i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_f a b) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 b; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0) in generate_elems_unfold aLen i (bn_add_f a b) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_add_f a b) (uint #t 0) == generate_elem_f aLen (bn_add_f a b) (i - 1) (generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1)); bn_add_lemma_loop a b (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1)); bn_add_lemma_loop_step a b i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i); () end val bn_add_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires v c0 * pow2 (bits t * bLen) + bn_v #t #bLen res0 == eval_ bLen (sub a 0 bLen) bLen + eval_ bLen b bLen) (ensures (let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (bits t * aLen))) let bn_add_concat_lemma #t #aLen #bLen a b c0 res0 = let pbits = bits t in let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c1, res1 = bn_add_carry a1 c0 in bn_add_carry_lemma a1 c0; assert (v c1 * pow2 (pbits * (aLen - bLen)) + bn_v res1 == bn_v a1 + v c0); let res = concat #_ #bLen res0 res1 in bn_concat_lemma res0 res1; assert (bn_v res == bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1); calc (==) { bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1; (==) { } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0 - v c1 * pow2 (pbits * (aLen - bLen))); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1 + v c0) (v c1 * pow2 (pbits * (aLen - bLen))) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - pow2 (pbits * bLen) * v c1 * pow2 (pbits * (aLen - bLen)); (==) { Math.Lemmas.paren_mul_right (pow2 (pbits * bLen)) (v c1) (pow2 (pbits * (aLen - bLen))); Math.Lemmas.pow2_plus (pbits * bLen) (pbits * (aLen - bLen)) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - v c1 * pow2 (pbits * aLen); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1) (v c0) } eval_ bLen a0 bLen + eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 - v c1 * pow2 (pbits * aLen); (==) { bn_eval_split_i a bLen; bn_eval_extensionality_j a (sub a 0 bLen) bLen } eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (pbits * aLen); } val bn_add_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c, res) = bn_add a b in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + bn_v b) let bn_add_lemma #t #aLen #bLen a b = let pbits = bits t in let (c, res) = bn_add a b in if bLen = aLen then bn_add_lemma_loop a b aLen else begin let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c0, res0 = generate_elems bLen bLen (bn_add_f a0 b) (uint #t 0) in bn_add_lemma_loop a0 b bLen; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #bLen res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma #t #aLen #bLen a b c0 res0 end val bn_add1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_add1 a b1 in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + v b1) let bn_add1_lemma #t #aLen a b1 = let pbits = bits t in let c0, r0 = addcarry (uint #t 0) a.[0] b1 in assert (v c0 * pow2 pbits + v r0 = v a.[0] + v b1); let res0 = create 1 r0 in let b = create 1 b1 in bn_eval1 res0; bn_eval1 b; if aLen = 1 then bn_eval1 a else begin let bLen = 1 in let a0 = sub a 0 bLen in bn_eval1 a0; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #1 res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma a b c0 res0 end val bn_sub_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) c1_res1 in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in)) let bn_sub_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let pbits = bits t in let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (c1, res1) in let c, e = bn_sub_carry_f a (i - 1) c1 in assert (v e - v c * pow2 pbits == v a.[i - 1] - v c1); calc (==) { bn_v #t #i res - v c * pow2 (pbits * i); (==) { bn_eval_snoc #t #(i - 1) res1 e } bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { } eval_ aLen a (i - 1) - v c_in + (v a.[i - 1] - v e + v c * pow2 pbits) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v c * pow2 pbits) (v e) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + (v a.[i - 1] + v c * pow2 pbits) * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) + v c * pow2 pbits * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) - v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i a i } eval_ aLen a i - v c_in; }; assert (bn_v #t #i res - v c * pow2 (pbits * i) == eval_ aLen a i - v c_in) val bn_sub_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_carry_f a) c_in in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in) let rec bn_sub_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_sub_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_sub_carry_f a) c_in in generate_elems_unfold aLen i (bn_sub_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_sub_carry_f a) c_in == generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_sub_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (c1, res1)); bn_sub_carry_lemma_loop a c_in (i - 1); assert (bn_v #t #(i - 1) res1 - v c1 * pow2 (pbits * (i - 1)) == eval_ aLen a (i - 1) - v c_in); bn_sub_carry_lemma_loop_step a c_in i (c1, res1); assert (bn_v #t #i res - v c_out * pow2 (pbits * i) == eval_ aLen a i - v c_in); () end val bn_sub_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_sub_carry a c_in in bn_v res - v c_out * pow2 (bits t * aLen) == bn_v a - v c_in) let bn_sub_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_sub_carry a c_in in bn_sub_carry_lemma_loop a c_in aLen val bn_sub_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - eval_ aLen b (i - 1))) (ensures (let (c, res) = generate_elem_f aLen (bn_sub_f a b) (i - 1) c1_res1 in bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i)) let bn_sub_lemma_loop_step #t #aLen a b i (c1, res1) = let pbits = bits t in let (c, res) = generate_elem_f aLen (bn_sub_f a b) (i - 1) (c1, res1) in let c, e = bn_sub_f a b (i - 1) c1 in assert (v e - v c * pow2 pbits == v a.[i - 1] - v b.[i - 1] - v c1); calc (==) { bn_v #t #i res - v c * pow2 (pbits * i); (==) { bn_eval_snoc #t #(i - 1) res1 e } bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1] + v c * pow2 pbits - v e) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] - v b.[i - 1] + v c * pow2 pbits) (v e) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1] + v c * pow2 pbits) * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] - v b.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)) + v c * pow2 pbits * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + v a.[i - 1] * pow2 (pbits * (i - 1)) - v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i a i } eval_ aLen a i - eval_ aLen b (i - 1) - v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i b i } eval_ aLen a i - eval_ aLen b i; }; assert (bn_v #t #i res - v c * pow2 (pbits * i) == eval_ aLen a i - eval_ aLen b i) val bn_sub_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_f a b) (uint #t 0) in bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i) let rec bn_sub_lemma_loop #t #aLen a b i = let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_f a b) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_sub_f a b) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 b; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_sub_f a b) (uint #t 0) in generate_elems_unfold aLen i (bn_sub_f a b) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_sub_f a b) (uint #t 0) == generate_elem_f aLen (bn_sub_f a b) (i - 1) (generate_elems aLen (i - 1) (bn_sub_f a b) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_sub_f a b) (i - 1) (c1, res1)); bn_sub_lemma_loop a b (i - 1); assert (bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - eval_ aLen b (i - 1)); bn_sub_lemma_loop_step a b i (c1, res1); assert (bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i); () end val bn_sub_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires bn_v #t #bLen res0 - v c0 * pow2 (bits t * bLen) == eval_ bLen (sub a 0 bLen) bLen - eval_ bLen b bLen) (ensures (let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen - eval_ bLen b bLen + v c1 * pow2 (bits t * aLen))) let bn_sub_concat_lemma #t #aLen #bLen a b c0 res0 = let pbits = bits t in let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c1, res1 = bn_sub_carry a1 c0 in bn_sub_carry_lemma a1 c0; assert (bn_v res1 - v c1 * pow2 (pbits * (aLen - bLen)) == bn_v a1 - v c0); let res = concat #_ #bLen res0 res1 in bn_concat_lemma res0 res1; assert (bn_v res == bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1); calc (==) { bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1; (==) { } eval_ bLen a0 bLen - eval_ bLen b bLen + v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 - v c0 + v c1 * pow2 (pbits * (aLen - bLen))); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1 + v c1 * pow2 (pbits * (aLen - bLen))) (v c0) } eval_ bLen a0 bLen - eval_ bLen b bLen + v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c1 * pow2 (pbits * (aLen - bLen))) - pow2 (pbits * bLen) * v c0; (==) { Math.Lemmas.distributivity_add_right (pow2 (pbits * bLen)) (bn_v a1) (v c1 * pow2 (pbits * (aLen - bLen))) } eval_ bLen a0 bLen - eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 + pow2 (pbits * bLen) * v c1 * pow2 (pbits * (aLen - bLen)); (==) { Math.Lemmas.paren_mul_right (pow2 (pbits * bLen)) (v c1) (pow2 (pbits * (aLen - bLen))); Math.Lemmas.pow2_plus (pbits * bLen) (pbits * (aLen - bLen)) } eval_ bLen a0 bLen - eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 + v c1 * pow2 (pbits * aLen); (==) { bn_eval_split_i a bLen; bn_eval_extensionality_j a (sub a 0 bLen) bLen } eval_ aLen a aLen - eval_ bLen b bLen + v c1 * pow2 (pbits * aLen); } val bn_sub_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c, res) = bn_sub a b in bn_v res - v c * pow2 (bits t * aLen) == bn_v a - bn_v b) let bn_sub_lemma #t #aLen #bLen a b = let pbits = bits t in let (c, res) = bn_sub a b in if bLen = aLen then bn_sub_lemma_loop a b aLen else begin let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c0, res0 = generate_elems bLen bLen (bn_sub_f a0 b) (uint #t 0) in bn_sub_lemma_loop a0 b bLen; assert (bn_v #t #bLen res0 - v c0 * pow2 (pbits * bLen) == eval_ bLen a0 bLen - eval_ bLen b bLen); bn_sub_concat_lemma #t #aLen #bLen a b c0 res0 end val bn_sub1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_sub1 a b1 in bn_v res - v c * pow2 (bits t * aLen) == bn_v a - v b1)
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_sub1 a b1 in bn_v res - v c * pow2 (bits t * aLen) == bn_v a - v b1)
[]
Hacl.Spec.Bignum.Addition.bn_sub1_lemma
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b1: Hacl.Spec.Bignum.Definitions.limb t -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in Hacl.Spec.Bignum.Definitions.bn_v res - Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * aLen) == Hacl.Spec.Bignum.Definitions.bn_v a - Lib.IntTypes.v b1) <: Type0))
{ "end_col": 39, "end_line": 567, "start_col": 33, "start_line": 550 }
FStar.Pervasives.Lemma
val bn_add1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_add1 a b1 in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + v b1)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add1_lemma #t #aLen a b1 = let pbits = bits t in let c0, r0 = addcarry (uint #t 0) a.[0] b1 in assert (v c0 * pow2 pbits + v r0 = v a.[0] + v b1); let res0 = create 1 r0 in let b = create 1 b1 in bn_eval1 res0; bn_eval1 b; if aLen = 1 then bn_eval1 a else begin let bLen = 1 in let a0 = sub a 0 bLen in bn_eval1 a0; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #1 res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma a b c0 res0 end
val bn_add1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_add1 a b1 in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + v b1) let bn_add1_lemma #t #aLen a b1 =
false
null
true
let pbits = bits t in let c0, r0 = addcarry (uint #t 0) a.[ 0 ] b1 in assert (v c0 * pow2 pbits + v r0 = v a.[ 0 ] + v b1); let res0 = create 1 r0 in let b = create 1 b1 in bn_eval1 res0; bn_eval1 b; if aLen = 1 then bn_eval1 a else let bLen = 1 in let a0 = sub a 0 bLen in bn_eval1 a0; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #1 res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma a b c0 res0
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Base.carry", "Prims.op_Equality", "Prims.int", "Hacl.Spec.Bignum.Definitions.bn_eval1", "Prims.bool", "Hacl.Spec.Bignum.Addition.bn_add_concat_lemma", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.pow2", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Definitions.eval_", "Lib.Sequence.lseq", "Prims.l_and", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "FStar.Seq.Base.create", "Prims.l_imp", "Lib.Sequence.create", "Lib.Sequence.op_String_Access", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Base.addcarry", "Lib.IntTypes.uint", "Lib.IntTypes.bits" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i] val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen let bn_add #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_add1 #t #aLen a b1 = let c0, r0 = addcarry (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_add_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)) let bn_add_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1) in let c, e = bn_add_carry_f a (i - 1) c1 in assert (v e + v c * pow2 (bits t) == v a.[i - 1] + v c1); let pbits = bits t in calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in - (v e + v c * pow2 pbits - v a.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + (v e - v e - v c * pow2 pbits + v a.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + v c_in; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in) val bn_add_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in) let rec bn_add_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_carry_f a) c_in in generate_elems_unfold aLen i (bn_add_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_add_carry_f a) c_in == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_add_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1)); bn_add_carry_lemma_loop a c_in (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in); bn_add_carry_lemma_loop_step a c_in i (c1, res1); assert (v c_out * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in); () end val bn_add_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_add_carry a c_in in v c_out * pow2 (bits t * aLen) + bn_v res == bn_v a + v c_in) let bn_add_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_add_carry a c_in in bn_add_carry_lemma_loop a c_in aLen val bn_add_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1))) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i)) let bn_add_lemma_loop_step #t #aLen a b i (c1, res1) = let pbits = bits t in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in let c, e = bn_add_f a b (i - 1) c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] + v b.[i - 1] + v c1); calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) - (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v e - v e - v c * pow2 pbits + v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v b.[i - 1]) (v c1 * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + v a.[i - 1] * pow2 (pbits * (i - 1)) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + eval_ aLen b (i - 1) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen b i } eval_ aLen a i + eval_ aLen b i; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) val bn_add_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) let rec bn_add_lemma_loop #t #aLen a b i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_f a b) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 b; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0) in generate_elems_unfold aLen i (bn_add_f a b) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_add_f a b) (uint #t 0) == generate_elem_f aLen (bn_add_f a b) (i - 1) (generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1)); bn_add_lemma_loop a b (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1)); bn_add_lemma_loop_step a b i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i); () end val bn_add_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires v c0 * pow2 (bits t * bLen) + bn_v #t #bLen res0 == eval_ bLen (sub a 0 bLen) bLen + eval_ bLen b bLen) (ensures (let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (bits t * aLen))) let bn_add_concat_lemma #t #aLen #bLen a b c0 res0 = let pbits = bits t in let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c1, res1 = bn_add_carry a1 c0 in bn_add_carry_lemma a1 c0; assert (v c1 * pow2 (pbits * (aLen - bLen)) + bn_v res1 == bn_v a1 + v c0); let res = concat #_ #bLen res0 res1 in bn_concat_lemma res0 res1; assert (bn_v res == bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1); calc (==) { bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1; (==) { } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0 - v c1 * pow2 (pbits * (aLen - bLen))); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1 + v c0) (v c1 * pow2 (pbits * (aLen - bLen))) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - pow2 (pbits * bLen) * v c1 * pow2 (pbits * (aLen - bLen)); (==) { Math.Lemmas.paren_mul_right (pow2 (pbits * bLen)) (v c1) (pow2 (pbits * (aLen - bLen))); Math.Lemmas.pow2_plus (pbits * bLen) (pbits * (aLen - bLen)) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - v c1 * pow2 (pbits * aLen); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1) (v c0) } eval_ bLen a0 bLen + eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 - v c1 * pow2 (pbits * aLen); (==) { bn_eval_split_i a bLen; bn_eval_extensionality_j a (sub a 0 bLen) bLen } eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (pbits * aLen); } val bn_add_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c, res) = bn_add a b in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + bn_v b) let bn_add_lemma #t #aLen #bLen a b = let pbits = bits t in let (c, res) = bn_add a b in if bLen = aLen then bn_add_lemma_loop a b aLen else begin let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c0, res0 = generate_elems bLen bLen (bn_add_f a0 b) (uint #t 0) in bn_add_lemma_loop a0 b bLen; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #bLen res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma #t #aLen #bLen a b c0 res0 end val bn_add1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_add1 a b1 in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + v b1)
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_add1 a b1 in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + v b1)
[]
Hacl.Spec.Bignum.Addition.bn_add1_lemma
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b1: Hacl.Spec.Bignum.Definitions.limb t -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Bignum.Addition.bn_add1 a b1 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * aLen) + Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.bn_v a + Lib.IntTypes.v b1) <: Type0))
{ "end_col": 39, "end_line": 319, "start_col": 33, "start_line": 302 }
FStar.Pervasives.Lemma
val bn_add_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c, res) = bn_add a b in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + bn_v b)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add_lemma #t #aLen #bLen a b = let pbits = bits t in let (c, res) = bn_add a b in if bLen = aLen then bn_add_lemma_loop a b aLen else begin let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c0, res0 = generate_elems bLen bLen (bn_add_f a0 b) (uint #t 0) in bn_add_lemma_loop a0 b bLen; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #bLen res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma #t #aLen #bLen a b c0 res0 end
val bn_add_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c, res) = bn_add a b in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + bn_v b) let bn_add_lemma #t #aLen #bLen a b =
false
null
true
let pbits = bits t in let c, res = bn_add a b in if bLen = aLen then bn_add_lemma_loop a b aLen else let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c0, res0 = generate_elems bLen bLen (bn_add_f a0 b) (uint #t 0) in bn_add_lemma_loop a0 b bLen; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #bLen res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma #t #aLen #bLen a b c0 res0
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Prims.op_Equality", "Hacl.Spec.Bignum.Addition.bn_add_lemma_loop", "Prims.bool", "Lib.Sequence.seq", "Hacl.Spec.Bignum.Definitions.limb", "Prims.eq2", "Prims.nat", "Lib.Sequence.length", "Hacl.Spec.Bignum.Addition.bn_add_concat_lemma", "Prims.unit", "Prims._assert", "Prims.int", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.pow2", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Definitions.eval_", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Lib.generate_elems", "Hacl.Spec.Bignum.Addition.bn_add_f", "Lib.IntTypes.uint", "Lib.Sequence.lseq", "Prims.op_Subtraction", "Prims.l_and", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.l_Forall", "Prims.op_LessThan", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "Hacl.Spec.Bignum.Addition.bn_add", "Lib.IntTypes.bits" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i] val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen let bn_add #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_add1 #t #aLen a b1 = let c0, r0 = addcarry (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_add_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)) let bn_add_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1) in let c, e = bn_add_carry_f a (i - 1) c1 in assert (v e + v c * pow2 (bits t) == v a.[i - 1] + v c1); let pbits = bits t in calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in - (v e + v c * pow2 pbits - v a.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + (v e - v e - v c * pow2 pbits + v a.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + v c_in; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in) val bn_add_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in) let rec bn_add_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_carry_f a) c_in in generate_elems_unfold aLen i (bn_add_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_add_carry_f a) c_in == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_add_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1)); bn_add_carry_lemma_loop a c_in (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in); bn_add_carry_lemma_loop_step a c_in i (c1, res1); assert (v c_out * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in); () end val bn_add_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_add_carry a c_in in v c_out * pow2 (bits t * aLen) + bn_v res == bn_v a + v c_in) let bn_add_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_add_carry a c_in in bn_add_carry_lemma_loop a c_in aLen val bn_add_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1))) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i)) let bn_add_lemma_loop_step #t #aLen a b i (c1, res1) = let pbits = bits t in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in let c, e = bn_add_f a b (i - 1) c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] + v b.[i - 1] + v c1); calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) - (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v e - v e - v c * pow2 pbits + v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v b.[i - 1]) (v c1 * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + v a.[i - 1] * pow2 (pbits * (i - 1)) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + eval_ aLen b (i - 1) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen b i } eval_ aLen a i + eval_ aLen b i; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) val bn_add_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) let rec bn_add_lemma_loop #t #aLen a b i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_f a b) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 b; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0) in generate_elems_unfold aLen i (bn_add_f a b) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_add_f a b) (uint #t 0) == generate_elem_f aLen (bn_add_f a b) (i - 1) (generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1)); bn_add_lemma_loop a b (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1)); bn_add_lemma_loop_step a b i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i); () end val bn_add_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires v c0 * pow2 (bits t * bLen) + bn_v #t #bLen res0 == eval_ bLen (sub a 0 bLen) bLen + eval_ bLen b bLen) (ensures (let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (bits t * aLen))) let bn_add_concat_lemma #t #aLen #bLen a b c0 res0 = let pbits = bits t in let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c1, res1 = bn_add_carry a1 c0 in bn_add_carry_lemma a1 c0; assert (v c1 * pow2 (pbits * (aLen - bLen)) + bn_v res1 == bn_v a1 + v c0); let res = concat #_ #bLen res0 res1 in bn_concat_lemma res0 res1; assert (bn_v res == bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1); calc (==) { bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1; (==) { } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0 - v c1 * pow2 (pbits * (aLen - bLen))); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1 + v c0) (v c1 * pow2 (pbits * (aLen - bLen))) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - pow2 (pbits * bLen) * v c1 * pow2 (pbits * (aLen - bLen)); (==) { Math.Lemmas.paren_mul_right (pow2 (pbits * bLen)) (v c1) (pow2 (pbits * (aLen - bLen))); Math.Lemmas.pow2_plus (pbits * bLen) (pbits * (aLen - bLen)) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - v c1 * pow2 (pbits * aLen); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1) (v c0) } eval_ bLen a0 bLen + eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 - v c1 * pow2 (pbits * aLen); (==) { bn_eval_split_i a bLen; bn_eval_extensionality_j a (sub a 0 bLen) bLen } eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (pbits * aLen); } val bn_add_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c, res) = bn_add a b in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + bn_v b)
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c, res) = bn_add a b in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + bn_v b)
[]
Hacl.Spec.Bignum.Addition.bn_add_lemma
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Bignum.Addition.bn_add a b in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * aLen) + Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.bn_v a + Hacl.Spec.Bignum.Definitions.bn_v b) <: Type0))
{ "end_col": 54, "end_line": 291, "start_col": 37, "start_line": 279 }
FStar.Pervasives.Lemma
val bn_add_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec bn_add_lemma_loop #t #aLen a b i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_f a b) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 b; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0) in generate_elems_unfold aLen i (bn_add_f a b) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_add_f a b) (uint #t 0) == generate_elem_f aLen (bn_add_f a b) (i - 1) (generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1)); bn_add_lemma_loop a b (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1)); bn_add_lemma_loop_step a b i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i); () end
val bn_add_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) let rec bn_add_lemma_loop #t #aLen a b i =
false
null
true
let pbits = bits t in let c, res:generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in if i = 0 then (eq_generate_elems0 aLen i (bn_add_f a b) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 b; ()) else let c1, res1:generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0) in generate_elems_unfold aLen i (bn_add_f a b) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_add_f a b) (uint #t 0) == generate_elem_f aLen (bn_add_f a b) (i - 1) (generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1)); bn_add_lemma_loop a b (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1)); bn_add_lemma_loop_step a b i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i); ()
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Bignum.Base.carry", "Lib.Sequence.seq", "Hacl.Spec.Bignum.Definitions.limb", "Prims.eq2", "Lib.Sequence.length", "Prims.op_Equality", "Prims.int", "Prims.unit", "Hacl.Spec.Bignum.Definitions.bn_eval0", "FStar.Pervasives.assert_norm", "Prims.pow2", "Prims._assert", "Prims.l_and", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Prims.l_or", "Lib.IntTypes.uint_v", "Lib.IntTypes.range", "Lib.IntTypes.v", "Lib.IntTypes.uint", "FStar.Seq.Base.seq", "FStar.Seq.Base.length", "FStar.Seq.Base.empty", "Hacl.Spec.Lib.eq_generate_elems0", "Hacl.Spec.Bignum.Addition.bn_add_f", "Prims.bool", "Prims.op_Subtraction", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Definitions.eval_", "Hacl.Spec.Bignum.Addition.bn_add_lemma_loop_step", "FStar.Pervasives.Native.Mktuple2", "Hacl.Spec.Bignum.Addition.bn_add_lemma_loop", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Lib.generate_elem_f", "Hacl.Spec.Lib.generate_elems", "Hacl.Spec.Lib.generate_elems_unfold", "Hacl.Spec.Lib.generate_elem_a", "Lib.IntTypes.bits" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i] val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen let bn_add #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_add1 #t #aLen a b1 = let c0, r0 = addcarry (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_add_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)) let bn_add_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1) in let c, e = bn_add_carry_f a (i - 1) c1 in assert (v e + v c * pow2 (bits t) == v a.[i - 1] + v c1); let pbits = bits t in calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in - (v e + v c * pow2 pbits - v a.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + (v e - v e - v c * pow2 pbits + v a.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + v c_in; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in) val bn_add_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in) let rec bn_add_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_carry_f a) c_in in generate_elems_unfold aLen i (bn_add_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_add_carry_f a) c_in == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_add_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1)); bn_add_carry_lemma_loop a c_in (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in); bn_add_carry_lemma_loop_step a c_in i (c1, res1); assert (v c_out * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in); () end val bn_add_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_add_carry a c_in in v c_out * pow2 (bits t * aLen) + bn_v res == bn_v a + v c_in) let bn_add_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_add_carry a c_in in bn_add_carry_lemma_loop a c_in aLen val bn_add_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1))) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i)) let bn_add_lemma_loop_step #t #aLen a b i (c1, res1) = let pbits = bits t in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in let c, e = bn_add_f a b (i - 1) c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] + v b.[i - 1] + v c1); calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) - (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v e - v e - v c * pow2 pbits + v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v b.[i - 1]) (v c1 * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + v a.[i - 1] * pow2 (pbits * (i - 1)) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + eval_ aLen b (i - 1) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen b i } eval_ aLen a i + eval_ aLen b i; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) val bn_add_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i)
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i)
[ "recursion" ]
Hacl.Spec.Bignum.Addition.bn_add_lemma_loop
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> i: Prims.nat{i <= aLen} -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Lib.generate_elems aLen i (Hacl.Spec.Bignum.Addition.bn_add_f a b) (Lib.IntTypes.uint 0) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in let _ = _ in Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * i) + Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.eval_ aLen a i + Hacl.Spec.Bignum.Definitions.eval_ aLen b i) <: Type0))
{ "end_col": 10, "end_line": 225, "start_col": 42, "start_line": 204 }
FStar.Pervasives.Lemma
val bn_add_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec bn_add_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_carry_f a) c_in in generate_elems_unfold aLen i (bn_add_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_add_carry_f a) c_in == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_add_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1)); bn_add_carry_lemma_loop a c_in (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in); bn_add_carry_lemma_loop_step a c_in i (c1, res1); assert (v c_out * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in); () end
val bn_add_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in) let rec bn_add_carry_lemma_loop #t #aLen a c_in i =
false
null
true
let pbits = bits t in let c_out, res:generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in if i = 0 then (eq_generate_elems0 aLen i (bn_add_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; ()) else let c1, res1:generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_carry_f a) c_in in generate_elems_unfold aLen i (bn_add_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_add_carry_f a) c_in == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_add_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1)); bn_add_carry_lemma_loop a c_in (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in); bn_add_carry_lemma_loop_step a c_in i (c1, res1); assert (v c_out * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in); ()
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.Sequence.seq", "Hacl.Spec.Bignum.Definitions.limb", "Prims.eq2", "Lib.Sequence.length", "Prims.op_Equality", "Prims.int", "Prims.unit", "Hacl.Spec.Bignum.Definitions.bn_eval0", "FStar.Pervasives.assert_norm", "Prims.pow2", "Prims._assert", "Prims.l_and", "FStar.Seq.Base.seq", "Prims.l_or", "FStar.Seq.Base.length", "FStar.Seq.Base.empty", "Hacl.Spec.Lib.eq_generate_elems0", "Hacl.Spec.Bignum.Addition.bn_add_carry_f", "Prims.bool", "Prims.op_Subtraction", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Definitions.eval_", "Hacl.Spec.Bignum.Addition.bn_add_carry_lemma_loop_step", "FStar.Pervasives.Native.Mktuple2", "Hacl.Spec.Bignum.Addition.bn_add_carry_lemma_loop", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Lib.generate_elem_f", "Hacl.Spec.Lib.generate_elems", "Hacl.Spec.Lib.generate_elems_unfold", "Hacl.Spec.Lib.generate_elem_a", "Lib.IntTypes.bits" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i] val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen let bn_add #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_add1 #t #aLen a b1 = let c0, r0 = addcarry (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_add_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)) let bn_add_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1) in let c, e = bn_add_carry_f a (i - 1) c1 in assert (v e + v c * pow2 (bits t) == v a.[i - 1] + v c1); let pbits = bits t in calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in - (v e + v c * pow2 pbits - v a.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + (v e - v e - v c * pow2 pbits + v a.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + v c_in; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in) val bn_add_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)
[ "recursion" ]
Hacl.Spec.Bignum.Addition.bn_add_carry_lemma_loop
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> c_in: Hacl.Spec.Bignum.Base.carry t -> i: Prims.nat{i <= aLen} -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Lib.generate_elems aLen i (Hacl.Spec.Bignum.Addition.bn_add_carry_f a) c_in in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c_out res = _ in let _ = _ in Lib.IntTypes.v c_out * Prims.pow2 (Lib.IntTypes.bits t * i) + Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.eval_ aLen a i + Lib.IntTypes.v c_in) <: Type0))
{ "end_col": 10, "end_line": 140, "start_col": 51, "start_line": 120 }
FStar.Pervasives.Lemma
val bn_sub_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_carry_f a) c_in in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec bn_sub_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_sub_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_sub_carry_f a) c_in in generate_elems_unfold aLen i (bn_sub_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_sub_carry_f a) c_in == generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_sub_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (c1, res1)); bn_sub_carry_lemma_loop a c_in (i - 1); assert (bn_v #t #(i - 1) res1 - v c1 * pow2 (pbits * (i - 1)) == eval_ aLen a (i - 1) - v c_in); bn_sub_carry_lemma_loop_step a c_in i (c1, res1); assert (bn_v #t #i res - v c_out * pow2 (pbits * i) == eval_ aLen a i - v c_in); () end
val bn_sub_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_carry_f a) c_in in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in) let rec bn_sub_carry_lemma_loop #t #aLen a c_in i =
false
null
true
let pbits = bits t in let c_out, res:generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_carry_f a) c_in in if i = 0 then (eq_generate_elems0 aLen i (bn_sub_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; ()) else let c1, res1:generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_sub_carry_f a) c_in in generate_elems_unfold aLen i (bn_sub_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_sub_carry_f a) c_in == generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_sub_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (c1, res1)); bn_sub_carry_lemma_loop a c_in (i - 1); assert (bn_v #t #(i - 1) res1 - v c1 * pow2 (pbits * (i - 1)) == eval_ aLen a (i - 1) - v c_in); bn_sub_carry_lemma_loop_step a c_in i (c1, res1); assert (bn_v #t #i res - v c_out * pow2 (pbits * i) == eval_ aLen a i - v c_in); ()
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.Sequence.seq", "Hacl.Spec.Bignum.Definitions.limb", "Prims.eq2", "Lib.Sequence.length", "Prims.op_Equality", "Prims.int", "Prims.unit", "Hacl.Spec.Bignum.Definitions.bn_eval0", "FStar.Pervasives.assert_norm", "Prims.pow2", "Prims._assert", "Prims.l_and", "FStar.Seq.Base.seq", "Prims.l_or", "FStar.Seq.Base.length", "FStar.Seq.Base.empty", "Hacl.Spec.Lib.eq_generate_elems0", "Hacl.Spec.Bignum.Addition.bn_sub_carry_f", "Prims.bool", "Prims.op_Subtraction", "Hacl.Spec.Bignum.Definitions.bn_v", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Hacl.Spec.Bignum.Definitions.eval_", "Hacl.Spec.Bignum.Addition.bn_sub_carry_lemma_loop_step", "FStar.Pervasives.Native.Mktuple2", "Hacl.Spec.Bignum.Addition.bn_sub_carry_lemma_loop", "FStar.Pervasives.Native.tuple2", "Prims.op_Addition", "Hacl.Spec.Lib.generate_elem_f", "Hacl.Spec.Lib.generate_elems", "Hacl.Spec.Lib.generate_elems_unfold", "Hacl.Spec.Lib.generate_elem_a", "Lib.IntTypes.bits" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i] val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen let bn_add #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_add1 #t #aLen a b1 = let c0, r0 = addcarry (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_add_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)) let bn_add_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1) in let c, e = bn_add_carry_f a (i - 1) c1 in assert (v e + v c * pow2 (bits t) == v a.[i - 1] + v c1); let pbits = bits t in calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in - (v e + v c * pow2 pbits - v a.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + (v e - v e - v c * pow2 pbits + v a.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + v c_in; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in) val bn_add_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in) let rec bn_add_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_carry_f a) c_in in generate_elems_unfold aLen i (bn_add_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_add_carry_f a) c_in == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_add_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1)); bn_add_carry_lemma_loop a c_in (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in); bn_add_carry_lemma_loop_step a c_in i (c1, res1); assert (v c_out * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in); () end val bn_add_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_add_carry a c_in in v c_out * pow2 (bits t * aLen) + bn_v res == bn_v a + v c_in) let bn_add_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_add_carry a c_in in bn_add_carry_lemma_loop a c_in aLen val bn_add_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1))) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i)) let bn_add_lemma_loop_step #t #aLen a b i (c1, res1) = let pbits = bits t in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in let c, e = bn_add_f a b (i - 1) c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] + v b.[i - 1] + v c1); calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) - (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v e - v e - v c * pow2 pbits + v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v b.[i - 1]) (v c1 * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + v a.[i - 1] * pow2 (pbits * (i - 1)) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + eval_ aLen b (i - 1) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen b i } eval_ aLen a i + eval_ aLen b i; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) val bn_add_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) let rec bn_add_lemma_loop #t #aLen a b i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_f a b) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 b; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0) in generate_elems_unfold aLen i (bn_add_f a b) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_add_f a b) (uint #t 0) == generate_elem_f aLen (bn_add_f a b) (i - 1) (generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1)); bn_add_lemma_loop a b (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1)); bn_add_lemma_loop_step a b i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i); () end val bn_add_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires v c0 * pow2 (bits t * bLen) + bn_v #t #bLen res0 == eval_ bLen (sub a 0 bLen) bLen + eval_ bLen b bLen) (ensures (let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (bits t * aLen))) let bn_add_concat_lemma #t #aLen #bLen a b c0 res0 = let pbits = bits t in let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c1, res1 = bn_add_carry a1 c0 in bn_add_carry_lemma a1 c0; assert (v c1 * pow2 (pbits * (aLen - bLen)) + bn_v res1 == bn_v a1 + v c0); let res = concat #_ #bLen res0 res1 in bn_concat_lemma res0 res1; assert (bn_v res == bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1); calc (==) { bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1; (==) { } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0 - v c1 * pow2 (pbits * (aLen - bLen))); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1 + v c0) (v c1 * pow2 (pbits * (aLen - bLen))) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - pow2 (pbits * bLen) * v c1 * pow2 (pbits * (aLen - bLen)); (==) { Math.Lemmas.paren_mul_right (pow2 (pbits * bLen)) (v c1) (pow2 (pbits * (aLen - bLen))); Math.Lemmas.pow2_plus (pbits * bLen) (pbits * (aLen - bLen)) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - v c1 * pow2 (pbits * aLen); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1) (v c0) } eval_ bLen a0 bLen + eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 - v c1 * pow2 (pbits * aLen); (==) { bn_eval_split_i a bLen; bn_eval_extensionality_j a (sub a 0 bLen) bLen } eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (pbits * aLen); } val bn_add_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c, res) = bn_add a b in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + bn_v b) let bn_add_lemma #t #aLen #bLen a b = let pbits = bits t in let (c, res) = bn_add a b in if bLen = aLen then bn_add_lemma_loop a b aLen else begin let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c0, res0 = generate_elems bLen bLen (bn_add_f a0 b) (uint #t 0) in bn_add_lemma_loop a0 b bLen; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #bLen res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma #t #aLen #bLen a b c0 res0 end val bn_add1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_add1 a b1 in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + v b1) let bn_add1_lemma #t #aLen a b1 = let pbits = bits t in let c0, r0 = addcarry (uint #t 0) a.[0] b1 in assert (v c0 * pow2 pbits + v r0 = v a.[0] + v b1); let res0 = create 1 r0 in let b = create 1 b1 in bn_eval1 res0; bn_eval1 b; if aLen = 1 then bn_eval1 a else begin let bLen = 1 in let a0 = sub a 0 bLen in bn_eval1 a0; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #1 res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma a b c0 res0 end val bn_sub_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) c1_res1 in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in)) let bn_sub_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let pbits = bits t in let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (c1, res1) in let c, e = bn_sub_carry_f a (i - 1) c1 in assert (v e - v c * pow2 pbits == v a.[i - 1] - v c1); calc (==) { bn_v #t #i res - v c * pow2 (pbits * i); (==) { bn_eval_snoc #t #(i - 1) res1 e } bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { } eval_ aLen a (i - 1) - v c_in + (v a.[i - 1] - v e + v c * pow2 pbits) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v c * pow2 pbits) (v e) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + (v a.[i - 1] + v c * pow2 pbits) * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) + v c * pow2 pbits * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) - v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i a i } eval_ aLen a i - v c_in; }; assert (bn_v #t #i res - v c * pow2 (pbits * i) == eval_ aLen a i - v c_in) val bn_sub_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_carry_f a) c_in in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in)
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_carry_f a) c_in in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in)
[ "recursion" ]
Hacl.Spec.Bignum.Addition.bn_sub_carry_lemma_loop
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> c_in: Hacl.Spec.Bignum.Base.carry t -> i: Prims.nat{i <= aLen} -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Lib.generate_elems aLen i (Hacl.Spec.Bignum.Addition.bn_sub_carry_f a) c_in in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c_out res = _ in let _ = _ in Hacl.Spec.Bignum.Definitions.bn_v res - Lib.IntTypes.v c_out * Prims.pow2 (Lib.IntTypes.bits t * i) == Hacl.Spec.Bignum.Definitions.eval_ aLen a i - Lib.IntTypes.v c_in) <: Type0))
{ "end_col": 10, "end_line": 390, "start_col": 51, "start_line": 370 }
FStar.Pervasives.Lemma
val bn_sub_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_f a b) (uint #t 0) in bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec bn_sub_lemma_loop #t #aLen a b i = let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_f a b) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_sub_f a b) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 b; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_sub_f a b) (uint #t 0) in generate_elems_unfold aLen i (bn_sub_f a b) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_sub_f a b) (uint #t 0) == generate_elem_f aLen (bn_sub_f a b) (i - 1) (generate_elems aLen (i - 1) (bn_sub_f a b) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_sub_f a b) (i - 1) (c1, res1)); bn_sub_lemma_loop a b (i - 1); assert (bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - eval_ aLen b (i - 1)); bn_sub_lemma_loop_step a b i (c1, res1); assert (bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i); () end
val bn_sub_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_f a b) (uint #t 0) in bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i) let rec bn_sub_lemma_loop #t #aLen a b i =
false
null
true
let c, res:generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_f a b) (uint #t 0) in if i = 0 then (eq_generate_elems0 aLen i (bn_sub_f a b) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 b; ()) else let c1, res1:generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_sub_f a b) (uint #t 0) in generate_elems_unfold aLen i (bn_sub_f a b) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_sub_f a b) (uint #t 0) == generate_elem_f aLen (bn_sub_f a b) (i - 1) (generate_elems aLen (i - 1) (bn_sub_f a b) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_sub_f a b) (i - 1) (c1, res1)); bn_sub_lemma_loop a b (i - 1); assert (bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - eval_ aLen b (i - 1)); bn_sub_lemma_loop_step a b i (c1, res1); assert (bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i); ()
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Bignum.Base.carry", "Lib.Sequence.seq", "Hacl.Spec.Bignum.Definitions.limb", "Prims.eq2", "Lib.Sequence.length", "Prims.op_Equality", "Prims.int", "Prims.unit", "Hacl.Spec.Bignum.Definitions.bn_eval0", "FStar.Pervasives.assert_norm", "Prims.pow2", "Prims._assert", "Prims.l_and", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Prims.l_or", "Lib.IntTypes.uint_v", "Lib.IntTypes.range", "Lib.IntTypes.v", "Lib.IntTypes.uint", "FStar.Seq.Base.seq", "FStar.Seq.Base.length", "FStar.Seq.Base.empty", "Hacl.Spec.Lib.eq_generate_elems0", "Hacl.Spec.Bignum.Addition.bn_sub_f", "Prims.bool", "Prims.op_Subtraction", "Hacl.Spec.Bignum.Definitions.bn_v", "FStar.Mul.op_Star", "Lib.IntTypes.bits", "Hacl.Spec.Bignum.Definitions.eval_", "Hacl.Spec.Bignum.Addition.bn_sub_lemma_loop_step", "FStar.Pervasives.Native.Mktuple2", "Hacl.Spec.Bignum.Addition.bn_sub_lemma_loop", "FStar.Pervasives.Native.tuple2", "Prims.op_Addition", "Hacl.Spec.Lib.generate_elem_f", "Hacl.Spec.Lib.generate_elems", "Hacl.Spec.Lib.generate_elems_unfold", "Hacl.Spec.Lib.generate_elem_a" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i] val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen let bn_add #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_add1 #t #aLen a b1 = let c0, r0 = addcarry (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_add_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)) let bn_add_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1) in let c, e = bn_add_carry_f a (i - 1) c1 in assert (v e + v c * pow2 (bits t) == v a.[i - 1] + v c1); let pbits = bits t in calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in - (v e + v c * pow2 pbits - v a.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + (v e - v e - v c * pow2 pbits + v a.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + v c_in; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in) val bn_add_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in) let rec bn_add_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_carry_f a) c_in in generate_elems_unfold aLen i (bn_add_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_add_carry_f a) c_in == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_add_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1)); bn_add_carry_lemma_loop a c_in (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in); bn_add_carry_lemma_loop_step a c_in i (c1, res1); assert (v c_out * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in); () end val bn_add_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_add_carry a c_in in v c_out * pow2 (bits t * aLen) + bn_v res == bn_v a + v c_in) let bn_add_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_add_carry a c_in in bn_add_carry_lemma_loop a c_in aLen val bn_add_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1))) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i)) let bn_add_lemma_loop_step #t #aLen a b i (c1, res1) = let pbits = bits t in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in let c, e = bn_add_f a b (i - 1) c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] + v b.[i - 1] + v c1); calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) - (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v e - v e - v c * pow2 pbits + v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v b.[i - 1]) (v c1 * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + v a.[i - 1] * pow2 (pbits * (i - 1)) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + eval_ aLen b (i - 1) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen b i } eval_ aLen a i + eval_ aLen b i; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) val bn_add_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) let rec bn_add_lemma_loop #t #aLen a b i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_f a b) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 b; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0) in generate_elems_unfold aLen i (bn_add_f a b) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_add_f a b) (uint #t 0) == generate_elem_f aLen (bn_add_f a b) (i - 1) (generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1)); bn_add_lemma_loop a b (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1)); bn_add_lemma_loop_step a b i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i); () end val bn_add_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires v c0 * pow2 (bits t * bLen) + bn_v #t #bLen res0 == eval_ bLen (sub a 0 bLen) bLen + eval_ bLen b bLen) (ensures (let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (bits t * aLen))) let bn_add_concat_lemma #t #aLen #bLen a b c0 res0 = let pbits = bits t in let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c1, res1 = bn_add_carry a1 c0 in bn_add_carry_lemma a1 c0; assert (v c1 * pow2 (pbits * (aLen - bLen)) + bn_v res1 == bn_v a1 + v c0); let res = concat #_ #bLen res0 res1 in bn_concat_lemma res0 res1; assert (bn_v res == bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1); calc (==) { bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1; (==) { } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0 - v c1 * pow2 (pbits * (aLen - bLen))); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1 + v c0) (v c1 * pow2 (pbits * (aLen - bLen))) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - pow2 (pbits * bLen) * v c1 * pow2 (pbits * (aLen - bLen)); (==) { Math.Lemmas.paren_mul_right (pow2 (pbits * bLen)) (v c1) (pow2 (pbits * (aLen - bLen))); Math.Lemmas.pow2_plus (pbits * bLen) (pbits * (aLen - bLen)) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - v c1 * pow2 (pbits * aLen); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1) (v c0) } eval_ bLen a0 bLen + eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 - v c1 * pow2 (pbits * aLen); (==) { bn_eval_split_i a bLen; bn_eval_extensionality_j a (sub a 0 bLen) bLen } eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (pbits * aLen); } val bn_add_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c, res) = bn_add a b in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + bn_v b) let bn_add_lemma #t #aLen #bLen a b = let pbits = bits t in let (c, res) = bn_add a b in if bLen = aLen then bn_add_lemma_loop a b aLen else begin let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c0, res0 = generate_elems bLen bLen (bn_add_f a0 b) (uint #t 0) in bn_add_lemma_loop a0 b bLen; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #bLen res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma #t #aLen #bLen a b c0 res0 end val bn_add1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_add1 a b1 in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + v b1) let bn_add1_lemma #t #aLen a b1 = let pbits = bits t in let c0, r0 = addcarry (uint #t 0) a.[0] b1 in assert (v c0 * pow2 pbits + v r0 = v a.[0] + v b1); let res0 = create 1 r0 in let b = create 1 b1 in bn_eval1 res0; bn_eval1 b; if aLen = 1 then bn_eval1 a else begin let bLen = 1 in let a0 = sub a 0 bLen in bn_eval1 a0; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #1 res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma a b c0 res0 end val bn_sub_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) c1_res1 in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in)) let bn_sub_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let pbits = bits t in let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (c1, res1) in let c, e = bn_sub_carry_f a (i - 1) c1 in assert (v e - v c * pow2 pbits == v a.[i - 1] - v c1); calc (==) { bn_v #t #i res - v c * pow2 (pbits * i); (==) { bn_eval_snoc #t #(i - 1) res1 e } bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { } eval_ aLen a (i - 1) - v c_in + (v a.[i - 1] - v e + v c * pow2 pbits) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v c * pow2 pbits) (v e) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + (v a.[i - 1] + v c * pow2 pbits) * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) + v c * pow2 pbits * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) - v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i a i } eval_ aLen a i - v c_in; }; assert (bn_v #t #i res - v c * pow2 (pbits * i) == eval_ aLen a i - v c_in) val bn_sub_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_carry_f a) c_in in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in) let rec bn_sub_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_sub_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_sub_carry_f a) c_in in generate_elems_unfold aLen i (bn_sub_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_sub_carry_f a) c_in == generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_sub_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (c1, res1)); bn_sub_carry_lemma_loop a c_in (i - 1); assert (bn_v #t #(i - 1) res1 - v c1 * pow2 (pbits * (i - 1)) == eval_ aLen a (i - 1) - v c_in); bn_sub_carry_lemma_loop_step a c_in i (c1, res1); assert (bn_v #t #i res - v c_out * pow2 (pbits * i) == eval_ aLen a i - v c_in); () end val bn_sub_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_sub_carry a c_in in bn_v res - v c_out * pow2 (bits t * aLen) == bn_v a - v c_in) let bn_sub_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_sub_carry a c_in in bn_sub_carry_lemma_loop a c_in aLen val bn_sub_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - eval_ aLen b (i - 1))) (ensures (let (c, res) = generate_elem_f aLen (bn_sub_f a b) (i - 1) c1_res1 in bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i)) let bn_sub_lemma_loop_step #t #aLen a b i (c1, res1) = let pbits = bits t in let (c, res) = generate_elem_f aLen (bn_sub_f a b) (i - 1) (c1, res1) in let c, e = bn_sub_f a b (i - 1) c1 in assert (v e - v c * pow2 pbits == v a.[i - 1] - v b.[i - 1] - v c1); calc (==) { bn_v #t #i res - v c * pow2 (pbits * i); (==) { bn_eval_snoc #t #(i - 1) res1 e } bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1] + v c * pow2 pbits - v e) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] - v b.[i - 1] + v c * pow2 pbits) (v e) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1] + v c * pow2 pbits) * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] - v b.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)) + v c * pow2 pbits * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + v a.[i - 1] * pow2 (pbits * (i - 1)) - v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i a i } eval_ aLen a i - eval_ aLen b (i - 1) - v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i b i } eval_ aLen a i - eval_ aLen b i; }; assert (bn_v #t #i res - v c * pow2 (pbits * i) == eval_ aLen a i - eval_ aLen b i) val bn_sub_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_f a b) (uint #t 0) in bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i)
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_f a b) (uint #t 0) in bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i)
[ "recursion" ]
Hacl.Spec.Bignum.Addition.bn_sub_lemma_loop
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> i: Prims.nat{i <= aLen} -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Lib.generate_elems aLen i (Hacl.Spec.Bignum.Addition.bn_sub_f a b) (Lib.IntTypes.uint 0) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in let _ = _ in Hacl.Spec.Bignum.Definitions.bn_v res - Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * i) == Hacl.Spec.Bignum.Definitions.eval_ aLen a i - Hacl.Spec.Bignum.Definitions.eval_ aLen b i) <: Type0))
{ "end_col": 10, "end_line": 473, "start_col": 42, "start_line": 453 }
FStar.Pervasives.Lemma
val bn_sub_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires bn_v #t #bLen res0 - v c0 * pow2 (bits t * bLen) == eval_ bLen (sub a 0 bLen) bLen - eval_ bLen b bLen) (ensures (let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen - eval_ bLen b bLen + v c1 * pow2 (bits t * aLen)))
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub_concat_lemma #t #aLen #bLen a b c0 res0 = let pbits = bits t in let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c1, res1 = bn_sub_carry a1 c0 in bn_sub_carry_lemma a1 c0; assert (bn_v res1 - v c1 * pow2 (pbits * (aLen - bLen)) == bn_v a1 - v c0); let res = concat #_ #bLen res0 res1 in bn_concat_lemma res0 res1; assert (bn_v res == bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1); calc (==) { bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1; (==) { } eval_ bLen a0 bLen - eval_ bLen b bLen + v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 - v c0 + v c1 * pow2 (pbits * (aLen - bLen))); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1 + v c1 * pow2 (pbits * (aLen - bLen))) (v c0) } eval_ bLen a0 bLen - eval_ bLen b bLen + v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c1 * pow2 (pbits * (aLen - bLen))) - pow2 (pbits * bLen) * v c0; (==) { Math.Lemmas.distributivity_add_right (pow2 (pbits * bLen)) (bn_v a1) (v c1 * pow2 (pbits * (aLen - bLen))) } eval_ bLen a0 bLen - eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 + pow2 (pbits * bLen) * v c1 * pow2 (pbits * (aLen - bLen)); (==) { Math.Lemmas.paren_mul_right (pow2 (pbits * bLen)) (v c1) (pow2 (pbits * (aLen - bLen))); Math.Lemmas.pow2_plus (pbits * bLen) (pbits * (aLen - bLen)) } eval_ bLen a0 bLen - eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 + v c1 * pow2 (pbits * aLen); (==) { bn_eval_split_i a bLen; bn_eval_extensionality_j a (sub a 0 bLen) bLen } eval_ aLen a aLen - eval_ bLen b bLen + v c1 * pow2 (pbits * aLen); }
val bn_sub_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires bn_v #t #bLen res0 - v c0 * pow2 (bits t * bLen) == eval_ bLen (sub a 0 bLen) bLen - eval_ bLen b bLen) (ensures (let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen - eval_ bLen b bLen + v c1 * pow2 (bits t * aLen))) let bn_sub_concat_lemma #t #aLen #bLen a b c0 res0 =
false
null
true
let pbits = bits t in let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c1, res1 = bn_sub_carry a1 c0 in bn_sub_carry_lemma a1 c0; assert (bn_v res1 - v c1 * pow2 (pbits * (aLen - bLen)) == bn_v a1 - v c0); let res = concat #_ #bLen res0 res1 in bn_concat_lemma res0 res1; assert (bn_v res == bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1); calc ( == ) { bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1; ( == ) { () } eval_ bLen a0 bLen - eval_ bLen b bLen + v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 - v c0 + v c1 * pow2 (pbits * (aLen - bLen))); ( == ) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1 + v c1 * pow2 (pbits * (aLen - bLen))) (v c0) } eval_ bLen a0 bLen - eval_ bLen b bLen + v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c1 * pow2 (pbits * (aLen - bLen))) - pow2 (pbits * bLen) * v c0; ( == ) { Math.Lemmas.distributivity_add_right (pow2 (pbits * bLen)) (bn_v a1) (v c1 * pow2 (pbits * (aLen - bLen))) } eval_ bLen a0 bLen - eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 + (pow2 (pbits * bLen) * v c1) * pow2 (pbits * (aLen - bLen)); ( == ) { (Math.Lemmas.paren_mul_right (pow2 (pbits * bLen)) (v c1) (pow2 (pbits * (aLen - bLen))); Math.Lemmas.pow2_plus (pbits * bLen) (pbits * (aLen - bLen))) } eval_ bLen a0 bLen - eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 + v c1 * pow2 (pbits * aLen); ( == ) { (bn_eval_split_i a bLen; bn_eval_extensionality_j a (sub a 0 bLen) bLen) } eval_ aLen a aLen - eval_ bLen b bLen + v c1 * pow2 (pbits * aLen); }
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Prims.op_Subtraction", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "Hacl.Spec.Bignum.Definitions.bn_v", "FStar.Mul.op_Star", "Prims.pow2", "Hacl.Spec.Bignum.Definitions.eval_", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.distributivity_sub_right", "FStar.Math.Lemmas.distributivity_add_right", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.paren_mul_right", "Hacl.Spec.Bignum.Definitions.bn_eval_extensionality_j", "Lib.Sequence.sub", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Definitions.bn_eval_split_i", "Prims._assert", "Hacl.Spec.Bignum.Definitions.bn_concat_lemma", "Lib.Sequence.lseq", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.append", "Lib.Sequence.concat", "Hacl.Spec.Bignum.Addition.bn_sub_carry_lemma", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Addition.bn_sub_carry", "Prims.l_and", "FStar.Seq.Base.slice", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.IntTypes.bits" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i] val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen let bn_add #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_add1 #t #aLen a b1 = let c0, r0 = addcarry (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_add_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)) let bn_add_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1) in let c, e = bn_add_carry_f a (i - 1) c1 in assert (v e + v c * pow2 (bits t) == v a.[i - 1] + v c1); let pbits = bits t in calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in - (v e + v c * pow2 pbits - v a.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + (v e - v e - v c * pow2 pbits + v a.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + v c_in; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in) val bn_add_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in) let rec bn_add_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_carry_f a) c_in in generate_elems_unfold aLen i (bn_add_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_add_carry_f a) c_in == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_add_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1)); bn_add_carry_lemma_loop a c_in (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in); bn_add_carry_lemma_loop_step a c_in i (c1, res1); assert (v c_out * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in); () end val bn_add_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_add_carry a c_in in v c_out * pow2 (bits t * aLen) + bn_v res == bn_v a + v c_in) let bn_add_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_add_carry a c_in in bn_add_carry_lemma_loop a c_in aLen val bn_add_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1))) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i)) let bn_add_lemma_loop_step #t #aLen a b i (c1, res1) = let pbits = bits t in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in let c, e = bn_add_f a b (i - 1) c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] + v b.[i - 1] + v c1); calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) - (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v e - v e - v c * pow2 pbits + v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v b.[i - 1]) (v c1 * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + v a.[i - 1] * pow2 (pbits * (i - 1)) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + eval_ aLen b (i - 1) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen b i } eval_ aLen a i + eval_ aLen b i; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) val bn_add_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) let rec bn_add_lemma_loop #t #aLen a b i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_f a b) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 b; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0) in generate_elems_unfold aLen i (bn_add_f a b) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_add_f a b) (uint #t 0) == generate_elem_f aLen (bn_add_f a b) (i - 1) (generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1)); bn_add_lemma_loop a b (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1)); bn_add_lemma_loop_step a b i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i); () end val bn_add_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires v c0 * pow2 (bits t * bLen) + bn_v #t #bLen res0 == eval_ bLen (sub a 0 bLen) bLen + eval_ bLen b bLen) (ensures (let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (bits t * aLen))) let bn_add_concat_lemma #t #aLen #bLen a b c0 res0 = let pbits = bits t in let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c1, res1 = bn_add_carry a1 c0 in bn_add_carry_lemma a1 c0; assert (v c1 * pow2 (pbits * (aLen - bLen)) + bn_v res1 == bn_v a1 + v c0); let res = concat #_ #bLen res0 res1 in bn_concat_lemma res0 res1; assert (bn_v res == bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1); calc (==) { bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1; (==) { } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0 - v c1 * pow2 (pbits * (aLen - bLen))); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1 + v c0) (v c1 * pow2 (pbits * (aLen - bLen))) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - pow2 (pbits * bLen) * v c1 * pow2 (pbits * (aLen - bLen)); (==) { Math.Lemmas.paren_mul_right (pow2 (pbits * bLen)) (v c1) (pow2 (pbits * (aLen - bLen))); Math.Lemmas.pow2_plus (pbits * bLen) (pbits * (aLen - bLen)) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - v c1 * pow2 (pbits * aLen); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1) (v c0) } eval_ bLen a0 bLen + eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 - v c1 * pow2 (pbits * aLen); (==) { bn_eval_split_i a bLen; bn_eval_extensionality_j a (sub a 0 bLen) bLen } eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (pbits * aLen); } val bn_add_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c, res) = bn_add a b in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + bn_v b) let bn_add_lemma #t #aLen #bLen a b = let pbits = bits t in let (c, res) = bn_add a b in if bLen = aLen then bn_add_lemma_loop a b aLen else begin let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c0, res0 = generate_elems bLen bLen (bn_add_f a0 b) (uint #t 0) in bn_add_lemma_loop a0 b bLen; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #bLen res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma #t #aLen #bLen a b c0 res0 end val bn_add1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_add1 a b1 in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + v b1) let bn_add1_lemma #t #aLen a b1 = let pbits = bits t in let c0, r0 = addcarry (uint #t 0) a.[0] b1 in assert (v c0 * pow2 pbits + v r0 = v a.[0] + v b1); let res0 = create 1 r0 in let b = create 1 b1 in bn_eval1 res0; bn_eval1 b; if aLen = 1 then bn_eval1 a else begin let bLen = 1 in let a0 = sub a 0 bLen in bn_eval1 a0; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #1 res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma a b c0 res0 end val bn_sub_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) c1_res1 in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in)) let bn_sub_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let pbits = bits t in let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (c1, res1) in let c, e = bn_sub_carry_f a (i - 1) c1 in assert (v e - v c * pow2 pbits == v a.[i - 1] - v c1); calc (==) { bn_v #t #i res - v c * pow2 (pbits * i); (==) { bn_eval_snoc #t #(i - 1) res1 e } bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { } eval_ aLen a (i - 1) - v c_in + (v a.[i - 1] - v e + v c * pow2 pbits) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v c * pow2 pbits) (v e) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + (v a.[i - 1] + v c * pow2 pbits) * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) + v c * pow2 pbits * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) - v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i a i } eval_ aLen a i - v c_in; }; assert (bn_v #t #i res - v c * pow2 (pbits * i) == eval_ aLen a i - v c_in) val bn_sub_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_carry_f a) c_in in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in) let rec bn_sub_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_sub_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_sub_carry_f a) c_in in generate_elems_unfold aLen i (bn_sub_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_sub_carry_f a) c_in == generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_sub_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (c1, res1)); bn_sub_carry_lemma_loop a c_in (i - 1); assert (bn_v #t #(i - 1) res1 - v c1 * pow2 (pbits * (i - 1)) == eval_ aLen a (i - 1) - v c_in); bn_sub_carry_lemma_loop_step a c_in i (c1, res1); assert (bn_v #t #i res - v c_out * pow2 (pbits * i) == eval_ aLen a i - v c_in); () end val bn_sub_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_sub_carry a c_in in bn_v res - v c_out * pow2 (bits t * aLen) == bn_v a - v c_in) let bn_sub_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_sub_carry a c_in in bn_sub_carry_lemma_loop a c_in aLen val bn_sub_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - eval_ aLen b (i - 1))) (ensures (let (c, res) = generate_elem_f aLen (bn_sub_f a b) (i - 1) c1_res1 in bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i)) let bn_sub_lemma_loop_step #t #aLen a b i (c1, res1) = let pbits = bits t in let (c, res) = generate_elem_f aLen (bn_sub_f a b) (i - 1) (c1, res1) in let c, e = bn_sub_f a b (i - 1) c1 in assert (v e - v c * pow2 pbits == v a.[i - 1] - v b.[i - 1] - v c1); calc (==) { bn_v #t #i res - v c * pow2 (pbits * i); (==) { bn_eval_snoc #t #(i - 1) res1 e } bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1] + v c * pow2 pbits - v e) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] - v b.[i - 1] + v c * pow2 pbits) (v e) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1] + v c * pow2 pbits) * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] - v b.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)) + v c * pow2 pbits * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + v a.[i - 1] * pow2 (pbits * (i - 1)) - v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i a i } eval_ aLen a i - eval_ aLen b (i - 1) - v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i b i } eval_ aLen a i - eval_ aLen b i; }; assert (bn_v #t #i res - v c * pow2 (pbits * i) == eval_ aLen a i - eval_ aLen b i) val bn_sub_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_f a b) (uint #t 0) in bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i) let rec bn_sub_lemma_loop #t #aLen a b i = let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_f a b) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_sub_f a b) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 b; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_sub_f a b) (uint #t 0) in generate_elems_unfold aLen i (bn_sub_f a b) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_sub_f a b) (uint #t 0) == generate_elem_f aLen (bn_sub_f a b) (i - 1) (generate_elems aLen (i - 1) (bn_sub_f a b) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_sub_f a b) (i - 1) (c1, res1)); bn_sub_lemma_loop a b (i - 1); assert (bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - eval_ aLen b (i - 1)); bn_sub_lemma_loop_step a b i (c1, res1); assert (bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i); () end val bn_sub_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires bn_v #t #bLen res0 - v c0 * pow2 (bits t * bLen) == eval_ bLen (sub a 0 bLen) bLen - eval_ bLen b bLen) (ensures (let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen - eval_ bLen b bLen + v c1 * pow2 (bits t * aLen)))
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires bn_v #t #bLen res0 - v c0 * pow2 (bits t * bLen) == eval_ bLen (sub a 0 bLen) bLen - eval_ bLen b bLen) (ensures (let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen - eval_ bLen b bLen + v c1 * pow2 (bits t * aLen)))
[]
Hacl.Spec.Bignum.Addition.bn_sub_concat_lemma
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> c0: Hacl.Spec.Bignum.Base.carry t -> res0: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> FStar.Pervasives.Lemma (requires Hacl.Spec.Bignum.Definitions.bn_v res0 - Lib.IntTypes.v c0 * Prims.pow2 (Lib.IntTypes.bits t * bLen) == Hacl.Spec.Bignum.Definitions.eval_ bLen (Lib.Sequence.sub a 0 bLen) bLen - Hacl.Spec.Bignum.Definitions.eval_ bLen b bLen) (ensures (let _ = Hacl.Spec.Bignum.Addition.bn_sub_carry (Lib.Sequence.sub a bLen (aLen - bLen)) c0 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in let res = Lib.Sequence.concat res0 res1 in Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.eval_ aLen a aLen - Hacl.Spec.Bignum.Definitions.eval_ bLen b bLen + Lib.IntTypes.v c1 * Prims.pow2 (Lib.IntTypes.bits t * aLen)) <: Type0))
{ "end_col": 3, "end_line": 515, "start_col": 52, "start_line": 491 }
FStar.Pervasives.Lemma
val bn_add_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires v c0 * pow2 (bits t * bLen) + bn_v #t #bLen res0 == eval_ bLen (sub a 0 bLen) bLen + eval_ bLen b bLen) (ensures (let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (bits t * aLen)))
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add_concat_lemma #t #aLen #bLen a b c0 res0 = let pbits = bits t in let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c1, res1 = bn_add_carry a1 c0 in bn_add_carry_lemma a1 c0; assert (v c1 * pow2 (pbits * (aLen - bLen)) + bn_v res1 == bn_v a1 + v c0); let res = concat #_ #bLen res0 res1 in bn_concat_lemma res0 res1; assert (bn_v res == bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1); calc (==) { bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1; (==) { } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0 - v c1 * pow2 (pbits * (aLen - bLen))); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1 + v c0) (v c1 * pow2 (pbits * (aLen - bLen))) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - pow2 (pbits * bLen) * v c1 * pow2 (pbits * (aLen - bLen)); (==) { Math.Lemmas.paren_mul_right (pow2 (pbits * bLen)) (v c1) (pow2 (pbits * (aLen - bLen))); Math.Lemmas.pow2_plus (pbits * bLen) (pbits * (aLen - bLen)) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - v c1 * pow2 (pbits * aLen); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1) (v c0) } eval_ bLen a0 bLen + eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 - v c1 * pow2 (pbits * aLen); (==) { bn_eval_split_i a bLen; bn_eval_extensionality_j a (sub a 0 bLen) bLen } eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (pbits * aLen); }
val bn_add_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires v c0 * pow2 (bits t * bLen) + bn_v #t #bLen res0 == eval_ bLen (sub a 0 bLen) bLen + eval_ bLen b bLen) (ensures (let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (bits t * aLen))) let bn_add_concat_lemma #t #aLen #bLen a b c0 res0 =
false
null
true
let pbits = bits t in let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c1, res1 = bn_add_carry a1 c0 in bn_add_carry_lemma a1 c0; assert (v c1 * pow2 (pbits * (aLen - bLen)) + bn_v res1 == bn_v a1 + v c0); let res = concat #_ #bLen res0 res1 in bn_concat_lemma res0 res1; assert (bn_v res == bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1); calc ( == ) { bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1; ( == ) { () } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0 - v c1 * pow2 (pbits * (aLen - bLen))); ( == ) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1 + v c0) (v c1 * pow2 (pbits * (aLen - bLen))) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - (pow2 (pbits * bLen) * v c1) * pow2 (pbits * (aLen - bLen)); ( == ) { (Math.Lemmas.paren_mul_right (pow2 (pbits * bLen)) (v c1) (pow2 (pbits * (aLen - bLen))); Math.Lemmas.pow2_plus (pbits * bLen) (pbits * (aLen - bLen))) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - v c1 * pow2 (pbits * aLen); ( == ) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1) (v c0) } eval_ bLen a0 bLen + eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 - v c1 * pow2 (pbits * aLen); ( == ) { (bn_eval_split_i a bLen; bn_eval_extensionality_j a (sub a 0 bLen) bLen) } eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (pbits * aLen); }
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Prims.op_Subtraction", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "Hacl.Spec.Bignum.Definitions.bn_v", "FStar.Mul.op_Star", "Prims.pow2", "Hacl.Spec.Bignum.Definitions.eval_", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.distributivity_sub_right", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.paren_mul_right", "Hacl.Spec.Bignum.Definitions.bn_eval_extensionality_j", "Lib.Sequence.sub", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Definitions.bn_eval_split_i", "Prims._assert", "Hacl.Spec.Bignum.Definitions.bn_concat_lemma", "Lib.Sequence.lseq", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.append", "Lib.Sequence.concat", "Hacl.Spec.Bignum.Addition.bn_add_carry_lemma", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Addition.bn_add_carry", "Prims.l_and", "FStar.Seq.Base.slice", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.IntTypes.bits" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i] val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen let bn_add #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_add1 #t #aLen a b1 = let c0, r0 = addcarry (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_add_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)) let bn_add_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1) in let c, e = bn_add_carry_f a (i - 1) c1 in assert (v e + v c * pow2 (bits t) == v a.[i - 1] + v c1); let pbits = bits t in calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in - (v e + v c * pow2 pbits - v a.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + (v e - v e - v c * pow2 pbits + v a.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + v c_in; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in) val bn_add_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in) let rec bn_add_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_carry_f a) c_in in generate_elems_unfold aLen i (bn_add_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_add_carry_f a) c_in == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_add_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1)); bn_add_carry_lemma_loop a c_in (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in); bn_add_carry_lemma_loop_step a c_in i (c1, res1); assert (v c_out * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in); () end val bn_add_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_add_carry a c_in in v c_out * pow2 (bits t * aLen) + bn_v res == bn_v a + v c_in) let bn_add_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_add_carry a c_in in bn_add_carry_lemma_loop a c_in aLen val bn_add_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1))) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i)) let bn_add_lemma_loop_step #t #aLen a b i (c1, res1) = let pbits = bits t in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in let c, e = bn_add_f a b (i - 1) c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] + v b.[i - 1] + v c1); calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) - (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v e - v e - v c * pow2 pbits + v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v b.[i - 1]) (v c1 * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + v a.[i - 1] * pow2 (pbits * (i - 1)) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + eval_ aLen b (i - 1) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen b i } eval_ aLen a i + eval_ aLen b i; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) val bn_add_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) let rec bn_add_lemma_loop #t #aLen a b i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_f a b) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 b; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0) in generate_elems_unfold aLen i (bn_add_f a b) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_add_f a b) (uint #t 0) == generate_elem_f aLen (bn_add_f a b) (i - 1) (generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1)); bn_add_lemma_loop a b (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1)); bn_add_lemma_loop_step a b i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i); () end val bn_add_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires v c0 * pow2 (bits t * bLen) + bn_v #t #bLen res0 == eval_ bLen (sub a 0 bLen) bLen + eval_ bLen b bLen) (ensures (let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (bits t * aLen)))
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires v c0 * pow2 (bits t * bLen) + bn_v #t #bLen res0 == eval_ bLen (sub a 0 bLen) bLen + eval_ bLen b bLen) (ensures (let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (bits t * aLen)))
[]
Hacl.Spec.Bignum.Addition.bn_add_concat_lemma
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> c0: Hacl.Spec.Bignum.Base.carry t -> res0: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v c0 * Prims.pow2 (Lib.IntTypes.bits t * bLen) + Hacl.Spec.Bignum.Definitions.bn_v res0 == Hacl.Spec.Bignum.Definitions.eval_ bLen (Lib.Sequence.sub a 0 bLen) bLen + Hacl.Spec.Bignum.Definitions.eval_ bLen b bLen) (ensures (let _ = Hacl.Spec.Bignum.Addition.bn_add_carry (Lib.Sequence.sub a bLen (aLen - bLen)) c0 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in let res = Lib.Sequence.concat res0 res1 in Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.eval_ aLen a aLen + Hacl.Spec.Bignum.Definitions.eval_ bLen b bLen - Lib.IntTypes.v c1 * Prims.pow2 (Lib.IntTypes.bits t * aLen)) <: Type0))
{ "end_col": 3, "end_line": 267, "start_col": 52, "start_line": 243 }
FStar.Pervasives.Lemma
val bn_sub_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) c1_res1 in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in))
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let pbits = bits t in let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (c1, res1) in let c, e = bn_sub_carry_f a (i - 1) c1 in assert (v e - v c * pow2 pbits == v a.[i - 1] - v c1); calc (==) { bn_v #t #i res - v c * pow2 (pbits * i); (==) { bn_eval_snoc #t #(i - 1) res1 e } bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { } eval_ aLen a (i - 1) - v c_in + (v a.[i - 1] - v e + v c * pow2 pbits) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v c * pow2 pbits) (v e) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + (v a.[i - 1] + v c * pow2 pbits) * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) + v c * pow2 pbits * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) - v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i a i } eval_ aLen a i - v c_in; }; assert (bn_v #t #i res - v c * pow2 (pbits * i) == eval_ aLen a i - v c_in)
val bn_sub_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) c1_res1 in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in)) let bn_sub_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) =
false
null
true
let pbits = bits t in let c_out, res = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (c1, res1) in let c, e = bn_sub_carry_f a (i - 1) c1 in assert (v e - v c * pow2 pbits == v a.[ i - 1 ] - v c1); calc ( == ) { bn_v #t #i res - v c * pow2 (pbits * i); ( == ) { bn_eval_snoc #t #(i - 1) res1 e } bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); ( == ) { () } eval_ aLen a (i - 1) - v c_in + (v a.[ i - 1 ] - v e + v c * pow2 pbits) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); ( == ) { Math.Lemmas.distributivity_sub_left (v a.[ i - 1 ] + v c * pow2 pbits) (v e) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + (v a.[ i - 1 ] + v c * pow2 pbits) * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); ( == ) { Math.Lemmas.distributivity_add_left (v a.[ i - 1 ]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + v a.[ i - 1 ] * pow2 (pbits * (i - 1)) + (v c * pow2 pbits) * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); ( == ) { (Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + v a.[ i - 1 ] * pow2 (pbits * (i - 1)); ( == ) { bn_eval_unfold_i a i } eval_ aLen a i - v c_in; }; assert (bn_v #t #i res - v c * pow2 (pbits * i) == eval_ aLen a i - v c_in)
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Prims.pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Lib.generate_elem_a", "Hacl.Spec.Bignum.Definitions.limb", "Prims.op_Subtraction", "Lib.Sequence.seq", "Prims.eq2", "Prims.nat", "Lib.Sequence.length", "Prims.op_Addition", "Prims._assert", "Prims.int", "Hacl.Spec.Bignum.Definitions.bn_v", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.pow2", "Hacl.Spec.Bignum.Definitions.eval_", "Prims.unit", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Lib.Sequence.op_String_Access", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.Bignum.Definitions.bn_eval_snoc", "Prims.squash", "FStar.Math.Lemmas.distributivity_sub_left", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.paren_mul_right", "Hacl.Spec.Bignum.Definitions.bn_eval_unfold_i", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Addition.bn_sub_carry_f", "Hacl.Spec.Lib.generate_elem_f", "FStar.Pervasives.Native.Mktuple2", "Lib.IntTypes.bits" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i] val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen let bn_add #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_add1 #t #aLen a b1 = let c0, r0 = addcarry (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_add_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)) let bn_add_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1) in let c, e = bn_add_carry_f a (i - 1) c1 in assert (v e + v c * pow2 (bits t) == v a.[i - 1] + v c1); let pbits = bits t in calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in - (v e + v c * pow2 pbits - v a.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + (v e - v e - v c * pow2 pbits + v a.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + v c_in; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in) val bn_add_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in) let rec bn_add_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_carry_f a) c_in in generate_elems_unfold aLen i (bn_add_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_add_carry_f a) c_in == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_add_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1)); bn_add_carry_lemma_loop a c_in (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in); bn_add_carry_lemma_loop_step a c_in i (c1, res1); assert (v c_out * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in); () end val bn_add_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_add_carry a c_in in v c_out * pow2 (bits t * aLen) + bn_v res == bn_v a + v c_in) let bn_add_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_add_carry a c_in in bn_add_carry_lemma_loop a c_in aLen val bn_add_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1))) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i)) let bn_add_lemma_loop_step #t #aLen a b i (c1, res1) = let pbits = bits t in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in let c, e = bn_add_f a b (i - 1) c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] + v b.[i - 1] + v c1); calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) - (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v e - v e - v c * pow2 pbits + v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v b.[i - 1]) (v c1 * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + v a.[i - 1] * pow2 (pbits * (i - 1)) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + eval_ aLen b (i - 1) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen b i } eval_ aLen a i + eval_ aLen b i; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) val bn_add_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) let rec bn_add_lemma_loop #t #aLen a b i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_f a b) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 b; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0) in generate_elems_unfold aLen i (bn_add_f a b) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_add_f a b) (uint #t 0) == generate_elem_f aLen (bn_add_f a b) (i - 1) (generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1)); bn_add_lemma_loop a b (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1)); bn_add_lemma_loop_step a b i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i); () end val bn_add_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires v c0 * pow2 (bits t * bLen) + bn_v #t #bLen res0 == eval_ bLen (sub a 0 bLen) bLen + eval_ bLen b bLen) (ensures (let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (bits t * aLen))) let bn_add_concat_lemma #t #aLen #bLen a b c0 res0 = let pbits = bits t in let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c1, res1 = bn_add_carry a1 c0 in bn_add_carry_lemma a1 c0; assert (v c1 * pow2 (pbits * (aLen - bLen)) + bn_v res1 == bn_v a1 + v c0); let res = concat #_ #bLen res0 res1 in bn_concat_lemma res0 res1; assert (bn_v res == bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1); calc (==) { bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1; (==) { } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0 - v c1 * pow2 (pbits * (aLen - bLen))); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1 + v c0) (v c1 * pow2 (pbits * (aLen - bLen))) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - pow2 (pbits * bLen) * v c1 * pow2 (pbits * (aLen - bLen)); (==) { Math.Lemmas.paren_mul_right (pow2 (pbits * bLen)) (v c1) (pow2 (pbits * (aLen - bLen))); Math.Lemmas.pow2_plus (pbits * bLen) (pbits * (aLen - bLen)) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - v c1 * pow2 (pbits * aLen); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1) (v c0) } eval_ bLen a0 bLen + eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 - v c1 * pow2 (pbits * aLen); (==) { bn_eval_split_i a bLen; bn_eval_extensionality_j a (sub a 0 bLen) bLen } eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (pbits * aLen); } val bn_add_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c, res) = bn_add a b in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + bn_v b) let bn_add_lemma #t #aLen #bLen a b = let pbits = bits t in let (c, res) = bn_add a b in if bLen = aLen then bn_add_lemma_loop a b aLen else begin let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c0, res0 = generate_elems bLen bLen (bn_add_f a0 b) (uint #t 0) in bn_add_lemma_loop a0 b bLen; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #bLen res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma #t #aLen #bLen a b c0 res0 end val bn_add1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_add1 a b1 in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + v b1) let bn_add1_lemma #t #aLen a b1 = let pbits = bits t in let c0, r0 = addcarry (uint #t 0) a.[0] b1 in assert (v c0 * pow2 pbits + v r0 = v a.[0] + v b1); let res0 = create 1 r0 in let b = create 1 b1 in bn_eval1 res0; bn_eval1 b; if aLen = 1 then bn_eval1 a else begin let bLen = 1 in let a0 = sub a 0 bLen in bn_eval1 a0; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #1 res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma a b c0 res0 end val bn_sub_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) c1_res1 in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in))
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) c1_res1 in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in))
[]
Hacl.Spec.Bignum.Addition.bn_sub_carry_lemma_loop_step
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> c_in: Hacl.Spec.Bignum.Base.carry t -> i: Prims.pos{i <= aLen} -> c1_res1: Hacl.Spec.Lib.generate_elem_a (Hacl.Spec.Bignum.Definitions.limb t) (Hacl.Spec.Bignum.Base.carry t) aLen (i - 1) -> FStar.Pervasives.Lemma (requires (let _ = c1_res1 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in Hacl.Spec.Bignum.Definitions.bn_v res1 - Lib.IntTypes.v c1 * Prims.pow2 (Lib.IntTypes.bits t * (i - 1)) == Hacl.Spec.Bignum.Definitions.eval_ aLen a (i - 1) - Lib.IntTypes.v c_in) <: Type0)) (ensures (let _ = Hacl.Spec.Lib.generate_elem_f aLen (Hacl.Spec.Bignum.Addition.bn_sub_carry_f a) (i - 1) c1_res1 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c_out res = _ in Hacl.Spec.Bignum.Definitions.bn_v res - Lib.IntTypes.v c_out * Prims.pow2 (Lib.IntTypes.bits t * i) == Hacl.Spec.Bignum.Definitions.eval_ aLen a i - Lib.IntTypes.v c_in) <: Type0))
{ "end_col": 77, "end_line": 358, "start_col": 63, "start_line": 337 }
FStar.Pervasives.Lemma
val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in))
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1) in let c, e = bn_add_carry_f a (i - 1) c1 in assert (v e + v c * pow2 (bits t) == v a.[i - 1] + v c1); let pbits = bits t in calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in - (v e + v c * pow2 pbits - v a.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + (v e - v e - v c * pow2 pbits + v a.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + v c_in; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in)
val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)) let bn_add_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) =
false
null
true
let c_out, res = generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1) in let c, e = bn_add_carry_f a (i - 1) c1 in assert (v e + v c * pow2 (bits t) == v a.[ i - 1 ] + v c1); let pbits = bits t in calc ( == ) { v c * pow2 (pbits * i) + bn_v #t #i res; ( == ) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); ( == ) { () } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in - (v e + v c * pow2 pbits - v a.[ i - 1 ]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); ( == ) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[ i - 1 ]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + (v e - v e - v c * pow2 pbits + v a.[ i - 1 ]) * pow2 (pbits * (i - 1)); ( == ) { Math.Lemmas.distributivity_sub_left (v a.[ i - 1 ]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + v a.[ i - 1 ] * pow2 (pbits * (i - 1)) - (v c * pow2 pbits) * pow2 (pbits * (i - 1)); ( == ) { (Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1))) } eval_ aLen a (i - 1) + v c_in + v a.[ i - 1 ] * pow2 (pbits * (i - 1)); ( == ) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + v c_in; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in)
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Prims.pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Lib.generate_elem_a", "Hacl.Spec.Bignum.Definitions.limb", "Prims.op_Subtraction", "Lib.Sequence.seq", "Prims.eq2", "Prims.nat", "Lib.Sequence.length", "Prims.op_Addition", "Prims._assert", "Prims.int", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.pow2", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Definitions.eval_", "Prims.unit", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Lib.Sequence.op_String_Access", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.Bignum.Definitions.bn_eval_snoc", "Prims.squash", "FStar.Math.Lemmas.distributivity_sub_left", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.paren_mul_right", "Hacl.Spec.Bignum.Definitions.bn_eval_unfold_i", "Lib.IntTypes.bits", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Addition.bn_add_carry_f", "Hacl.Spec.Lib.generate_elem_f", "FStar.Pervasives.Native.Mktuple2" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i] val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen let bn_add #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_add1 #t #aLen a b1 = let c0, r0 = addcarry (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_add_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in))
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in))
[]
Hacl.Spec.Bignum.Addition.bn_add_carry_lemma_loop_step
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> c_in: Hacl.Spec.Bignum.Base.carry t -> i: Prims.pos{i <= aLen} -> c1_res1: Hacl.Spec.Lib.generate_elem_a (Hacl.Spec.Bignum.Definitions.limb t) (Hacl.Spec.Bignum.Base.carry t) aLen (i - 1) -> FStar.Pervasives.Lemma (requires (let _ = c1_res1 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in Lib.IntTypes.v c1 * Prims.pow2 (Lib.IntTypes.bits t * (i - 1)) + Hacl.Spec.Bignum.Definitions.bn_v res1 == Hacl.Spec.Bignum.Definitions.eval_ aLen a (i - 1) + Lib.IntTypes.v c_in) <: Type0)) (ensures (let _ = Hacl.Spec.Lib.generate_elem_f aLen (Hacl.Spec.Bignum.Addition.bn_add_carry_f a) (i - 1) c1_res1 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c_out res = _ in Lib.IntTypes.v c_out * Prims.pow2 (Lib.IntTypes.bits t * i) + Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.eval_ aLen a i + Lib.IntTypes.v c_in) <: Type0))
{ "end_col": 77, "end_line": 108, "start_col": 63, "start_line": 87 }
FStar.Pervasives.Lemma
val bn_sub_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - eval_ aLen b (i - 1))) (ensures (let (c, res) = generate_elem_f aLen (bn_sub_f a b) (i - 1) c1_res1 in bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i))
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub_lemma_loop_step #t #aLen a b i (c1, res1) = let pbits = bits t in let (c, res) = generate_elem_f aLen (bn_sub_f a b) (i - 1) (c1, res1) in let c, e = bn_sub_f a b (i - 1) c1 in assert (v e - v c * pow2 pbits == v a.[i - 1] - v b.[i - 1] - v c1); calc (==) { bn_v #t #i res - v c * pow2 (pbits * i); (==) { bn_eval_snoc #t #(i - 1) res1 e } bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1] + v c * pow2 pbits - v e) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] - v b.[i - 1] + v c * pow2 pbits) (v e) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1] + v c * pow2 pbits) * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] - v b.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)) + v c * pow2 pbits * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + v a.[i - 1] * pow2 (pbits * (i - 1)) - v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i a i } eval_ aLen a i - eval_ aLen b (i - 1) - v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i b i } eval_ aLen a i - eval_ aLen b i; }; assert (bn_v #t #i res - v c * pow2 (pbits * i) == eval_ aLen a i - eval_ aLen b i)
val bn_sub_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - eval_ aLen b (i - 1))) (ensures (let (c, res) = generate_elem_f aLen (bn_sub_f a b) (i - 1) c1_res1 in bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i)) let bn_sub_lemma_loop_step #t #aLen a b i (c1, res1) =
false
null
true
let pbits = bits t in let c, res = generate_elem_f aLen (bn_sub_f a b) (i - 1) (c1, res1) in let c, e = bn_sub_f a b (i - 1) c1 in assert (v e - v c * pow2 pbits == v a.[ i - 1 ] - v b.[ i - 1 ] - v c1); calc ( == ) { bn_v #t #i res - v c * pow2 (pbits * i); ( == ) { bn_eval_snoc #t #(i - 1) res1 e } bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); ( == ) { () } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[ i - 1 ] - v b.[ i - 1 ] + v c * pow2 pbits - v e) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); ( == ) { Math.Lemmas.distributivity_sub_left (v a.[ i - 1 ] - v b.[ i - 1 ] + v c * pow2 pbits) (v e) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[ i - 1 ] - v b.[ i - 1 ] + v c * pow2 pbits) * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); ( == ) { Math.Lemmas.distributivity_add_left (v a.[ i - 1 ] - v b.[ i - 1 ]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[ i - 1 ] - v b.[ i - 1 ]) * pow2 (pbits * (i - 1)) + (v c * pow2 pbits) * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); ( == ) { (Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + (v a.[ i - 1 ] - v b.[ i - 1 ]) * pow2 (pbits * (i - 1)); ( == ) { Math.Lemmas.distributivity_sub_left (v a.[ i - 1 ]) (v b.[ i - 1 ]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - eval_ aLen b (i - 1) + v a.[ i - 1 ] * pow2 (pbits * (i - 1)) - v b.[ i - 1 ] * pow2 (pbits * (i - 1)); ( == ) { bn_eval_unfold_i a i } eval_ aLen a i - eval_ aLen b (i - 1) - v b.[ i - 1 ] * pow2 (pbits * (i - 1)); ( == ) { bn_eval_unfold_i b i } eval_ aLen a i - eval_ aLen b i; }; assert (bn_v #t #i res - v c * pow2 (pbits * i) == eval_ aLen a i - eval_ aLen b i)
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Lib.generate_elem_a", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Base.carry", "Prims.op_Subtraction", "Lib.Sequence.seq", "Prims.eq2", "Prims.nat", "Lib.Sequence.length", "Prims.op_Addition", "Prims._assert", "Prims.int", "Hacl.Spec.Bignum.Definitions.bn_v", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.pow2", "Hacl.Spec.Bignum.Definitions.eval_", "Prims.unit", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Lib.Sequence.op_String_Access", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.Bignum.Definitions.bn_eval_snoc", "Prims.squash", "FStar.Math.Lemmas.distributivity_sub_left", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.paren_mul_right", "Hacl.Spec.Bignum.Definitions.bn_eval_unfold_i", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Addition.bn_sub_f", "Hacl.Spec.Lib.generate_elem_f", "FStar.Pervasives.Native.Mktuple2", "Lib.IntTypes.bits" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i] val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen let bn_add #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_add1 #t #aLen a b1 = let c0, r0 = addcarry (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_add_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)) let bn_add_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1) in let c, e = bn_add_carry_f a (i - 1) c1 in assert (v e + v c * pow2 (bits t) == v a.[i - 1] + v c1); let pbits = bits t in calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in - (v e + v c * pow2 pbits - v a.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + (v e - v e - v c * pow2 pbits + v a.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + v c_in; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in) val bn_add_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in) let rec bn_add_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_carry_f a) c_in in generate_elems_unfold aLen i (bn_add_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_add_carry_f a) c_in == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_add_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1)); bn_add_carry_lemma_loop a c_in (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in); bn_add_carry_lemma_loop_step a c_in i (c1, res1); assert (v c_out * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in); () end val bn_add_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_add_carry a c_in in v c_out * pow2 (bits t * aLen) + bn_v res == bn_v a + v c_in) let bn_add_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_add_carry a c_in in bn_add_carry_lemma_loop a c_in aLen val bn_add_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1))) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i)) let bn_add_lemma_loop_step #t #aLen a b i (c1, res1) = let pbits = bits t in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in let c, e = bn_add_f a b (i - 1) c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] + v b.[i - 1] + v c1); calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) - (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v e - v e - v c * pow2 pbits + v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v b.[i - 1]) (v c1 * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + v a.[i - 1] * pow2 (pbits * (i - 1)) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + eval_ aLen b (i - 1) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen b i } eval_ aLen a i + eval_ aLen b i; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) val bn_add_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i) let rec bn_add_lemma_loop #t #aLen a b i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_f a b) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_f a b) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 b; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0) in generate_elems_unfold aLen i (bn_add_f a b) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_add_f a b) (uint #t 0) == generate_elem_f aLen (bn_add_f a b) (i - 1) (generate_elems aLen (i - 1) (bn_add_f a b) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1)); bn_add_lemma_loop a b (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1)); bn_add_lemma_loop_step a b i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i); () end val bn_add_concat_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen < aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> c0:carry t -> res0:lbignum t bLen -> Lemma (requires v c0 * pow2 (bits t * bLen) + bn_v #t #bLen res0 == eval_ bLen (sub a 0 bLen) bLen + eval_ bLen b bLen) (ensures (let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in let res = concat #_ #bLen res0 res1 in bn_v res == eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (bits t * aLen))) let bn_add_concat_lemma #t #aLen #bLen a b c0 res0 = let pbits = bits t in let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c1, res1 = bn_add_carry a1 c0 in bn_add_carry_lemma a1 c0; assert (v c1 * pow2 (pbits * (aLen - bLen)) + bn_v res1 == bn_v a1 + v c0); let res = concat #_ #bLen res0 res1 in bn_concat_lemma res0 res1; assert (bn_v res == bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1); calc (==) { bn_v #t #bLen res0 + pow2 (pbits * bLen) * bn_v res1; (==) { } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0 - v c1 * pow2 (pbits * (aLen - bLen))); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1 + v c0) (v c1 * pow2 (pbits * (aLen - bLen))) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - pow2 (pbits * bLen) * v c1 * pow2 (pbits * (aLen - bLen)); (==) { Math.Lemmas.paren_mul_right (pow2 (pbits * bLen)) (v c1) (pow2 (pbits * (aLen - bLen))); Math.Lemmas.pow2_plus (pbits * bLen) (pbits * (aLen - bLen)) } eval_ bLen a0 bLen + eval_ bLen b bLen - v c0 * pow2 (pbits * bLen) + pow2 (pbits * bLen) * (bn_v a1 + v c0) - v c1 * pow2 (pbits * aLen); (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * bLen)) (bn_v a1) (v c0) } eval_ bLen a0 bLen + eval_ bLen b bLen + pow2 (pbits * bLen) * bn_v a1 - v c1 * pow2 (pbits * aLen); (==) { bn_eval_split_i a bLen; bn_eval_extensionality_j a (sub a 0 bLen) bLen } eval_ aLen a aLen + eval_ bLen b bLen - v c1 * pow2 (pbits * aLen); } val bn_add_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c, res) = bn_add a b in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + bn_v b) let bn_add_lemma #t #aLen #bLen a b = let pbits = bits t in let (c, res) = bn_add a b in if bLen = aLen then bn_add_lemma_loop a b aLen else begin let a0 = sub a 0 bLen in let a1 = sub a bLen (aLen - bLen) in let c0, res0 = generate_elems bLen bLen (bn_add_f a0 b) (uint #t 0) in bn_add_lemma_loop a0 b bLen; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #bLen res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma #t #aLen #bLen a b c0 res0 end val bn_add1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_add1 a b1 in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + v b1) let bn_add1_lemma #t #aLen a b1 = let pbits = bits t in let c0, r0 = addcarry (uint #t 0) a.[0] b1 in assert (v c0 * pow2 pbits + v r0 = v a.[0] + v b1); let res0 = create 1 r0 in let b = create 1 b1 in bn_eval1 res0; bn_eval1 b; if aLen = 1 then bn_eval1 a else begin let bLen = 1 in let a0 = sub a 0 bLen in bn_eval1 a0; assert (v c0 * pow2 (pbits * bLen) + bn_v #t #1 res0 == eval_ bLen a0 bLen + eval_ bLen b bLen); bn_add_concat_lemma a b c0 res0 end val bn_sub_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) c1_res1 in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in)) let bn_sub_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let pbits = bits t in let (c_out, res) = generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (c1, res1) in let c, e = bn_sub_carry_f a (i - 1) c1 in assert (v e - v c * pow2 pbits == v a.[i - 1] - v c1); calc (==) { bn_v #t #i res - v c * pow2 (pbits * i); (==) { bn_eval_snoc #t #(i - 1) res1 e } bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { } eval_ aLen a (i - 1) - v c_in + (v a.[i - 1] - v e + v c * pow2 pbits) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v c * pow2 pbits) (v e) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + (v a.[i - 1] + v c * pow2 pbits) * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) - v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) + v c * pow2 pbits * pow2 (pbits * (i - 1)) - v c * pow2 (pbits * i); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) - v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i a i } eval_ aLen a i - v c_in; }; assert (bn_v #t #i res - v c * pow2 (pbits * i) == eval_ aLen a i - v c_in) val bn_sub_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_carry_f a) c_in in bn_v #t #i res - v c_out * pow2 (bits t * i) == eval_ aLen a i - v c_in) let rec bn_sub_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_sub_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_sub_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_sub_carry_f a) c_in in generate_elems_unfold aLen i (bn_sub_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_sub_carry_f a) c_in == generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_sub_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_sub_carry_f a) (i - 1) (c1, res1)); bn_sub_carry_lemma_loop a c_in (i - 1); assert (bn_v #t #(i - 1) res1 - v c1 * pow2 (pbits * (i - 1)) == eval_ aLen a (i - 1) - v c_in); bn_sub_carry_lemma_loop_step a c_in i (c1, res1); assert (bn_v #t #i res - v c_out * pow2 (pbits * i) == eval_ aLen a i - v c_in); () end val bn_sub_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_sub_carry a c_in in bn_v res - v c_out * pow2 (bits t * aLen) == bn_v a - v c_in) let bn_sub_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_sub_carry a c_in in bn_sub_carry_lemma_loop a c_in aLen val bn_sub_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - eval_ aLen b (i - 1))) (ensures (let (c, res) = generate_elem_f aLen (bn_sub_f a b) (i - 1) c1_res1 in bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i))
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in bn_v #t #(i - 1) res1 - v c1 * pow2 (bits t * (i - 1)) == eval_ aLen a (i - 1) - eval_ aLen b (i - 1))) (ensures (let (c, res) = generate_elem_f aLen (bn_sub_f a b) (i - 1) c1_res1 in bn_v #t #i res - v c * pow2 (bits t * i) == eval_ aLen a i - eval_ aLen b i))
[]
Hacl.Spec.Bignum.Addition.bn_sub_lemma_loop_step
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> i: Prims.pos{i <= aLen} -> c1_res1: Hacl.Spec.Lib.generate_elem_a (Hacl.Spec.Bignum.Definitions.limb t) (Hacl.Spec.Bignum.Base.carry t) aLen (i - 1) -> FStar.Pervasives.Lemma (requires (let _ = c1_res1 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in Hacl.Spec.Bignum.Definitions.bn_v res1 - Lib.IntTypes.v c1 * Prims.pow2 (Lib.IntTypes.bits t * (i - 1)) == Hacl.Spec.Bignum.Definitions.eval_ aLen a (i - 1) - Hacl.Spec.Bignum.Definitions.eval_ aLen b (i - 1)) <: Type0)) (ensures (let _ = Hacl.Spec.Lib.generate_elem_f aLen (Hacl.Spec.Bignum.Addition.bn_sub_f a b) (i - 1) c1_res1 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in Hacl.Spec.Bignum.Definitions.bn_v res - Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * i) == Hacl.Spec.Bignum.Definitions.eval_ aLen a i - Hacl.Spec.Bignum.Definitions.eval_ aLen b i) <: Type0))
{ "end_col": 85, "end_line": 441, "start_col": 54, "start_line": 416 }
FStar.Pervasives.Lemma
val bn_add_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1))) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i))
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add_lemma_loop_step #t #aLen a b i (c1, res1) = let pbits = bits t in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in let c, e = bn_add_f a b (i - 1) c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] + v b.[i - 1] + v c1); calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) - (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1] - v b.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v e - v e - v c * pow2 pbits + v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1] + v b.[i - 1]) (v c1 * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[i - 1] + v b.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1]) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + v a.[i - 1] * pow2 (pbits * (i - 1)) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + eval_ aLen b (i - 1) + v b.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen b i } eval_ aLen a i + eval_ aLen b i; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i)
val bn_add_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1))) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i)) let bn_add_lemma_loop_step #t #aLen a b i (c1, res1) =
false
null
true
let pbits = bits t in let c, res = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in let c, e = bn_add_f a b (i - 1) c1 in assert (v e + v c * pow2 pbits == v a.[ i - 1 ] + v b.[ i - 1 ] + v c1); calc ( == ) { v c * pow2 (pbits * i) + bn_v #t #i res; ( == ) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); ( == ) { () } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) - (v e + v c * pow2 pbits - v a.[ i - 1 ] - v b.[ i - 1 ]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); ( == ) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[ i - 1 ] - v b.[ i - 1 ]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v e - v e - v c * pow2 pbits + v a.[ i - 1 ] + v b.[ i - 1 ]) * pow2 (pbits * (i - 1)); ( == ) { Math.Lemmas.distributivity_sub_left (v a.[ i - 1 ] + v b.[ i - 1 ]) (v c1 * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[ i - 1 ] + v b.[ i - 1 ]) * pow2 (pbits * (i - 1)) - (v c * pow2 pbits) * pow2 (pbits * (i - 1)); ( == ) { (Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1))) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + (v a.[ i - 1 ] + v b.[ i - 1 ]) * pow2 (pbits * (i - 1)); ( == ) { Math.Lemmas.distributivity_add_left (v a.[ i - 1 ]) (v b.[ i - 1 ]) (pow2 (pbits * (i - 1))) } eval_ aLen a (i - 1) + eval_ aLen b (i - 1) + v a.[ i - 1 ] * pow2 (pbits * (i - 1)) + v b.[ i - 1 ] * pow2 (pbits * (i - 1)); ( == ) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + eval_ aLen b (i - 1) + v b.[ i - 1 ] * pow2 (pbits * (i - 1)); ( == ) { bn_eval_unfold_i #t #aLen b i } eval_ aLen a i + eval_ aLen b i; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i)
{ "checked_file": "Hacl.Spec.Bignum.Addition.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Addition.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Lib.generate_elem_a", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Base.carry", "Prims.op_Subtraction", "Lib.Sequence.seq", "Prims.eq2", "Prims.nat", "Lib.Sequence.length", "Prims.op_Addition", "Prims._assert", "Prims.int", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.pow2", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Definitions.eval_", "Prims.unit", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Lib.Sequence.op_String_Access", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.Bignum.Definitions.bn_eval_snoc", "Prims.squash", "FStar.Math.Lemmas.distributivity_sub_left", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.distributivity_add_left", "Hacl.Spec.Bignum.Definitions.bn_eval_unfold_i", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Addition.bn_add_f", "Hacl.Spec.Lib.generate_elem_f", "FStar.Pervasives.Native.Mktuple2", "Lib.IntTypes.bits" ]
[]
module Hacl.Spec.Bignum.Addition open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_sub_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_sub_carry_f #t #aLen a i c_in = subborrow c_in a.[i] (uint #t 0) val bn_sub_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_sub_carry #t #aLen a c_in = generate_elems aLen aLen (bn_sub_carry_f a) c_in val bn_sub_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_sub_f #t #aLen a b i c = subborrow c a.[i] b.[i] val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> tuple2 (carry t) (lbignum t aLen) let bn_sub #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_sub_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_sub_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_sub1 #t #aLen a b1 = let c0, r0 = subborrow (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_sub_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:size_nat{i < aLen} -> c_in:carry t -> carry t & limb t let bn_add_carry_f #t #aLen a i c_in = addcarry c_in a.[i] (uint #t 0) val bn_add_carry: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> tuple2 (carry t) (lbignum t aLen) let bn_add_carry #t #aLen a c_in = generate_elems aLen aLen (bn_add_carry_f a) c_in val bn_add_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:size_nat{i < aLen} -> c:carry t -> carry t & limb t let bn_add_f #t #aLen a b i c = addcarry c a.[i] b.[i] val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen let bn_add #t #aLen #bLen a b = let c0, res0 = generate_elems bLen bLen (bn_add_f (sub a 0 bLen) b) (uint #t 0) in if bLen < aLen then let c1, res1 = bn_add_carry (sub a bLen (aLen - bLen)) c0 in c1, concat #_ #bLen res0 res1 else c0, res0 val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> tuple2 (carry t) (lbignum t aLen) let bn_add1 #t #aLen a b1 = let c0, r0 = addcarry (uint #t 0) a.[0] b1 in let res0 = create 1 r0 in if 1 < aLen then let c1, res1 = bn_add_carry (sub a 1 (aLen - 1)) c0 in c1, concat res0 res1 else c0, res0 val bn_add_carry_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in)) (ensures (let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) c1_res1 in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in)) let bn_add_carry_lemma_loop_step #t #aLen a c_in i (c1, res1) = let (c_out, res) = generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1) in let c, e = bn_add_carry_f a (i - 1) c1 in assert (v e + v c * pow2 (bits t) == v a.[i - 1] + v c1); let pbits = bits t in calc (==) { v c * pow2 (pbits * i) + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * pow2 (pbits * i) + bn_v #t #(i - 1) res1 + v e * pow2 (pbits * (i - 1)); (==) { } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in - (v e + v c * pow2 pbits - v a.[i - 1]) * pow2 (pbits * (i - 1)) + v e * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v e) (v e + v c * pow2 pbits - v a.[i - 1]) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + (v e - v e - v c * pow2 pbits + v a.[i - 1]) * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.distributivity_sub_left (v a.[i - 1]) (v c * pow2 pbits) (pow2 (pbits * (i - 1))) } v c * pow2 (pbits * i) + eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)) - v c * pow2 pbits * pow2 (pbits * (i - 1)); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) (pow2 (pbits * (i - 1))); Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) + v c_in + v a.[i - 1] * pow2 (pbits * (i - 1)); (==) { bn_eval_unfold_i #t #aLen a i } eval_ aLen a i + v c_in; }; assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in) val bn_add_carry_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> i:nat{i <= aLen} -> Lemma (let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in v c_out * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + v c_in) let rec bn_add_carry_lemma_loop #t #aLen a c_in i = let pbits = bits t in let (c_out, res) : generate_elem_a (limb t) (carry t) aLen i = generate_elems aLen i (bn_add_carry_f a) c_in in if i = 0 then begin eq_generate_elems0 aLen i (bn_add_carry_f a) c_in; assert (c_out == c_in /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (carry t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_add_carry_f a) c_in in generate_elems_unfold aLen i (bn_add_carry_f a) c_in (i - 1); assert (generate_elems aLen i (bn_add_carry_f a) c_in == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (generate_elems aLen (i - 1) (bn_add_carry_f a) c_in)); assert ((c_out, res) == generate_elem_f aLen (bn_add_carry_f a) (i - 1) (c1, res1)); bn_add_carry_lemma_loop a c_in (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + v c_in); bn_add_carry_lemma_loop_step a c_in i (c1, res1); assert (v c_out * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i + v c_in); () end val bn_add_carry_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> c_in:carry t -> Lemma (let (c_out, res) = bn_add_carry a c_in in v c_out * pow2 (bits t * aLen) + bn_v res == bn_v a + v c_in) let bn_add_carry_lemma #t #aLen a c_in = let (c_out, res) = bn_add_carry a c_in in bn_add_carry_lemma_loop a c_in aLen val bn_add_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1))) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i))
false
false
Hacl.Spec.Bignum.Addition.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (carry t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) + eval_ aLen b (i - 1))) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_add_f a b) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i + eval_ aLen b i))
[]
Hacl.Spec.Bignum.Addition.bn_add_lemma_loop_step
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Addition.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> i: Prims.pos{i <= aLen} -> c1_res1: Hacl.Spec.Lib.generate_elem_a (Hacl.Spec.Bignum.Definitions.limb t) (Hacl.Spec.Bignum.Base.carry t) aLen (i - 1) -> FStar.Pervasives.Lemma (requires (let _ = c1_res1 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in Lib.IntTypes.v c1 * Prims.pow2 (Lib.IntTypes.bits t * (i - 1)) + Hacl.Spec.Bignum.Definitions.bn_v res1 == Hacl.Spec.Bignum.Definitions.eval_ aLen a (i - 1) + Hacl.Spec.Bignum.Definitions.eval_ aLen b (i - 1)) <: Type0)) (ensures (let _ = c1_res1 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in let _ = Hacl.Spec.Lib.generate_elem_f aLen (Hacl.Spec.Bignum.Addition.bn_add_f a b) (i - 1) (c1, res1) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * i) + Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.eval_ aLen a i + Hacl.Spec.Bignum.Definitions.eval_ aLen b i) <: Type0) <: Type0))
{ "end_col": 85, "end_line": 192, "start_col": 54, "start_line": 167 }
FStar.Tactics.Effect.Tac
val get_max_ifuel: Prims.unit -> Tac int
[ { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let get_max_ifuel () : Tac int = (get_vconfig ()).max_ifuel
val get_max_ifuel: Prims.unit -> Tac int let get_max_ifuel () : Tac int =
true
null
false
(get_vconfig ()).max_ifuel
{ "checked_file": "FStar.Tactics.SMT.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.SMT.fst" }
[]
[ "Prims.unit", "FStar.VConfig.__proj__Mkvconfig__item__max_ifuel", "Prims.int", "FStar.VConfig.vconfig", "FStar.Tactics.V2.Builtins.get_vconfig" ]
[]
module FStar.Tactics.SMT open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.VConfig (* Alias to just use the current vconfig *) let smt_sync () : Tac unit = t_smt_sync (get_vconfig ()) (* smt_sync': as smt_sync, but using a particular fuel/ifuel *) let smt_sync' (fuel ifuel : nat) : Tac unit = let vcfg = get_vconfig () in let vcfg' = { vcfg with initial_fuel = fuel; max_fuel = fuel ; initial_ifuel = ifuel; max_ifuel = ifuel } in t_smt_sync vcfg' (* Getting/setting solver configuration *) let get_rlimit () : Tac int = (get_vconfig()).z3rlimit let set_rlimit (v : int) : Tac unit = set_vconfig { get_vconfig () with z3rlimit = v } let get_initial_fuel () : Tac int = (get_vconfig ()).initial_fuel let get_initial_ifuel () : Tac int = (get_vconfig ()).initial_ifuel
false
false
FStar.Tactics.SMT.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val get_max_ifuel: Prims.unit -> Tac int
[]
FStar.Tactics.SMT.get_max_ifuel
{ "file_name": "ulib/FStar.Tactics.SMT.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.int
{ "end_col": 71, "end_line": 26, "start_col": 45, "start_line": 26 }
FStar.Tactics.Effect.Tac
val get_initial_ifuel: Prims.unit -> Tac int
[ { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let get_initial_ifuel () : Tac int = (get_vconfig ()).initial_ifuel
val get_initial_ifuel: Prims.unit -> Tac int let get_initial_ifuel () : Tac int =
true
null
false
(get_vconfig ()).initial_ifuel
{ "checked_file": "FStar.Tactics.SMT.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.SMT.fst" }
[]
[ "Prims.unit", "FStar.VConfig.__proj__Mkvconfig__item__initial_ifuel", "Prims.int", "FStar.VConfig.vconfig", "FStar.Tactics.V2.Builtins.get_vconfig" ]
[]
module FStar.Tactics.SMT open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.VConfig (* Alias to just use the current vconfig *) let smt_sync () : Tac unit = t_smt_sync (get_vconfig ()) (* smt_sync': as smt_sync, but using a particular fuel/ifuel *) let smt_sync' (fuel ifuel : nat) : Tac unit = let vcfg = get_vconfig () in let vcfg' = { vcfg with initial_fuel = fuel; max_fuel = fuel ; initial_ifuel = ifuel; max_ifuel = ifuel } in t_smt_sync vcfg' (* Getting/setting solver configuration *) let get_rlimit () : Tac int = (get_vconfig()).z3rlimit let set_rlimit (v : int) : Tac unit = set_vconfig { get_vconfig () with z3rlimit = v }
false
false
FStar.Tactics.SMT.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val get_initial_ifuel: Prims.unit -> Tac int
[]
FStar.Tactics.SMT.get_initial_ifuel
{ "file_name": "ulib/FStar.Tactics.SMT.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.int
{ "end_col": 75, "end_line": 24, "start_col": 45, "start_line": 24 }
FStar.Tactics.Effect.Tac
val set_fuel (v: int) : Tac unit
[ { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let set_fuel (v : int) : Tac unit = set_vconfig { get_vconfig () with initial_fuel = v; max_fuel = v }
val set_fuel (v: int) : Tac unit let set_fuel (v: int) : Tac unit =
true
null
false
set_vconfig ({ get_vconfig () with initial_fuel = v; max_fuel = v })
{ "checked_file": "FStar.Tactics.SMT.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.SMT.fst" }
[]
[ "Prims.int", "FStar.Tactics.V2.Builtins.set_vconfig", "Prims.unit", "FStar.VConfig.vconfig", "FStar.VConfig.Mkvconfig", "FStar.VConfig.__proj__Mkvconfig__item__initial_ifuel", "FStar.VConfig.__proj__Mkvconfig__item__max_ifuel", "FStar.VConfig.__proj__Mkvconfig__item__detail_errors", "FStar.VConfig.__proj__Mkvconfig__item__detail_hint_replay", "FStar.VConfig.__proj__Mkvconfig__item__no_smt", "FStar.VConfig.__proj__Mkvconfig__item__quake_lo", "FStar.VConfig.__proj__Mkvconfig__item__quake_hi", "FStar.VConfig.__proj__Mkvconfig__item__quake_keep", "FStar.VConfig.__proj__Mkvconfig__item__retry", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_elim_box", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_nl_arith_repr", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_l_arith_repr", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_intro", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_elim", "FStar.VConfig.__proj__Mkvconfig__item__tcnorm", "FStar.VConfig.__proj__Mkvconfig__item__no_plugins", "FStar.VConfig.__proj__Mkvconfig__item__no_tactics", "FStar.VConfig.__proj__Mkvconfig__item__z3cliopt", "FStar.VConfig.__proj__Mkvconfig__item__z3smtopt", "FStar.VConfig.__proj__Mkvconfig__item__z3refresh", "FStar.VConfig.__proj__Mkvconfig__item__z3rlimit", "FStar.VConfig.__proj__Mkvconfig__item__z3rlimit_factor", "FStar.VConfig.__proj__Mkvconfig__item__z3seed", "FStar.VConfig.__proj__Mkvconfig__item__z3version", "FStar.VConfig.__proj__Mkvconfig__item__trivial_pre_for_unannotated_effectful_fns", "FStar.VConfig.__proj__Mkvconfig__item__reuse_hint_for", "FStar.Tactics.V2.Builtins.get_vconfig" ]
[]
module FStar.Tactics.SMT open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.VConfig (* Alias to just use the current vconfig *) let smt_sync () : Tac unit = t_smt_sync (get_vconfig ()) (* smt_sync': as smt_sync, but using a particular fuel/ifuel *) let smt_sync' (fuel ifuel : nat) : Tac unit = let vcfg = get_vconfig () in let vcfg' = { vcfg with initial_fuel = fuel; max_fuel = fuel ; initial_ifuel = ifuel; max_ifuel = ifuel } in t_smt_sync vcfg' (* Getting/setting solver configuration *) let get_rlimit () : Tac int = (get_vconfig()).z3rlimit let set_rlimit (v : int) : Tac unit = set_vconfig { get_vconfig () with z3rlimit = v } let get_initial_fuel () : Tac int = (get_vconfig ()).initial_fuel let get_initial_ifuel () : Tac int = (get_vconfig ()).initial_ifuel let get_max_fuel () : Tac int = (get_vconfig ()).max_fuel let get_max_ifuel () : Tac int = (get_vconfig ()).max_ifuel let set_initial_fuel (v : int) : Tac unit = set_vconfig { get_vconfig () with initial_fuel = v } let set_initial_ifuel (v : int) : Tac unit = set_vconfig { get_vconfig () with initial_ifuel = v } let set_max_fuel (v : int) : Tac unit = set_vconfig { get_vconfig () with max_fuel = v } let set_max_ifuel (v : int) : Tac unit = set_vconfig { get_vconfig () with max_ifuel = v }
false
false
FStar.Tactics.SMT.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val set_fuel (v: int) : Tac unit
[]
FStar.Tactics.SMT.set_fuel
{ "file_name": "ulib/FStar.Tactics.SMT.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
v: Prims.int -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 113, "end_line": 34, "start_col": 45, "start_line": 34 }
FStar.Tactics.Effect.Tac
val set_initial_fuel (v: int) : Tac unit
[ { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let set_initial_fuel (v : int) : Tac unit = set_vconfig { get_vconfig () with initial_fuel = v }
val set_initial_fuel (v: int) : Tac unit let set_initial_fuel (v: int) : Tac unit =
true
null
false
set_vconfig ({ get_vconfig () with initial_fuel = v })
{ "checked_file": "FStar.Tactics.SMT.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.SMT.fst" }
[]
[ "Prims.int", "FStar.Tactics.V2.Builtins.set_vconfig", "Prims.unit", "FStar.VConfig.vconfig", "FStar.VConfig.Mkvconfig", "FStar.VConfig.__proj__Mkvconfig__item__max_fuel", "FStar.VConfig.__proj__Mkvconfig__item__initial_ifuel", "FStar.VConfig.__proj__Mkvconfig__item__max_ifuel", "FStar.VConfig.__proj__Mkvconfig__item__detail_errors", "FStar.VConfig.__proj__Mkvconfig__item__detail_hint_replay", "FStar.VConfig.__proj__Mkvconfig__item__no_smt", "FStar.VConfig.__proj__Mkvconfig__item__quake_lo", "FStar.VConfig.__proj__Mkvconfig__item__quake_hi", "FStar.VConfig.__proj__Mkvconfig__item__quake_keep", "FStar.VConfig.__proj__Mkvconfig__item__retry", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_elim_box", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_nl_arith_repr", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_l_arith_repr", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_intro", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_elim", "FStar.VConfig.__proj__Mkvconfig__item__tcnorm", "FStar.VConfig.__proj__Mkvconfig__item__no_plugins", "FStar.VConfig.__proj__Mkvconfig__item__no_tactics", "FStar.VConfig.__proj__Mkvconfig__item__z3cliopt", "FStar.VConfig.__proj__Mkvconfig__item__z3smtopt", "FStar.VConfig.__proj__Mkvconfig__item__z3refresh", "FStar.VConfig.__proj__Mkvconfig__item__z3rlimit", "FStar.VConfig.__proj__Mkvconfig__item__z3rlimit_factor", "FStar.VConfig.__proj__Mkvconfig__item__z3seed", "FStar.VConfig.__proj__Mkvconfig__item__z3version", "FStar.VConfig.__proj__Mkvconfig__item__trivial_pre_for_unannotated_effectful_fns", "FStar.VConfig.__proj__Mkvconfig__item__reuse_hint_for", "FStar.Tactics.V2.Builtins.get_vconfig" ]
[]
module FStar.Tactics.SMT open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.VConfig (* Alias to just use the current vconfig *) let smt_sync () : Tac unit = t_smt_sync (get_vconfig ()) (* smt_sync': as smt_sync, but using a particular fuel/ifuel *) let smt_sync' (fuel ifuel : nat) : Tac unit = let vcfg = get_vconfig () in let vcfg' = { vcfg with initial_fuel = fuel; max_fuel = fuel ; initial_ifuel = ifuel; max_ifuel = ifuel } in t_smt_sync vcfg' (* Getting/setting solver configuration *) let get_rlimit () : Tac int = (get_vconfig()).z3rlimit let set_rlimit (v : int) : Tac unit = set_vconfig { get_vconfig () with z3rlimit = v } let get_initial_fuel () : Tac int = (get_vconfig ()).initial_fuel let get_initial_ifuel () : Tac int = (get_vconfig ()).initial_ifuel let get_max_fuel () : Tac int = (get_vconfig ()).max_fuel let get_max_ifuel () : Tac int = (get_vconfig ()).max_ifuel
false
false
FStar.Tactics.SMT.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val set_initial_fuel (v: int) : Tac unit
[]
FStar.Tactics.SMT.set_initial_fuel
{ "file_name": "ulib/FStar.Tactics.SMT.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
v: Prims.int -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 98, "end_line": 28, "start_col": 45, "start_line": 28 }
FStar.Tactics.Effect.Tac
val get_max_fuel: Prims.unit -> Tac int
[ { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let get_max_fuel () : Tac int = (get_vconfig ()).max_fuel
val get_max_fuel: Prims.unit -> Tac int let get_max_fuel () : Tac int =
true
null
false
(get_vconfig ()).max_fuel
{ "checked_file": "FStar.Tactics.SMT.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.SMT.fst" }
[]
[ "Prims.unit", "FStar.VConfig.__proj__Mkvconfig__item__max_fuel", "Prims.int", "FStar.VConfig.vconfig", "FStar.Tactics.V2.Builtins.get_vconfig" ]
[]
module FStar.Tactics.SMT open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.VConfig (* Alias to just use the current vconfig *) let smt_sync () : Tac unit = t_smt_sync (get_vconfig ()) (* smt_sync': as smt_sync, but using a particular fuel/ifuel *) let smt_sync' (fuel ifuel : nat) : Tac unit = let vcfg = get_vconfig () in let vcfg' = { vcfg with initial_fuel = fuel; max_fuel = fuel ; initial_ifuel = ifuel; max_ifuel = ifuel } in t_smt_sync vcfg' (* Getting/setting solver configuration *) let get_rlimit () : Tac int = (get_vconfig()).z3rlimit let set_rlimit (v : int) : Tac unit = set_vconfig { get_vconfig () with z3rlimit = v } let get_initial_fuel () : Tac int = (get_vconfig ()).initial_fuel
false
false
FStar.Tactics.SMT.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val get_max_fuel: Prims.unit -> Tac int
[]
FStar.Tactics.SMT.get_max_fuel
{ "file_name": "ulib/FStar.Tactics.SMT.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.int
{ "end_col": 70, "end_line": 25, "start_col": 45, "start_line": 25 }
FStar.Tactics.Effect.Tac
val smt_sync: Prims.unit -> Tac unit
[ { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let smt_sync () : Tac unit = t_smt_sync (get_vconfig ())
val smt_sync: Prims.unit -> Tac unit let smt_sync () : Tac unit =
true
null
false
t_smt_sync (get_vconfig ())
{ "checked_file": "FStar.Tactics.SMT.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.SMT.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Builtins.t_smt_sync", "FStar.VConfig.vconfig", "FStar.Tactics.V2.Builtins.get_vconfig" ]
[]
module FStar.Tactics.SMT open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.VConfig
false
false
FStar.Tactics.SMT.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val smt_sync: Prims.unit -> Tac unit
[]
FStar.Tactics.SMT.smt_sync
{ "file_name": "ulib/FStar.Tactics.SMT.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 56, "end_line": 8, "start_col": 29, "start_line": 8 }
FStar.Tactics.Effect.Tac
val get_rlimit: Prims.unit -> Tac int
[ { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let get_rlimit () : Tac int = (get_vconfig()).z3rlimit
val get_rlimit: Prims.unit -> Tac int let get_rlimit () : Tac int =
true
null
false
(get_vconfig ()).z3rlimit
{ "checked_file": "FStar.Tactics.SMT.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.SMT.fst" }
[]
[ "Prims.unit", "FStar.VConfig.__proj__Mkvconfig__item__z3rlimit", "Prims.int", "FStar.VConfig.vconfig", "FStar.Tactics.V2.Builtins.get_vconfig" ]
[]
module FStar.Tactics.SMT open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.VConfig (* Alias to just use the current vconfig *) let smt_sync () : Tac unit = t_smt_sync (get_vconfig ()) (* smt_sync': as smt_sync, but using a particular fuel/ifuel *) let smt_sync' (fuel ifuel : nat) : Tac unit = let vcfg = get_vconfig () in let vcfg' = { vcfg with initial_fuel = fuel; max_fuel = fuel ; initial_ifuel = ifuel; max_ifuel = ifuel } in t_smt_sync vcfg' (* Getting/setting solver configuration *)
false
false
FStar.Tactics.SMT.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val get_rlimit: Prims.unit -> Tac int
[]
FStar.Tactics.SMT.get_rlimit
{ "file_name": "ulib/FStar.Tactics.SMT.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.int
{ "end_col": 69, "end_line": 20, "start_col": 45, "start_line": 20 }
FStar.Tactics.Effect.Tac
val set_initial_ifuel (v: int) : Tac unit
[ { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let set_initial_ifuel (v : int) : Tac unit = set_vconfig { get_vconfig () with initial_ifuel = v }
val set_initial_ifuel (v: int) : Tac unit let set_initial_ifuel (v: int) : Tac unit =
true
null
false
set_vconfig ({ get_vconfig () with initial_ifuel = v })
{ "checked_file": "FStar.Tactics.SMT.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.SMT.fst" }
[]
[ "Prims.int", "FStar.Tactics.V2.Builtins.set_vconfig", "Prims.unit", "FStar.VConfig.vconfig", "FStar.VConfig.Mkvconfig", "FStar.VConfig.__proj__Mkvconfig__item__initial_fuel", "FStar.VConfig.__proj__Mkvconfig__item__max_fuel", "FStar.VConfig.__proj__Mkvconfig__item__max_ifuel", "FStar.VConfig.__proj__Mkvconfig__item__detail_errors", "FStar.VConfig.__proj__Mkvconfig__item__detail_hint_replay", "FStar.VConfig.__proj__Mkvconfig__item__no_smt", "FStar.VConfig.__proj__Mkvconfig__item__quake_lo", "FStar.VConfig.__proj__Mkvconfig__item__quake_hi", "FStar.VConfig.__proj__Mkvconfig__item__quake_keep", "FStar.VConfig.__proj__Mkvconfig__item__retry", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_elim_box", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_nl_arith_repr", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_l_arith_repr", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_intro", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_elim", "FStar.VConfig.__proj__Mkvconfig__item__tcnorm", "FStar.VConfig.__proj__Mkvconfig__item__no_plugins", "FStar.VConfig.__proj__Mkvconfig__item__no_tactics", "FStar.VConfig.__proj__Mkvconfig__item__z3cliopt", "FStar.VConfig.__proj__Mkvconfig__item__z3smtopt", "FStar.VConfig.__proj__Mkvconfig__item__z3refresh", "FStar.VConfig.__proj__Mkvconfig__item__z3rlimit", "FStar.VConfig.__proj__Mkvconfig__item__z3rlimit_factor", "FStar.VConfig.__proj__Mkvconfig__item__z3seed", "FStar.VConfig.__proj__Mkvconfig__item__z3version", "FStar.VConfig.__proj__Mkvconfig__item__trivial_pre_for_unannotated_effectful_fns", "FStar.VConfig.__proj__Mkvconfig__item__reuse_hint_for", "FStar.Tactics.V2.Builtins.get_vconfig" ]
[]
module FStar.Tactics.SMT open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.VConfig (* Alias to just use the current vconfig *) let smt_sync () : Tac unit = t_smt_sync (get_vconfig ()) (* smt_sync': as smt_sync, but using a particular fuel/ifuel *) let smt_sync' (fuel ifuel : nat) : Tac unit = let vcfg = get_vconfig () in let vcfg' = { vcfg with initial_fuel = fuel; max_fuel = fuel ; initial_ifuel = ifuel; max_ifuel = ifuel } in t_smt_sync vcfg' (* Getting/setting solver configuration *) let get_rlimit () : Tac int = (get_vconfig()).z3rlimit let set_rlimit (v : int) : Tac unit = set_vconfig { get_vconfig () with z3rlimit = v } let get_initial_fuel () : Tac int = (get_vconfig ()).initial_fuel let get_initial_ifuel () : Tac int = (get_vconfig ()).initial_ifuel let get_max_fuel () : Tac int = (get_vconfig ()).max_fuel let get_max_ifuel () : Tac int = (get_vconfig ()).max_ifuel
false
false
FStar.Tactics.SMT.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val set_initial_ifuel (v: int) : Tac unit
[]
FStar.Tactics.SMT.set_initial_ifuel
{ "file_name": "ulib/FStar.Tactics.SMT.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
v: Prims.int -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 98, "end_line": 29, "start_col": 45, "start_line": 29 }
FStar.Tactics.Effect.Tac
val get_initial_fuel: Prims.unit -> Tac int
[ { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let get_initial_fuel () : Tac int = (get_vconfig ()).initial_fuel
val get_initial_fuel: Prims.unit -> Tac int let get_initial_fuel () : Tac int =
true
null
false
(get_vconfig ()).initial_fuel
{ "checked_file": "FStar.Tactics.SMT.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.SMT.fst" }
[]
[ "Prims.unit", "FStar.VConfig.__proj__Mkvconfig__item__initial_fuel", "Prims.int", "FStar.VConfig.vconfig", "FStar.Tactics.V2.Builtins.get_vconfig" ]
[]
module FStar.Tactics.SMT open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.VConfig (* Alias to just use the current vconfig *) let smt_sync () : Tac unit = t_smt_sync (get_vconfig ()) (* smt_sync': as smt_sync, but using a particular fuel/ifuel *) let smt_sync' (fuel ifuel : nat) : Tac unit = let vcfg = get_vconfig () in let vcfg' = { vcfg with initial_fuel = fuel; max_fuel = fuel ; initial_ifuel = ifuel; max_ifuel = ifuel } in t_smt_sync vcfg' (* Getting/setting solver configuration *) let get_rlimit () : Tac int = (get_vconfig()).z3rlimit let set_rlimit (v : int) : Tac unit = set_vconfig { get_vconfig () with z3rlimit = v }
false
false
FStar.Tactics.SMT.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val get_initial_fuel: Prims.unit -> Tac int
[]
FStar.Tactics.SMT.get_initial_fuel
{ "file_name": "ulib/FStar.Tactics.SMT.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.int
{ "end_col": 74, "end_line": 23, "start_col": 45, "start_line": 23 }
FStar.Tactics.Effect.Tac
val smt_sync' (fuel ifuel: nat) : Tac unit
[ { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let smt_sync' (fuel ifuel : nat) : Tac unit = let vcfg = get_vconfig () in let vcfg' = { vcfg with initial_fuel = fuel; max_fuel = fuel ; initial_ifuel = ifuel; max_ifuel = ifuel } in t_smt_sync vcfg'
val smt_sync' (fuel ifuel: nat) : Tac unit let smt_sync' (fuel ifuel: nat) : Tac unit =
true
null
false
let vcfg = get_vconfig () in let vcfg' = { vcfg with initial_fuel = fuel; max_fuel = fuel; initial_ifuel = ifuel; max_ifuel = ifuel } in t_smt_sync vcfg'
{ "checked_file": "FStar.Tactics.SMT.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.SMT.fst" }
[]
[ "Prims.nat", "FStar.Tactics.V2.Builtins.t_smt_sync", "Prims.unit", "FStar.VConfig.vconfig", "FStar.VConfig.Mkvconfig", "FStar.VConfig.__proj__Mkvconfig__item__detail_errors", "FStar.VConfig.__proj__Mkvconfig__item__detail_hint_replay", "FStar.VConfig.__proj__Mkvconfig__item__no_smt", "FStar.VConfig.__proj__Mkvconfig__item__quake_lo", "FStar.VConfig.__proj__Mkvconfig__item__quake_hi", "FStar.VConfig.__proj__Mkvconfig__item__quake_keep", "FStar.VConfig.__proj__Mkvconfig__item__retry", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_elim_box", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_nl_arith_repr", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_l_arith_repr", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_intro", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_elim", "FStar.VConfig.__proj__Mkvconfig__item__tcnorm", "FStar.VConfig.__proj__Mkvconfig__item__no_plugins", "FStar.VConfig.__proj__Mkvconfig__item__no_tactics", "FStar.VConfig.__proj__Mkvconfig__item__z3cliopt", "FStar.VConfig.__proj__Mkvconfig__item__z3smtopt", "FStar.VConfig.__proj__Mkvconfig__item__z3refresh", "FStar.VConfig.__proj__Mkvconfig__item__z3rlimit", "FStar.VConfig.__proj__Mkvconfig__item__z3rlimit_factor", "FStar.VConfig.__proj__Mkvconfig__item__z3seed", "FStar.VConfig.__proj__Mkvconfig__item__z3version", "FStar.VConfig.__proj__Mkvconfig__item__trivial_pre_for_unannotated_effectful_fns", "FStar.VConfig.__proj__Mkvconfig__item__reuse_hint_for", "FStar.Tactics.V2.Builtins.get_vconfig" ]
[]
module FStar.Tactics.SMT open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.VConfig (* Alias to just use the current vconfig *) let smt_sync () : Tac unit = t_smt_sync (get_vconfig ())
false
false
FStar.Tactics.SMT.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val smt_sync' (fuel ifuel: nat) : Tac unit
[]
FStar.Tactics.SMT.smt_sync'
{ "file_name": "ulib/FStar.Tactics.SMT.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
fuel: Prims.nat -> ifuel: Prims.nat -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 20, "end_line": 16, "start_col": 45, "start_line": 11 }
FStar.Tactics.Effect.Tac
val set_rlimit (v: int) : Tac unit
[ { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let set_rlimit (v : int) : Tac unit = set_vconfig { get_vconfig () with z3rlimit = v }
val set_rlimit (v: int) : Tac unit let set_rlimit (v: int) : Tac unit =
true
null
false
set_vconfig ({ get_vconfig () with z3rlimit = v })
{ "checked_file": "FStar.Tactics.SMT.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.SMT.fst" }
[]
[ "Prims.int", "FStar.Tactics.V2.Builtins.set_vconfig", "Prims.unit", "FStar.VConfig.vconfig", "FStar.VConfig.Mkvconfig", "FStar.VConfig.__proj__Mkvconfig__item__initial_fuel", "FStar.VConfig.__proj__Mkvconfig__item__max_fuel", "FStar.VConfig.__proj__Mkvconfig__item__initial_ifuel", "FStar.VConfig.__proj__Mkvconfig__item__max_ifuel", "FStar.VConfig.__proj__Mkvconfig__item__detail_errors", "FStar.VConfig.__proj__Mkvconfig__item__detail_hint_replay", "FStar.VConfig.__proj__Mkvconfig__item__no_smt", "FStar.VConfig.__proj__Mkvconfig__item__quake_lo", "FStar.VConfig.__proj__Mkvconfig__item__quake_hi", "FStar.VConfig.__proj__Mkvconfig__item__quake_keep", "FStar.VConfig.__proj__Mkvconfig__item__retry", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_elim_box", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_nl_arith_repr", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_l_arith_repr", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_intro", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_elim", "FStar.VConfig.__proj__Mkvconfig__item__tcnorm", "FStar.VConfig.__proj__Mkvconfig__item__no_plugins", "FStar.VConfig.__proj__Mkvconfig__item__no_tactics", "FStar.VConfig.__proj__Mkvconfig__item__z3cliopt", "FStar.VConfig.__proj__Mkvconfig__item__z3smtopt", "FStar.VConfig.__proj__Mkvconfig__item__z3refresh", "FStar.VConfig.__proj__Mkvconfig__item__z3rlimit_factor", "FStar.VConfig.__proj__Mkvconfig__item__z3seed", "FStar.VConfig.__proj__Mkvconfig__item__z3version", "FStar.VConfig.__proj__Mkvconfig__item__trivial_pre_for_unannotated_effectful_fns", "FStar.VConfig.__proj__Mkvconfig__item__reuse_hint_for", "FStar.Tactics.V2.Builtins.get_vconfig" ]
[]
module FStar.Tactics.SMT open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.VConfig (* Alias to just use the current vconfig *) let smt_sync () : Tac unit = t_smt_sync (get_vconfig ()) (* smt_sync': as smt_sync, but using a particular fuel/ifuel *) let smt_sync' (fuel ifuel : nat) : Tac unit = let vcfg = get_vconfig () in let vcfg' = { vcfg with initial_fuel = fuel; max_fuel = fuel ; initial_ifuel = ifuel; max_ifuel = ifuel } in t_smt_sync vcfg' (* Getting/setting solver configuration *)
false
false
FStar.Tactics.SMT.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val set_rlimit (v: int) : Tac unit
[]
FStar.Tactics.SMT.set_rlimit
{ "file_name": "ulib/FStar.Tactics.SMT.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
v: Prims.int -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 93, "end_line": 21, "start_col": 45, "start_line": 21 }
FStar.Tactics.Effect.Tac
val set_max_ifuel (v: int) : Tac unit
[ { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let set_max_ifuel (v : int) : Tac unit = set_vconfig { get_vconfig () with max_ifuel = v }
val set_max_ifuel (v: int) : Tac unit let set_max_ifuel (v: int) : Tac unit =
true
null
false
set_vconfig ({ get_vconfig () with max_ifuel = v })
{ "checked_file": "FStar.Tactics.SMT.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.SMT.fst" }
[]
[ "Prims.int", "FStar.Tactics.V2.Builtins.set_vconfig", "Prims.unit", "FStar.VConfig.vconfig", "FStar.VConfig.Mkvconfig", "FStar.VConfig.__proj__Mkvconfig__item__initial_fuel", "FStar.VConfig.__proj__Mkvconfig__item__max_fuel", "FStar.VConfig.__proj__Mkvconfig__item__initial_ifuel", "FStar.VConfig.__proj__Mkvconfig__item__detail_errors", "FStar.VConfig.__proj__Mkvconfig__item__detail_hint_replay", "FStar.VConfig.__proj__Mkvconfig__item__no_smt", "FStar.VConfig.__proj__Mkvconfig__item__quake_lo", "FStar.VConfig.__proj__Mkvconfig__item__quake_hi", "FStar.VConfig.__proj__Mkvconfig__item__quake_keep", "FStar.VConfig.__proj__Mkvconfig__item__retry", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_elim_box", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_nl_arith_repr", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_l_arith_repr", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_intro", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_elim", "FStar.VConfig.__proj__Mkvconfig__item__tcnorm", "FStar.VConfig.__proj__Mkvconfig__item__no_plugins", "FStar.VConfig.__proj__Mkvconfig__item__no_tactics", "FStar.VConfig.__proj__Mkvconfig__item__z3cliopt", "FStar.VConfig.__proj__Mkvconfig__item__z3smtopt", "FStar.VConfig.__proj__Mkvconfig__item__z3refresh", "FStar.VConfig.__proj__Mkvconfig__item__z3rlimit", "FStar.VConfig.__proj__Mkvconfig__item__z3rlimit_factor", "FStar.VConfig.__proj__Mkvconfig__item__z3seed", "FStar.VConfig.__proj__Mkvconfig__item__z3version", "FStar.VConfig.__proj__Mkvconfig__item__trivial_pre_for_unannotated_effectful_fns", "FStar.VConfig.__proj__Mkvconfig__item__reuse_hint_for", "FStar.Tactics.V2.Builtins.get_vconfig" ]
[]
module FStar.Tactics.SMT open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.VConfig (* Alias to just use the current vconfig *) let smt_sync () : Tac unit = t_smt_sync (get_vconfig ()) (* smt_sync': as smt_sync, but using a particular fuel/ifuel *) let smt_sync' (fuel ifuel : nat) : Tac unit = let vcfg = get_vconfig () in let vcfg' = { vcfg with initial_fuel = fuel; max_fuel = fuel ; initial_ifuel = ifuel; max_ifuel = ifuel } in t_smt_sync vcfg' (* Getting/setting solver configuration *) let get_rlimit () : Tac int = (get_vconfig()).z3rlimit let set_rlimit (v : int) : Tac unit = set_vconfig { get_vconfig () with z3rlimit = v } let get_initial_fuel () : Tac int = (get_vconfig ()).initial_fuel let get_initial_ifuel () : Tac int = (get_vconfig ()).initial_ifuel let get_max_fuel () : Tac int = (get_vconfig ()).max_fuel let get_max_ifuel () : Tac int = (get_vconfig ()).max_ifuel let set_initial_fuel (v : int) : Tac unit = set_vconfig { get_vconfig () with initial_fuel = v } let set_initial_ifuel (v : int) : Tac unit = set_vconfig { get_vconfig () with initial_ifuel = v }
false
false
FStar.Tactics.SMT.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val set_max_ifuel (v: int) : Tac unit
[]
FStar.Tactics.SMT.set_max_ifuel
{ "file_name": "ulib/FStar.Tactics.SMT.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
v: Prims.int -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 98, "end_line": 31, "start_col": 45, "start_line": 31 }
FStar.Tactics.Effect.Tac
val set_max_fuel (v: int) : Tac unit
[ { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let set_max_fuel (v : int) : Tac unit = set_vconfig { get_vconfig () with max_fuel = v }
val set_max_fuel (v: int) : Tac unit let set_max_fuel (v: int) : Tac unit =
true
null
false
set_vconfig ({ get_vconfig () with max_fuel = v })
{ "checked_file": "FStar.Tactics.SMT.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.SMT.fst" }
[]
[ "Prims.int", "FStar.Tactics.V2.Builtins.set_vconfig", "Prims.unit", "FStar.VConfig.vconfig", "FStar.VConfig.Mkvconfig", "FStar.VConfig.__proj__Mkvconfig__item__initial_fuel", "FStar.VConfig.__proj__Mkvconfig__item__initial_ifuel", "FStar.VConfig.__proj__Mkvconfig__item__max_ifuel", "FStar.VConfig.__proj__Mkvconfig__item__detail_errors", "FStar.VConfig.__proj__Mkvconfig__item__detail_hint_replay", "FStar.VConfig.__proj__Mkvconfig__item__no_smt", "FStar.VConfig.__proj__Mkvconfig__item__quake_lo", "FStar.VConfig.__proj__Mkvconfig__item__quake_hi", "FStar.VConfig.__proj__Mkvconfig__item__quake_keep", "FStar.VConfig.__proj__Mkvconfig__item__retry", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_elim_box", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_nl_arith_repr", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_l_arith_repr", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_intro", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_elim", "FStar.VConfig.__proj__Mkvconfig__item__tcnorm", "FStar.VConfig.__proj__Mkvconfig__item__no_plugins", "FStar.VConfig.__proj__Mkvconfig__item__no_tactics", "FStar.VConfig.__proj__Mkvconfig__item__z3cliopt", "FStar.VConfig.__proj__Mkvconfig__item__z3smtopt", "FStar.VConfig.__proj__Mkvconfig__item__z3refresh", "FStar.VConfig.__proj__Mkvconfig__item__z3rlimit", "FStar.VConfig.__proj__Mkvconfig__item__z3rlimit_factor", "FStar.VConfig.__proj__Mkvconfig__item__z3seed", "FStar.VConfig.__proj__Mkvconfig__item__z3version", "FStar.VConfig.__proj__Mkvconfig__item__trivial_pre_for_unannotated_effectful_fns", "FStar.VConfig.__proj__Mkvconfig__item__reuse_hint_for", "FStar.Tactics.V2.Builtins.get_vconfig" ]
[]
module FStar.Tactics.SMT open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.VConfig (* Alias to just use the current vconfig *) let smt_sync () : Tac unit = t_smt_sync (get_vconfig ()) (* smt_sync': as smt_sync, but using a particular fuel/ifuel *) let smt_sync' (fuel ifuel : nat) : Tac unit = let vcfg = get_vconfig () in let vcfg' = { vcfg with initial_fuel = fuel; max_fuel = fuel ; initial_ifuel = ifuel; max_ifuel = ifuel } in t_smt_sync vcfg' (* Getting/setting solver configuration *) let get_rlimit () : Tac int = (get_vconfig()).z3rlimit let set_rlimit (v : int) : Tac unit = set_vconfig { get_vconfig () with z3rlimit = v } let get_initial_fuel () : Tac int = (get_vconfig ()).initial_fuel let get_initial_ifuel () : Tac int = (get_vconfig ()).initial_ifuel let get_max_fuel () : Tac int = (get_vconfig ()).max_fuel let get_max_ifuel () : Tac int = (get_vconfig ()).max_ifuel let set_initial_fuel (v : int) : Tac unit = set_vconfig { get_vconfig () with initial_fuel = v }
false
false
FStar.Tactics.SMT.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val set_max_fuel (v: int) : Tac unit
[]
FStar.Tactics.SMT.set_max_fuel
{ "file_name": "ulib/FStar.Tactics.SMT.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
v: Prims.int -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 98, "end_line": 30, "start_col": 45, "start_line": 30 }
FStar.Tactics.Effect.Tac
val set_ifuel (v: int) : Tac unit
[ { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let set_ifuel (v : int) : Tac unit = set_vconfig { get_vconfig () with initial_ifuel = v; max_ifuel = v }
val set_ifuel (v: int) : Tac unit let set_ifuel (v: int) : Tac unit =
true
null
false
set_vconfig ({ get_vconfig () with initial_ifuel = v; max_ifuel = v })
{ "checked_file": "FStar.Tactics.SMT.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.V2.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.SMT.fst" }
[]
[ "Prims.int", "FStar.Tactics.V2.Builtins.set_vconfig", "Prims.unit", "FStar.VConfig.vconfig", "FStar.VConfig.Mkvconfig", "FStar.VConfig.__proj__Mkvconfig__item__initial_fuel", "FStar.VConfig.__proj__Mkvconfig__item__max_fuel", "FStar.VConfig.__proj__Mkvconfig__item__detail_errors", "FStar.VConfig.__proj__Mkvconfig__item__detail_hint_replay", "FStar.VConfig.__proj__Mkvconfig__item__no_smt", "FStar.VConfig.__proj__Mkvconfig__item__quake_lo", "FStar.VConfig.__proj__Mkvconfig__item__quake_hi", "FStar.VConfig.__proj__Mkvconfig__item__quake_keep", "FStar.VConfig.__proj__Mkvconfig__item__retry", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_elim_box", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_nl_arith_repr", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_l_arith_repr", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_intro", "FStar.VConfig.__proj__Mkvconfig__item__smtencoding_valid_elim", "FStar.VConfig.__proj__Mkvconfig__item__tcnorm", "FStar.VConfig.__proj__Mkvconfig__item__no_plugins", "FStar.VConfig.__proj__Mkvconfig__item__no_tactics", "FStar.VConfig.__proj__Mkvconfig__item__z3cliopt", "FStar.VConfig.__proj__Mkvconfig__item__z3smtopt", "FStar.VConfig.__proj__Mkvconfig__item__z3refresh", "FStar.VConfig.__proj__Mkvconfig__item__z3rlimit", "FStar.VConfig.__proj__Mkvconfig__item__z3rlimit_factor", "FStar.VConfig.__proj__Mkvconfig__item__z3seed", "FStar.VConfig.__proj__Mkvconfig__item__z3version", "FStar.VConfig.__proj__Mkvconfig__item__trivial_pre_for_unannotated_effectful_fns", "FStar.VConfig.__proj__Mkvconfig__item__reuse_hint_for", "FStar.Tactics.V2.Builtins.get_vconfig" ]
[]
module FStar.Tactics.SMT open FStar.Tactics.Effect open FStar.Tactics.V2.Builtins open FStar.VConfig (* Alias to just use the current vconfig *) let smt_sync () : Tac unit = t_smt_sync (get_vconfig ()) (* smt_sync': as smt_sync, but using a particular fuel/ifuel *) let smt_sync' (fuel ifuel : nat) : Tac unit = let vcfg = get_vconfig () in let vcfg' = { vcfg with initial_fuel = fuel; max_fuel = fuel ; initial_ifuel = ifuel; max_ifuel = ifuel } in t_smt_sync vcfg' (* Getting/setting solver configuration *) let get_rlimit () : Tac int = (get_vconfig()).z3rlimit let set_rlimit (v : int) : Tac unit = set_vconfig { get_vconfig () with z3rlimit = v } let get_initial_fuel () : Tac int = (get_vconfig ()).initial_fuel let get_initial_ifuel () : Tac int = (get_vconfig ()).initial_ifuel let get_max_fuel () : Tac int = (get_vconfig ()).max_fuel let get_max_ifuel () : Tac int = (get_vconfig ()).max_ifuel let set_initial_fuel (v : int) : Tac unit = set_vconfig { get_vconfig () with initial_fuel = v } let set_initial_ifuel (v : int) : Tac unit = set_vconfig { get_vconfig () with initial_ifuel = v } let set_max_fuel (v : int) : Tac unit = set_vconfig { get_vconfig () with max_fuel = v } let set_max_ifuel (v : int) : Tac unit = set_vconfig { get_vconfig () with max_ifuel = v } (* Set both min and max *)
false
false
FStar.Tactics.SMT.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val set_ifuel (v: int) : Tac unit
[]
FStar.Tactics.SMT.set_ifuel
{ "file_name": "ulib/FStar.Tactics.SMT.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
v: Prims.int -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 113, "end_line": 35, "start_col": 45, "start_line": 35 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Ladder", "short_module": "PM" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let point_inv_full_t (h:mem) (p:point) = F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p)
let point_inv_full_t (h: mem) (p: point) =
false
null
false
F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p)
{ "checked_file": "Hacl.Impl.Ed25519.Verify.fst.checked", "dependencies": [ "Spec.Ed25519.Lemmas.fsti.checked", "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.SHA512.ModQ.fst.checked", "Hacl.Impl.Load56.fst.checked", "Hacl.Impl.Ed25519.PointEqual.fst.checked", "Hacl.Impl.Ed25519.PointDecompress.fst.checked", "Hacl.Impl.Ed25519.Ladder.fsti.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Verify.fst" }
[ "total" ]
[ "FStar.Monotonic.HyperStack.mem", "Hacl.Bignum25519.point", "Prims.l_and", "Hacl.Impl.Ed25519.Field51.point_inv_t", "Hacl.Impl.Ed25519.Field51.inv_ext_point", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t", "Prims.logical" ]
[]
module Hacl.Impl.Ed25519.Verify open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence open Hacl.Bignum25519 module F51 = Hacl.Impl.Ed25519.Field51 module PM = Hacl.Impl.Ed25519.Ladder #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract
false
true
Hacl.Impl.Ed25519.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val point_inv_full_t : h: FStar.Monotonic.HyperStack.mem -> p: Hacl.Bignum25519.point -> Prims.logical
[]
Hacl.Impl.Ed25519.Verify.point_inv_full_t
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
h: FStar.Monotonic.HyperStack.mem -> p: Hacl.Bignum25519.point -> Prims.logical
{ "end_col": 55, "end_line": 21, "start_col": 2, "start_line": 21 }
FStar.HyperStack.ST.Stack
val verify_sb: sb:lbuffer uint8 32ul -> Stack bool (requires fun h -> live h sb) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (b <==> (BSeq.nat_from_bytes_le (as_seq h0 sb) >= Spec.Ed25519.q)))
[ { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Ladder", "short_module": "PM" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let verify_sb sb = push_frame (); let tmp = create 5ul (u64 0) in Hacl.Impl.Load56.load_32_bytes tmp sb; let b = Hacl.Impl.Ed25519.PointEqual.gte_q tmp in pop_frame (); b
val verify_sb: sb:lbuffer uint8 32ul -> Stack bool (requires fun h -> live h sb) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (b <==> (BSeq.nat_from_bytes_le (as_seq h0 sb) >= Spec.Ed25519.q))) let verify_sb sb =
true
null
false
push_frame (); let tmp = create 5ul (u64 0) in Hacl.Impl.Load56.load_32_bytes tmp sb; let b = Hacl.Impl.Ed25519.PointEqual.gte_q tmp in pop_frame (); b
{ "checked_file": "Hacl.Impl.Ed25519.Verify.fst.checked", "dependencies": [ "Spec.Ed25519.Lemmas.fsti.checked", "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.SHA512.ModQ.fst.checked", "Hacl.Impl.Load56.fst.checked", "Hacl.Impl.Ed25519.PointEqual.fst.checked", "Hacl.Impl.Ed25519.PointDecompress.fst.checked", "Hacl.Impl.Ed25519.Ladder.fsti.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Verify.fst" }
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Prims.bool", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Hacl.Impl.Ed25519.PointEqual.gte_q", "Hacl.Impl.Load56.load_32_bytes", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Lib.IntTypes.uint64", "Lib.IntTypes.u64", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Ed25519.Verify open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence open Hacl.Bignum25519 module F51 = Hacl.Impl.Ed25519.Field51 module PM = Hacl.Impl.Ed25519.Ladder #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let point_inv_full_t (h:mem) (p:point) = F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p) inline_for_extraction noextract val verify_all_valid_hb (sb hb:lbuffer uint8 32ul) (a' r':point) : Stack bool (requires fun h -> live h sb /\ live h hb /\ live h a' /\ live h r' /\ point_inv_full_t h a' /\ point_inv_full_t h r') (ensures fun h0 z h1 -> modifies0 h0 h1 /\ (z == Spec.Ed25519.( let exp_d = point_negate_mul_double_g (as_seq h0 sb) (as_seq h0 hb) (F51.point_eval h0 a') in point_equal exp_d (F51.point_eval h0 r')))) let verify_all_valid_hb sb hb a' r' = push_frame (); let exp_d = create 20ul (u64 0) in PM.point_negate_mul_double_g_vartime exp_d sb hb a'; let b = Hacl.Impl.Ed25519.PointEqual.point_equal exp_d r' in let h0 = ST.get () in Spec.Ed25519.Lemmas.point_equal_lemma (F51.point_eval h0 exp_d) (Spec.Ed25519.point_negate_mul_double_g (as_seq h0 sb) (as_seq h0 hb) (F51.point_eval h0 a')) (F51.point_eval h0 r'); pop_frame (); b inline_for_extraction noextract val verify_sb: sb:lbuffer uint8 32ul -> Stack bool (requires fun h -> live h sb) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (b <==> (BSeq.nat_from_bytes_le (as_seq h0 sb) >= Spec.Ed25519.q)))
false
false
Hacl.Impl.Ed25519.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val verify_sb: sb:lbuffer uint8 32ul -> Stack bool (requires fun h -> live h sb) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (b <==> (BSeq.nat_from_bytes_le (as_seq h0 sb) >= Spec.Ed25519.q)))
[]
Hacl.Impl.Ed25519.Verify.verify_sb
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
sb: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 3, "end_line": 60, "start_col": 2, "start_line": 55 }
FStar.HyperStack.ST.Stack
val verify: public_key:lbuffer uint8 32ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> signature:lbuffer uint8 64ul -> Stack bool (requires fun h -> live h public_key /\ live h msg /\ live h signature) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ z == Spec.Ed25519.verify (as_seq h0 public_key) (as_seq h0 msg) (as_seq h0 signature))
[ { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Ladder", "short_module": "PM" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let verify public_key msg_len msg signature = push_frame (); let a' = create 20ul (u64 0) in let h0 = ST.get () in Spec.Ed25519.Lemmas.point_decompress_lemma (as_seq h0 public_key); let b = Hacl.Impl.Ed25519.PointDecompress.point_decompress a' public_key in let res = if b then verify_valid_pk public_key msg_len msg signature a' else false in pop_frame (); res
val verify: public_key:lbuffer uint8 32ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> signature:lbuffer uint8 64ul -> Stack bool (requires fun h -> live h public_key /\ live h msg /\ live h signature) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ z == Spec.Ed25519.verify (as_seq h0 public_key) (as_seq h0 msg) (as_seq h0 signature)) let verify public_key msg_len msg signature =
true
null
false
push_frame (); let a' = create 20ul (u64 0) in let h0 = ST.get () in Spec.Ed25519.Lemmas.point_decompress_lemma (as_seq h0 public_key); let b = Hacl.Impl.Ed25519.PointDecompress.point_decompress a' public_key in let res = if b then verify_valid_pk public_key msg_len msg signature a' else false in pop_frame (); res
{ "checked_file": "Hacl.Impl.Ed25519.Verify.fst.checked", "dependencies": [ "Spec.Ed25519.Lemmas.fsti.checked", "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.SHA512.ModQ.fst.checked", "Hacl.Impl.Load56.fst.checked", "Hacl.Impl.Ed25519.PointEqual.fst.checked", "Hacl.Impl.Ed25519.PointDecompress.fst.checked", "Hacl.Impl.Ed25519.Ladder.fsti.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Verify.fst" }
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.size_t", "Prims.bool", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Hacl.Impl.Ed25519.Verify.verify_valid_pk", "Hacl.Impl.Ed25519.PointDecompress.point_decompress", "Spec.Ed25519.Lemmas.point_decompress_lemma", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Lib.IntTypes.uint64", "Lib.IntTypes.u64", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Ed25519.Verify open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence open Hacl.Bignum25519 module F51 = Hacl.Impl.Ed25519.Field51 module PM = Hacl.Impl.Ed25519.Ladder #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let point_inv_full_t (h:mem) (p:point) = F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p) inline_for_extraction noextract val verify_all_valid_hb (sb hb:lbuffer uint8 32ul) (a' r':point) : Stack bool (requires fun h -> live h sb /\ live h hb /\ live h a' /\ live h r' /\ point_inv_full_t h a' /\ point_inv_full_t h r') (ensures fun h0 z h1 -> modifies0 h0 h1 /\ (z == Spec.Ed25519.( let exp_d = point_negate_mul_double_g (as_seq h0 sb) (as_seq h0 hb) (F51.point_eval h0 a') in point_equal exp_d (F51.point_eval h0 r')))) let verify_all_valid_hb sb hb a' r' = push_frame (); let exp_d = create 20ul (u64 0) in PM.point_negate_mul_double_g_vartime exp_d sb hb a'; let b = Hacl.Impl.Ed25519.PointEqual.point_equal exp_d r' in let h0 = ST.get () in Spec.Ed25519.Lemmas.point_equal_lemma (F51.point_eval h0 exp_d) (Spec.Ed25519.point_negate_mul_double_g (as_seq h0 sb) (as_seq h0 hb) (F51.point_eval h0 a')) (F51.point_eval h0 r'); pop_frame (); b inline_for_extraction noextract val verify_sb: sb:lbuffer uint8 32ul -> Stack bool (requires fun h -> live h sb) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (b <==> (BSeq.nat_from_bytes_le (as_seq h0 sb) >= Spec.Ed25519.q))) let verify_sb sb = push_frame (); let tmp = create 5ul (u64 0) in Hacl.Impl.Load56.load_32_bytes tmp sb; let b = Hacl.Impl.Ed25519.PointEqual.gte_q tmp in pop_frame (); b inline_for_extraction noextract val verify_valid_pk_rs: public_key:lbuffer uint8 32ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> signature:lbuffer uint8 64ul -> a':point -> r':point -> Stack bool (requires fun h -> live h public_key /\ live h msg /\ live h signature /\ live h a' /\ live h r' /\ (Some? (Spec.Ed25519.point_decompress (as_seq h public_key))) /\ point_inv_full_t h a' /\ (F51.point_eval h a' == Some?.v (Spec.Ed25519.point_decompress (as_seq h public_key))) /\ (Some? (Spec.Ed25519.point_decompress (as_seq h (gsub signature 0ul 32ul)))) /\ point_inv_full_t h r' /\ (F51.point_eval h r' == Some?.v (Spec.Ed25519.point_decompress (as_seq h (gsub signature 0ul 32ul))))) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ z == Spec.Ed25519.verify (as_seq h0 public_key) (as_seq h0 msg) (as_seq h0 signature)) let verify_valid_pk_rs public_key msg_len msg signature a' r' = push_frame (); let hb = create 32ul (u8 0) in let rs = sub signature 0ul 32ul in let sb = sub signature 32ul 32ul in let b = verify_sb sb in let res = if b then false else begin Hacl.Impl.SHA512.ModQ.store_sha512_modq_pre_pre2 hb rs public_key msg_len msg; verify_all_valid_hb sb hb a' r' end in pop_frame (); res inline_for_extraction noextract val verify_valid_pk: public_key:lbuffer uint8 32ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> signature:lbuffer uint8 64ul -> a':point -> Stack bool (requires fun h -> live h public_key /\ live h msg /\ live h signature /\ live h a' /\ (Some? (Spec.Ed25519.point_decompress (as_seq h public_key))) /\ point_inv_full_t h a' /\ (F51.point_eval h a' == Some?.v (Spec.Ed25519.point_decompress (as_seq h public_key)))) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ z == Spec.Ed25519.verify (as_seq h0 public_key) (as_seq h0 msg) (as_seq h0 signature)) let verify_valid_pk public_key msg_len msg signature a' = push_frame (); let r' = create 20ul (u64 0) in let rs = sub signature 0ul 32ul in let h0 = ST.get () in Spec.Ed25519.Lemmas.point_decompress_lemma (as_seq h0 rs); let b' = Hacl.Impl.Ed25519.PointDecompress.point_decompress r' rs in let res = if b' then verify_valid_pk_rs public_key msg_len msg signature a' r' else false in pop_frame (); res inline_for_extraction noextract val verify: public_key:lbuffer uint8 32ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> signature:lbuffer uint8 64ul -> Stack bool (requires fun h -> live h public_key /\ live h msg /\ live h signature) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ z == Spec.Ed25519.verify (as_seq h0 public_key) (as_seq h0 msg) (as_seq h0 signature))
false
false
Hacl.Impl.Ed25519.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val verify: public_key:lbuffer uint8 32ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> signature:lbuffer uint8 64ul -> Stack bool (requires fun h -> live h public_key /\ live h msg /\ live h signature) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ z == Spec.Ed25519.verify (as_seq h0 public_key) (as_seq h0 msg) (as_seq h0 signature))
[]
Hacl.Impl.Ed25519.Verify.verify
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
public_key: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> msg_len: Lib.IntTypes.size_t -> msg: Lib.Buffer.lbuffer Lib.IntTypes.uint8 msg_len -> signature: Lib.Buffer.lbuffer Lib.IntTypes.uint8 64ul -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 5, "end_line": 144, "start_col": 2, "start_line": 137 }
FStar.HyperStack.ST.Stack
val verify_all_valid_hb (sb hb:lbuffer uint8 32ul) (a' r':point) : Stack bool (requires fun h -> live h sb /\ live h hb /\ live h a' /\ live h r' /\ point_inv_full_t h a' /\ point_inv_full_t h r') (ensures fun h0 z h1 -> modifies0 h0 h1 /\ (z == Spec.Ed25519.( let exp_d = point_negate_mul_double_g (as_seq h0 sb) (as_seq h0 hb) (F51.point_eval h0 a') in point_equal exp_d (F51.point_eval h0 r'))))
[ { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Ladder", "short_module": "PM" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let verify_all_valid_hb sb hb a' r' = push_frame (); let exp_d = create 20ul (u64 0) in PM.point_negate_mul_double_g_vartime exp_d sb hb a'; let b = Hacl.Impl.Ed25519.PointEqual.point_equal exp_d r' in let h0 = ST.get () in Spec.Ed25519.Lemmas.point_equal_lemma (F51.point_eval h0 exp_d) (Spec.Ed25519.point_negate_mul_double_g (as_seq h0 sb) (as_seq h0 hb) (F51.point_eval h0 a')) (F51.point_eval h0 r'); pop_frame (); b
val verify_all_valid_hb (sb hb:lbuffer uint8 32ul) (a' r':point) : Stack bool (requires fun h -> live h sb /\ live h hb /\ live h a' /\ live h r' /\ point_inv_full_t h a' /\ point_inv_full_t h r') (ensures fun h0 z h1 -> modifies0 h0 h1 /\ (z == Spec.Ed25519.( let exp_d = point_negate_mul_double_g (as_seq h0 sb) (as_seq h0 hb) (F51.point_eval h0 a') in point_equal exp_d (F51.point_eval h0 r')))) let verify_all_valid_hb sb hb a' r' =
true
null
false
push_frame (); let exp_d = create 20ul (u64 0) in PM.point_negate_mul_double_g_vartime exp_d sb hb a'; let b = Hacl.Impl.Ed25519.PointEqual.point_equal exp_d r' in let h0 = ST.get () in Spec.Ed25519.Lemmas.point_equal_lemma (F51.point_eval h0 exp_d) (Spec.Ed25519.point_negate_mul_double_g (as_seq h0 sb) (as_seq h0 hb) (F51.point_eval h0 a')) (F51.point_eval h0 r'); pop_frame (); b
{ "checked_file": "Hacl.Impl.Ed25519.Verify.fst.checked", "dependencies": [ "Spec.Ed25519.Lemmas.fsti.checked", "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.SHA512.ModQ.fst.checked", "Hacl.Impl.Load56.fst.checked", "Hacl.Impl.Ed25519.PointEqual.fst.checked", "Hacl.Impl.Ed25519.PointDecompress.fst.checked", "Hacl.Impl.Ed25519.Ladder.fsti.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Verify.fst" }
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Hacl.Bignum25519.point", "Prims.bool", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Spec.Ed25519.Lemmas.point_equal_lemma", "Hacl.Impl.Ed25519.Field51.point_eval", "Spec.Ed25519.point_negate_mul_double_g", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Impl.Ed25519.PointEqual.point_equal", "Hacl.Impl.Ed25519.Ladder.point_negate_mul_double_g_vartime", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Lib.IntTypes.uint64", "Lib.IntTypes.u64", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Ed25519.Verify open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence open Hacl.Bignum25519 module F51 = Hacl.Impl.Ed25519.Field51 module PM = Hacl.Impl.Ed25519.Ladder #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let point_inv_full_t (h:mem) (p:point) = F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p) inline_for_extraction noextract val verify_all_valid_hb (sb hb:lbuffer uint8 32ul) (a' r':point) : Stack bool (requires fun h -> live h sb /\ live h hb /\ live h a' /\ live h r' /\ point_inv_full_t h a' /\ point_inv_full_t h r') (ensures fun h0 z h1 -> modifies0 h0 h1 /\ (z == Spec.Ed25519.( let exp_d = point_negate_mul_double_g (as_seq h0 sb) (as_seq h0 hb) (F51.point_eval h0 a') in point_equal exp_d (F51.point_eval h0 r'))))
false
false
Hacl.Impl.Ed25519.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val verify_all_valid_hb (sb hb:lbuffer uint8 32ul) (a' r':point) : Stack bool (requires fun h -> live h sb /\ live h hb /\ live h a' /\ live h r' /\ point_inv_full_t h a' /\ point_inv_full_t h r') (ensures fun h0 z h1 -> modifies0 h0 h1 /\ (z == Spec.Ed25519.( let exp_d = point_negate_mul_double_g (as_seq h0 sb) (as_seq h0 hb) (F51.point_eval h0 a') in point_equal exp_d (F51.point_eval h0 r'))))
[]
Hacl.Impl.Ed25519.Verify.verify_all_valid_hb
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
sb: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> hb: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> a': Hacl.Bignum25519.point -> r': Hacl.Bignum25519.point -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 3, "end_line": 45, "start_col": 2, "start_line": 35 }
FStar.HyperStack.ST.Stack
val verify_valid_pk: public_key:lbuffer uint8 32ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> signature:lbuffer uint8 64ul -> a':point -> Stack bool (requires fun h -> live h public_key /\ live h msg /\ live h signature /\ live h a' /\ (Some? (Spec.Ed25519.point_decompress (as_seq h public_key))) /\ point_inv_full_t h a' /\ (F51.point_eval h a' == Some?.v (Spec.Ed25519.point_decompress (as_seq h public_key)))) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ z == Spec.Ed25519.verify (as_seq h0 public_key) (as_seq h0 msg) (as_seq h0 signature))
[ { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Ladder", "short_module": "PM" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let verify_valid_pk public_key msg_len msg signature a' = push_frame (); let r' = create 20ul (u64 0) in let rs = sub signature 0ul 32ul in let h0 = ST.get () in Spec.Ed25519.Lemmas.point_decompress_lemma (as_seq h0 rs); let b' = Hacl.Impl.Ed25519.PointDecompress.point_decompress r' rs in let res = if b' then verify_valid_pk_rs public_key msg_len msg signature a' r' else false in pop_frame (); res
val verify_valid_pk: public_key:lbuffer uint8 32ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> signature:lbuffer uint8 64ul -> a':point -> Stack bool (requires fun h -> live h public_key /\ live h msg /\ live h signature /\ live h a' /\ (Some? (Spec.Ed25519.point_decompress (as_seq h public_key))) /\ point_inv_full_t h a' /\ (F51.point_eval h a' == Some?.v (Spec.Ed25519.point_decompress (as_seq h public_key)))) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ z == Spec.Ed25519.verify (as_seq h0 public_key) (as_seq h0 msg) (as_seq h0 signature)) let verify_valid_pk public_key msg_len msg signature a' =
true
null
false
push_frame (); let r' = create 20ul (u64 0) in let rs = sub signature 0ul 32ul in let h0 = ST.get () in Spec.Ed25519.Lemmas.point_decompress_lemma (as_seq h0 rs); let b' = Hacl.Impl.Ed25519.PointDecompress.point_decompress r' rs in let res = if b' then verify_valid_pk_rs public_key msg_len msg signature a' r' else false in pop_frame (); res
{ "checked_file": "Hacl.Impl.Ed25519.Verify.fst.checked", "dependencies": [ "Spec.Ed25519.Lemmas.fsti.checked", "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.SHA512.ModQ.fst.checked", "Hacl.Impl.Load56.fst.checked", "Hacl.Impl.Ed25519.PointEqual.fst.checked", "Hacl.Impl.Ed25519.PointDecompress.fst.checked", "Hacl.Impl.Ed25519.Ladder.fsti.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Verify.fst" }
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.size_t", "Hacl.Bignum25519.point", "Prims.bool", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Hacl.Impl.Ed25519.Verify.verify_valid_pk_rs", "Hacl.Impl.Ed25519.PointDecompress.point_decompress", "Spec.Ed25519.Lemmas.point_decompress_lemma", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub", "Lib.IntTypes.U64", "Lib.Buffer.create", "Lib.IntTypes.uint64", "Lib.IntTypes.u64", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Ed25519.Verify open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence open Hacl.Bignum25519 module F51 = Hacl.Impl.Ed25519.Field51 module PM = Hacl.Impl.Ed25519.Ladder #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let point_inv_full_t (h:mem) (p:point) = F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p) inline_for_extraction noextract val verify_all_valid_hb (sb hb:lbuffer uint8 32ul) (a' r':point) : Stack bool (requires fun h -> live h sb /\ live h hb /\ live h a' /\ live h r' /\ point_inv_full_t h a' /\ point_inv_full_t h r') (ensures fun h0 z h1 -> modifies0 h0 h1 /\ (z == Spec.Ed25519.( let exp_d = point_negate_mul_double_g (as_seq h0 sb) (as_seq h0 hb) (F51.point_eval h0 a') in point_equal exp_d (F51.point_eval h0 r')))) let verify_all_valid_hb sb hb a' r' = push_frame (); let exp_d = create 20ul (u64 0) in PM.point_negate_mul_double_g_vartime exp_d sb hb a'; let b = Hacl.Impl.Ed25519.PointEqual.point_equal exp_d r' in let h0 = ST.get () in Spec.Ed25519.Lemmas.point_equal_lemma (F51.point_eval h0 exp_d) (Spec.Ed25519.point_negate_mul_double_g (as_seq h0 sb) (as_seq h0 hb) (F51.point_eval h0 a')) (F51.point_eval h0 r'); pop_frame (); b inline_for_extraction noextract val verify_sb: sb:lbuffer uint8 32ul -> Stack bool (requires fun h -> live h sb) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (b <==> (BSeq.nat_from_bytes_le (as_seq h0 sb) >= Spec.Ed25519.q))) let verify_sb sb = push_frame (); let tmp = create 5ul (u64 0) in Hacl.Impl.Load56.load_32_bytes tmp sb; let b = Hacl.Impl.Ed25519.PointEqual.gte_q tmp in pop_frame (); b inline_for_extraction noextract val verify_valid_pk_rs: public_key:lbuffer uint8 32ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> signature:lbuffer uint8 64ul -> a':point -> r':point -> Stack bool (requires fun h -> live h public_key /\ live h msg /\ live h signature /\ live h a' /\ live h r' /\ (Some? (Spec.Ed25519.point_decompress (as_seq h public_key))) /\ point_inv_full_t h a' /\ (F51.point_eval h a' == Some?.v (Spec.Ed25519.point_decompress (as_seq h public_key))) /\ (Some? (Spec.Ed25519.point_decompress (as_seq h (gsub signature 0ul 32ul)))) /\ point_inv_full_t h r' /\ (F51.point_eval h r' == Some?.v (Spec.Ed25519.point_decompress (as_seq h (gsub signature 0ul 32ul))))) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ z == Spec.Ed25519.verify (as_seq h0 public_key) (as_seq h0 msg) (as_seq h0 signature)) let verify_valid_pk_rs public_key msg_len msg signature a' r' = push_frame (); let hb = create 32ul (u8 0) in let rs = sub signature 0ul 32ul in let sb = sub signature 32ul 32ul in let b = verify_sb sb in let res = if b then false else begin Hacl.Impl.SHA512.ModQ.store_sha512_modq_pre_pre2 hb rs public_key msg_len msg; verify_all_valid_hb sb hb a' r' end in pop_frame (); res inline_for_extraction noextract val verify_valid_pk: public_key:lbuffer uint8 32ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> signature:lbuffer uint8 64ul -> a':point -> Stack bool (requires fun h -> live h public_key /\ live h msg /\ live h signature /\ live h a' /\ (Some? (Spec.Ed25519.point_decompress (as_seq h public_key))) /\ point_inv_full_t h a' /\ (F51.point_eval h a' == Some?.v (Spec.Ed25519.point_decompress (as_seq h public_key)))) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ z == Spec.Ed25519.verify (as_seq h0 public_key) (as_seq h0 msg) (as_seq h0 signature))
false
false
Hacl.Impl.Ed25519.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val verify_valid_pk: public_key:lbuffer uint8 32ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> signature:lbuffer uint8 64ul -> a':point -> Stack bool (requires fun h -> live h public_key /\ live h msg /\ live h signature /\ live h a' /\ (Some? (Spec.Ed25519.point_decompress (as_seq h public_key))) /\ point_inv_full_t h a' /\ (F51.point_eval h a' == Some?.v (Spec.Ed25519.point_decompress (as_seq h public_key)))) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ z == Spec.Ed25519.verify (as_seq h0 public_key) (as_seq h0 msg) (as_seq h0 signature))
[]
Hacl.Impl.Ed25519.Verify.verify_valid_pk
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
public_key: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> msg_len: Lib.IntTypes.size_t -> msg: Lib.Buffer.lbuffer Lib.IntTypes.uint8 msg_len -> signature: Lib.Buffer.lbuffer Lib.IntTypes.uint8 64ul -> a': Hacl.Bignum25519.point -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 5, "end_line": 121, "start_col": 2, "start_line": 113 }
FStar.HyperStack.ST.Stack
val verify_valid_pk_rs: public_key:lbuffer uint8 32ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> signature:lbuffer uint8 64ul -> a':point -> r':point -> Stack bool (requires fun h -> live h public_key /\ live h msg /\ live h signature /\ live h a' /\ live h r' /\ (Some? (Spec.Ed25519.point_decompress (as_seq h public_key))) /\ point_inv_full_t h a' /\ (F51.point_eval h a' == Some?.v (Spec.Ed25519.point_decompress (as_seq h public_key))) /\ (Some? (Spec.Ed25519.point_decompress (as_seq h (gsub signature 0ul 32ul)))) /\ point_inv_full_t h r' /\ (F51.point_eval h r' == Some?.v (Spec.Ed25519.point_decompress (as_seq h (gsub signature 0ul 32ul))))) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ z == Spec.Ed25519.verify (as_seq h0 public_key) (as_seq h0 msg) (as_seq h0 signature))
[ { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Ladder", "short_module": "PM" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let verify_valid_pk_rs public_key msg_len msg signature a' r' = push_frame (); let hb = create 32ul (u8 0) in let rs = sub signature 0ul 32ul in let sb = sub signature 32ul 32ul in let b = verify_sb sb in let res = if b then false else begin Hacl.Impl.SHA512.ModQ.store_sha512_modq_pre_pre2 hb rs public_key msg_len msg; verify_all_valid_hb sb hb a' r' end in pop_frame (); res
val verify_valid_pk_rs: public_key:lbuffer uint8 32ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> signature:lbuffer uint8 64ul -> a':point -> r':point -> Stack bool (requires fun h -> live h public_key /\ live h msg /\ live h signature /\ live h a' /\ live h r' /\ (Some? (Spec.Ed25519.point_decompress (as_seq h public_key))) /\ point_inv_full_t h a' /\ (F51.point_eval h a' == Some?.v (Spec.Ed25519.point_decompress (as_seq h public_key))) /\ (Some? (Spec.Ed25519.point_decompress (as_seq h (gsub signature 0ul 32ul)))) /\ point_inv_full_t h r' /\ (F51.point_eval h r' == Some?.v (Spec.Ed25519.point_decompress (as_seq h (gsub signature 0ul 32ul))))) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ z == Spec.Ed25519.verify (as_seq h0 public_key) (as_seq h0 msg) (as_seq h0 signature)) let verify_valid_pk_rs public_key msg_len msg signature a' r' =
true
null
false
push_frame (); let hb = create 32ul (u8 0) in let rs = sub signature 0ul 32ul in let sb = sub signature 32ul 32ul in let b = verify_sb sb in let res = if b then false else (Hacl.Impl.SHA512.ModQ.store_sha512_modq_pre_pre2 hb rs public_key msg_len msg; verify_all_valid_hb sb hb a' r') in pop_frame (); res
{ "checked_file": "Hacl.Impl.Ed25519.Verify.fst.checked", "dependencies": [ "Spec.Ed25519.Lemmas.fsti.checked", "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.SHA512.ModQ.fst.checked", "Hacl.Impl.Load56.fst.checked", "Hacl.Impl.Ed25519.PointEqual.fst.checked", "Hacl.Impl.Ed25519.PointDecompress.fst.checked", "Hacl.Impl.Ed25519.Ladder.fsti.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Verify.fst" }
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.size_t", "Hacl.Bignum25519.point", "Prims.bool", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Hacl.Impl.Ed25519.Verify.verify_all_valid_hb", "Hacl.Impl.SHA512.ModQ.store_sha512_modq_pre_pre2", "Hacl.Impl.Ed25519.Verify.verify_sb", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub", "Lib.Buffer.create", "Lib.IntTypes.u8", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Ed25519.Verify open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence open Hacl.Bignum25519 module F51 = Hacl.Impl.Ed25519.Field51 module PM = Hacl.Impl.Ed25519.Ladder #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let point_inv_full_t (h:mem) (p:point) = F51.point_inv_t h p /\ F51.inv_ext_point (as_seq h p) inline_for_extraction noextract val verify_all_valid_hb (sb hb:lbuffer uint8 32ul) (a' r':point) : Stack bool (requires fun h -> live h sb /\ live h hb /\ live h a' /\ live h r' /\ point_inv_full_t h a' /\ point_inv_full_t h r') (ensures fun h0 z h1 -> modifies0 h0 h1 /\ (z == Spec.Ed25519.( let exp_d = point_negate_mul_double_g (as_seq h0 sb) (as_seq h0 hb) (F51.point_eval h0 a') in point_equal exp_d (F51.point_eval h0 r')))) let verify_all_valid_hb sb hb a' r' = push_frame (); let exp_d = create 20ul (u64 0) in PM.point_negate_mul_double_g_vartime exp_d sb hb a'; let b = Hacl.Impl.Ed25519.PointEqual.point_equal exp_d r' in let h0 = ST.get () in Spec.Ed25519.Lemmas.point_equal_lemma (F51.point_eval h0 exp_d) (Spec.Ed25519.point_negate_mul_double_g (as_seq h0 sb) (as_seq h0 hb) (F51.point_eval h0 a')) (F51.point_eval h0 r'); pop_frame (); b inline_for_extraction noextract val verify_sb: sb:lbuffer uint8 32ul -> Stack bool (requires fun h -> live h sb) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (b <==> (BSeq.nat_from_bytes_le (as_seq h0 sb) >= Spec.Ed25519.q))) let verify_sb sb = push_frame (); let tmp = create 5ul (u64 0) in Hacl.Impl.Load56.load_32_bytes tmp sb; let b = Hacl.Impl.Ed25519.PointEqual.gte_q tmp in pop_frame (); b inline_for_extraction noextract val verify_valid_pk_rs: public_key:lbuffer uint8 32ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> signature:lbuffer uint8 64ul -> a':point -> r':point -> Stack bool (requires fun h -> live h public_key /\ live h msg /\ live h signature /\ live h a' /\ live h r' /\ (Some? (Spec.Ed25519.point_decompress (as_seq h public_key))) /\ point_inv_full_t h a' /\ (F51.point_eval h a' == Some?.v (Spec.Ed25519.point_decompress (as_seq h public_key))) /\ (Some? (Spec.Ed25519.point_decompress (as_seq h (gsub signature 0ul 32ul)))) /\ point_inv_full_t h r' /\ (F51.point_eval h r' == Some?.v (Spec.Ed25519.point_decompress (as_seq h (gsub signature 0ul 32ul))))) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ z == Spec.Ed25519.verify (as_seq h0 public_key) (as_seq h0 msg) (as_seq h0 signature))
false
false
Hacl.Impl.Ed25519.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val verify_valid_pk_rs: public_key:lbuffer uint8 32ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> signature:lbuffer uint8 64ul -> a':point -> r':point -> Stack bool (requires fun h -> live h public_key /\ live h msg /\ live h signature /\ live h a' /\ live h r' /\ (Some? (Spec.Ed25519.point_decompress (as_seq h public_key))) /\ point_inv_full_t h a' /\ (F51.point_eval h a' == Some?.v (Spec.Ed25519.point_decompress (as_seq h public_key))) /\ (Some? (Spec.Ed25519.point_decompress (as_seq h (gsub signature 0ul 32ul)))) /\ point_inv_full_t h r' /\ (F51.point_eval h r' == Some?.v (Spec.Ed25519.point_decompress (as_seq h (gsub signature 0ul 32ul))))) (ensures fun h0 z h1 -> modifies0 h0 h1 /\ z == Spec.Ed25519.verify (as_seq h0 public_key) (as_seq h0 msg) (as_seq h0 signature))
[]
Hacl.Impl.Ed25519.Verify.verify_valid_pk_rs
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
public_key: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> msg_len: Lib.IntTypes.size_t -> msg: Lib.Buffer.lbuffer Lib.IntTypes.uint8 msg_len -> signature: Lib.Buffer.lbuffer Lib.IntTypes.uint8 64ul -> a': Hacl.Bignum25519.point -> r': Hacl.Bignum25519.point -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 5, "end_line": 94, "start_col": 2, "start_line": 82 }
FStar.Tactics.Effect.Tac
val pp_sigmaTable: Prims.unit -> Tactics.Tac unit
[ { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pp_sigmaTable () : Tactics.Tac unit = Tactics.norm [delta_only [`%Spec.list_sigma]]; Tactics.trefl ()
val pp_sigmaTable: Prims.unit -> Tactics.Tac unit let pp_sigmaTable () : Tactics.Tac unit =
true
null
false
Tactics.norm [delta_only [`%Spec.list_sigma]]; Tactics.trefl ()
{ "checked_file": "Hacl.Impl.Blake2.Constants.fst.checked", "dependencies": [ "Spec.Blake2.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Blake2.Constants.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V1.Derived.trefl", "FStar.Tactics.V1.Builtins.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta_only", "Prims.string", "Prims.Nil" ]
[]
module Hacl.Impl.Blake2.Constants open FStar.Mul open FStar.HyperStack open FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Lib.LoopCombinators module ST = FStar.HyperStack.ST module Seq = Lib.Sequence module Loops = Lib.LoopCombinators module Spec = Spec.Blake2 /// We need to unfold manually the definition of the sigma table. This definition /// was not declared as `inline_for_extraction` because otherwise it creates a lot /// of work for the normalizer during the KaRaMeL extraction (which also explores /// the ghost code, including the content of the assertions). However, we can't do /// that by inserting manual calls to `norm` inside the code, because it blocks /// the normalization performed by KaRaMeL, and we can't normalize as much as we /// want because of the interface abstractions. The solution is to use post-processing. noextract
false
false
Hacl.Impl.Blake2.Constants.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pp_sigmaTable: Prims.unit -> Tactics.Tac unit
[]
Hacl.Impl.Blake2.Constants.pp_sigmaTable
{ "file_name": "code/blake2/Hacl.Impl.Blake2.Constants.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 65, "end_line": 25, "start_col": 2, "start_line": 25 }
Prims.Tot
val ivTable_B:(x: glbuffer (Spec.pub_word_t Spec.Blake2B) 8ul {witnessed x (Spec.ivTable Spec.Blake2B) /\ recallable x})
[ { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ivTable_B: (x:glbuffer (Spec.pub_word_t Spec.Blake2B) 8ul{witnessed x (Spec.ivTable Spec.Blake2B) /\ recallable x}) = createL_global Spec.list_iv_B
val ivTable_B:(x: glbuffer (Spec.pub_word_t Spec.Blake2B) 8ul {witnessed x (Spec.ivTable Spec.Blake2B) /\ recallable x}) let ivTable_B:(x: glbuffer (Spec.pub_word_t Spec.Blake2B) 8ul {witnessed x (Spec.ivTable Spec.Blake2B) /\ recallable x}) =
false
null
false
createL_global Spec.list_iv_B
{ "checked_file": "Hacl.Impl.Blake2.Constants.fst.checked", "dependencies": [ "Spec.Blake2.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Blake2.Constants.fst" }
[ "total" ]
[ "Lib.Buffer.createL_global", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.PUB", "Spec.Blake2.list_iv_B", "Lib.Buffer.glbuffer", "Lib.IntTypes.size", "FStar.Pervasives.normalize_term", "Lib.IntTypes.size_nat", "FStar.List.Tot.Base.length" ]
[]
module Hacl.Impl.Blake2.Constants open FStar.Mul open FStar.HyperStack open FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Lib.LoopCombinators module ST = FStar.HyperStack.ST module Seq = Lib.Sequence module Loops = Lib.LoopCombinators module Spec = Spec.Blake2 /// We need to unfold manually the definition of the sigma table. This definition /// was not declared as `inline_for_extraction` because otherwise it creates a lot /// of work for the normalizer during the KaRaMeL extraction (which also explores /// the ghost code, including the content of the assertions). However, we can't do /// that by inserting manual calls to `norm` inside the code, because it blocks /// the normalization performed by KaRaMeL, and we can't normalize as much as we /// want because of the interface abstractions. The solution is to use post-processing. noextract let pp_sigmaTable () : Tactics.Tac unit = Tactics.norm [delta_only [`%Spec.list_sigma]]; Tactics.trefl () [@(Tactics.postprocess_with pp_sigmaTable)] let sigmaTable : x:glbuffer Spec.sigma_elt_t 160ul{witnessed x Spec.sigmaTable /\ recallable x} = createL_global Spec.list_sigma let ivTable_S: (x:glbuffer (Spec.pub_word_t Spec.Blake2S) 8ul{witnessed x (Spec.ivTable Spec.Blake2S) /\ recallable x}) = createL_global Spec.list_iv_S
false
false
Hacl.Impl.Blake2.Constants.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ivTable_B:(x: glbuffer (Spec.pub_word_t Spec.Blake2B) 8ul {witnessed x (Spec.ivTable Spec.Blake2B) /\ recallable x})
[]
Hacl.Impl.Blake2.Constants.ivTable_B
{ "file_name": "code/blake2/Hacl.Impl.Blake2.Constants.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: (c: Lib.Buffer.lbuffer_t Lib.Buffer.CONST (Spec.Blake2.pub_word_t Spec.Blake2.Blake2B) (FStar.UInt32.uint_to_t 8 <: FStar.UInt32.t) {LowStar.ConstBuffer.qual_of c == LowStar.ConstBuffer.IMMUTABLE}) {Lib.Buffer.witnessed x (Spec.Blake2.ivTable Spec.Blake2.Blake2B) /\ Lib.Buffer.recallable x}
{ "end_col": 31, "end_line": 35, "start_col": 2, "start_line": 35 }
Prims.Tot
val ivTable_S:(x: glbuffer (Spec.pub_word_t Spec.Blake2S) 8ul {witnessed x (Spec.ivTable Spec.Blake2S) /\ recallable x})
[ { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ivTable_S: (x:glbuffer (Spec.pub_word_t Spec.Blake2S) 8ul{witnessed x (Spec.ivTable Spec.Blake2S) /\ recallable x}) = createL_global Spec.list_iv_S
val ivTable_S:(x: glbuffer (Spec.pub_word_t Spec.Blake2S) 8ul {witnessed x (Spec.ivTable Spec.Blake2S) /\ recallable x}) let ivTable_S:(x: glbuffer (Spec.pub_word_t Spec.Blake2S) 8ul {witnessed x (Spec.ivTable Spec.Blake2S) /\ recallable x}) =
false
null
false
createL_global Spec.list_iv_S
{ "checked_file": "Hacl.Impl.Blake2.Constants.fst.checked", "dependencies": [ "Spec.Blake2.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Blake2.Constants.fst" }
[ "total" ]
[ "Lib.Buffer.createL_global", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Spec.Blake2.list_iv_S", "Lib.Buffer.glbuffer", "Lib.IntTypes.size", "FStar.Pervasives.normalize_term", "Lib.IntTypes.size_nat", "FStar.List.Tot.Base.length" ]
[]
module Hacl.Impl.Blake2.Constants open FStar.Mul open FStar.HyperStack open FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Lib.LoopCombinators module ST = FStar.HyperStack.ST module Seq = Lib.Sequence module Loops = Lib.LoopCombinators module Spec = Spec.Blake2 /// We need to unfold manually the definition of the sigma table. This definition /// was not declared as `inline_for_extraction` because otherwise it creates a lot /// of work for the normalizer during the KaRaMeL extraction (which also explores /// the ghost code, including the content of the assertions). However, we can't do /// that by inserting manual calls to `norm` inside the code, because it blocks /// the normalization performed by KaRaMeL, and we can't normalize as much as we /// want because of the interface abstractions. The solution is to use post-processing. noextract let pp_sigmaTable () : Tactics.Tac unit = Tactics.norm [delta_only [`%Spec.list_sigma]]; Tactics.trefl () [@(Tactics.postprocess_with pp_sigmaTable)] let sigmaTable : x:glbuffer Spec.sigma_elt_t 160ul{witnessed x Spec.sigmaTable /\ recallable x} = createL_global Spec.list_sigma
false
false
Hacl.Impl.Blake2.Constants.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ivTable_S:(x: glbuffer (Spec.pub_word_t Spec.Blake2S) 8ul {witnessed x (Spec.ivTable Spec.Blake2S) /\ recallable x})
[]
Hacl.Impl.Blake2.Constants.ivTable_S
{ "file_name": "code/blake2/Hacl.Impl.Blake2.Constants.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: (c: Lib.Buffer.lbuffer_t Lib.Buffer.CONST (Spec.Blake2.pub_word_t Spec.Blake2.Blake2S) (FStar.UInt32.uint_to_t 8 <: FStar.UInt32.t) {LowStar.ConstBuffer.qual_of c == LowStar.ConstBuffer.IMMUTABLE}) {Lib.Buffer.witnessed x (Spec.Blake2.ivTable Spec.Blake2.Blake2S) /\ Lib.Buffer.recallable x}
{ "end_col": 31, "end_line": 32, "start_col": 2, "start_line": 32 }
Prims.Tot
val rTable_B:x: glbuffer (rotval U64) 4ul {witnessed x (Spec.rTable Spec.Blake2B) /\ recallable x}
[ { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rTable_B : x:glbuffer (rotval U64) 4ul{witnessed x (Spec.rTable Spec.Blake2B) /\ recallable x} = createL_global Spec.rTable_list_B
val rTable_B:x: glbuffer (rotval U64) 4ul {witnessed x (Spec.rTable Spec.Blake2B) /\ recallable x} let rTable_B:x: glbuffer (rotval U64) 4ul {witnessed x (Spec.rTable Spec.Blake2B) /\ recallable x} =
false
null
false
createL_global Spec.rTable_list_B
{ "checked_file": "Hacl.Impl.Blake2.Constants.fst.checked", "dependencies": [ "Spec.Blake2.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Blake2.Constants.fst" }
[ "total" ]
[ "Lib.Buffer.createL_global", "Lib.IntTypes.rotval", "Lib.IntTypes.U64", "Spec.Blake2.rTable_list_B", "Lib.Buffer.glbuffer", "Lib.IntTypes.size", "FStar.Pervasives.normalize_term", "Lib.IntTypes.size_nat", "FStar.List.Tot.Base.length" ]
[]
module Hacl.Impl.Blake2.Constants open FStar.Mul open FStar.HyperStack open FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Lib.LoopCombinators module ST = FStar.HyperStack.ST module Seq = Lib.Sequence module Loops = Lib.LoopCombinators module Spec = Spec.Blake2 /// We need to unfold manually the definition of the sigma table. This definition /// was not declared as `inline_for_extraction` because otherwise it creates a lot /// of work for the normalizer during the KaRaMeL extraction (which also explores /// the ghost code, including the content of the assertions). However, we can't do /// that by inserting manual calls to `norm` inside the code, because it blocks /// the normalization performed by KaRaMeL, and we can't normalize as much as we /// want because of the interface abstractions. The solution is to use post-processing. noextract let pp_sigmaTable () : Tactics.Tac unit = Tactics.norm [delta_only [`%Spec.list_sigma]]; Tactics.trefl () [@(Tactics.postprocess_with pp_sigmaTable)] let sigmaTable : x:glbuffer Spec.sigma_elt_t 160ul{witnessed x Spec.sigmaTable /\ recallable x} = createL_global Spec.list_sigma let ivTable_S: (x:glbuffer (Spec.pub_word_t Spec.Blake2S) 8ul{witnessed x (Spec.ivTable Spec.Blake2S) /\ recallable x}) = createL_global Spec.list_iv_S let ivTable_B: (x:glbuffer (Spec.pub_word_t Spec.Blake2B) 8ul{witnessed x (Spec.ivTable Spec.Blake2B) /\ recallable x}) = createL_global Spec.list_iv_B
false
false
Hacl.Impl.Blake2.Constants.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rTable_B:x: glbuffer (rotval U64) 4ul {witnessed x (Spec.rTable Spec.Blake2B) /\ recallable x}
[]
Hacl.Impl.Blake2.Constants.rTable_B
{ "file_name": "code/blake2/Hacl.Impl.Blake2.Constants.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: (c: Lib.Buffer.lbuffer_t Lib.Buffer.CONST (Lib.IntTypes.rotval Lib.IntTypes.U64) (FStar.UInt32.uint_to_t 4 <: FStar.UInt32.t) {LowStar.ConstBuffer.qual_of c == LowStar.ConstBuffer.IMMUTABLE}) {Lib.Buffer.witnessed x (Spec.Blake2.rTable Spec.Blake2.Blake2B) /\ Lib.Buffer.recallable x}
{ "end_col": 35, "end_line": 38, "start_col": 2, "start_line": 38 }
Prims.Tot
val sigmaTable:x: glbuffer Spec.sigma_elt_t 160ul {witnessed x Spec.sigmaTable /\ recallable x}
[ { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sigmaTable : x:glbuffer Spec.sigma_elt_t 160ul{witnessed x Spec.sigmaTable /\ recallable x} = createL_global Spec.list_sigma
val sigmaTable:x: glbuffer Spec.sigma_elt_t 160ul {witnessed x Spec.sigmaTable /\ recallable x} let sigmaTable:x: glbuffer Spec.sigma_elt_t 160ul {witnessed x Spec.sigmaTable /\ recallable x} =
false
null
false
createL_global Spec.list_sigma
{ "checked_file": "Hacl.Impl.Blake2.Constants.fst.checked", "dependencies": [ "Spec.Blake2.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Blake2.Constants.fst" }
[ "total" ]
[ "Lib.Buffer.createL_global", "Spec.Blake2.sigma_elt_t", "Prims.Cons", "Lib.IntTypes.size", "Prims.Nil" ]
[]
module Hacl.Impl.Blake2.Constants open FStar.Mul open FStar.HyperStack open FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Lib.LoopCombinators module ST = FStar.HyperStack.ST module Seq = Lib.Sequence module Loops = Lib.LoopCombinators module Spec = Spec.Blake2 /// We need to unfold manually the definition of the sigma table. This definition /// was not declared as `inline_for_extraction` because otherwise it creates a lot /// of work for the normalizer during the KaRaMeL extraction (which also explores /// the ghost code, including the content of the assertions). However, we can't do /// that by inserting manual calls to `norm` inside the code, because it blocks /// the normalization performed by KaRaMeL, and we can't normalize as much as we /// want because of the interface abstractions. The solution is to use post-processing. noextract let pp_sigmaTable () : Tactics.Tac unit = Tactics.norm [delta_only [`%Spec.list_sigma]]; Tactics.trefl () [@(Tactics.postprocess_with pp_sigmaTable)]
false
false
Hacl.Impl.Blake2.Constants.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sigmaTable:x: glbuffer Spec.sigma_elt_t 160ul {witnessed x Spec.sigmaTable /\ recallable x}
[]
Hacl.Impl.Blake2.Constants.sigmaTable
{ "file_name": "code/blake2/Hacl.Impl.Blake2.Constants.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: (c: Lib.Buffer.lbuffer_t Lib.Buffer.CONST Spec.Blake2.sigma_elt_t (FStar.UInt32.uint_to_t 160 <: FStar.UInt32.t) {LowStar.ConstBuffer.qual_of c == LowStar.ConstBuffer.IMMUTABLE}) {Lib.Buffer.witnessed x Spec.Blake2.sigmaTable /\ Lib.Buffer.recallable x}
{ "end_col": 32, "end_line": 29, "start_col": 2, "start_line": 29 }
Prims.Tot
val sealBase: sealBase_st cs True
[ { "abbrev": true, "full_module": "Hacl.HPKE.Interface.AEAD", "short_module": "IAEAD" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.Hash", "short_module": "IHash" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.HKDF", "short_module": "IHK" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.DH", "short_module": "IDH" }, { "abbrev": false, "full_module": "Hacl.Meta.HPKE", "short_module": null }, { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sealBase = hpke_sealBase_higher #cs True IAEAD.aead_encrypt_cp32 setupBaseS
val sealBase: sealBase_st cs True let sealBase =
false
null
false
hpke_sealBase_higher #cs True IAEAD.aead_encrypt_cp32 setupBaseS
{ "checked_file": "Hacl.HPKE.P256_CP32_SHA256.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Meta.HPKE.fst.checked", "Hacl.Meta.HPKE.fst.checked", "Hacl.HPKE.Interface.HKDF.fst.checked", "Hacl.HPKE.Interface.Hash.fst.checked", "Hacl.HPKE.Interface.DH.fst.checked", "Hacl.HPKE.Interface.AEAD.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Hacl.HPKE.P256_CP32_SHA256.fst" }
[ "total" ]
[ "Hacl.Meta.HPKE.hpke_sealBase_higher", "Hacl.HPKE.P256_CP32_SHA256.cs", "Prims.l_True", "Hacl.HPKE.Interface.AEAD.aead_encrypt_cp32", "Hacl.HPKE.P256_CP32_SHA256.setupBaseS" ]
[]
module Hacl.HPKE.P256_CP32_SHA256 open Hacl.Meta.HPKE module IDH = Hacl.HPKE.Interface.DH module IHK = Hacl.HPKE.Interface.HKDF module IHash = Hacl.HPKE.Interface.Hash module IAEAD = Hacl.HPKE.Interface.AEAD friend Hacl.Meta.HPKE #set-options "--fuel 0 --ifuel 0" let setupBaseS = hpke_setupBaseS_higher #cs True IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_p256 IDH.dh_p256 IHK.hkdf_expand256 IHK.hkdf_extract256 let setupBaseR = hpke_setupBaseR_higher #cs True IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.dh_p256 IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_p256
false
true
Hacl.HPKE.P256_CP32_SHA256.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sealBase: sealBase_st cs True
[]
Hacl.HPKE.P256_CP32_SHA256.sealBase
{ "file_name": "code/hpke/Hacl.HPKE.P256_CP32_SHA256.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.HPKE.sealBase_st Hacl.HPKE.P256_CP32_SHA256.cs Prims.l_True
{ "end_col": 79, "end_line": 18, "start_col": 15, "start_line": 18 }
Prims.Tot
val openBase: openBase_st cs True
[ { "abbrev": true, "full_module": "Hacl.HPKE.Interface.AEAD", "short_module": "IAEAD" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.Hash", "short_module": "IHash" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.HKDF", "short_module": "IHK" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.DH", "short_module": "IDH" }, { "abbrev": false, "full_module": "Hacl.Meta.HPKE", "short_module": null }, { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let openBase = hpke_openBase_higher #cs True IAEAD.aead_decrypt_cp32 setupBaseR
val openBase: openBase_st cs True let openBase =
false
null
false
hpke_openBase_higher #cs True IAEAD.aead_decrypt_cp32 setupBaseR
{ "checked_file": "Hacl.HPKE.P256_CP32_SHA256.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Meta.HPKE.fst.checked", "Hacl.Meta.HPKE.fst.checked", "Hacl.HPKE.Interface.HKDF.fst.checked", "Hacl.HPKE.Interface.Hash.fst.checked", "Hacl.HPKE.Interface.DH.fst.checked", "Hacl.HPKE.Interface.AEAD.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Hacl.HPKE.P256_CP32_SHA256.fst" }
[ "total" ]
[ "Hacl.Meta.HPKE.hpke_openBase_higher", "Hacl.HPKE.P256_CP32_SHA256.cs", "Prims.l_True", "Hacl.HPKE.Interface.AEAD.aead_decrypt_cp32", "Hacl.HPKE.P256_CP32_SHA256.setupBaseR" ]
[]
module Hacl.HPKE.P256_CP32_SHA256 open Hacl.Meta.HPKE module IDH = Hacl.HPKE.Interface.DH module IHK = Hacl.HPKE.Interface.HKDF module IHash = Hacl.HPKE.Interface.Hash module IAEAD = Hacl.HPKE.Interface.AEAD friend Hacl.Meta.HPKE #set-options "--fuel 0 --ifuel 0" let setupBaseS = hpke_setupBaseS_higher #cs True IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_p256 IDH.dh_p256 IHK.hkdf_expand256 IHK.hkdf_extract256 let setupBaseR = hpke_setupBaseR_higher #cs True IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.dh_p256 IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_p256 let sealBase = hpke_sealBase_higher #cs True IAEAD.aead_encrypt_cp32 setupBaseS
false
true
Hacl.HPKE.P256_CP32_SHA256.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val openBase: openBase_st cs True
[]
Hacl.HPKE.P256_CP32_SHA256.openBase
{ "file_name": "code/hpke/Hacl.HPKE.P256_CP32_SHA256.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.HPKE.openBase_st Hacl.HPKE.P256_CP32_SHA256.cs Prims.l_True
{ "end_col": 79, "end_line": 20, "start_col": 15, "start_line": 20 }
Prims.Tot
val setupBaseS: setupBaseS_st cs True
[ { "abbrev": true, "full_module": "Hacl.HPKE.Interface.AEAD", "short_module": "IAEAD" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.Hash", "short_module": "IHash" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.HKDF", "short_module": "IHK" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.DH", "short_module": "IDH" }, { "abbrev": false, "full_module": "Hacl.Meta.HPKE", "short_module": null }, { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let setupBaseS = hpke_setupBaseS_higher #cs True IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_p256 IDH.dh_p256 IHK.hkdf_expand256 IHK.hkdf_extract256
val setupBaseS: setupBaseS_st cs True let setupBaseS =
false
null
false
hpke_setupBaseS_higher #cs True IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_p256 IDH.dh_p256 IHK.hkdf_expand256 IHK.hkdf_extract256
{ "checked_file": "Hacl.HPKE.P256_CP32_SHA256.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Meta.HPKE.fst.checked", "Hacl.Meta.HPKE.fst.checked", "Hacl.HPKE.Interface.HKDF.fst.checked", "Hacl.HPKE.Interface.Hash.fst.checked", "Hacl.HPKE.Interface.DH.fst.checked", "Hacl.HPKE.Interface.AEAD.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Hacl.HPKE.P256_CP32_SHA256.fst" }
[ "total" ]
[ "Hacl.Meta.HPKE.hpke_setupBaseS_higher", "Hacl.HPKE.P256_CP32_SHA256.cs", "Prims.l_True", "Hacl.HPKE.Interface.HKDF.hkdf_expand256", "Hacl.HPKE.Interface.HKDF.hkdf_extract256", "Hacl.HPKE.Interface.DH.secret_to_public_p256", "Hacl.HPKE.Interface.DH.dh_p256" ]
[]
module Hacl.HPKE.P256_CP32_SHA256 open Hacl.Meta.HPKE module IDH = Hacl.HPKE.Interface.DH module IHK = Hacl.HPKE.Interface.HKDF module IHash = Hacl.HPKE.Interface.Hash module IAEAD = Hacl.HPKE.Interface.AEAD friend Hacl.Meta.HPKE #set-options "--fuel 0 --ifuel 0"
false
true
Hacl.HPKE.P256_CP32_SHA256.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val setupBaseS: setupBaseS_st cs True
[]
Hacl.HPKE.P256_CP32_SHA256.setupBaseS
{ "file_name": "code/hpke/Hacl.HPKE.P256_CP32_SHA256.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.HPKE.setupBaseS_st Hacl.HPKE.P256_CP32_SHA256.cs Prims.l_True
{ "end_col": 164, "end_line": 14, "start_col": 17, "start_line": 14 }
Prims.Tot
val setupBaseR: setupBaseR_st cs True
[ { "abbrev": true, "full_module": "Hacl.HPKE.Interface.AEAD", "short_module": "IAEAD" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.Hash", "short_module": "IHash" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.HKDF", "short_module": "IHK" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.DH", "short_module": "IDH" }, { "abbrev": false, "full_module": "Hacl.Meta.HPKE", "short_module": null }, { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let setupBaseR = hpke_setupBaseR_higher #cs True IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.dh_p256 IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_p256
val setupBaseR: setupBaseR_st cs True let setupBaseR =
false
null
false
hpke_setupBaseR_higher #cs True IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.dh_p256 IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_p256
{ "checked_file": "Hacl.HPKE.P256_CP32_SHA256.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Meta.HPKE.fst.checked", "Hacl.Meta.HPKE.fst.checked", "Hacl.HPKE.Interface.HKDF.fst.checked", "Hacl.HPKE.Interface.Hash.fst.checked", "Hacl.HPKE.Interface.DH.fst.checked", "Hacl.HPKE.Interface.AEAD.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Hacl.HPKE.P256_CP32_SHA256.fst" }
[ "total" ]
[ "Hacl.Meta.HPKE.hpke_setupBaseR_higher", "Hacl.HPKE.P256_CP32_SHA256.cs", "Prims.l_True", "Hacl.HPKE.Interface.HKDF.hkdf_expand256", "Hacl.HPKE.Interface.HKDF.hkdf_extract256", "Hacl.HPKE.Interface.DH.dh_p256", "Hacl.HPKE.Interface.DH.secret_to_public_p256" ]
[]
module Hacl.HPKE.P256_CP32_SHA256 open Hacl.Meta.HPKE module IDH = Hacl.HPKE.Interface.DH module IHK = Hacl.HPKE.Interface.HKDF module IHash = Hacl.HPKE.Interface.Hash module IAEAD = Hacl.HPKE.Interface.AEAD friend Hacl.Meta.HPKE #set-options "--fuel 0 --ifuel 0" let setupBaseS = hpke_setupBaseS_higher #cs True IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_p256 IDH.dh_p256 IHK.hkdf_expand256 IHK.hkdf_extract256
false
true
Hacl.HPKE.P256_CP32_SHA256.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val setupBaseR: setupBaseR_st cs True
[]
Hacl.HPKE.P256_CP32_SHA256.setupBaseR
{ "file_name": "code/hpke/Hacl.HPKE.P256_CP32_SHA256.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.HPKE.setupBaseR_st Hacl.HPKE.P256_CP32_SHA256.cs Prims.l_True
{ "end_col": 164, "end_line": 16, "start_col": 17, "start_line": 16 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.PossiblyMonad", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let equiv_states (s1 s2:va_state) = let open Vale.X64.State in s1.vs_ok == s2.vs_ok /\ Vale.X64.Regs.equal s1.vs_regs s2.vs_regs /\ Vale.X64.Flags.sel fCarry s1.vs_flags == Vale.X64.Flags.sel fCarry s2.vs_flags /\ Vale.X64.Flags.sel fOverflow s1.vs_flags == Vale.X64.Flags.sel fOverflow s2.vs_flags /\ s1.vs_heap == s2.vs_heap /\ s1.vs_stack == s2.vs_stack /\ s1.vs_stackTaint == s2.vs_stackTaint
let equiv_states (s1 s2: va_state) =
false
null
false
let open Vale.X64.State in s1.vs_ok == s2.vs_ok /\ Vale.X64.Regs.equal s1.vs_regs s2.vs_regs /\ Vale.X64.Flags.sel fCarry s1.vs_flags == Vale.X64.Flags.sel fCarry s2.vs_flags /\ Vale.X64.Flags.sel fOverflow s1.vs_flags == Vale.X64.Flags.sel fOverflow s2.vs_flags /\ s1.vs_heap == s2.vs_heap /\ s1.vs_stack == s2.vs_stack /\ s1.vs_stackTaint == s2.vs_stackTaint
{ "checked_file": "Vale.Transformers.Common.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Regs.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.Transformers.Common.fsti" }
[ "total" ]
[ "Vale.X64.Decls.va_state", "Prims.l_and", "Prims.eq2", "Prims.bool", "Vale.X64.State.__proj__Mkvale_state__item__vs_ok", "Vale.X64.Regs.equal", "Vale.X64.State.__proj__Mkvale_state__item__vs_regs", "Vale.X64.Flags.flag_val_t", "Vale.X64.Flags.sel", "Vale.X64.Machine_s.fCarry", "Vale.X64.State.__proj__Mkvale_state__item__vs_flags", "Vale.X64.Machine_s.fOverflow", "Vale.X64.Memory.vale_full_heap", "Vale.X64.State.__proj__Mkvale_state__item__vs_heap", "Vale.X64.Stack_i.vale_stack", "Vale.X64.State.__proj__Mkvale_state__item__vs_stack", "Vale.X64.Memory.memtaint", "Vale.X64.State.__proj__Mkvale_state__item__vs_stackTaint", "Prims.logical" ]
[]
module Vale.Transformers.Common open Vale.X64.Machine_s open Vale.Def.PossiblyMonad open Vale.X64.Decls /// Common definitions amongst transformations.
false
true
Vale.Transformers.Common.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val equiv_states : s1: Vale.X64.Decls.va_state -> s2: Vale.X64.Decls.va_state -> Prims.logical
[]
Vale.Transformers.Common.equiv_states
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.Common.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s1: Vale.X64.Decls.va_state -> s2: Vale.X64.Decls.va_state -> Prims.logical
{ "end_col": 38, "end_line": 17, "start_col": 2, "start_line": 10 }
Prims.Tot
[ { "abbrev": false, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.PrecompTable", "short_module": "PT" }, { "abbrev": true, "full_module": "Hacl.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let table_len_t (len:size_t{v len > 0}) = table_len:size_t{v table_len * v len <= max_size_t}
let table_len_t (len: size_t{v len > 0}) =
false
null
false
table_len: size_t{v table_len * v len <= max_size_t}
{ "checked_file": "Hacl.Impl.Exponentiation.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.PrecompTable.fsti.checked", "Hacl.Impl.Exponentiation.Definitions.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Exponentiation.fsti" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_GreaterThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t" ]
[]
module Hacl.Impl.Exponentiation open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Lib.Exponentiation module BD = Hacl.Bignum.Definitions module PT = Hacl.Impl.PrecompTable include Hacl.Impl.Exponentiation.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" // This function computes `a^b` using a binary right-to-left method // It takes variable time to compute the result inline_for_extraction noextract val lexp_rl_vartime: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> ctx:lbuffer (uint_t a_t SEC) ctx_len -> a:lbuffer (uint_t a_t SEC) len -> bLen:size_t -> bBits:size_t{(v bBits - 1) / bits a_t < v bLen} -> b:lbuffer (uint_t a_t SEC) bLen -> res:lbuffer (uint_t a_t SEC) len -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ live h ctx /\ disjoint a res /\ disjoint b res /\ disjoint a b /\ disjoint ctx a /\ disjoint ctx res /\ BD.bn_v h b < pow2 (v bBits) /\ k.to.linv_ctx (as_seq h ctx) /\ k.to.linv (as_seq h a)) (ensures fun h0 _ h1 -> modifies (loc a |+| loc res) h0 h1 /\ k.to.linv (as_seq h1 res) /\ k.to.refl (as_seq h1 res) == S.exp_rl #k.to.a_spec k.to.comm_monoid (k.to.refl (as_seq h0 a)) (v bBits) (BD.bn_v h0 b)) // This function computes `a^b` using Montgomery's ladder (a binary method) // It takes constant time to compute the result inline_for_extraction noextract val lexp_mont_ladder_swap_consttime: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> ctx:lbuffer (uint_t a_t SEC) ctx_len -> a:lbuffer (uint_t a_t SEC) len -> bLen:size_t -> bBits:size_t{(v bBits - 1) / bits a_t < v bLen} -> b:lbuffer (uint_t a_t SEC) bLen -> res:lbuffer (uint_t a_t SEC) len -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ live h ctx /\ disjoint a res /\ disjoint b res /\ disjoint a b /\ disjoint ctx a /\ disjoint ctx res /\ BD.bn_v h b < pow2 (v bBits) /\ k.to.linv_ctx (as_seq h ctx) /\ k.to.linv (as_seq h a)) (ensures fun h0 _ h1 -> modifies (loc a |+| loc res) h0 h1 /\ k.to.linv (as_seq h1 res) /\ k.to.refl (as_seq h1 res) == S.exp_mont_ladder_swap #k.to.a_spec k.to.comm_monoid (k.to.refl (as_seq h0 a)) (v bBits) (BD.bn_v h0 b)) // This function computes `a^(2^b)` and writes the result in `res` inline_for_extraction noextract val lexp_pow2: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> ctx:lbuffer (uint_t a_t SEC) ctx_len -> a:lbuffer (uint_t a_t SEC) len -> b:size_t -> res:lbuffer (uint_t a_t SEC) len -> Stack unit (requires fun h -> live h res /\ live h ctx /\ live h a /\ disjoint res ctx /\ disjoint a ctx /\ disjoint a res /\ k.to.linv (as_seq h a) /\ k.to.linv_ctx (as_seq h ctx)) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ k.to.linv (as_seq h1 res) /\ k.to.refl (as_seq h1 res) == S.exp_pow2 k.to.comm_monoid (k.to.refl (as_seq h0 a)) (v b)) // This function computes `a^(2^b)` and writes the result in `a` inline_for_extraction noextract val lexp_pow2_in_place: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> ctx:lbuffer (uint_t a_t SEC) ctx_len -> a:lbuffer (uint_t a_t SEC) len -> b:size_t -> Stack unit (requires fun h -> live h a /\ live h ctx /\ disjoint a ctx /\ k.to.linv (as_seq h a) /\ k.to.linv_ctx (as_seq h ctx)) (ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\ k.to.linv (as_seq h1 a) /\ k.to.refl (as_seq h1 a) == S.exp_pow2 k.to.comm_monoid (k.to.refl (as_seq h0 a)) (v b)) // Fixed-window method using a precomputed table //---------------------------------------------- inline_for_extraction noextract let size_window_t (a_t:inttype_a) (len:size_t{v len > 0}) = l:size_t{0 < v l /\ v l < bits a_t /\ v l < 32 /\ pow2 (v l) * v len <= max_size_t} inline_for_extraction noextract
false
false
Hacl.Impl.Exponentiation.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val table_len_t : len: Lib.IntTypes.size_t{Lib.IntTypes.v len > 0} -> Type0
[]
Hacl.Impl.Exponentiation.table_len_t
{ "file_name": "code/bignum/Hacl.Impl.Exponentiation.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t{Lib.IntTypes.v len > 0} -> Type0
{ "end_col": 53, "end_line": 124, "start_col": 2, "start_line": 124 }
Prims.Tot
[ { "abbrev": false, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.PrecompTable", "short_module": "PT" }, { "abbrev": true, "full_module": "Hacl.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size_window_t (a_t:inttype_a) (len:size_t{v len > 0}) = l:size_t{0 < v l /\ v l < bits a_t /\ v l < 32 /\ pow2 (v l) * v len <= max_size_t}
let size_window_t (a_t: inttype_a) (len: size_t{v len > 0}) =
false
null
false
l: size_t{0 < v l /\ v l < bits a_t /\ v l < 32 /\ pow2 (v l) * v len <= max_size_t}
{ "checked_file": "Hacl.Impl.Exponentiation.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.PrecompTable.fsti.checked", "Hacl.Impl.Exponentiation.Definitions.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Exponentiation.fsti" }
[ "total" ]
[ "Hacl.Impl.Exponentiation.Definitions.inttype_a", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_GreaterThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.l_and", "Prims.op_LessThan", "Lib.IntTypes.bits", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Prims.pow2", "Lib.IntTypes.max_size_t" ]
[]
module Hacl.Impl.Exponentiation open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Lib.Exponentiation module BD = Hacl.Bignum.Definitions module PT = Hacl.Impl.PrecompTable include Hacl.Impl.Exponentiation.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" // This function computes `a^b` using a binary right-to-left method // It takes variable time to compute the result inline_for_extraction noextract val lexp_rl_vartime: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> ctx:lbuffer (uint_t a_t SEC) ctx_len -> a:lbuffer (uint_t a_t SEC) len -> bLen:size_t -> bBits:size_t{(v bBits - 1) / bits a_t < v bLen} -> b:lbuffer (uint_t a_t SEC) bLen -> res:lbuffer (uint_t a_t SEC) len -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ live h ctx /\ disjoint a res /\ disjoint b res /\ disjoint a b /\ disjoint ctx a /\ disjoint ctx res /\ BD.bn_v h b < pow2 (v bBits) /\ k.to.linv_ctx (as_seq h ctx) /\ k.to.linv (as_seq h a)) (ensures fun h0 _ h1 -> modifies (loc a |+| loc res) h0 h1 /\ k.to.linv (as_seq h1 res) /\ k.to.refl (as_seq h1 res) == S.exp_rl #k.to.a_spec k.to.comm_monoid (k.to.refl (as_seq h0 a)) (v bBits) (BD.bn_v h0 b)) // This function computes `a^b` using Montgomery's ladder (a binary method) // It takes constant time to compute the result inline_for_extraction noextract val lexp_mont_ladder_swap_consttime: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> ctx:lbuffer (uint_t a_t SEC) ctx_len -> a:lbuffer (uint_t a_t SEC) len -> bLen:size_t -> bBits:size_t{(v bBits - 1) / bits a_t < v bLen} -> b:lbuffer (uint_t a_t SEC) bLen -> res:lbuffer (uint_t a_t SEC) len -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ live h ctx /\ disjoint a res /\ disjoint b res /\ disjoint a b /\ disjoint ctx a /\ disjoint ctx res /\ BD.bn_v h b < pow2 (v bBits) /\ k.to.linv_ctx (as_seq h ctx) /\ k.to.linv (as_seq h a)) (ensures fun h0 _ h1 -> modifies (loc a |+| loc res) h0 h1 /\ k.to.linv (as_seq h1 res) /\ k.to.refl (as_seq h1 res) == S.exp_mont_ladder_swap #k.to.a_spec k.to.comm_monoid (k.to.refl (as_seq h0 a)) (v bBits) (BD.bn_v h0 b)) // This function computes `a^(2^b)` and writes the result in `res` inline_for_extraction noextract val lexp_pow2: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> ctx:lbuffer (uint_t a_t SEC) ctx_len -> a:lbuffer (uint_t a_t SEC) len -> b:size_t -> res:lbuffer (uint_t a_t SEC) len -> Stack unit (requires fun h -> live h res /\ live h ctx /\ live h a /\ disjoint res ctx /\ disjoint a ctx /\ disjoint a res /\ k.to.linv (as_seq h a) /\ k.to.linv_ctx (as_seq h ctx)) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ k.to.linv (as_seq h1 res) /\ k.to.refl (as_seq h1 res) == S.exp_pow2 k.to.comm_monoid (k.to.refl (as_seq h0 a)) (v b)) // This function computes `a^(2^b)` and writes the result in `a` inline_for_extraction noextract val lexp_pow2_in_place: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> ctx:lbuffer (uint_t a_t SEC) ctx_len -> a:lbuffer (uint_t a_t SEC) len -> b:size_t -> Stack unit (requires fun h -> live h a /\ live h ctx /\ disjoint a ctx /\ k.to.linv (as_seq h a) /\ k.to.linv_ctx (as_seq h ctx)) (ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\ k.to.linv (as_seq h1 a) /\ k.to.refl (as_seq h1 a) == S.exp_pow2 k.to.comm_monoid (k.to.refl (as_seq h0 a)) (v b)) // Fixed-window method using a precomputed table //---------------------------------------------- inline_for_extraction noextract
false
false
Hacl.Impl.Exponentiation.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size_window_t : a_t: Hacl.Impl.Exponentiation.Definitions.inttype_a -> len: Lib.IntTypes.size_t{Lib.IntTypes.v len > 0} -> Type0
[]
Hacl.Impl.Exponentiation.size_window_t
{ "file_name": "code/bignum/Hacl.Impl.Exponentiation.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a_t: Hacl.Impl.Exponentiation.Definitions.inttype_a -> len: Lib.IntTypes.size_t{Lib.IntTypes.v len > 0} -> Type0
{ "end_col": 85, "end_line": 120, "start_col": 2, "start_line": 120 }
Prims.Tot
[ { "abbrev": false, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.PrecompTable", "short_module": "PT" }, { "abbrev": true, "full_module": "Hacl.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let table_inv_t (a_t:inttype_a) (len:size_t{v len > 0}) (table_len:table_len_t len) = a:LSeq.lseq (uint_t a_t SEC) (v len) -> table:LSeq.lseq (uint_t a_t SEC) (v (table_len *! len)) -> GTot Type0
let table_inv_t (a_t: inttype_a) (len: size_t{v len > 0}) (table_len: table_len_t len) =
false
null
false
a: LSeq.lseq (uint_t a_t SEC) (v len) -> table: LSeq.lseq (uint_t a_t SEC) (v (table_len *! len)) -> GTot Type0
{ "checked_file": "Hacl.Impl.Exponentiation.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.PrecompTable.fsti.checked", "Hacl.Impl.Exponentiation.Definitions.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Exponentiation.fsti" }
[ "total" ]
[ "Hacl.Impl.Exponentiation.Definitions.inttype_a", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_GreaterThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Exponentiation.table_len_t", "Lib.Sequence.lseq", "Lib.IntTypes.uint_t", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Star_Bang" ]
[]
module Hacl.Impl.Exponentiation open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Lib.Exponentiation module BD = Hacl.Bignum.Definitions module PT = Hacl.Impl.PrecompTable include Hacl.Impl.Exponentiation.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" // This function computes `a^b` using a binary right-to-left method // It takes variable time to compute the result inline_for_extraction noextract val lexp_rl_vartime: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> ctx:lbuffer (uint_t a_t SEC) ctx_len -> a:lbuffer (uint_t a_t SEC) len -> bLen:size_t -> bBits:size_t{(v bBits - 1) / bits a_t < v bLen} -> b:lbuffer (uint_t a_t SEC) bLen -> res:lbuffer (uint_t a_t SEC) len -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ live h ctx /\ disjoint a res /\ disjoint b res /\ disjoint a b /\ disjoint ctx a /\ disjoint ctx res /\ BD.bn_v h b < pow2 (v bBits) /\ k.to.linv_ctx (as_seq h ctx) /\ k.to.linv (as_seq h a)) (ensures fun h0 _ h1 -> modifies (loc a |+| loc res) h0 h1 /\ k.to.linv (as_seq h1 res) /\ k.to.refl (as_seq h1 res) == S.exp_rl #k.to.a_spec k.to.comm_monoid (k.to.refl (as_seq h0 a)) (v bBits) (BD.bn_v h0 b)) // This function computes `a^b` using Montgomery's ladder (a binary method) // It takes constant time to compute the result inline_for_extraction noextract val lexp_mont_ladder_swap_consttime: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> ctx:lbuffer (uint_t a_t SEC) ctx_len -> a:lbuffer (uint_t a_t SEC) len -> bLen:size_t -> bBits:size_t{(v bBits - 1) / bits a_t < v bLen} -> b:lbuffer (uint_t a_t SEC) bLen -> res:lbuffer (uint_t a_t SEC) len -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ live h ctx /\ disjoint a res /\ disjoint b res /\ disjoint a b /\ disjoint ctx a /\ disjoint ctx res /\ BD.bn_v h b < pow2 (v bBits) /\ k.to.linv_ctx (as_seq h ctx) /\ k.to.linv (as_seq h a)) (ensures fun h0 _ h1 -> modifies (loc a |+| loc res) h0 h1 /\ k.to.linv (as_seq h1 res) /\ k.to.refl (as_seq h1 res) == S.exp_mont_ladder_swap #k.to.a_spec k.to.comm_monoid (k.to.refl (as_seq h0 a)) (v bBits) (BD.bn_v h0 b)) // This function computes `a^(2^b)` and writes the result in `res` inline_for_extraction noextract val lexp_pow2: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> ctx:lbuffer (uint_t a_t SEC) ctx_len -> a:lbuffer (uint_t a_t SEC) len -> b:size_t -> res:lbuffer (uint_t a_t SEC) len -> Stack unit (requires fun h -> live h res /\ live h ctx /\ live h a /\ disjoint res ctx /\ disjoint a ctx /\ disjoint a res /\ k.to.linv (as_seq h a) /\ k.to.linv_ctx (as_seq h ctx)) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ k.to.linv (as_seq h1 res) /\ k.to.refl (as_seq h1 res) == S.exp_pow2 k.to.comm_monoid (k.to.refl (as_seq h0 a)) (v b)) // This function computes `a^(2^b)` and writes the result in `a` inline_for_extraction noextract val lexp_pow2_in_place: #a_t:inttype_a -> len:size_t{v len > 0} -> ctx_len:size_t -> k:concrete_ops a_t len ctx_len -> ctx:lbuffer (uint_t a_t SEC) ctx_len -> a:lbuffer (uint_t a_t SEC) len -> b:size_t -> Stack unit (requires fun h -> live h a /\ live h ctx /\ disjoint a ctx /\ k.to.linv (as_seq h a) /\ k.to.linv_ctx (as_seq h ctx)) (ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\ k.to.linv (as_seq h1 a) /\ k.to.refl (as_seq h1 a) == S.exp_pow2 k.to.comm_monoid (k.to.refl (as_seq h0 a)) (v b)) // Fixed-window method using a precomputed table //---------------------------------------------- inline_for_extraction noextract let size_window_t (a_t:inttype_a) (len:size_t{v len > 0}) = l:size_t{0 < v l /\ v l < bits a_t /\ v l < 32 /\ pow2 (v l) * v len <= max_size_t} inline_for_extraction noextract let table_len_t (len:size_t{v len > 0}) = table_len:size_t{v table_len * v len <= max_size_t} inline_for_extraction noextract
false
false
Hacl.Impl.Exponentiation.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val table_inv_t : a_t: Hacl.Impl.Exponentiation.Definitions.inttype_a -> len: Lib.IntTypes.size_t{Lib.IntTypes.v len > 0} -> table_len: Hacl.Impl.Exponentiation.table_len_t len -> Type
[]
Hacl.Impl.Exponentiation.table_inv_t
{ "file_name": "code/bignum/Hacl.Impl.Exponentiation.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a_t: Hacl.Impl.Exponentiation.Definitions.inttype_a -> len: Lib.IntTypes.size_t{Lib.IntTypes.v len > 0} -> table_len: Hacl.Impl.Exponentiation.table_len_t len -> Type
{ "end_col": 74, "end_line": 129, "start_col": 2, "start_line": 128 }