protein_name
stringlengths
7
11
species
stringclasses
238 values
sequence
stringlengths
2
34.4k
annotation
stringlengths
6
11.5k
AMPE_HUMAN
Homo sapiens
MNFAEREGSKRYCIQTKHVAILCAVVVGVGLIVGLAVGLTRSCDSSGDGGPGTAPAPSHLPSSTASPSGPPAQDQDICPASEDESGQWKNFRLPDFVNPVHYDLHVKPLLEEDTYTGTVSISINLSAPTRYLWLHLRETRITRLPELKRPSGDQVQVRRCFEYKKQEYVVVEAEEELTPSSGDGLYLLTMEFAGWLNGSLVGFYRTTYTENGQVKSIVATDHEPTDARKSFPCFDEPNKKATYTISITHPKEYGALSNMPVAKEESVDDKWTRTTFEKSVPMSTYLVCFAVHQFDSVKRISNSGKPLTIYVQPEQKHTAEYAANITKSVFDYFEEYFAMNYSLPKLDKIAIPDFGTGAMENWGLITYRETNLLYDPKESASSNQQRVATVVAHELVHQWFGNIVTMDWWEDLWLNEGFASFFEFLGVNHAETDWQMRDQMLLEDVLPVQEDDSLMSSHPIIVTVTTPDEITSVFDGISYSKGSSILRMLEDWIKPENFQKGCQMYLEKYQFKNAKTSDFWAALEEASRLPVKEVMDTWTRQMGYPVLNVNGVKNITQKRFLLDPRANPSQPPSDLGYTWNIPVKWTEDNITSSVLFNRSEKEGITLNSSNPSGNAFLKINPDHIGFYRVNYEVATWDSIATALSLNHKTFSSADRASLIDDAFALARAQLLDYKVALNLTKYLKREENFLPWQRVISAVTYIISMFEDDKELYPMIEEYFQGQVKPIADSLGWNDAGDHVTKLLRSSVLGFACKMGDREALNNASSLFEQWLNGTVSLPVNLRLLVYRYGMQNSGNEISWNYTLEQYQKTSLAQEKEKLLYGLASVKNVTLLSRYLDLLKDTNLIKTQDVFTVIRYISYNSYGKNMAWNWIQLNWDYLVNRYTLNNRNLGRIVTIAEPFNTELQLWQMESFFAKYPQAGAGEKPREQVLETVKNNIEWLKQHRNTIREWFFNLLESG
Regulates central hypertension through its calcium-modulated preference to cleave N-terminal acidic residues from peptides such as angiotensin II. Subcellular locations: Cell membrane Expressed in choriocarcinoma cancer cell lines (at protein level) . Expressed by epithelial cells of the proximal tubule cells and the glomerulus of the nephron. Also found in a variety of other tissues.
AMRA1_HUMAN
Homo sapiens
MKVVPEKNAVRILWGRERGARAMGAQRLLQELVEDKTRWMKWEGKRVELPDSPRSTFLLAFSPDRTLLASTHVNHNIYITEVKTGKCVHSLIGHRRTPWCVTFHPTISGLIASGCLDGEVRIWDLHGGSESWFTDSNNAIASLAFHPTAQLLLIATANEIHFWDWSRREPFAVVKTASEMERVRLVRFDPLGHYLLTAIVNPSNQQGDDEPEIPIDGTELSHYRQRALLQSQPVRRTPLLHNFLHMLSSRSSGIQVGEQSTVQDSATPSPPPPPPQPSTERPRTSAYIRLRQRVSYPTAECCQHLGILCLCSRCSGTRVPSLLPHQDSVPPASARATTPSFSFVQTEPFHPPEQASSTQQDQGLLNRPSAFSTVQSSTAGNTLRNLSLGPTRRSLGGPLSSHPSRYHREIAPGLTGSEWTRTVLSLNSRSEAESMPPPRTSASSVSLLSVLRQQEGGSQASVYTSATEGRGFPASGLATESDGGNGSSQNNSGSIRHELQCDLRRFFLEYDRLQELDQSLSGEAPQTQQAQEMLNNNIESERPGPSHQPTPHSSENNSNLSRGHLNRCRACHNLLTFNNDTLRWERTTPNYSSGEASSSWQVPSSFESVPSSGSQLPPLERTEGQTPSSSRLELSSSASPQEERTVGVAFNQETGHWERIYTQSSRSGTVSQEALHQDMPEESSEEDSLRRRLLESSLISLSRYDGAGSREHPIYPDPARLSPAAYYAQRMIQYLSRRDSIRQRSMRYQQNRLRSSTSSSSSDNQGPSVEGTDLEFEDFEDNGDRSRHRAPRNARMSAPSLGRFVPRRFLLPEYLPYAGIFHERGQPGLATHSSVNRVLAGAVIGDGQSAVASNIANTTYRLQWWDFTKFDLPEISNASVNVLVQNCKIYNDASCDISADGQLLAAFIPSSQRGFPDEGILAVYSLAPHNLGEMLYTKRFGPNAISVSLSPMGRYVMVGLASRRILLHPSTEHMVAQVFRLQQAHGGETSMRRVFNVLYPMPADQRRHVSINSARWLPEPGLGLAYGTNKGDLVICRPEALNSGVEYYWDQLNETVFTVHSNSRSSERPGTSRATWRTDRDMGLMNAIGLQPRNPATSVTSQGTQTLALQLQNAETQTEREVPEPGTAASGPGEGEGSEYGASGEDALSRIQRLMAEGGMTAVVQREQSTTMASMGGFGNNIIVSHRIHRSSQTGTEPGAAHTSSPQPSTSRGLLPEAGQLAERGLSPRTASWDQPGTPGREPTQPTLPSSSPVPIPVSLPSAEGPTLHCELTNNNHLLDGGSSRGDAAGPRGEPRNR
Substrate-recognition component of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex involved in cell cycle control and autophagy ( ). The DCX(AMBRA1) complex specifically mediates the polyubiquitination of target proteins such as BECN1, CCND1, CCND2, CCND3, ELOC and ULK1 ( , ). Acts as an upstream master regulator of the transition from G1 to S cell phase: AMBRA1 specifically recognizes and binds phosphorylated cyclin-D (CCND1, CCND2 and CCND3), leading to cyclin-D ubiquitination by the DCX(AMBRA1) complex and subsequent degradation ( ). By controlling the transition from G1 to S phase and cyclin-D degradation, AMBRA1 acts as a tumor suppressor that promotes genomic integrity during DNA replication and counteracts developmental abnormalities and tumor growth ( ). AMBRA1 also regulates the cell cycle by promoting MYC dephosphorylation and degradation independently of the DCX(AMBRA1) complex: acts via interaction with the catalytic subunit of protein phosphatase 2A (PPP2CA), which enhances interaction between PPP2CA and MYC, leading to MYC dephosphorylation and degradation (, ). Acts as a regulator of Cul5-RING (CRL5) E3 ubiquitin-protein ligase complexes by mediating ubiquitination and degradation of Elongin-C (ELOC) component of CRL5 complexes (, ). Acts as a key regulator of autophagy by modulating the BECN1-PIK3C3 complex: controls protein turnover during neuronal development, and regulates normal cell survival and proliferation . In normal conditions, AMBRA1 is tethered to the cytoskeleton via interaction with dyneins DYNLL1 and DYNLL2 . Upon autophagy induction, AMBRA1 is released from the cytoskeletal docking site to induce autophagosome nucleation by mediating ubiquitination of proteins involved in autophagy . The DCX(AMBRA1) complex mediates 'Lys-63'-linked ubiquitination of BECN1, increasing the association between BECN1 and PIK3C3 to promote PIK3C3 activity (By similarity). In collaboration with TRAF6, AMBRA1 mediates 'Lys-63'-linked ubiquitination of ULK1 following autophagy induction, promoting ULK1 stability and kinase activity . Also activates ULK1 via interaction with TRIM32: TRIM32 stimulates ULK1 through unanchored 'Lys-63'-linked polyubiquitin chains . Also acts as an activator of mitophagy via interaction with PRKN and LC3 proteins (MAP1LC3A, MAP1LC3B or MAP1LC3C); possibly by bringing damaged mitochondria onto autophagosomes (, ). Also activates mitophagy by acting as a cofactor for HUWE1; acts by promoting HUWE1-mediated ubiquitination of MFN2 . AMBRA1 is also involved in regulatory T-cells (Treg) differentiation by promoting FOXO3 dephosphorylation independently of the DCX(AMBRA1) complex: acts via interaction with PPP2CA, which enhances interaction between PPP2CA and FOXO3, leading to FOXO3 dephosphorylation and stabilization . May act as a regulator of intracellular trafficking, regulating the localization of active PTK2/FAK and SRC (By similarity). Also involved in transcription regulation by acting as a scaffold for protein complexes at chromatin (By similarity). Subcellular locations: Endoplasmic reticulum, Cytoplasm, Cytoskeleton, Cytoplasmic vesicle, Autophagosome, Mitochondrion, Cytoplasm, Cytosol, Nucleus, Cell junction, Focal adhesion Localizes to the cytoskeleton in absence of autophagy induction . Upon autophagy induction, AMBRA1 relocalizes to the endoplasmic reticulum to enable autophagosome nucleation . Partially localizes at mitochondria in normal conditions . Localizes also to discrete punctae along the ciliary axoneme (By similarity).
AMRP_HUMAN
Homo sapiens
MAPRRVRSFLRGLPALLLLLLFLGPWPAASHGGKYSREKNQPKPSPKRESGEEFRMEKLNQLWEKAQRLHLPPVRLAELHADLKIQERDELAWKKLKLDGLDEDGEKEARLIRNLNVILAKYGLDGKKDARQVTSNSLSGTQEDGLDDPRLEKLWHKAKTSGKFSGEELDKLWREFLHHKEKVHEYNVLLETLSRTEEIHENVISPSDLSDIKGSVLHSRHTELKEKLRSINQGLDRLRRVSHQGYSTEAEFEEPRVIDLWDLAQSANLTDKELEAFREELKHFEAKIEKHNHYQKQLEIAHEKLRHAESVGDGERVSRSREKHALLEGRTKELGYTVKKHLQDLSGRISRARHNEL
Molecular chaperone for LDL receptor-related proteins that may regulate their ligand binding activity along the secretory pathway. Subcellular locations: Rough endoplasmic reticulum lumen, Endoplasmic reticulum-Golgi intermediate compartment lumen, Golgi apparatus, Cis-Golgi network, Golgi apparatus lumen, Endosome lumen, Cell surface May be associated with receptors at the cell surface.
ANC2_HUMAN
Homo sapiens
MAAAVVVAEGDSDSRPGQELLVAWNTVSTGLVPPAALGLVSSRTSGAVPPKEEELRAAVEVLRGHGLHSVLEEWFVEVLQNDLQANISPEFWNAISQCENSADEPQCLLLLLDAFGLLESRLDPYLRSLELLEKWTRLGLLMGTGAQGLREEVHTMLRGVLFFSTPRTFQEMIQRLYGCFLRVYMQSKRKGEGGTDPELEGELDSRYARRRYYRLLQSPLCAGCSSDKQQCWCRQALEQFHQLSQVLHRLSLLERVSAEAVTTTLHQVTRERMEDRCRGEYERSFLREFHKWIERVVGWLGKVFLQDGPARPASPEAGNTLRRWRCHVQRFFYRIYASLRIEELFSIVRDFPDSRPAIEDLKYCLERTDQRQQLLVSLKAALETRLLHPGVNTCDIITLYISAIKALRVLDPSMVILEVACEPIRRYLRTREDTVRQIVAGLTGDSDGTGDLAVELSKTDPASLETGQDSEDDSGEPEDWVPDPVDADPGKSSSKRRSSDIISLLVSIYGSKDLFINEYRSLLADRLLHQFSFSPEREIRNVELLKLRFGEAPMHFCEVMLKDMADSRRINANIREEDEKRPAEEQPPFGVYAVILSSEFWPPFKDEKLEVPEDIRAALEAYCKKYEQLKAMRTLSWKHTLGLVTMDVELADRTLSVAVTPVQAVILLYFQDQASWTLEELSKAVKMPVALLRRRMSVWLQQGVLREEPPGTFSVIEEERPQDRDNMVLIDSDDESDSGMASQADQKEEELLLFWTYIQAMLTNLESLSLDRIYNMLRMFVVTGPALAEIDLQELQGYLQKKVRDQQLVYSAGVYRLPKNCS
Together with the RING-H2 protein ANAPC11, constitutes the catalytic component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle. The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains. The CDC20-APC/C complex positively regulates the formation of synaptic vesicle clustering at active zone to the presynaptic membrane in postmitotic neurons. CDC20-APC/C-induced degradation of NEUROD2 drives presynaptic differentiation.
ANCHR_HUMAN
Homo sapiens
MNYDSQQPPLPPLPYAGCRRASGFPALGRGGTVPVGVWGGAGQGREGRSWGEGPRGPGLGRRDLSSADPAVLGATMESRCYGCAVKFTLFKKEYGCKNCGRAFCSGCLSFSAAVPRTGNTQQKVCKQCHEVLTRGSSANASKWSPPQNYKKRVAALEAKQKPSTSQSQGLTRQDQMIAERLARLRQENKPKLVPSQAEIEARLAALKDERQGSIPSTQEMEARLAALQGRVLPSQTPQPAHHTPDTRTQAQQTQDLLTQLAAEVAIDESWKGGGPAASLQNDLNQGGPGSTNSKRQANWSLEEEKSRLLAEAALELREENTRQERILALAKRLAMLRGQDPERVTLQDYRLPDSDDDEDEETAIQRVLQQLTEEASLDEASGFNIPAEQASRPWTQPRGAEPEAQDVDPRPEAEEEELPWCCICNEDATLRCAGCDGDLFCARCFREGHDAFELKEHQTSAYSPPRAGQEH
Key regulator of abscission step in cytokinesis: part of the cytokinesis checkpoint, a process required to delay abscission to prevent both premature resolution of intercellular chromosome bridges and accumulation of DNA damage. Together with CHMP4C, required to retain abscission-competent VPS4 (VPS4A and/or VPS4B) at the midbody ring until abscission checkpoint signaling is terminated at late cytokinesis. Deactivation of AURKB results in dephosphorylation of CHMP4C followed by its dissociation from ZFYVE19/ANCHR and VPS4 and subsequent abscission. Subcellular locations: Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Cleavage furrow, Midbody, Midbody ring Localizes mainly on centrosomes in interphase and early mitosis. Localizes at the cleavage furrow and midbody ring in late mitosis and cytokinesis. Detected in brain, heart, skeletal muscle and kidney . Expressed in the liver (at protein level) (, ).
AND1A_MACFA
Macaca fascicularis
RGCGTAGCRRTWRGRPTAVGRVALHWAAGAGHEQAVRLLLEHEAAVDEEDAFGMNALLLSAWFGHLRILQILVNSGAKIHCKSKDGLTLLHCAAQKGHVPVLAFIMEDLEDVALDHVDKLGRTAFHRAAEHGQLDALDFLVGSGCDHSVKDKEGNTALHLAAGRGHMAVLQRLVDIGLDLEEQNAEGLTALHAAAGGTHPHCVRLLLRAGSTVNALTQKNLSCLHYAALSGSEDVSRVLIHAGGCTNVADHGASPLHLAVMHNFPALVQLLINSDSDLNAMDNRQQTPLHLAAEHAWQDIAEMLLIAGVDLNLRDKQGKTALAVAARSNHVSLVDMIIKADRFYKWEKDHLSCRDLSDPSGKSLSFKQDHRQETQQLRSVLWRLASRHLQPREWKKLAYSWDFTEAHVYAIEQQWTGTRSYQEHGHRMLLIWLHGVSTAGENPSKALFEGLVTIGRRDLAELAVASVGAYI
null
ANKR2_HUMAN
Homo sapiens
MAKAPSWAGVGALAYKAPEALWPAEAVMDGTMEDSEAVQRATALIEQRLAQEEENEKLRGDARQKLPMDLLVLEDEKHHGAQSAALQKVKGQERVRKTSLDLRREIIDVGGIQNLIELRKKRKQKKRDALAASHEPPPEPEEITGPVDEETFLKAAVEGKMKVIEKFLADGGSADTCDQFRRTALHRASLEGHMEILEKLLDNGATVDFQDRLDCTAMHWACRGGHLEVVKLLQSHGADTNVRDKLLSTPLHVAVRTGQVEIVEHFLSLGLEINARDREGDTALHDAVRLNRYKIIKLLLLHGADMMTKNLAGKTPTDLVQLWQADTRHALEHPEPGAEHNGLEGPNDSGRETPQPVPAQ
Functions as a negative regulator of myocyte differentiation. May interact with both sarcoplasmic structural proteins and nuclear proteins to regulate gene expression during muscle development and in response to muscle stress. Subcellular locations: Cytoplasm, Myofibril, Sarcomere, I band, Cytoplasm, Cytosol, Nucleus, Nucleus, PML body In the sarcoplasm of differentiated striated muscle cells, where it is cytosolic and enriched in the I band. In nucleus and PML bodies of proliferating and undifferentiated myoblasts. Associates with the euchromatin in the nucleus of myocytes upon muscle stress. Mostly expressed in skeletal and cardiac muscles. Found in slow fibers. Also expressed in kidney, but to a lower extent (at protein level).
ANKR6_HUMAN
Homo sapiens
MSQQDAVAALSERLLVAAYKGQTENVVQLINKGARVAVTKHGRTPLHLAANKGHLPVVQILLKAGCDLDVQDDGDQTALHRATVVGNTEIIAALIHEGCALDRQDKDGNTALHEASWHGFSQSAKLLIKAGANVLAKNKAGNTALHLACQNSHSQSTRVLLLAGSRADLKNNAGDTCLHVAARYNHLSIIRLLLTAFCSVHEKNQAGDTALHVAAALNHKKVAKILLEAGADTTIVNNAGQTPLETARYHNNPEVALLLTKAPQVLRFSRGRSLRKKRERLKEERRAQSVPRDEVAQSKGSVSAGDTPSSEQAVARKEEAREEFLSASPEPRAKDDRRRKSRPKVSAFSDPTPPADQQPGHQKNLHAHNHPKKRNRHRCSSPPPPHEFRAYQLYTLYRGKDGKVMQAPINGCRCEPLINKLENQLEATVEEIKAELGSVQDKMNTKLGQMENKTQHQMRVLDKLMVERLSAERTECLNRLQQHSDTEKHEGEKRQISLVDELKTWCMLKIQNLEQKLSGDSRACRAKSTPSTCESSTGVDQLVVTAGPAAASDSSPPVVRPKEKALNSTATQRLQQELSSSDCTGSRLRNVKVQTALLPMNEAARSDQQAGPCVNRGTQTKKSGKSGPTRHRAQQPAASSTCGQPPPATGSEQTGPHIRDTSQALELTQYFFEAVSTQMEKWYERKIEEARSQANQKAQQDKATLKEHIKSLEEELAKLRTRVQKEN
Recruits CKI-epsilon to the beta-catenin degradation complex that consists of AXN1 or AXN2 and GSK3-beta and allows efficient phosphorylation of beta-catenin, thereby inhibiting beta-catenin/Tcf signals.
ANKR7_HUMAN
Homo sapiens
MNKLFSFWKRKNETRSQGYNLREKDLKKLHRAASVGDLKKLKEYLQIKKYDVNMQDKKYRTPLHLACANGHTDVVLFLIEQQCKINVRDSENKSPLIKAVQCQNEDCATILLNFGADPDLRDIRYNTVLHYAVCGQSLSLVEKLLEYEADLEAKNKDGYTPLLVAVINNNPKMVKFLLEKGADVNASDNYQRTALILAVSGEPPCLVKLLLQQGVELCYEGIVDSQLRNMFISMVLLHRYPQFTASHGKKKHAK
Testis specific.
ANKR7_MACFA
Macaca fascicularis
MNKLFSFWKRKNETRSRTSSDPSIGQGYKLREKDLKKLHRAASVGDLKKLKEYLQLKKYDVNMQDKKYRTPLHLACANGHRDVVLFLIEQQCKINIRDSENKSPLIKAVQCQNEDCATILLNCGADPNLRDVRYNTALHYAVCGQSFSLVEQLLDYEADLEAKNKDGYTPLLVAVINNNPKMVKFLLEKGADVNASDNYQRTALILAVSGEPTRLVKLLLQQGVELSCRDICGFTAEEYAYFNGFTVYPQFTASHGRKKHVK
null
ANKR9_HUMAN
Homo sapiens
MPWDARRPGGGADGGPEASGAARSRAQKQCRKSSFAFYQAVRDLLPVWLLEDMRASEAFHWDERGRAAAYSPSEALLYALVHDHQAYAHYLLATFPRRALAPPSAGFRCCAAPGPHVALAVRYNRVGILRRILRTLRDFPAEERARVLDRRGCSRVEGGGTSLHVACELARPECLFLLLGHGASPGLRDGGGLTPLELLLRQLGRDAGATPSAAGAPASAPGEPRQRRLLLLDLLALYTPVGAAGSARQELLGDRPRWQRLLGEDKFQWLAGLAPPSLFARAMQVLVTAISPGRFPEALDELPLPPFLQPLDLTGKG
Substrate receptor subunit of a cullin-RING superfamily E3 ligase complex (CUL5-based E3 ubiquitin ligase complex) which mediates the ubiquitination and subsequent proteasomal degradation of target proteins . Depending of the metabolic state of the cell, promotes the proteasomal degradation of IMPDH2, the rate-limiting enzyme in GTP biosynthesis or protects IMPDH2 by stabilizing IMPDH2 filaments assembly (, ). Implicated in different cellular processes, like copper homeostasis and cell proliferation (, ). Subcellular locations: Cytoplasmic vesicle, Cytoplasm, Cytosol Detected in long filamentous cytosolic structures where it colocalizes with IMPDH2 . Under basal conditions ANKRD9 is mainly in vesicle-like structures, upon nutrient limitation (guanine nucleotides deficiency) ANKRD9 loses its vesicular pattern and assembles with IMPDH2 into rodlike filaments .
ANKS3_HUMAN
Homo sapiens
MSELSDEASEPELLNRSLSMWHGLGTQVSGEELDVPLDLHTAASIGQYEVVKECVQRRELDLNKKNGGGWTPLMYASYIGHDTIVHLLLEAGVSVNVPTPEGQTPLMLASSCGNESIAYFLLQQGAELEMKDIQGWTALFHCTSAGHQHMVRFLLDSGANANVREPICGFTPLMEAAAAGHEIIVQYFLNHGVKVDARDHSGATARMLAKQYGHMKIVALMDTYSPSLPKSLYRSPEKYEDLSSSDESCPAPQRQRPCRKKGVSIHEGPRALARITGIGLGGRAPRPRYEQAPPRGYVTFNSSGENPLEEEGLCCRDVTSPINERDVESSSSSSSREEHAFCANLGPVQSSSSSEGLARAQGLSSEASVESNEDSDHACKSSARKQAKSYMKTKNPDSQWPPRAATDREGFLAESSPQTQRAPYSGPQDLAALLEQIGCLKYLQVFEEQDVDLRIFLTLTESDLKEIGITLFGPKRKMTSAIARWHSSARPPGDALELAYADRLEAEMQELAIQLHKRCEEVEATRGQVCQEQELRAVVESCLLEQDRAREDLQARLRETWALARDAALVLDQLRACQAELSSRVRQDQPPGAATLGLAVPPADSKGWQASLQAMSLPELSGALEDRVREMGQALCLVTQSLEKLQVLNGKKWRET
May be involved in vasopressin signaling in the kidney. Subcellular locations: Cell projection, Cilium, Cytoplasm
ANKS6_HUMAN
Homo sapiens
MGEGGLPPAFQLLLRACDQGDTETARRLLEPGAAEPAERGAEPEAGAEPAGAEVAGPGAAAAGAVGAPVPVDCSDEAGNTALQFAAAGGHEPLVRFLLRRGASVNSRNHYGWSALMQAARFGHVSVAHLLLDHGADVNAQNRLGASVLTVASRGGHLGVVKLLLEAGAFVDHHHPSGEQLGLGGSRDEPLDITALMAAIQHGHEAVVRLLMEWGADPNHAARTVGWSPLMLAALTGRLGVAQQLVEKGANPDHLSVLEKTAFEVALDCKHRDLVDYLDPLTTVRPKTDEEKRRPDIFHALKMGNFQLVKEIADEDPSHVNLVNGDGATPLMLAAVTGQLALVQLLVERHADVDKQDSVHGWTALMQATYHGNKEIVKYLLNQGADVTLRAKNGYTAFDLVMLLNDPDTELVRLLASVCMQVNKDKGRPSHQPPLPHSKVRQPWSIPVLPDDKGGLKSWWNRMSNRFRKLKLMQTLPRGLSSNQPLPFSDEPEPALDSTMRAAPQDKTSRSALPDAAPVTKDNGPGSTRGEKEDTLLTTMLRNGAPLTRLPSDKLKAVIPPFLPPSSFELWSSDRSRTRHNGKADPMKTALPQRASRGHPVGGGGTDTTPVRPVKFPSLPRSPASSANSGNFNHSPHSSGGSSGVGVSRHGGELLNRSGGSIDNVLSQIAAQRKKAAGLLEQKPSHRSSPVGPAPGSSPSELPASPAGGSAPVGKKLETSKRPPSGTSTTSKSTSPTLTPSPSPKGHTAESSVSSSSSHRQSKSSGGSSSGTITDEDELTGILKKLSLEKYQPIFEEQEVDMEAFLTLTDGDLKELGIKTDGSRQQILAAISELNAGKGRERQILQETIHNFHSSFESSASNTRAPGNSPCA
Required for renal function. Subcellular locations: Cell projection, Cilium, Cytoplasm Localizes to the proximal region of the primary cilium in the presence of INVS.
ANR17_HUMAN
Homo sapiens
MEKATVPVAAATAAEGEGSPPAVAAVAGPPAAAEVGGGVGGSSRARSASSPRGMVRVCDLLLKKKPPQQQHHKAKRNRTCRPPSSSESSSDSDNSGGGGGGGGGGGGGGGTSSNNSEEEEDDDDEEEEVSEVESFILDQDDLENPMLETASKLLLSGTADGADLRTVDPETQARLEALLEAAGIGKLSTADGKAFADPEVLRRLTSSVSCALDEAAAALTRMRAESTANAGQSDNRSLAEACSEGDVNAVRKLLIEGRSVNEHTEEGESLLCLACSAGYYELAQVLLAMHANVEDRGIKGDITPLMAAANGGHVKIVKLLLAHKADVNAQSSTGNTALTYACAGGYVDVVKVLLESGASIEDHNENGHTPLMEAGSAGHVEVARLLLENGAGINTHSNEFKESALTLACYKGHLEMVRFLLEAGADQEHKTDEMHTALMEACMDGHVEVARLLLDSGAQVNMPADSFESPLTLAACGGHVELAALLIERGASLEEVNDEGYTPLMEAAREGHEEMVALLLGQGANINAQTEETQETALTLACCGGFLEVADFLIKAGADIELGCSTPLMEAAQEGHLELVKYLLAAGANVHATTATGDTALTYACENGHTDVADVLLQAGADLEHESEGGRTPLMKAARAGHVCTVQFLISKGANVNRTTANNDHTVLSLACAGGHLAVVELLLAHGADPTHRLKDGSTMLIEAAKGGHTSVVCYLLDYPNNLLSAPPPDVTQLTPPSHDLNRAPRVPVQALPMVVPPQEPDKPPANVATTLPIRNKAASKQKSSSHLPANSQDVQGYITNQSPESIVEEAQGKLTELEQRIKEAIEKNAQLQSLELAHADQLTKEKIEELNKTREEQIQKKQKILEELQKVERELQLKTQQQLKKQYLEVKAQRIQLQQQQQQSCQHLGLLTPVGVGEQLSEGDYARLQQVDPVLLKDEPQQTAAQMGFAPIQPLAMPQALPLAAGPLPPGSIANLTELQGVIVGQPVLGQAQLAGLGQGILTETQQGLMVASPAQTLNDTLDDIMAAVSGRASAMSNTPTHSIAASISQPQTPTPSPIISPSAMLPIYPAIDIDAQTESNHDTALTLACAGGHEELVQTLLERGASIEHRDKKGFTPLILAATAGHVGVVEILLDNGADIEAQSERTKDTPLSLACSGGRQEVVELLLARGANKEHRNVSDYTPLSLAASGGYVNIIKILLNAGAEINSRTGSKLGISPLMLAAMNGHTAAVKLLLDMGSDINAQIETNRNTALTLACFQGRTEVVSLLLDRKANVEHRAKTGLTPLMEAASGGYAEVGRVLLDKGADVNAPPVPSSRDTALTIAADKGHYKFCELLIGRGAHIDVRNKKGNTPLWLAANGGHLDVVQLLVQAGADVDAADNRKITPLMAAFRKGHVKVVRYLVKEVNQFPSDSECMRYIATITDKEMLKKCHLCMESIVQAKDRQAAEANKNASILLEELDLEKLREESRRLALAAKREKRKEKRRKKKEEQRRKLEEIEAKNKENFELQAAQEKEKLKVEDEPEVLTEPPSATTTTTIGISATWTTLAGSHGKRNNTITTTSSKRKNRKNKITPENVQIIFDDPLPISYSQPEKVNGESKSSSTSESGDSDNMRISSCSDESSNSNSSRKSDNHSPAVVTTTVSSKKQPSVLVTFPKEERKSVSGKASIKLSETISEGTSNSLSTCTKSGPSPLSSPNGKLTVASPKRGQKREEGWKEVVRRSKKVSVPSTVISRVIGRGGCNINAIREFTGAHIDIDKQKDKTGDRIITIRGGTESTRQATQLINALIKDPDKEIDELIPKNRLKSSSANSKIGSSAPTTTAANTSLMGIKMTTVALSSTSQTATALTVPAISSASTHKTIKNPVNNVRPGFPVSLPLAYPPPQFAHALLAAQTFQQIRPPRLPMTHFGGTFPPAQSTWGPFPVRPLSPARATNSPKPHMVPRHSNQNSSGSQVNSAGSLTSSPTTTTSSSASTVPGTSTNGSPSSPSVRRQLFVTVVKTSNATTTTVTTTASNNNTAPTNATYPMPTAKEHYPVSSPSSPSPPAQPGGVSRNSPLDCGSASPNKVASSSEQEAGSPPVVETTNTRPPNSSSSSGSSSAHSNQQQPPGSVSQEPRPPLQQSQVPPPEVRMTVPPLATSSAPVAVPSTAPVTYPMPQTPMGCPQPTPKMETPAIRPPPHGTTAPHKNSASVQNSSVAVLSVNHIKRPHSVPSSVQLPSTLSTQSACQNSVHPANKPIAPNFSAPLPFGPFSTLFENSPTSAHAFWGGSVVSSQSTPESMLSGKSSYLPNSDPLHQSDTSKAPGFRPPLQRPAPSPSGIVNMDSPYGSVTPSSTHLGNFASNISGGQMYGPGAPLGGAPAAANFNRQHFSPLSLLTPCSSASNDSSAQSVSSGVRAPSPAPSSVPLGSEKPSNVSQDRKVPVPIGTERSARIRQTGTSAPSVIGSNLSTSVGHSGIWSFEGIGGNQDKVDWCNPGMGNPMIHRPMSDPGVFSQHQAMERDSTGIVTPSGTFHQHVPAGYMDFPKVGGMPFSVYGNAMIPPVAPIPDGAGGPIFNGPHAADPSWNSLIKMVSSSTENNGPQTVWTGPWAPHMNSVHMNQLG
Could play pivotal roles in cell cycle and DNA regulation . Involved in innate immune defense against viruse by positively regulating the viral dsRNA receptors DDX58 and IFIH1 signaling pathways . Involves in NOD2- and NOD1-mediated responses to bacteria suggesting a role in innate antibacterial immune pathways too . Target of enterovirus 71 which is the major etiological agent of HFMD (hand, foot and mouth disease) . Could play a central role for the formation and/or maintenance of the blood vessels of the circulation system (By similarity). Subcellular locations: Cytoplasm, Nucleus Detected around the nucleolus. Localized on chromatin in a cell cycle-dependent manner. Ubiquitously expressed.
ANR19_HUMAN
Homo sapiens
MRKLFSFGRRLGQALLDSMDQEYAGRGYHIRDWELRKIHRAAIKGDAAEVEHCLTRRFRDLDARDRKDRTVLHLTCAHGRVEVVTLLLSRRCQINIYDRLNRTPLMKAVHCQEEACAIILLEHGANPNIKDIYSNTALHYAVYNKGTSLAEKLLSHHANIEALNEEGNTPLLFAINSRRQQIVEFLLKNQANLHAIDNFRRTALMLAVQHNSSSIVSLLLQQNINIFSQDLFGQTAEDYAVCYNFRSIQQQILEHKNKILKSHL
null
ANR22_HUMAN
Homo sapiens
MGILYSEPICQAAYQNDFGQVWRWVKEDSSYANVQDGFNGDTPLICACRRGHVRIVSFLLRRNANVNLKNQKERTCLHYAVKKKFTFIDYLLIILLMPVLLIGYFLMVSKTKQNEALVRMLLDAGVEVNATDCYGCTALHYACEMKNQSLIPLLLEARADPTIKNKHGESSLDIARRLKFSQIELMLRKAL
null
ANR23_HUMAN
Homo sapiens
MDFISIQQLVSGERVEGKVLGFGHGVPDPGAWPSDWRRGPQEAVAREKLKLEEEKKKKLERFNSTRFNLDNLADLENLVQRRKKRLRHRVPPRKPEPLVKPQSQAQVEPVGLEMFLKAAAENQEYLIDKYLTDGGDPNAHDKLHRTALHWACLKGHSQLVNKLLVAGATVDARDLLDRTPVFWACRGGHLVILKQLLNQGARVNARDKIGSTPLHVAVRTRHPDCLEHLIECGAHLNAQDKEGDTALHEAVRHGSYKAMKLLLLYGAELGVRNAASVTPVQLARDWQRGIREALQAHVAHPRTRC
May be involved in the energy metabolism. Could be a molecular link between myofibrillar stretch-induced signaling pathways and muscle gene expression. Subcellular locations: Nucleus Sarcomeric I-band and some intercalated disks. Mainly expressed in heart, skeletal muscle and brown adipose tissues.
ANR24_HUMAN
Homo sapiens
MKTLRARFKKTELRLSPTDLGSCPPCGPCPIPKPAARGRRQSQDWGKSDERLLQAVENNDAPRVAALIARKGLVPTKLDPEGKSAFHLAAMRGAASCLEVMIAHGSNVMSADGAGYNALHLAAKYGHPQCLKQLLQASCVVDVVDSSGWTALHHAAAGGCLSCSEVLCSFKAHLNPQDRSGATPLIIAAQMCHTDLCRLLLQQGAAANDQDLQGRTALMLACEGASPETVEVLLQGGAQPGITDALGQDAAHYGALAGDKLILHLLQEAAQRPSPPSALTEDDSGEASSQNSMSSHGKQGAPKKRKAPPPPASIPMPDDRDAYEEIVRLRQERGRLLQKIRGLEQHKERRQQESPEASSLHILERQVQELQQLLVERQEEKESLGREVESLQSRLSLLENERENTSYDVTTLQDEEGELPDLPGAEVLLSRQLSPSAQEHLASLQEQVAVLTRQNQELMEKVQILENFEKDETQMEVEALAEVIPLALYDSLRAEFDQLRRQHAEALQALRQQETREVPREEGAACGESEVAGATATKNGPTHMELNGSVAPETKVNGAETIDEEAAGDETMEARTMEAEATGAEATGAEATGAKVTETKPTGAEVREMETTEEEANMETKPTGAQATDTETTGVEAMGVEATKTKAEEAEMQAYGVGAGQAEPPVTGTTNMEATGSRATGMESTGVSATGVENPGVEATVPGISAGPILHPGAAEASEKLQVELETRIRGLEEALRQREREAAAELEAALGKCEAAEAEAGRLRERVREAEGSGASGGGGGDTTQLRAALEQAREDLRDRDSRLRELEAASACLDEARASRLLAEEEARGLRAELAQREEARLEQSRELEVLREQLATARATGEQQRTAAAELGRARDAAEARVAELPAACEEARQGLAELREASEALRQSVVPASEHRRLQEEALELRGRAASLEQEVVATGKEAARLRAELERERVCSVALSEHERIVGTLQANVAQLEGQLEELGRRHEKTSAEVFQVQREALFMKSERHAAEAQLATAEQQLRGLRTEAERARQAQSRAQEALDKAKEKDKKITELSKEVFNLKEALKEQPAALATPEVEALRDQVKDLQQQLQEAARDHSSVVALYRSHLLYAIQGQMDEDVQRILSQILQMQRLQAQGR
Componement of the stereocilia rootlet in hair cells of inner ear. Bridges the apical plasma membrane with the lower rootlet and maintains normal distribution of TRIOBP, thereby reinforcing stereocilia insertion points and organizing rootlets for hearing with long-term resilience. Subcellular locations: Cell membrane, Cell projection, Stereocilium Localizes to hair cell stereocilia rootlets. Concentrated to the stereolocilia insertion point.
ANR26_HUMAN
Homo sapiens
MKKIFSKKGESPLGSFARRQRSSAGGGGEPGEGAYSQPGYHVRDRDLGKIHKAASAGNVAKVQQILLLRKNGLNDRDKMNRTALHLACANGHPEVVTLLVDRKCQLNVCDNENRTALMKAVQCQEEKCATILLEHGADPNLADVHGNTALHYAVYNEDISVATKLLLYDANIEAKNKDDLTPLLLAVSGKKQQMVEFLIKKKANVNAVDKLESSHQLISEYKEERIPKHSSQNSNSVDESSEDSLSRLSGKPGVDDSWPTSDDEDLNFDTKNVPKPSLAKLMTASQQSRKNLEATYGTVRTGNRTLFEDRDSDSQDEVVVESLPTTSIKVQCFSHPTYQSPDLLPKPSHKSLANPGLMKEEPTKPGIAKKENGIDIIESAPLEQTNNDNLTYVDEVHKNNRSDMMSALGLGQEEDIESPWDSESISENFPQKYVDPLAGAADGKEKNIGNEQAEDVFYIPSCMSGSRNFKMAKLEDTRNVGMPVAHMESPERYLHLKPTIEMKDSVPNKAGGMKDVQTSKAAEHDLEVASEEEQEREGSENNQPQVEEERKKHRNNEMEVSANIHDGATDDAEDDDDDDGLIQKRKSGETDHQQFPRKENKEYASSGPALQMKEVKSTEKEKRTSKESVNSPVFGKASLLTGGLLQVDDDSSLSEIDEDEGRPTKKTSNEKNKVKNQIQSMDDVDDLTQSSETASEDCELPHSSYKNFMLLIEQLGMECKDSVSLLKIQDAALSCERLLELKKNHCELLTVKIKKMEDKVNVLQRELSETKEIKSQLEHQKVEWERELCSLRFSLNQEEEKRRNADTLYEKIREQLRRKEEQYRKEVEVKQQLELSLQTLEMELRTVKSNLNQVVQERNDAQRQLSREQNARMLQDGILTNHLSKQKEIEMAQKKMNSENSHSHEEEKDLSHKNSMLQEEIAMLRLEIDTIKNQNQEKEKKCFEDLKIVKEKNEDLQKTIKQNEETLTQTISQYNGRLSVLTAENAMLNSKLENEKQSKERLEAEVESYHSRLAAAIHDRDQSETSKRELELAFQRARDECSRLQDKMNFDVSNLKDNNEILSQQLFKTESKLNSLEIEFHHTRDALREKTLGLERVQKDLSQTQCQMKEMEQKYQNEQVKVNKYIGKQESVEERLSQLQSENMLLRQQLDDAHNKADNKEKTVINIQDQFHAIVQKLQAESEKQSLLLEERNKELISECNHLKERQYQYENEKAEREVVVRQLQQELADTLKKQSMSEASLEVTSRYRINLEDETQDLKKKLGQIRNQLQEAQDRHTEAVRCAEKMQDHKQKLEKDNAKLKVTVKKQMDKIEELQKNLLNANLSEDEKEQLKKLMELKQSLECNLDQEMKKNVELEREITGFKNLLKMTRKKLNEYENGEFSFHGDLKTSQFEMDIQINKLKHKIDDLTAELETAGSKCLHLDTKNQILQEELLSMKTVQKKCEKLQKNKKKLEQEVINLRSHIERNMVELGQVKQYKQEIEERARQEIAEKLKEVNLFLQAQAASQENLEQFRENNFASMKSQMELRIKDLESELSKIKTSQEDFNKTELEKYKQLYLEELKVRKSLSSKLTKTNERLAEVNTKLLVEKQQSRSLFTTLTTRPVMEPPCVGNLNNSLDLNRKLIPRENLVISTSNPRASNNSMENYLSKMQQELEKNITRELKEAAAELESGSIASPLGSTDESNLNQDLVWKASREYVQVLKKNYMI
Acts as a regulator of adipogenesis. Involved in the regulation of the feeding behavior.
ANR27_HUMAN
Homo sapiens
MALYDEDLLKNPFYLALQKCRPDLCSKVAQIHGIVLVPCKGSLSSSIQSTCQFESYILIPVEEHFQTLNGKDVFIQGNRIKLGAGFACLLSVPILFEETFYNEKEESFSILCIAHPLEKRESSEEPLAPSDPFSLKTIEDVREFLGRHSERFDRNIASFHRTFRECERKSLRHHIDSANALYTKCLQQLLRDSHLKMLAKQEAQMNLMKQAVEIYVHHEIYNLIFKYVGTMEASEDAAFNKITRSLQDLQQKDIGVKPEFSFNIPRAKRELAQLNKCTSPQQKLVCLRKVVQLITQSPSQRVNLETMCADDLLSVLLYLLVKTEIPNWMANLSYIKNFRFSSLAKDELGYCLTSFEAAIEYIRQGSLSAKPPESEGFGDRLFLKQRMSLLSQMTSSPTDCLFKHIASGNQKEVERLLSQEDHDKDTVQKMCHPLCFCDDCEKLVSGRLNDPSVVTPFSRDDRGHTPLHVAAVCGQASLIDLLVSKGAMVNATDYHGATPLHLACQKGYQSVTLLLLHYKASAEVQDNNGNTPLHLACTYGHEDCVKALVYYDVESCRLDIGNEKGDTPLHIAARWGYQGVIETLLQNGASTEIQNRLKETPLKCALNSKILSVMEAYHLSFERRQKSSEAPVQSPQRSVDSISQESSTSSFSSMSASSRQEETKKDYREVEKLLRAVADGDLEMVRYLLEWTEEDLEDAEDTVSAADPEFCHPLCQCPKCAPAQKRLAKVPASGLGVNVTSQDGSSPLHVAALHGRADLIPLLLKHGANAGARNADQAVPLHLACQQGHFQVVKCLLDSNAKPNKKDLSGNTPLIYACSGGHHELVALLLQHGASINASNNKGNTALHEAVIEKHVFVVELLLLHGASVQVLNKRQRTAVDCAEQNSKIMELLQVVPSCVASLDDVAETDRKEYVTVKIRKKWNSKLYDLPDEPFTRQFYFVHSAGQFKGKTSREIMARDRSVPNLTEGSLHEPGRQSVTLRQNNLPAQSGSHAAEKGNSDWPERPGLTQTGPGHRRMLRRHTVEDAVVSQGPEAAGPLSTPQEVSASRS
May be a guanine exchange factor (GEF) for Rab21, Rab32 and Rab38 and regulate endosome dynamics (, ). May regulate the participation of VAMP7 in membrane fusion events; in vitro inhibits VAMP7-mediated SNARE complex formation by trapping VAMP7 in a closed, fusogenically inactive conformation . Involved in peripheral melanosomal distribution of TYRP1 in melanocytes; the function, which probably is implicating vesicle-trafficking, includes cooperation with Rab32, Rab38 and VAMP7 (By similarity). Involved in the regulation of neurite growth; the function seems to require its GEF activity, probably towards Rab21, and VAMP7 but not Rab32/38 (By similarity). Proposed to be involved in Golgi sorting of VAMP7 and transport of VAMP7 vesicles to the cell surface; the function seems to implicate kinesin heavy chain isoform 5 proteins, GOLGA4, RAB21 and MACF1 . Required for the colocalization of VAMP7 and Rab21, probably on TGN sites . Involved in GLUT1 endosome-to-plasma membrane trafficking; the function is dependent of association with VPS29 . Regulates the proper trafficking of melanogenic enzymes TYR, TYRP1 and DCT/TYRP2 to melanosomes in melanocytes (By similarity). Subcellular locations: Early endosome, Late endosome, Cytoplasmic vesicle membrane, Lysosome, Cell membrane, Melanosome Colocalizes with VAMP7 in transport vesicles in the shaft of hippocampal neurons (By similarity).
ANR27_PONAB
Pongo abelii
MALYDEDLLKNPFYLALQKWRPDLCSKVAQIHGIVLVPCKGSLSSSIQSTCQFESYILIPVEEHFQTLNGKDVFIQGNRIKLGAGFTCLLSVPILFEETFYNEKEESFSILCIAHPLEKRESSEEPLAPSDPFSLKTIEDVREFLGRHSERFDRNIASFHRTFRECERKSLRHHIDSANALYTKCLQQLLRDSHLKMLAKQEAQMNLMKQAVEIYVHHEIYDLIFKYVGTMEASEDAAFNKITRSLQDLQQKDIGVKPEFSFNIPRAKRELAQLNKCTSPQQKLVCLRKVVQLITQSPSQRVNLETMCADDLLSVLLYLLVKTEIPNWMANLSYIKNFRFSSSAKDELGYCLTSFEAAIEYIRQGSLSAKPPESEGFGDRLFLKQRMSLLSQMTSSPTDCLFKHIASGNQKEVERLLSQEDHDKDAVQKMCHPLCFCDDCEKLVSGRLNDPSVVTPFSRDDRGHTPLHVAALCGQASLIDLLVSKGAVVNATDYHGATPLHLACQKGYQSVTLLLLHYKASAEVQDNNGNTPLHLACTYGHEDCVKALVYYDVESCRLDIGNEKGDTPLHIAARWGYQAIIETLLQNGASPEIQNRLKETPLKCALNSKILSVMEAYHLSFERRQKSSEAPVQSLQRSVDSISQESSTSSFSSMSAGSRQEETKKDYREVEKLLRAVADGDLEMVRYLLEWTEEDLEDAEDTVSAVDPEFCHPLCQCPKCAPAQKRLAKVPASGLGVNVTSQDGSSPLYVAALHGRADLIPLLLKHGANAGARNADQAVPLHLACQQGHFQVVKCLLDSNAKPNKKDLSGNTPLIYACSGGHHEVVALLLQHGAAINTSNNKGNTALHEAVIEKHVFVVELLLLHGASVQVLNKRQRTAVDCAEQNSKIMELLQVVPSCVASLDDVAETDRKEYVTVKIRKKWNSKLYDLPDEPFTRQFYFAHSAGQFKGKTSREIMARDRSVPNLTEGSLHEPGRQSVTLRQNNLPAQSGSHAAEKGNSDWPERPRVTQTGPGHRRMLRRHTVEDAVVSQGPEAAGPLSTPQEVSASRS
May be a guanine exchange factor (GEF) for Rab21, Rab32 and Rab38 and regulate endosome dynamics. May regulate the participation of VAMP7 in membrane fusion events; in vitro inhibits VAMP7-mediated SNARE complex formation by trapping VAMP7 in a closed, fusogenically inactive conformation (By similarity). Involved in peripheral melanosomal distribution of TYRP1 in melanocytes; the function, which probably is implicating vesicle-trafficking, includes cooperation with Rab32, Rab38 and VAMP7. Involved in the regulation of neurite growth; the function seems to require its GEF activity, probably towards Rab21, and VAMP7 but not Rab32/38. Proposed to be involved in Golgi sorting of VAMP7 and transport of VAMP7 vesicles to the cell surface; the function seems to implicate kinesin heavy chain isoform 5 proteins, GOLGA4, RAB21 and MACF1. Required for the colocalization of VAMP7 and Rab21, probably on TGN sites. Involved in GLUT1 endosome-to-plasma membrane trafficking; the function is dependent of association with VPS29. Regulates the proper trafficking of melanogenic enzymes TYR, TYRP1 and DCT/TYRP2 to melanosomes in melanocytes (By similarity). Subcellular locations: Early endosome, Late endosome, Cytoplasmic vesicle membrane, Lysosome, Cell membrane, Melanosome Colocalizes with VAMP7 in transport vesicles in the shaft of hippocampal neurons (By similarity).
ANR28_HUMAN
Homo sapiens
MAFLKLRDQPSLVQAIFNGDPDEVRALIFKKEDVNFQDNEKRTPLHAAAYLGDAEIIELLILSGARVNAKDSKWLTPLHRAVASCSEEAVQVLLKHSADVNARDKNWQTPLHIAAANKAVKCAEALVPLLSNVNVSDRAGRTALHHAAFSGHGEMVKLLLSRGANINAFDKKDRRAIHWAAYMGHIEVVKLLVSHGAEVTCKDKKSYTPLHAAASSGMISVVKYLLDLGVDMNEPNAYGNTPLHVACYNGQDVVVNELIDCGAIVNQKNEKGFTPLHFAAASTHGALCLELLVGNGADVNMKSKDGKTPLHMTALHGRFSRSQTIIQSGAVIDCEDKNGNTPLHIAARYGHELLINTLITSGADTAKRGIHGMFPLHLAALSGFSDCCRKLLSSGFDIDTPDDFGRTCLHAAAAGGNLECLNLLLNTGADFNKKDKFGRSPLHYAAANCNYQCLFALVGSGASVNDLDERGCTPLHYAATSDTDGKCLEYLLRNDANPGIRDKQGYNAVHYSAAYGHRLCLQLIASETPLDVLMETSGTDMLSDSDNRATISPLHLAAYHGHHQALEVLVQSLLDLDVRNSSGRTPLDLAAFKGHVECVDVLINQGASILVKDYILKRTPIHAAATNGHSECLRLLIGNAEPQNAVDIQDGNGQTPLMLSVLNGHTDCVYSLLNKGANVDAKDKWGRTALHRGAVTGHEECVDALLQHGAKCLLRDSRGRTPIHLSAACGHIGVLGALLQSAASMDANPATADNHGYTALHWACYNGHETCVELLLEQEVFQKTEGNAFSPLHCAVINDNEGAAEMLIDTLGASIVNATDSKGRTPLHAAAFTDHVECLQLLLSHNAQVNSVDSTGKTPLMMAAENGQTNTVEMLVSSASAELTLQDNSKNTALHLACSKGHETSALLILEKITDRNLINATNAALQTPLHVAARNGLTMVVQELLGKGASVLAVDENGYTPALACAPNKDVADCLALILATMMPVSSSSPLSSLTFNAINRYTNTSKTVSFEALPIMRNEPSSYCSFNNIGGEQEYLYTDVDELNDSDSETY
Putative regulatory subunit of protein phosphatase 6 (PP6) that may be involved in the recognition of phosphoprotein substrates. Involved in the PP6-mediated dephosphorylation of NFKBIE opposing its degradation in response to TNF-alpha. Selectively inhibits the phosphatase activity of PPP1C. Targets PPP1C to modulate HNRPK phosphorylation. Subcellular locations: Nucleus, Nucleoplasm Seems to be excluded from nucleoli.
AOFA_HUMAN
Homo sapiens
MENQEKASIAGHMFDVVVIGGGISGLSAAKLLTEYGVSVLVLEARDRVGGRTYTIRNEHVDYVDVGGAYVGPTQNRILRLSKELGIETYKVNVSERLVQYVKGKTYPFRGAFPPVWNPIAYLDYNNLWRTIDNMGKEIPTDAPWEAQHADKWDKMTMKELIDKICWTKTARRFAYLFVNINVTSEPHEVSALWFLWYVKQCGGTTRIFSVTNGGQERKFVGGSGQVSERIMDLLGDQVKLNHPVTHVDQSSDNIIIETLNHEHYECKYVINAIPPTLTAKIHFRPELPAERNQLIQRLPMGAVIKCMMYYKEAFWKKKDYCGCMIIEDEDAPISITLDDTKPDGSLPAIMGFILARKADRLAKLHKEIRKKKICELYAKVLGSQEALHPVHYEEKNWCEEQYSGGCYTAYFPPGIMTQYGRVIRQPVGRIFFAGTETATKWSGYMEGAVEAGERAAREVLNGLGKVTEKDIWVQEPESKDVPAVEITHTFWERNLPSVSGLLKIIGFSTSVTALGFVLYKYKLLPRS
Catalyzes the oxidative deamination of primary and some secondary amine such as neurotransmitters, with concomitant reduction of oxygen to hydrogen peroxide and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues ( , ). Preferentially oxidizes serotonin (, ). Also catalyzes the oxidative deamination of kynuramine to 3-(2-aminophenyl)-3-oxopropanal that can spontaneously condense to 4-hydroxyquinoline (By similarity). Subcellular locations: Mitochondrion outer membrane Heart, liver, duodenum, blood vessels and kidney.
AOFA_PONAB
Pongo abelii
MENQEKASIAGHMFDVVVIGGGISGLSAAKLLTEYGVSVLVLEARDRVGGRTYTIRNEHVDYVDVGGAYVGPTQNRILRLSKELGIETYKVNVSERLVQYVKGKTYPFRGAFPPVWNPIAYLDYNNLWRTIDNMGKEIPADAPWEAQHADEWDKMTMKELIDKICWTKTARRFAYLFVNINVTSEPHEVSALWFLWYVKQCGGTTRIFSVTNGGQERKFVGGSGQVSERIMDLLGDQVKLNHPVTHVDQSSNNIIIETLNHEHYECKYVINAIPPTLTAKIHFRPELPAERNQLIQRLPMGAIIKCMMYYKEAFWKKKDYCGCMIIEDEDAPISITLDDTKPDGSLPAIMGFILARKADRLAKLHKEIRKKKICELYAKVLGSQEALHPVHYEEKNWCEEQYSGGCYTAYFPPGIMTQYGRVIRQPVGRIFFAGTETATKWSGYMEGAVEAGERAAREVLNGLGKVTEKDIWVQEPESKDVPAVEITHTFWERNLPSVSGLLKIIGFSTSVTALGFVLYKYKLLPRS
Catalyzes the oxidative deamination of primary and some secondary amine such as neurotransmitters, with concomitant reduction of oxygen to hydrogen peroxide and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. Preferentially oxidizes serotonin. Also catalyzes the oxidative deamination of kynuramine to 3-(2-aminophenyl)-3-oxopropanal that can spontaneously condense to 4-hydroxyquinoline. Subcellular locations: Mitochondrion outer membrane
AP2A1_HUMAN
Homo sapiens
MPAVSKGDGMRGLAVFISDIRNCKSKEAEIKRINKELANIRSKFKGDKALDGYSKKKYVCKLLFIFLLGHDIDFGHMEAVNLLSSNKYTEKQIGYLFISVLVNSNSELIRLINNAIKNDLASRNPTFMCLALHCIANVGSREMGEAFAADIPRILVAGDSMDSVKQSAALCLLRLYKASPDLVPMGEWTARVVHLLNDQHMGVVTAAVSLITCLCKKNPDDFKTCVSLAVSRLSRIVSSASTDLQDYTYYFVPAPWLSVKLLRLLQCYPPPEDAAVKGRLVECLETVLNKAQEPPKSKKVQHSNAKNAILFETISLIIHYDSEPNLLVRACNQLGQFLQHRETNLRYLALESMCTLASSEFSHEAVKTHIDTVINALKTERDVSVRQRAADLLYAMCDRSNAKQIVSEMLRYLETADYAIREEIVLKVAILAEKYAVDYSWYVDTILNLIRIAGDYVSEEVWYRVLQIVTNRDDVQGYAAKTVFEALQAPACHENMVKVGGYILGEFGNLIAGDPRSSPPVQFSLLHSKFHLCSVATRALLLSTYIKFINLFPETKATIQGVLRAGSQLRNADVELQQRAVEYLTLSSVASTDVLATVLEEMPPFPERESSILAKLKRKKGPGAGSALDDGRRDPSSNDINGGMEPTPSTVSTPSPSADLLGLRAAPPPAAPPASAGAGNLLVDVFDGPAAQPSLGPTPEEAFLSELEPPAPESPMALLADPAPAADPGPEDIGPPIPEADELLNKFVCKNNGVLFENQLLQIGVKSEFRQNLGRMYLFYGNKTSVQFQNFSPTVVHPGDLQTQLAVQTKRVAAQVDGGAQVQQVLNIECLRDFLTPPLLSVRFRYGGAPQALTLKLPVTINKFFQPTEMAAQDFFQRWKQLSLPQQEAQKIFKANHPMDAEVTKAKLLGFGSALLDNVDPNPENFVGAGIIQTKALQVGCLLRLEPNAQAQMYRLTLRTSKEPVSRHLCELLAQQF
Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. During long-term potentiation in hippocampal neurons, AP-2 is responsible for the endocytosis of ADAM10 . The AP-2 alpha subunit binds polyphosphoinositide-containing lipids, positioning AP-2 on the membrane. The AP-2 alpha subunit acts via its C-terminal appendage domain as a scaffolding platform for endocytic accessory proteins. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif (By similarity). Subcellular locations: Cell membrane, Membrane, Coated pit AP-2 appears to be excluded from internalizing CCVs and to disengage from sites of endocytosis seconds before internalization of the nascent CCV. Expressed in the brain (at protein level) . Isoform A: Expressed in forebrain, skeletal muscle, spinal cord, cerebellum, salivary gland, heart and colon. Isoform B: Widely expressed in tissues and also in breast cancer and in prostate carcinoma cells.
AP2A2_HUMAN
Homo sapiens
MPAVSKGDGMRGLAVFISDIRNCKSKEAEIKRINKELANIRSKFKGDKALDGYSKKKYVCKLLFIFLLGHDIDFGHMEAVNLLSSNRYTEKQIGYLFISVLVNSNSELIRLINNAIKNDLASRNPTFMGLALHCIASVGSREMAEAFAGEIPKVLVAGDTMDSVKQSAALCLLRLYRTSPDLVPMGDWTSRVVHLLNDQHLGVVTAATSLITTLAQKNPEEFKTSVSLAVSRLSRIVTSASTDLQDYTYYFVPAPWLSVKLLRLLQCYPPPDPAVRGRLTECLETILNKAQEPPKSKKVQHSNAKNAVLFEAISLIIHHDSEPNLLVRACNQLGQFLQHRETNLRYLALESMCTLASSEFSHEAVKTHIETVINALKTERDVSVRQRAVDLLYAMCDRSNAPQIVAEMLSYLETADYSIREEIVLKVAILAEKYAVDYTWYVDTILNLIRIAGDYVSEEVWYRVIQIVINRDDVQGYAAKTVFEALQAPACHENLVKVGGYILGEFGNLIAGDPRSSPLIQFHLLHSKFHLCSVPTRALLLSTYIKFVNLFPEVKPTIQDVLRSDSQLRNADVELQQRAVEYLRLSTVASTDILATVLEEMPPFPERESSILAKLKKKKGPSTVTDLEDTKRDRSVDVNGGPEPAPASTSAVSTPSPSADLLGLGAAPPAPAGPPPSSGGSGLLVDVFSDSASVVAPLAPGSEDNFARFVCKNNGVLFENQLLQIGLKSEFRQNLGRMFIFYGNKTSTQFLNFTPTLICSDDLQPNLNLQTKPVDPTVEGGAQVQQVVNIECVSDFTEAPVLNIQFRYGGTFQNVSVQLPITLNKFFQPTEMASQDFFQRWKQLSNPQQEVQNIFKAKHPMDTEVTKAKIIGFGSALLEEVDPNPANFVGAGIIHTKTTQIGCLLRLEPNLQAQMYRLTLRTSKEAVSQRLCELLSAQF
Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. During long-term potentiation in hippocampal neurons, AP-2 is responsible for the endocytosis of ADAM10 . The AP-2 alpha subunit binds polyphosphoinositide-containing lipids, positioning AP-2 on the membrane. The AP-2 alpha subunit acts via its C-terminal appendage domain as a scaffolding platform for endocytic accessory proteins. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif (By similarity). Subcellular locations: Cell membrane, Membrane, Coated pit AP-2 appears to be excluded from internalizing CCVs and to disengage from sites of endocytosis seconds before internalization of the nascent CCV. Expressed in the brain (at protein level).
AP2A_HUMAN
Homo sapiens
MLWKLTDNIKYEDCEDRHDGTSNGTARLPQLGTVGQSPYTSAPPLSHTPNADFQPPYFPPPYQPIYPQSQDPYSHVNDPYSLNPLHAQPQPQHPGWPGQRQSQESGLLHTHRGLPHQLSGLDPRRDYRRHEDLLHGPHALSSGLGDLSIHSLPHAIEEVPHVEDPGINIPDQTVIKKGPVSLSKSNSNAVSAIPINKDNLFGGVVNPNEVFCSVPGRLSLLSSTSKYKVTVAEVQRRLSPPECLNASLLGGVLRRAKSKNGGRSLREKLDKIGLNLPAGRRKAANVTLLTSLVEGEAVHLARDFGYVCETEFPAKAVAEFLNRQHSDPNEQVTRKNMLLATKQICKEFTDLLAQDRSPLGNSRPNPILEPGIQSCLTHFNLISHGFGSPAVCAAVTALQNYLTEALKAMDKMYLSNNPNSHTDNNAKSSDKEEKHRK
Sequence-specific DNA-binding protein that interacts with inducible viral and cellular enhancer elements to regulate transcription of selected genes. AP-2 factors bind to the consensus sequence 5'-GCCNNNGGC-3' and activate genes involved in a large spectrum of important biological functions including proper eye, face, body wall, limb and neural tube development. They also suppress a number of genes including MCAM/MUC18, C/EBP alpha and MYC. AP-2-alpha is the only AP-2 protein required for early morphogenesis of the lens vesicle. Together with the CITED2 coactivator, stimulates the PITX2 P1 promoter transcription activation. Associates with chromatin to the PITX2 P1 promoter region. Subcellular locations: Nucleus
APBP2_HUMAN
Homo sapiens
MAAVELEWIPETLYNTAISAVVDNYIRSRRDIRSLPENIQFDVYYKLYQQGRLCQLGSEFCELEVFAKVLRALDKRHLLHHCFQALMDHGVKVASVLAYSFSRRCSYIAESDAAVKEKAIQVGFVLGGFLSDAGWYSDAEKVFLSCLQLCTLHDEMLHWFRAVECCVRLLHVRNGNCKYHLGEETFKLAQTYMDKLSKHGQQANKAALYGELCALLFAKSHYDEAYKWCIEAMKEITAGLPVKVVVDVLRQASKACVVKREFKKAEQLIKHAVYLARDHFGSKHPKYSDTLLDYGFYLLNVDNICQSVAIYQAALDIRQSVFGGKNIHVATAHEDLAYSSYVHQYSSGKFDNALFHAERAIGIITHILPEDHLLLASSKRVKALILEEIAIDCHNKETEQRLLQEAHDLHLSSLQLAKKAFGEFNVQTAKHYGNLGRLYQSMRKFKEAEEMHIKAIQIKEQLLGQEDYEVALSVGHLASLYNYDMNQYENAEKLYLRSIAIGKKLFGEGYSGLEYDYRGLIKLYNSIGNYEKVFEYHNVLSNWNRLRDRQYSVTDALEDVSTSPQSTEEVVQSFLISQNVEGPSC
Substrate-recognition component of a Cul2-RING (CRL2) E3 ubiquitin-protein ligase complex of the DesCEND (destruction via C-end degrons) pathway, which recognizes a C-degron located at the extreme C terminus of target proteins, leading to their ubiquitination and degradation (, ). The C-degron recognized by the DesCEND pathway is usually a motif of less than ten residues and can be present in full-length proteins, truncated proteins or proteolytically cleaved forms (, ). The CRL2(APPBP2) complex specifically recognizes proteins with a -Arg-Xaa-Xaa-Gly degron at the C-terminus, leading to their ubiquitination and degradation (, ). The CRL2(APPBP2) complex mediates ubiquitination and degradation of truncated SELENOV selenoproteins produced by failed UGA/Sec decoding, which end with a -Arg-Xaa-Xaa-Gly degron . May play a role in intracellular protein transport: may be involved in the translocation of APP along microtubules toward the cell surface . Subcellular locations: Nucleus, Cytoplasm, Cytoskeleton, Membrane Associated with membranes and microtubules.
APC10_HUMAN
Homo sapiens
MTTPNKTPPGADPKQLERTGTVREIGSQAVWSLSSCKPGFGVDQLRDDNLETYWQSDGSQPHLVNIQFRRKTTVKTLCIYADYKSDESYTPSKISVRVGNNFHNLQEIRQLELVEPSGWIHVPLTDNHKKPTRTFMIQIAVLANHQNGRDTHMRQIKIYTPVEESSIGKFPRCTTIDFMMYRSIR
Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle. The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains.
APMAP_HUMAN
Homo sapiens
MSEADGLRQRRPLRPQVVTDDDGQAPEAKDGSSFSGRVFRVTFLMLAVSLTVPLLGAMMLLESPIDPQPLSFKEPPLLLGVLHPNTKLRQAERLFENQLVGPESIAHIGDVMFTGTADGRVVKLENGEIETIARFGSGPCKTRDDEPVCGRPLGIRAGPNGTLFVADAYKGLFEVNPWKREVKLLLSSETPIEGKNMSFVNDLTVTQDGRKIYFTDSSSKWQRRDYLLLVMEGTDDGRLLEYDTVTREVKVLLDQLRFPNGVQLSPAEDFVLVAETTMARIRRVYVSGLMKGGADLFVENMPGFPDNIRPSSSGGYWVGMSTIRPNPGFSMLDFLSERPWIKRMIFKLFSQETVMKFVPRYSLVLELSDSGAFRRSLHDPDGLVATYISEVHEHDGHLYLGSFRSPFLCRLSLQAV
Exhibits strong arylesterase activity with beta-naphthyl acetate and phenyl acetate. May play a role in adipocyte differentiation. Subcellular locations: Membrane Liver, glomerular and tubular structures of the kidney, endothelial cells, arterial wall and pancreatic islets of Langerhans (at protein level). Found ubiquitously in adult as well as in embryonic tissues. In adult tissue, the highest expression is found in the liver, placenta and heart. Found on the cell surface of monocytes. In embryonic tissue, the highest expression levels is found in the liver and the kidney.
APOA2_MACMU
Macaca mulatta
QAEEPSVESLVSQYFQTVTDYGKDLMEKVKSPELQAQAKAYFEKSKEQLTPLVKKAGTDLVNFLSYFVELRTQPATQ
Apo A-II makes up about 20% of the protein of the HDL (high density lipoprotein) phospholipid-rich fraction in plasma. Subcellular locations: Secreted Plasma.
APOA2_NASLA
Nasalis larvatus
MKLLAATVLLLTICSLEGALVRRQAEEPSVESLVSQYFQTVTDYGKDLMEKVKSPELQAQAKAYFEKSKEQLTPLVKKAGTDLVNFLSYFVELRTQPATQ
May stabilize HDL (high density lipoprotein) structure by its association with lipids, and affect the HDL metabolism. Subcellular locations: Secreted
APOA2_PANPA
Pan paniscus
MKLLAATVLLLTICSLEGALVRRQAKEPCVDNLVSQYFQTVTDYGKDLMEKVKSPELQAEAKSYFEKSKEQLTPLIKKAGTELVNFLSYFMELGTQPATQ
May stabilize HDL (high density lipoprotein) structure by its association with lipids, and affect the HDL metabolism. Subcellular locations: Secreted Plasma.
APOA2_PANTR
Pan troglodytes
MKLLAATVLLLTICSLEGALVRRQAKEPCVDNLVSQYFQTVTDYGKDLMEKVKSPELQAEAKSYFEKSKEQLTPLIKKAGTELVNFLSYFMELGTQPATQ
May stabilize HDL (high density lipoprotein) structure by its association with lipids, and affect the HDL metabolism. Subcellular locations: Secreted Plasma.
APOA2_PONAB
Pongo abelii
MKLLAATVLLLTICSLEGALVRRQAKEPCVESPVSQYFQTVTDYGKDLMEKVKSPELQAEAKSYFEKSKEQLTPLIKKAGTELVNFLNYFLEL
May stabilize HDL (high density lipoprotein) structure by its association with lipids, and affect the HDL metabolism. Subcellular locations: Secreted
APOA2_RHIRO
Rhinopithecus roxellana
MKLLAATVLLLTICSLEGALVRRQAEEPSVESLVSQYFQTVTDYGKDLMEKVKSPELQAQAKAYFEKSKEQLTPLVKKAGTDLVNFLSYFVELRTQPATQ
May stabilize HDL (high density lipoprotein) structure by its association with lipids, and affect the HDL metabolism. Subcellular locations: Secreted
APOA4_HUMAN
Homo sapiens
MFLKAVVLTLALVAVAGARAEVSADQVATVMWDYFSQLSNNAKEAVEHLQKSELTQQLNALFQDKLGEVNTYAGDLQKKLVPFATELHERLAKDSEKLKEEIGKELEELRARLLPHANEVSQKIGDNLRELQQRLEPYADQLRTQVSTQAEQLRRQLTPYAQRMERVLRENADSLQASLRPHADELKAKIDQNVEELKGRLTPYADEFKVKIDQTVEELRRSLAPYAQDTQEKLNHQLEGLTFQMKKNAEELKARISASAEELRQRLAPLAEDVRGNLRGNTEGLQKSLAELGGHLDQQVEEFRRRVEPYGENFNKALVQQMEQLRQKLGPHAGDVEGHLSFLEKDLRDKVNSFFSTFKEKESQDKTLSLPELEQQQEQQQEQQQEQVQMLAPLES
May have a role in chylomicrons and VLDL secretion and catabolism. Required for efficient activation of lipoprotein lipase by ApoC-II; potent activator of LCAT. Apoa-IV is a major component of HDL and chylomicrons. Subcellular locations: Secreted Synthesized primarily in the intestine and secreted in plasma.
APOA4_MACFA
Macaca fascicularis
MFLKAVVLTLALVAVTGARAEVSADQVATVMWDYFSQLSSNAKEAVEHLQKSELTQQLNALFQDKLGEVNTYAGDLQKKLVPFATELHERLAKDSEKLKEEIRKELEEVRARLLPHANEVSQKIGENVRELQQRLEPYTDQLRTQVNTQTEQLRRQLTPYAQRMERVLRENADSLQTSLRPHADQLKAKIDQNVEELKERLTPYADEFKVKIDQTVEELRRSLAPYAQDAQEKLNHQLEGLAFQMKKNAEELKARISASAEELRQRLAPLAEDMRGNLRGNTEGLQKSLAELGGHLDRHVEEFRLRVEPYGENFNKALVQQMEQLRQKLGPHAGDVEGHLSFLEKDLRDKVNSFFSTFKEKESQDNTLSLPEPEQQREQQQEQQQEQEQEQQQQQEQQQQQEQQREQQQQEQQQEQQQEQVQMLAPLES
May have a role in chylomicrons and VLDL secretion and catabolism. Required for efficient activation of lipoprotein lipase by ApoC-II; potent activator of LCAT. Apoa-IV is a major component of HDL and chylomicrons. Subcellular locations: Secreted Secreted in plasma.
APOE_GORGO
Gorilla gorilla gorilla
MKVLWAALLVTFLAGCQAKVEQAVETEPEPELHQQAEWQSGQRWELALGRFWDYLRWVQTLSEQVQEELLSSQVTQELTALMDETMKELKAYKSELEEQLTPVAEETRARLSKELQAAQARLGADMEDVRGRLAQYRGEVQAMLGQSTEELRARLASHLRKLRKRLLRDADDLQKRLAVYQAGAREGAERGVSAIRERLGPLVEQGRVRAATVGSLAGQPLQERAQAWGERLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEEQAQQIRLQAEAFQARLKSWFEPLVEDMQRQWAGLVEKVQAAMGTSAAPVPSDNH
APOE is an apolipoprotein, a protein associating with lipid particles, that mainly functions in lipoprotein-mediated lipid transport between organs via the plasma and interstitial fluids. APOE is a core component of plasma lipoproteins and is involved in their production, conversion and clearance. Apolipoproteins are amphipathic molecules that interact both with lipids of the lipoprotein particle core and the aqueous environment of the plasma. As such, APOE associates with chylomicrons, chylomicron remnants, very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL) but shows a preferential binding to high-density lipoproteins (HDL). It also binds a wide range of cellular receptors including the LDL receptor/LDLR, the LDL receptor-related proteins LRP1, LRP2 and LRP8 and the very low-density lipoprotein receptor/VLDLR that mediate the cellular uptake of the APOE-containing lipoprotein particles. Finally, APOE has also a heparin-binding activity and binds heparan-sulfate proteoglycans on the surface of cells, a property that supports the capture and the receptor-mediated uptake of APOE-containing lipoproteins by cells. A main function of APOE is to mediate lipoprotein clearance through the uptake of chylomicrons, VLDLs, and HDLs by hepatocytes. APOE is also involved in the biosynthesis by the liver of VLDLs as well as their uptake by peripheral tissues ensuring the delivery of triglycerides and energy storage in muscle, heart and adipose tissues. By participating in the lipoprotein-mediated distribution of lipids among tissues, APOE plays a critical role in plasma and tissues lipid homeostasis. APOE is also involved in two steps of reverse cholesterol transport, the HDLs-mediated transport of cholesterol from peripheral tissues to the liver, and thereby plays an important role in cholesterol homeostasis. First, it is functionally associated with ABCA1 in the biogenesis of HDLs in tissues. Second, it is enriched in circulating HDLs and mediates their uptake by hepatocytes. APOE also plays an important role in lipid transport in the central nervous system, regulating neuron survival and sprouting. Subcellular locations: Secreted, Secreted, Extracellular space, Secreted, Extracellular space, Extracellular matrix, Extracellular vesicle, Endosome, Multivesicular body In the plasma, APOE is associated with chylomicrons, chylomicrons remnants, VLDL, LDL and HDL lipoproteins. Lipid poor oligomeric APOE is associated with the extracellular matrix in a calcium- and heparan-sulfate proteoglycans-dependent manner. Lipidation induces the release from the extracellular matrix. Colocalizes with CD63 and PMEL at exosomes and in intraluminal vesicles within multivesicular endosomes.
APOE_HUMAN
Homo sapiens
MKVLWAALLVTFLAGCQAKVEQAVETEPEPELRQQTEWQSGQRWELALGRFWDYLRWVQTLSEQVQEELLSSQVTQELRALMDETMKELKAYKSELEEQLTPVAEETRARLSKELQAAQARLGADMEDVCGRLVQYRGEVQAMLGQSTEELRVRLASHLRKLRKRLLRDADDLQKRLAVYQAGAREGAERGLSAIRERLGPLVEQGRVRAATVGSLAGQPLQERAQAWGERLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEEQAQQIRLQAEAFQARLKSWFEPLVEDMQRQWAGLVEKVQAAVGTSAAPVPSDNH
APOE is an apolipoprotein, a protein associating with lipid particles, that mainly functions in lipoprotein-mediated lipid transport between organs via the plasma and interstitial fluids ( ). APOE is a core component of plasma lipoproteins and is involved in their production, conversion and clearance ( ). Apolipoproteins are amphipathic molecules that interact both with lipids of the lipoprotein particle core and the aqueous environment of the plasma ( ). As such, APOE associates with chylomicrons, chylomicron remnants, very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL) but shows a preferential binding to high-density lipoproteins (HDL) (, ). It also binds a wide range of cellular receptors including the LDL receptor/LDLR, the LDL receptor-related proteins LRP1, LRP2 and LRP8 and the very low-density lipoprotein receptor/VLDLR that mediate the cellular uptake of the APOE-containing lipoprotein particles ( ). Finally, APOE has also a heparin-binding activity and binds heparan-sulfate proteoglycans on the surface of cells, a property that supports the capture and the receptor-mediated uptake of APOE-containing lipoproteins by cells ( , ). A main function of APOE is to mediate lipoprotein clearance through the uptake of chylomicrons, VLDLs, and HDLs by hepatocytes ( ). APOE is also involved in the biosynthesis by the liver of VLDLs as well as their uptake by peripheral tissues ensuring the delivery of triglycerides and energy storage in muscle, heart and adipose tissues (, ). By participating in the lipoprotein-mediated distribution of lipids among tissues, APOE plays a critical role in plasma and tissues lipid homeostasis ( ). APOE is also involved in two steps of reverse cholesterol transport, the HDLs-mediated transport of cholesterol from peripheral tissues to the liver, and thereby plays an important role in cholesterol homeostasis ( ). First, it is functionally associated with ABCA1 in the biogenesis of HDLs in tissues (, ). Second, it is enriched in circulating HDLs and mediates their uptake by hepatocytes . APOE also plays an important role in lipid transport in the central nervous system, regulating neuron survival and sprouting (, ). APOE is also involved in innate and adaptive immune responses, controlling for instance the survival of myeloid-derived suppressor cells (By similarity). Binds to the immune cell receptor LILRB4 . APOE may also play a role in transcription regulation through a receptor-dependent and cholesterol-independent mechanism, that activates MAP3K12 and a non-canonical MAPK signal transduction pathway that results in enhanced AP-1-mediated transcription of APP . (Microbial infection) Through its interaction with HCV envelope glycoprotein E2, participates in the attachment of HCV to HSPGs and other receptors (LDLr, VLDLr, and SR-B1) on the cell surface and to the assembly, maturation and infectivity of HCV viral particles (, ). This interaction is probably promoted via the up-regulation of cellular autophagy by the virus . Subcellular locations: Secreted, Secreted, Extracellular space, Secreted, Extracellular space, Extracellular matrix, Extracellular vesicle, Endosome, Multivesicular body In the plasma, APOE is associated with chylomicrons, chylomicrons remnants, VLDL, LDL and HDL lipoproteins (, ). Lipid poor oligomeric APOE is associated with the extracellular matrix in a calcium- and heparan-sulfate proteoglycans-dependent manner . Lipidation induces the release from the extracellular matrix . Colocalizes with CD63 and PMEL at exosomes and in intraluminal vesicles within multivesicular endosomes. Produced by several tissues and cell types and mainly found associated with lipid particles in the plasma, the interstitial fluid and lymph . Mainly synthesized by liver hepatocytes . Significant quantities are also produced in brain, mainly by astrocytes and glial cells in the cerebral cortex, but also by neurons in frontal cortex and hippocampus (, ). It is also expressed by cells of the peripheral nervous system (, ). Also expressed by adrenal gland, testis, ovary, skin, kidney, spleen and adipose tissue and macrophages in various tissues .
APOE_HYLLA
Hylobates lar
MKVLWAALLVTFLAGCQAKVEQAVEPEPEPELRQQAEWQSGQPWELALGRFWDYLRWVQTLSEQVQEELLSSQVTQELTALMDETMKELKAYRSELEEQLTPVAEETRARLSKELQAAQARLGADMEDVRGRLVQYRGEVQAMLGQSTEELRARLASHLRKLRKRLLRDADDLQKRLAVYQAGAREGAERGVSAIRERLGPLVEQGRVRAATVGSLAGQPLQERAQAWGERLRARMEEVGGRTRDRLDEVKEQVAEVRAKLEEQAQQIRLQAEAFQARLKSWFEPLVEDMQRQWAGLVEKVQAAVGTSAAPVPSDNH
APOE is an apolipoprotein, a protein associating with lipid particles, that mainly functions in lipoprotein-mediated lipid transport between organs via the plasma and interstitial fluids. APOE is a core component of plasma lipoproteins and is involved in their production, conversion and clearance. Apolipoproteins are amphipathic molecules that interact both with lipids of the lipoprotein particle core and the aqueous environment of the plasma. As such, APOE associates with chylomicrons, chylomicron remnants, very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL) but shows a preferential binding to high-density lipoproteins (HDL). It also binds a wide range of cellular receptors including the LDL receptor/LDLR, the LDL receptor-related proteins LRP1, LRP2 and LRP8 and the very low-density lipoprotein receptor/VLDLR that mediate the cellular uptake of the APOE-containing lipoprotein particles. Finally, APOE has also a heparin-binding activity and binds heparan-sulfate proteoglycans on the surface of cells, a property that supports the capture and the receptor-mediated uptake of APOE-containing lipoproteins by cells. A main function of APOE is to mediate lipoprotein clearance through the uptake of chylomicrons, VLDLs, and HDLs by hepatocytes. APOE is also involved in the biosynthesis by the liver of VLDLs as well as their uptake by peripheral tissues ensuring the delivery of triglycerides and energy storage in muscle, heart and adipose tissues. By participating in the lipoprotein-mediated distribution of lipids among tissues, APOE plays a critical role in plasma and tissues lipid homeostasis. APOE is also involved in two steps of reverse cholesterol transport, the HDLs-mediated transport of cholesterol from peripheral tissues to the liver, and thereby plays an important role in cholesterol homeostasis. First, it is functionally associated with ABCA1 in the biogenesis of HDLs in tissues. Second, it is enriched in circulating HDLs and mediates their uptake by hepatocytes. APOE also plays an important role in lipid transport in the central nervous system, regulating neuron survival and sprouting. Subcellular locations: Secreted, Secreted, Extracellular space, Secreted, Extracellular space, Extracellular matrix, Extracellular vesicle, Endosome, Multivesicular body In the plasma, APOE is associated with chylomicrons, chylomicrons remnants, VLDL, LDL and HDL lipoproteins. Lipid poor oligomeric APOE is associated with the extracellular matrix in a calcium- and heparan-sulfate proteoglycans-dependent manner. Lipidation induces the release from the extracellular matrix. Colocalizes with CD63 and PMEL at exosomes and in intraluminal vesicles within multivesicular endosomes.
APOE_MACFA
Macaca fascicularis
MKVLWAALLVTFLAGCQAKVEQPVEPETEPELRQQAEGQSGQPWELALGRFWDYLRWVQTLSEQVQEELLSPQVTQELTTLMDETMKELKAYKSELEEQLSPVAEETRARLSKELQAAQARLGADMEDVRSRLVQYRSEVQAMLGQSTEELRARLASHLRKLRKRLLRDADDLQKRLAVYQAGAREGAERGVSAIRERLGPLVEQGRVRAATVGSLASQPLQERAQALGERLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEEQAQQISLQAEAFQARLKSWFEPLVEDMQRQWAGLVEKVQAAVGASTAPVPIDNH
APOE is an apolipoprotein, a protein associating with lipid particles, that mainly functions in lipoprotein-mediated lipid transport between organs via the plasma and interstitial fluids. APOE is a core component of plasma lipoproteins and is involved in their production, conversion and clearance. Apolipoproteins are amphipathic molecules that interact both with lipids of the lipoprotein particle core and the aqueous environment of the plasma. As such, APOE associates with chylomicrons, chylomicron remnants, very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL) but shows a preferential binding to high-density lipoproteins (HDL). It also binds a wide range of cellular receptors including the LDL receptor/LDLR, the LDL receptor-related proteins LRP1, LRP2 and LRP8 and the very low-density lipoprotein receptor/VLDLR that mediate the cellular uptake of the APOE-containing lipoprotein particles. Finally, APOE has also a heparin-binding activity and binds heparan-sulfate proteoglycans on the surface of cells, a property that supports the capture and the receptor-mediated uptake of APOE-containing lipoproteins by cells. A main function of APOE is to mediate lipoprotein clearance through the uptake of chylomicrons, VLDLs, and HDLs by hepatocytes. APOE is also involved in the biosynthesis by the liver of VLDLs as well as their uptake by peripheral tissues ensuring the delivery of triglycerides and energy storage in muscle, heart and adipose tissues. By participating in the lipoprotein-mediated distribution of lipids among tissues, APOE plays a critical role in plasma and tissues lipid homeostasis. APOE is also involved in two steps of reverse cholesterol transport, the HDLs-mediated transport of cholesterol from peripheral tissues to the liver, and thereby plays an important role in cholesterol homeostasis. First, it is functionally associated with ABCA1 in the biogenesis of HDLs in tissues. Second, it is enriched in circulating HDLs and mediates their uptake by hepatocytes. APOE also plays an important role in lipid transport in the central nervous system, regulating neuron survival and sprouting. Subcellular locations: Secreted, Secreted, Extracellular space, Secreted, Extracellular space, Extracellular matrix, Extracellular vesicle, Endosome, Multivesicular body In the plasma, APOE is associated with chylomicrons, chylomicrons remnants, VLDL, LDL and HDL lipoproteins. Lipid poor oligomeric APOE is associated with the extracellular matrix in a calcium- and heparan-sulfate proteoglycans-dependent manner. Lipidation induces the release from the extracellular matrix. Colocalizes with CD63 and PMEL at exosomes and in intraluminal vesicles within multivesicular endosomes.
APOE_MACMU
Macaca mulatta
MKVLWAALLVTFLAGCQAKVEQPVEPETEPELRQQAEGQSGQPWELALGRFWDYLRWVQTLSEQVQEELLSPQVTQELTTLMDETMKELKAYKSELEEQLSPVAEETRARLSKELQAAQARLGADMEDVRSRLVQYRSEVQAMLGQSTEELRARLASHLRKLRKRLLRDADDLQKRLARLGPLVEQGRVRAATVGSLASQPLQERAQAKLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEEQAQQISLQAEAFQARLKSWFEPLVEDMQRQWAGLVEKVQAAVGASTAPVPSDNH
APOE is an apolipoprotein, a protein associating with lipid particles, that mainly functions in lipoprotein-mediated lipid transport between organs via the plasma and interstitial fluids. APOE is a core component of plasma lipoproteins and is involved in their production, conversion and clearance. Apolipoproteins are amphipathic molecules that interact both with lipids of the lipoprotein particle core and the aqueous environment of the plasma. As such, APOE associates with chylomicrons, chylomicron remnants, very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL) but shows a preferential binding to high-density lipoproteins (HDL). It also binds a wide range of cellular receptors including the LDL receptor/LDLR, the LDL receptor-related proteins LRP1, LRP2 and LRP8 and the very low-density lipoprotein receptor/VLDLR that mediate the cellular uptake of the APOE-containing lipoprotein particles. Finally, APOE has also a heparin-binding activity and binds heparan-sulfate proteoglycans on the surface of cells, a property that supports the capture and the receptor-mediated uptake of APOE-containing lipoproteins by cells. A main function of APOE is to mediate lipoprotein clearance through the uptake of chylomicrons, VLDLs, and HDLs by hepatocytes. APOE is also involved in the biosynthesis by the liver of VLDLs as well as their uptake by peripheral tissues ensuring the delivery of triglycerides and energy storage in muscle, heart and adipose tissues. By participating in the lipoprotein-mediated distribution of lipids among tissues, APOE plays a critical role in plasma and tissues lipid homeostasis. APOE is also involved in two steps of reverse cholesterol transport, the HDLs-mediated transport of cholesterol from peripheral tissues to the liver, and thereby plays an important role in cholesterol homeostasis. First, it is functionally associated with ABCA1 in the biogenesis of HDLs in tissues. Second, it is enriched in circulating HDLs and mediates their uptake by hepatocytes. APOE also plays an important role in lipid transport in the central nervous system, regulating neuron survival and sprouting. Subcellular locations: Secreted, Secreted, Extracellular space, Secreted, Extracellular space, Extracellular matrix, Extracellular vesicle, Endosome, Multivesicular body In the plasma, APOE is associated with chylomicrons, chylomicrons remnants, VLDL, LDL and HDL lipoproteins. Lipid poor oligomeric APOE is associated with the extracellular matrix in a calcium- and heparan-sulfate proteoglycans-dependent manner. Lipidation induces the release from the extracellular matrix. Colocalizes with CD63 and PMEL at exosomes and in intraluminal vesicles within multivesicular endosomes.
APOE_MACNE
Macaca nemestrina
MKVLWAALLVTFLAGCQAKVEQPVEPETEPELRQQAEGQSGQPWELALGRFWDYLRWVQTLSEQVQEELLSPQVTQELTTLMDETMKELKAYKSELEEQLSPVAEETRARLSKELQAAQARLGADMEDVRSRLVQYRSEVQAMLGQSTEELRARLASHLRKLRKRLLRDADDLQKRLAVYQAGAREGAERGVSAIRERLGPLVEQGRVRAATVGSLASQPLQERAQALGERLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEEQAQQISLQAEAFQARLKSWFEPLVEDMQRQWAGLVEKVQAAVGASTAPVPSDNH
APOE is an apolipoprotein, a protein associating with lipid particles, that mainly functions in lipoprotein-mediated lipid transport between organs via the plasma and interstitial fluids. APOE is a core component of plasma lipoproteins and is involved in their production, conversion and clearance. Apolipoproteins are amphipathic molecules that interact both with lipids of the lipoprotein particle core and the aqueous environment of the plasma. As such, APOE associates with chylomicrons, chylomicron remnants, very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL) but shows a preferential binding to high-density lipoproteins (HDL). It also binds a wide range of cellular receptors including the LDL receptor/LDLR, the LDL receptor-related proteins LRP1, LRP2 and LRP8 and the very low-density lipoprotein receptor/VLDLR that mediate the cellular uptake of the APOE-containing lipoprotein particles. Finally, APOE has also a heparin-binding activity and binds heparan-sulfate proteoglycans on the surface of cells, a property that supports the capture and the receptor-mediated uptake of APOE-containing lipoproteins by cells. A main function of APOE is to mediate lipoprotein clearance through the uptake of chylomicrons, VLDLs, and HDLs by hepatocytes. APOE is also involved in the biosynthesis by the liver of VLDLs as well as their uptake by peripheral tissues ensuring the delivery of triglycerides and energy storage in muscle, heart and adipose tissues. By participating in the lipoprotein-mediated distribution of lipids among tissues, APOE plays a critical role in plasma and tissues lipid homeostasis. APOE is also involved in two steps of reverse cholesterol transport, the HDLs-mediated transport of cholesterol from peripheral tissues to the liver, and thereby plays an important role in cholesterol homeostasis. First, it is functionally associated with ABCA1 in the biogenesis of HDLs in tissues. Second, it is enriched in circulating HDLs and mediates their uptake by hepatocytes. APOE also plays an important role in lipid transport in the central nervous system, regulating neuron survival and sprouting. Subcellular locations: Secreted, Secreted, Extracellular space, Secreted, Extracellular space, Extracellular matrix, Extracellular vesicle, Endosome, Multivesicular body In the plasma, APOE is associated with chylomicrons, chylomicrons remnants, VLDL, LDL and HDL lipoproteins. Lipid poor oligomeric APOE is associated with the extracellular matrix in a calcium- and heparan-sulfate proteoglycans-dependent manner. Lipidation induces the release from the extracellular matrix. Colocalizes with CD63 and PMEL at exosomes and in intraluminal vesicles within multivesicular endosomes.
AQP2_HUMAN
Homo sapiens
MWELRSIAFSRAVFAEFLATLLFVFFGLGSALNWPQALPSVLQIAMAFGLGIGTLVQALGHISGAHINPAVTVACLVGCHVSVLRAAFYVAAQLLGAVAGAALLHEITPADIRGDLAVNALSNSTTAGQAVTVELFLTLQLVLCIFASTDERRGENPGTPALSIGFSVALGHLLGIHYTGCSMNPARSLAPAVVTGKFDDHWVFWIGPLVGAILGSLLYNYVLFPPAKSLSERLAVLKGLEPDTDWEEREVRRRQSVELHSPQSLPRGTKA
Forms a water-specific channel that provides the plasma membranes of renal collecting duct with high permeability to water, thereby permitting water to move in the direction of an osmotic gradient ( , ). Plays an essential role in renal water homeostasis ( ). Subcellular locations: Apical cell membrane, Basolateral cell membrane, Cell membrane, Cytoplasmic vesicle membrane, Golgi apparatus, Trans-Golgi network membrane Shuttles from vesicles to the apical membrane . Vasopressin-regulated phosphorylation is required for translocation to the apical cell membrane . PLEKHA8/FAPP2 is required to transport AQP2 from the TGN to sites where AQP2 is phosphorylated (By similarity). Expressed in collecting tubules in kidney medulla (at protein level) . Detected in kidney .
AREG_HUMAN
Homo sapiens
MRAPLLPPAPVVLSLLILGSGHYAAGLDLNDTYSGKREPFSGDHSADGFEVTSRSEMSSGSEISPVSEMPSSSEPSSGADYDYSEEYDNEPQIPGYIVDDSVRVEQVVKPPQNKTESENTSDKPKRKKKGGKNGKNRRNRKKKNPCNAEFQNFCIHGECKYIEHLEAVTCKCQQEYFGERCGEKSMKTHSMIDSSLSKIALAAIAAFMSAVILTAVAVITVQLRRQYVRKYEGEAEERKKLRQENGNVHAIA
Ligand of the EGF receptor/EGFR. Autocrine growth factor as well as a mitogen for a broad range of target cells including astrocytes, Schwann cells and fibroblasts. Subcellular locations: Membrane
ARI1A_HUMAN
Homo sapiens
MAAQVAPAAASSLGNPPPPPPSELKKAEQQQREEAGGEAAAAAAAERGEMKAAAGQESEGPAVGPPQPLGKELQDGAESNGGGGGGGAGSGGGPGAEPDLKNSNGNAGPRPALNNNLTEPPGGGGGGSSDGVGAPPHSAAAALPPPAYGFGQPYGRSPSAVAAAAAAVFHQQHGGQQSPGLAALQSGGGGGLEPYAGPQQNSHDHGFPNHQYNSYYPNRSAYPPPAPAYALSSPRGGTPGSGAAAAAGSKPPPSSSASASSSSSSFAQQRFGAMGGGGPSAAGGGTPQPTATPTLNQLLTSPSSARGYQGYPGGDYSGGPQDGGAGKGPADMASQCWGAAAAAAAAAAASGGAQQRSHHAPMSPGSSGGGGQPLARTPQPSSPMDQMGKMRPQPYGGTNPYSQQQGPPSGPQQGHGYPGQPYGSQTPQRYPMTMQGRAQSAMGGLSYTQQIPPYGQQGPSGYGQQGQTPYYNQQSPHPQQQQPPYSQQPPSQTPHAQPSYQQQPQSQPPQLQSSQPPYSQQPSQPPHQQSPAPYPSQQSTTQQHPQSQPPYSQPQAQSPYQQQQPQQPAPSTLSQQAAYPQPQSQQSQQTAYSQQRFPPPQELSQDSFGSQASSAPSMTSSKGGQEDMNLSLQSRPSSLPDLSGSIDDLPMGTEGALSPGVSTSGISSSQGEQSNPAQSPFSPHTSPHLPGIRGPSPSPVGSPASVAQSRSGPLSPAAVPGNQMPPRPPSGQSDSIMHPSMNQSSIAQDRGYMQRNPQMPQYSSPQPGSALSPRQPSGGQIHTGMGSYQQNSMGSYGPQGGQYGPQGGYPRQPNYNALPNANYPSAGMAGGINPMGAGGQMHGQPGIPPYGTLPPGRMSHASMGNRPYGPNMANMPPQVGSGMCPPPGGMNRKTQETAVAMHVAANSIQNRPPGYPNMNQGGMMGTGPPYGQGINSMAGMINPQGPPYSMGGTMANNSAGMAASPEMMGLGDVKLTPATKMNNKADGTPKTESKSKKSSSSTTTNEKITKLYELGGEPERKMWVDRYLAFTEEKAMGMTNLPAVGRKPLDLYRLYVSVKEIGGLTQVNKNKKWRELATNLNVGTSSSAASSLKKQYIQCLYAFECKIERGEDPPPDIFAAADSKKSQPKIQPPSPAGSGSMQGPQTPQSTSSSMAEGGDLKPPTPASTPHSQIPPLPGMSRSNSVGIQDAFNDGSDSTFQKRNSMTPNPGYQPSMNTSDMMGRMSYEPNKDPYGSMRKAPGSDPFMSSGQGPNGGMGDPYSRAAGPGLGNVAMGPRQHYPYGGPYDRVRTEPGIGPEGNMSTGAPQPNLMPSNPDSGMYSPSRYPPQQQQQQQQRHDSYGNQFSTQGTPSGSPFPSQQTTMYQQQQQNYKRPMDGTYGPPAKRHEGEMYSVPYSTGQGQPQQQQLPPAQPQPASQQQAAQPSPQQDVYNQYGNAYPATATAATERRPAGGPQNQFPFQFGRDRVSAPPGTNAQQNMPPQMMGGPIQASAEVAQQGTMWQGRNDMTYNYANRQSTGSAPQGPAYHGVNRTDEMLHTDQRANHEGSWPSHGTRQPPYGPSAPVPPMTRPPPSNYQPPPSMQNHIPQVSSPAPLPRPMENRTSPSKSPFLHSGMKMQKAGPPVPASHIAPAPVQPPMIRRDITFPPGSVEATQPVLKQRRRLTMKDIGTPEAWRVMMSLKSGLLAESTWALDTINILLYDDNSIMTFNLSQLPGLLELLVEYFRRCLIEIFGILKEYEVGDPGQRTLLDPGRFSKVSSPAPMEGGEEEEELLGPKLEEEEEEEVVENDEEIAFSGKDKPASENSEEKLISKFDKLPVKIVQKNDPFVVDCSDKLGRVQEFDSGLLHWRIGGGDTTEHIQTHFESKTELLPSRPHAPCPPAPRKHVTTAEGTPGTTDQEGPPPDGPPEKRITATMDDMLSTRSSTLTEDGAKSSEAIKESSKFPFGISPAQSHRNIKILEDEPHSKDETPLCTLLDWQDSLAKRCVCVSNTIRSLSFVPGNDFEMSKHPGLLLILGKLILLHHKHPERKQAPLTYEKEEEQDQGVSCNKVEWWWDCLEMLRENTLVTLANISGQLDLSPYPESICLPVLDGLLHWAVCPSAEAQDPFSTLGPNAVLSPQRLVLETLSKLSIQDNNVDLILATPPFSRLEKLYSTMVRFLSDRKNPVCREMAVVLLANLAQGDSLAARAIAVQKGSIGNLLGFLEDSLAATQFQQSQASLLHMQNPPFEPTSVDMMRRAARALLALAKVDENHSEFTLYESRLLDISVSPLMNSLVSQVICDVLFLIGQS
Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Subcellular locations: Nucleus Highly expressed in spleen, thymus, prostate, testis, ovary, small intestine, colon, and PBL, and at a much lower level in heart, brain, placenta, lung, liver, skeletal muscle, kidney, and pancreas.
ARI1B_HUMAN
Homo sapiens
MAARAAAAAAAAAARARARAGSGERRAPPGPRPAPGARDLEAGARGAAAAAAAPGPMLGGGGDGGGGLNSVHHHPLLPRHELNMAHNAGAAAAAGTHSAKSGGSEAALKEGGSAAALSSSSSSSAAAAAASSSSSSGPGSAMETGLLPNHKLKTVGEAPAAPPHQQHHHHHHAHHHHHHAHHLHHHHALQQQLNQFQQQQQQQQQQQQQQQQQQHPISNNNSLGGAGGGAPQPGPDMEQPQHGGAKDSAAGGQADPPGPPLLSKPGDEDDAPPKMGEPAGGRYEHPGLGALGTQQPPVAVPGGGGGPAAVPEFNNYYGSAAPASGGPGGRAGPCFDQHGGQQSPGMGMMHSASAAAAGAPGSMDPLQNSHEGYPNSQCNHYPGYSRPGAGGGGGGGGGGGGGSGGGGGGGGAGAGGAGAGAVAAAAAAAAAAAGGGGGGGYGGSSAGYGVLSSPRQQGGGMMMGPGGGGAASLSKAAAGSAAGGFQRFAGQNQHPSGATPTLNQLLTSPSPMMRSYGGSYPEYSSPSAPPPPPSQPQSQAAAAGAAAGGQQAAAGMGLGKDMGAQYAAASPAWAAAQQRSHPAMSPGTPGPTMGRSQGSPMDPMVMKRPQLYGMGSNPHSQPQQSSPYPGGSYGPPGPQRYPIGIQGRTPGAMAGMQYPQQQMPPQYGQQGVSGYCQQGQQPYYSQQPQPPHLPPQAQYLPSQSQQRYQPQQDMSQEGYGTRSQPPLAPGKPNHEDLNLIQQERPSSLPDLSGSIDDLPTGTEATLSSAVSASGSTSSQGDQSNPAQSPFSPHASPHLSSIPGGPSPSPVGSPVGSNQSRSGPISPASIPGSQMPPQPPGSQSESSSHPALSQSPMPQERGFMAGTQRNPQMAQYGPQQTGPSMSPHPSPGGQMHAGISSFQQSNSSGTYGPQMSQYGPQGNYSRPPAYSGVPSASYSGPGPGMGISANNQMHGQGPSQPCGAVPLGRMPSAGMQNRPFPGNMSSMTPSSPGMSQQGGPGMGPPMPTVNRKAQEAAAAVMQAAANSAQSRQGSFPGMNQSGLMASSSPYSQPMNNSSSLMNTQAPPYSMAPAMVNSSAASVGLADMMSPGESKLPLPLKADGKEEGTPQPESKSKKSSSSTTTGEKITKVYELGNEPERKLWVDRYLTFMEERGSPVSSLPAVGKKPLDLFRLYVCVKEIGGLAQVNKNKKWRELATNLNVGTSSSAASSLKKQYIQYLFAFECKIERGEEPPPEVFSTGDTKKQPKLQPPSPANSGSLQGPQTPQSTGSNSMAEVPGDLKPPTPASTPHGQMTPMQGGRSSTISVHDPFSDVSDSSFPKRNSMTPNAPYQQGMSMPDVMGRMPYEPNKDPFGGMRKVPGSSEPFMTQGQMPNSSMQDMYNQSPSGAMSNLGMGQRQQFPYGASYDRRHEPYGQQYPGQGPPSGQPPYGGHQPGLYPQQPNYKRHMDGMYGPPAKRHEGDMYNMQYSSQQQEMYNQYGGSYSGPDRRPIQGQYPYPYSRERMQGPGQIQTHGIPPQMMGGPLQSSSSEGPQQNMWAARNDMPYPYQNRQGPGGPTQAPPYPGMNRTDDMMVPDQRINHESQWPSHVSQRQPYMSSSASMQPITRPPQPSYQTPPSLPNHISRAPSPASFQRSLENRMSPSKSPFLPSMKMQKVMPTVPTSQVTGPPPQPPPIRREITFPPGSVEASQPVLKQRRKITSKDIVTPEAWRVMMSLKSGLLAESTWALDTINILLYDDSTVATFNLSQLSGFLELLVEYFRKCLIDIFGILMEYEVGDPSQKALDHNAARKDDSQSLADDSGKEEEDAECIDDDEEDEEDEEEDSEKTESDEKSSIALTAPDAAADPKEKPKQASKFDKLPIKIVKKNNLFVVDRSDKLGRVQEFNSGLLHWQLGGGDTTEHIQTHFESKMEIPPRRRPPPPLSSAGRKKEQEGKGDSEEQQEKSIIATIDDVLSARPGALPEDANPGPQTESSKFPFGIQQAKSHRNIKLLEDEPRSRDETPLCTIAHWQDSLAKRCICVSNIVRSLSFVPGNDAEMSKHPGLVLILGKLILLHHEHPERKRAPQTYEKEEDEDKGVACSKDEWWWDCLEVLRDNTLVTLANISGQLDLSAYTESICLPILDGLLHWMVCPSAEAQDPFPTVGPNSVLSPQRLVLETLCKLSIQDNNVDLILATPPFSRQEKFYATLVRYVGDRKNPVCREMSMALLSNLAQGDALAARAIAVQKGSIGNLISFLEDGVTMAQYQQSQHNLMHMQPPPLEPPSVDMMCRAAKALLAMARVDENRSEFLLHEGRLLDISISAVLNSLVASVICDVLFQIGQL
Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Binds DNA non-specifically (, ). Subcellular locations: Nucleus Widely expressed with high levels in heart, skeletal muscle and kidney.
ARI1_HUMAN
Homo sapiens
MDSDEGYNYEFDEDEECSEEDSGAEEEEDEDDDEPDDDTLDLGEVELVEPGLGVGGERDGLLCGETGGGGGSALGPGGGGGGGGGGGGGGPGHEQEEDYRYEVLTAEQILQHMVECIREVNEVIQNPATITRILLSHFNWDKEKLMERYFDGNLEKLFAECHVINPSKKSRTRQMNTRSSAQDMPCQICYLNYPNSYFTGLECGHKFCMQCWSEYLTTKIMEEGMGQTISCPAHGCDILVDDNTVMRLITDSKVKLKYQHLITNSFVECNRLLKWCPAPDCHHVVKVQYPDAKPVRCKCGRQFCFNCGENWHDPVKCKWLKKWIKKCDDDSETSNWIAANTKECPKCHVTIEKDGGCNHMVCRNQNCKAEFCWVCLGPWEPHGSAWYNCNRYNEDDAKAARDAQERSRAALQRYLFYCNRYMNHMQSLRFEHKLYAQVKQKMEEMQQHNMSWIEVQFLKKAVDVLCQCRATLMYTYVFAFYLKKNNQSIIFENNQADLENATEVLSGYLERDISQDSLQDIKQKVQDKYRYCESRRRVLLQHVHEGYEKDLWEYIED
E3 ubiquitin-protein ligase, which catalyzes ubiquitination of target proteins together with ubiquitin-conjugating enzyme E2 UBE2L3 ( ). Acts as an atypical E3 ubiquitin-protein ligase by working together with cullin-RING ubiquitin ligase (CRL) complexes and initiating ubiquitination of CRL substrates: associates with CRL complexes and specifically mediates addition of the first ubiquitin on CRLs targets . The initial ubiquitin is then elongated by CDC34/UBE2R1 and UBE2R2 . E3 ubiquitin-protein ligase activity is activated upon binding to neddylated cullin-RING ubiquitin ligase complexes (, ). Plays a role in protein translation in response to DNA damage by mediating ubiquitination of EIF4E2, the consequences of EIF4E2 ubiquitination are however unclear . According to a report, EIF4E2 ubiquitination leads to promote EIF4E2 cap-binding and protein translation arrest . According to another report EIF4E2 ubiquitination leads to its subsequent degradation . Acts as the ligase involved in ISGylation of EIF4E2 . In vitro, controls the degradation of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex member SUN2 and may therefore have a role in the formation and localization of the LINC complex, and as a consequence, nuclear subcellular localization and nuclear morphology . Subcellular locations: Cytoplasm, Nucleus, Nucleus, Cajal body Mainly cytoplasmic . Present in Lewy body . Widely expressed.
ARI2O_HUMAN
Homo sapiens
MLGQRAGDGERPGLPGDGEGGVPARPGRRAERPPQRPAKVNKAVTCAAHLPGAAASRPLSPNKPDRVRPGQRDRIGAKRQRRRRADAGQARAASSRRVVPTAPEVLGAVASLPDRGRPTVARVATGSRLEGLFSAASLKLSALTQSLTRVRQAPTASGATIRLPASPVEMFLTSAFLTGFSFHCLYSGIGHGEDILASVEQITIVSRPLSGQRGAGPGNSAYTPRRSQGGPRAATTPGFRFPCRGLVRRAVLRLTVTVQDCILTALLAVSFHSIGVVIMTSSYLLGPVVK
Subcellular locations: Membrane
ARI2_HUMAN
Homo sapiens
MSVDMNSQGSDSNEEDYDPNCEEEEEEEEDDPGDIEDYYVGVASDVEQQGADAFDPEEYQFTCLTYKESEGALNEHMTSLASVLKVSHSVAKLILVNFHWQVSEILDRYKSNSAQLLVEARVQPNPSKHVPTSHPPHHCAVCMQFVRKENLLSLACQHQFCRSCWEQHCSVLVKDGVGVGVSCMAQDCPLRTPEDFVFPLLPNEELREKYRRYLFRDYVESHYQLQLCPGADCPMVIRVQEPRARRVQCNRCNEVFCFKCRQMYHAPTDCATIRKWLTKCADDSETANYISAHTKDCPKCNICIEKNGGCNHMQCSKCKHDFCWMCLGDWKTHGSEYYECSRYKENPDIVNQSQQAQAREALKKYLFYFERWENHNKSLQLEAQTYQRIHEKIQERVMNNLGTWIDWQYLQNAAKLLAKCRYTLQYTYPYAYYMESGPRKKLFEYQQAQLEAEIENLSWKVERADSYDRGDLENQMHIAEQRRRTLLKDFHDT
E3 ubiquitin-protein ligase, which catalyzes ubiquitination of target proteins together with ubiquitin-conjugating enzyme E2 UBE2L3 ( , ). Acts as an atypical E3 ubiquitin-protein ligase by working together with cullin-5-RING ubiquitin ligase complex (ECS complex, also named CRL5 complex) and initiating ubiquitination of ECS substrates: associates with ECS complex and specifically mediates addition of the first ubiquitin on ECS targets (By similarity). The initial ubiquitin is then elongated (By similarity). E3 ubiquitin-protein ligase activity is activated upon binding to neddylated form of the ECS complex . Mediates 'Lys-6', 'Lys-48'- and 'Lys-63'-linked polyubiquitination ( ). May play a role in myelopoiesis . Subcellular locations: Nucleus, Cytoplasm Widely expressed with higher expression in granulocytes.
ARLY_MACFA
Macaca fascicularis
MASESGKLWGGRFVGAVDPIMEKFNASIAYDRHLWEVDVQGSKAYSRGLEKAGLLTKAEMDQILHGLDKVAEEWAQCTFKLSPNDEDIHTANERRLKELIGETAGKLHTGRSRNDQVVTDLRLWMRQTCSTLSGLLWELIRTMVDRAEAERDVLFPGYTHLQRAQPIRWSHWILSHAVALTRDSERLLEVRKRINVLPLGSGAIAGNPLSVDRELLRAELNFGAITLNSMDATSERDFVAEFLFWASLCMTHLSRMAEDLILYCTKEFSFVQLSDAYSTGSSLMPQKKNPDSLELIRSKAGRVFGRCAGLLMTLKGLPSTYNKDLQEDKEAVFEVSDTMSAVLQVATGVISTLQIHRENMGQALSPDMLATDLAYYLVRKGMPFRQAHEASGKAVFMAETKGVALNELSLQELQTISPLFSGDVSCVWDYGHSVEQYGALGGTARSSVDWQIRQVRALLQTQQA
Catalyzes the reversible cleavage of L-argininosuccinate to fumarate and L-arginine, an intermediate step reaction in the urea cycle mostly providing for hepatic nitrogen detoxification into excretable urea as well as de novo L-arginine synthesis in nonhepatic tissues (By similarity). Essential regulator of intracellular and extracellular L-arginine pools. As part of citrulline-nitric oxide cycle, forms tissue-specific multiprotein complexes with argininosuccinate synthase ASS1, transport protein SLC7A1 and nitric oxide synthase NOS1, NOS2 or NOS3, allowing for cell-autonomous L-arginine synthesis while channeling extracellular L-arginine to nitric oxide synthesis pathway (By similarity).
ARMS2_HUMAN
Homo sapiens
MLRLYPGPMVTEAEGKGGPEMASLSSSVVPVSFISTLRESVLDPGVGGEGASDKQRSKLSLSHSMIPAAKIHTELCLPAFFSPAGTQRRFQQPQHHLTLSIIHTAAR
Subcellular locations: Cytoplasm Detected in retina and placenta.
ARMT1_HUMAN
Homo sapiens
MAVVPASLSGQDVGSFAYLTIKDRIPQILTKVIDTLHRHKSEFFEKHGEEGVEAEKKAISLLSKLRNELQTDKPFIPLVEKFVDTDIWNQYLEYQQSLLNESDGKSRWFYSPWLLVECYMYRRIHEAIIQSPPIDYFDVFKESKEQNFYGSQESIIALCTHLQQLIRTIEDLDENQLKDEFFKLLQISLWGNKCDLSLSGGESSSQNTNVLNSLEDLKPFILLNDMEHLWSLLSNCKKTREKASATRVYIVLDNSGFELVTDLILADFLLSSELATEVHFYGKTIPWFVSDTTIHDFNWLIEQVKHSNHKWMSKCGADWEEYIKMGKWVYHNHIFWTLPHEYCAMPQVAPDLYAELQKAHLILFKGDLNYRKLTGDRKWEFSVPFHQALNGFHPAPLCTIRTLKAEIQVGLQPGQGEQLLASEPSWWTTGKYGIFQYDGPL
Metal-dependent phosphatase that shows phosphatase activity against several substrates, including fructose-1-phosphate and fructose-6-phosphate (By similarity). Its preference for fructose-1-phosphate, a strong glycating agent that causes DNA damage rather than a canonical yeast metabolite, suggests a damage-control function in hexose phosphate metabolism (By similarity). Has also been shown to have O-methyltransferase activity that methylates glutamate residues of target proteins to form gamma-glutamyl methyl ester residues . Possibly methylates PCNA, suggesting it is involved in the DNA damage response .
ARMT1_MACFA
Macaca fascicularis
MAVVPASLSGQDVGSFAYLTIKDRIPQILTKVIDTLHRHKSEFFENHGEEGVEAEKKAISLLSKLRNELQTDKPIIPLVEKFVDTDIWNQYLEYQQSLLNESDGKSRWFYSPWLFVECYMYRRIHEAIIQSPPIDYFDVFKESKEQNFYESQESVIALCTHLQQLIKTIEDLDENQLKDEFFKLLQISLWGNKCDLSLSGGESSSQKTDVLNSLEDLKPFILLNDMEHLWSLLSNCKKTREKASVTRVYIVLDNSGFELVTDLILANFLLSSELATEVHFYGKTIPWFVSDTTIHDFNWLIEQVKHGNHKWMSKCGADWEEYVKMGKWVYHDHIFWTLPHEYCAMPQVAPDLYAELQKAHLILFKGDLNYRKLTGDRKWEFSVPFHQALNGFHPAPLCTIRTLKAEIQVGLKPGQGEQLMASEPCWWTSGKYGIFQYDGPL
Metal-dependent phosphatase that shows phosphatase activity against several substrates, including fructose-1-phosphate and fructose-6-phosphate (By similarity). Its preference for fructose-1-phosphate, a strong glycating agent that causes DNA damage rather than a canonical yeast metabolite, suggests a damage-control function in hexose phosphate metabolism (By similarity). Has also been shown to have O-methyltransferase activity that methylates glutamate residues of target proteins to form gamma-glutamyl methyl ester residues (By similarity). Possibly methylates PCNA, suggesting it is involved in the DNA damage response (By similarity).
ARNT2_HUMAN
Homo sapiens
MATPAAVNPPEMASDIPGSVTLPVAPMAATGQVRMAGAMPARGGKRRSGMDFDDEDGEGPSKFSRENHSEIERRRRNKMTQYITELSDMVPTCSALARKPDKLTILRMAVSHMKSMRGTGNKSTDGAYKPSFLTEQELKHLILEAADGFLFVVAAETGRVIYVSDSVTPVLNQPQSEWFGSTLYEQVHPDDVEKLREQLCTSENSMTGRILDLKTGTVKKEGQQSSMRMCMGSRRSFICRMRCGNAPLDHLPLNRITTMRKRFRNGLGPVKEGEAQYAVVHCTGYIKAWPPAGMTIPEEDADVGQGSKYCLVAIGRLQVTSSPVCMDMNGMSVPTEFLSRHNSDGIITFVDPRCISVIGYQPQDLLGKDILEFCHPEDQSHLRESFQQVVKLKGQVLSVMYRFRTKNREWMLIRTSSFTFQNPYSDEIEYIICTNTNVKQLQQQQAELEVHQRDGLSSYDLSQVPVPNLPAGVHEAGKSVEKADAIFSQERDPRFAEMFAGISASEKKMMSSASAAGTQQIYSQGSPFPSGHSGKAFSSSVVHVPGVNDIQSSSSTGQNMSQISRQLNQSQVAWTGSRPPFPGQQIPSQSSKTQSSPFGIGTSHTYPADPSSYSPLSSPATSSPSGNAYSSLANRTPGFAESGQSSGQFQGRPSEVWSQWQSQHHGQQSGEQHSHQQPGQTEVFQDMLPMPGDPTQGTGNYNIEDFADLGMFPPFSE
Transcription factor that plays a role in the development of the hypothalamo-pituitary axis, postnatal brain growth, and visual and renal function . Specifically recognizes the xenobiotic response element (XRE). Subcellular locations: Nucleus
AROS_HUMAN
Homo sapiens
MSAALLRRGLELLAASEAPRDPPGQAKPRGAPVKRPRKTKAIQAQKLRNSAKGKVPKSALDEYRKRECRDHLRVNLKFLTRTRSTVAESVSQQILRQNRGRKACDRPVAKTKKKKAEGTVFTEEDFQKFQQEYFGS
Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Acts as a chaperone that specifically mediates the integration of RPS19 in state post-A1 . Direct regulator of SIRT1. Enhances SIRT1-mediated deacetylation of p53/TP53, thereby participating in inhibition of p53/TP53-mediated transcriptional activity . Subcellular locations: Nucleus, Nucleolus Widely expressed (at protein level).
ARP10_HUMAN
Homo sapiens
MPLYEGLGSGGEKTAVVIDLGEAFTKCGFAGETGPRCIIPSVIKRAGMPKPVRVVQYNINTEELYSYLKEFIHILYFRHLLVNPRDRRVVIIESVLCPSHFRETLTRVLFKYFEVPSVLLAPSHLMALLTLGINSAMVLDCGYRESLVLPIYEGIPVLNCWGALPLGGKALHKELETQLLEQCTVDTSVAKEQSLPSVMGSVPEGVLEDIKARTCFVSDLKRGLKIQAAKFNIDGNNERPSPPPNVDYPLDGEKILHILGSIRDSVVEILFEQDNEEQSVATLILDSLIQCPIDTRKQLAENLVVIGGTSMLPGFLHRLLAEIRYLVEKPKYKKALGTKTFRIHTPPAKANCVAWLGGAIFGALQDILGSRSVSKEYYNQTGRIPDWCSLNNPPLEMMFDVGKTQPPLMKRAFSTEK
Part of the dynactin complex that activates the molecular motor dynein for ultra-processive transport along microtubules. Subcellular locations: Cytoplasm, Cytoskeleton
ARP19_HUMAN
Homo sapiens
MSAEVPEAASAEEQKEMEDKVTSPEKAEEAKLKARYPHLGQKPGGSDFLRKRLQKGQKYFDSGDYNMAKAKMKNKQLPTAAPDKTEVTGDHIPTPQDLPQRKPSLVASKLAG
Protein phosphatase inhibitor that specifically inhibits protein phosphatase 2A (PP2A) during mitosis. When phosphorylated at Ser-62 during mitosis, specifically interacts with PPP2R2D (PR55-delta) and inhibits its activity, leading to inactivation of PP2A, an essential condition to keep cyclin-B1-CDK1 activity high during M phase. May indirectly enhance GAP-43 expression. Subcellular locations: Cytoplasm
ARPC4_HUMAN
Homo sapiens
MTATLRPYLSAVRATLQAALCLENFSSQVVERHNKPEVEVRSSKELLLQPVTISRNEKEKVLIEGSINSVRVSIAVKQADEIEKILCHKFMRFMMMRAENFFILRRKPVEGYDISFLITNFHTEQMYKHKLVDFVIHFMEEIDKEISEMKLSVNARARIVAEEFLKNF
Actin-binding component of the Arp2/3 complex, a multiprotein complex that mediates actin polymerization upon stimulation by nucleation-promoting factor (NPF) . The Arp2/3 complex mediates the formation of branched actin networks in the cytoplasm, providing the force for cell motility . In addition to its role in the cytoplasmic cytoskeleton, the Arp2/3 complex also promotes actin polymerization in the nucleus, thereby regulating gene transcription and repair of damaged DNA . The Arp2/3 complex promotes homologous recombination (HR) repair in response to DNA damage by promoting nuclear actin polymerization, leading to drive motility of double-strand breaks (DSBs) . Subcellular locations: Cytoplasm, Cytoskeleton, Cell projection, Nucleus
ARPC5_HUMAN
Homo sapiens
MSKNTVSSARFRKVDVDEYDENKFVDEEDGGDGQAGPDEGEVDSCLRQGNMTAALQAALKNPPINTKSQAVKDRAGSIVLKVLISFKANDIEKAVQSLDKNGVDLLMKYIYKGFESPSDNSSAMLLQWHEKALAAGGVGSIVRVLTARKTV
Component of the Arp2/3 complex, a multiprotein complex that mediates actin polymerization upon stimulation by nucleation-promoting factor (NPF) . The Arp2/3 complex mediates the formation of branched actin networks in the cytoplasm, providing the force for cell motility . In addition to its role in the cytoplasmic cytoskeleton, the Arp2/3 complex also promotes actin polymerization in the nucleus, thereby regulating gene transcription and repair of damaged DNA . The Arp2/3 complex promotes homologous recombination (HR) repair in response to DNA damage by promoting nuclear actin polymerization, leading to drive motility of double-strand breaks (DSBs) . Subcellular locations: Cytoplasm, Cytoskeleton, Cell projection, Nucleus
ARPC5_PONAB
Pongo abelii
MSKNTVSSARFRKVDVDEYDENKFVDEEDGGDGQAGPDEGEVDSCLRQGNMTAALQAALKNPPINTKSQAVKDRAGSIVLKVLISFKANDIEKAVQSLDKNGVDLLMKYIYKGFESPSDNSSAMLLQWHEKALAAGGVGSIVRVLTARKTV
Component of the Arp2/3 complex, a multiprotein complex that mediates actin polymerization upon stimulation by nucleation-promoting factor (NPF). The Arp2/3 complex mediates the formation of branched actin networks in the cytoplasm, providing the force for cell motility. In addition to its role in the cytoplasmic cytoskeleton, the Arp2/3 complex also promotes actin polymerization in the nucleus, thereby regulating gene transcription and repair of damaged DNA. The Arp2/3 complex promotes homologous recombination (HR) repair in response to DNA damage by promoting nuclear actin polymerization, leading to drive motility of double-strand breaks (DSBs). Subcellular locations: Cytoplasm, Cytoskeleton, Cell projection, Nucleus
ARY1_HUMAN
Homo sapiens
MDIEAYLERIGYKKSRNKLDLETLTDILQHQIRAVPFENLNIHCGDAMDLGLEAIFDQVVRRNRGGWCLQVNHLLYWALTTIGFETTMLGGYVYSTPAKKYSTGMIHLLLQVTIDGRNYIVDAGFGRSYQMWQPLELISGKDQPQVPCVFRLTEENGFWYLDQIRREQYIPNEEFLHSDLLEDSKYRKIYSFTLKPRTIEDFESMNTYLQTSPSSVFTSKSFCSLQTPDGVHCLVGFTLTHRRFNYKDNTDLIEFKTLSEEEIEKVLKNIFNISLQRKLVPKHGDRFFTI
Participates in the detoxification of a plethora of hydrazine and arylamine drugs. Catalyzes the N- or O-acetylation of various arylamine and heterocyclic amine substrates and is able to bioactivate several known carcinogens. Subcellular locations: Cytoplasm
ARY2_HUMAN
Homo sapiens
MDIEAYFERIGYKNSRNKLDLETLTDILEHQIRAVPFENLNMHCGQAMELGLEAIFDHIVRRNRGGWCLQVNQLLYWALTTIGFQTTMLGGYFYIPPVNKYSTGMVHLLLQVTIDGRNYIVDAGSGSSSQMWQPLELISGKDQPQVPCIFCLTEERGIWYLDQIRREQYITNKEFLNSHLLPKKKHQKIYLFTLEPRTIEDFESMNTYLQTSPTSSFITTSFCSLQTPEGVYCLVGFILTYRKFNYKDNTDLVEFKTLTEEEVEEVLRNIFKISLGRNLVPKPGDGSLTI
Participates in the detoxification of a plethora of hydrazine and arylamine drugs. Catalyzes the N- or O-acetylation of various arylamine and heterocyclic amine substrates and is able to bioactivate several known carcinogens. Subcellular locations: Cytoplasm
ARY2_MACMU
Macaca mulatta
MDIEAYFERIGYKNSRNKLDLETLTDILEHQIRAVPFENLNMHCGEAMELGLETIFDHIVRRNRGGWCLQVNQLLYWALTTIGFQTTMLGGYVYIPAANKYSTGMIHLLLQVTIDGRNYIADAGFGSSSQMWQPLELISGKDQPQMPSIFRLTEQKGIWYLDQIRREQYIPNTEFLNSDLLPKTTHQKVYSFTLEPRKIEDFESMNTYLQTSPTSAFTTTSFCSLQTPEGVHCLVGFTLTYRIFNYKDNTDLIEFKTLIEEEVEEVLKNIFKISLGRKLVPKPGNGSFTI
Participates in the detoxification of a plethora of hydrazine and arylamine drugs. Catalyzes the N- or O-acetylation of various arylamine and heterocyclic amine substrates and is able to bioactivate several known carcinogens (By similarity). Subcellular locations: Cytoplasm
ASH1L_HUMAN
Homo sapiens
MDPRNTAMLGLGSDSEGFSRKSPSAISTGTLVSKREVELEKNTKEEEDLRKRNRERNIEAGKDDGLTDAQQQFSVKETNFSEGNLKLKIGLQAKRTKKPPKNLENYVCRPAIKTTIKHPRKALKSGKMTDEKNEHCPSKRDPSKLYKKADDVAAIECQSEEVIRLHSQGENNPLSKKLSPVHSEMADYINATPSTLLGSRDPDLKDRALLNGGTSVTEKLAQLIATCPPSKSSKTKPKKLGTGTTAGLVSKDLIRKAGVGSVAGIIHKDLIKKPTISTAVGLVTKDPGKKPVFNAAVGLVNKDSVKKLGTGTTAVFINKNLGKKPGTITTVGLLSKDSGKKLGIGIVPGLVHKESGKKLGLGTVVGLVNKDLGKKLGSTVGLVAKDCAKKIVASSAMGLVNKDIGKKLMSCPLAGLISKDAINLKAEALLPTQEPLKASCSTNINNQESQELSESLKDSATSKTFEKNVVRQNKESILEKFSVRKEIINLEKEMFNEGTCIQQDSFSSSEKGSYETSKHEKQPPVYCTSPDFKMGGASDVSTAKSPFSAVGESNLPSPSPTVSVNPLTRSPPETSSQLAPNPLLLSSTTELIEEISESVGKNQFTSESTHLNVGHRSVGHSISIECKGIDKEVNDSKTTHIDIPRISSSLGKKPSLTSESSIHTITPSVVNFTSLFSNKPFLKLGAVSASDKHCQVAESLSTSLQSKPLKKRKGRKPRWTKVVARSTCRSPKGLELERSELFKNVSCSSLSNSNSEPAKFMKNIGPPSFVDHDFLKRRLPKLSKSTAPSLALLADSEKPSHKSFATHKLSSSMCVSSDLLSDIYKPKRGRPKSKEMPQLEGPPKRTLKIPASKVFSLQSKEEQEPPILQPEIEIPSFKQGLSVSPFPKKRGRPKRQMRSPVKMKPPVLSVAPFVATESPSKLESESDNHRSSSDFFESEDQLQDPDDLDDSHRPSVCSMSDLEMEPDKKITKRNNGQLMKTIIRKINKMKTLKRKKLLNQILSSSVESSNKGKVQSKLHNTVSSLAATFGSKLGQQINVSKKGTIYIGKRRGRKPKTVLNGILSGSPTSLAVLEQTAQQAAGSALGQILPPLLPSSASSSEILPSPICSQSSGTSGGQSPVSSDAGFVEPSSVPYLHLHSRQGSMIQTLAMKKASKGRRRLSPPTLLPNSPSHLSELTSLKEATPSPISESHSDETIPSDSGIGTDNNSTSDRAEKFCGQKKRRHSFEHVSLIPPETSTVLSSLKEKHKHKCKRRNHDYLSYDKMKRQKRKRKKKYPQLRNRQDPDFIAELEELISRLSEIRITHRSHHFIPRDLLPTIFRINFNSFYTHPSFPLDPLHYIRKPDLKKKRGRPPKMREAMAEMPFMHSLSFPLSSTGFYPSYGMPYSPSPLTAAPIGLGYYGRYPPTLYPPPPSPSFTTPLPPPSYMHAGHLLLNPAKYHKKKHKLLRQEAFLTTSRTPLLSMSTYPSVPPEMAYGWMVEHKHRHRHKHREHRSSEQPQVSMDTGSSRSVLESLKRYRFGKDAVGERYKHKEKHRCHMSCPHLSPSKSLINREEQWVHREPSESSPLALGLQTPLQIDCSESSPSLSLGGFTPNSEPASSDEHTNLFTSAIGSCRVSNPNSSGRKKLTDSPGLFSAQDTSLNRLHRKESLPSNERAVQTLAGSQPTSDKPSQRPSESTNCSPTRKRSSSESTSSTVNGVPSRSPRLVASGDDSVDSLLQRMVQNEDQEPMEKSIDAVIATASAPPSSSPGRSHSKDRTLGKPDSLLVPAVTSDSCNNSISLLSEKLTSSCSPHHIKRSVVEAMQRQARKMCNYDKILATKKNLDHVNKILKAKKLQRQARTGNNFVKRRPGRPRKCPLQAVVSMQAFQAAQFVNPELNRDEEGAALHLSPDTVTDVIEAVVQSVNLNPEHKKGLKRKGWLLEEQTRKKQKPLPEEEEQENNKSFNEAPVEIPSPSETPAKPSEPESTLQPVLSLIPREKKPPRPPKKKYQKAGLYSDVYKTTDPKSRLIQLKKEKLEYTPGEHEYGLFPAPIHVVFFVSGKYLRQKRIDFQLPYDILWQWKHNQLYKKPDVPLYKKIRSNVYVDVKPLSGYEATTCNCKKPDDDTRKGCVDDCLNRMIFAECSPNTCPCGEQCCNQRIQRHEWVQCLERFRAEEKGWGIRTKEPLKAGQFIIEYLGEVVSEQEFRNRMIEQYHNHSDHYCLNLDSGMVIDSYRMGNEARFINHSCDPNCEMQKWSVNGVYRIGLYALKDMPAGTELTYDYNFHSFNVEKQQLCKCGFEKCRGIIGGKSQRVNGLTSSKNSQPMATHKKSGRSKEKRKSKHKLKKRRGHLSEEPSENINTPTRLTPQLQMKPMSNRERNFVLKHHVFLVRNWEKIRQKQEEVKHTSDNIHSASLYTRWNGICRDDGNIKSDVFMTQFSALQTARSVRTRRLAAAEENIEVARAARLAQIFKEICDGIISYKDSSRQALAAPLLNLPPKKKNADYYEKISDPLDLITIEKQILTGYYKTVEAFDADMLKVFRNAEKYYGRKSPVGRDVCRLRKAYYNARHEASAQIDEIVGETASEADSSETSVSEKENGHEKDDDVIRCICGLYKDEGLMIQCDKCMVWQHCDCMGVNSDVEHYLCEQCDPRPVDREVPMIPRPHYAQPGCVYFICLLRDDLLLRQGDCVYLMRDSRRTPDGHPVRQSYRLLSHINRDKLDIFRIEKLWKNEKEERFAFGHHYFRPHETHHSPSRRFYHNELFRVPLYEIIPLEAVVGTCCVLDLYTYCKGRPKGVKEQDVYICDYRLDKSAHLFYKIHRNRYPVCTKPYAFDHFPKKLTPKKDFSPHYVPDNYKRNGGRSSWKSERSKPPLKDLGQEDDALPLIEEVLASQEQAANEIPSLEEPEREGATANVSEGEKKTEESSQEPQSTCTPEERRHNQRERLNQILLNLLEKIPGKNAIDVTYLLEEGSGRKLRRRTLFIPENSFRK
Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 . Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). Subcellular locations: Nucleus, Cell junction, Tight junction, Chromosome The relevance of tight junction localization is however unclear. Widely expressed, with highest level in brain, heart and kidney.
ASH2L_HUMAN
Homo sapiens
MAAAGAGPGQEAGAGPGPGAVANATGAEEGEMKPVAAGAAAPPGEGISAAPTVEPSSGEAEGGEANLVDVSGGLETESSNGKDTLEGAGDTSEVMDTQAGSVDEENGRQLGEVELQCGICTKWFTADTFGIDTSSCLPFMTNYSFHCNVCHHSGNTYFLRKQANLKEMCLSALANLTWQSRTQDEHPKTMFSKDKDIIPFIDKYWECMTTRQRPGKMTWPNNIVKTMSKERDVFLVKEHPDPGSKDPEEDYPKFGLLDQDLSNIGPAYDNQKQSSAVSTSGNLNGGIAAGSSGKGRGAKRKQQDGGTTGTTKKARSDPLFSAQRLPPHGYPLEHPFNKDGYRYILAEPDPHAPDPEKLELDCWAGKPIPGDLYRACLYERVLLALHDRAPQLKISDDRLTVVGEKGYSMVRASHGVRKGAWYFEITVDEMPPDTAARLGWSQPLGNLQAPLGYDKFSYSWRSKKGTKFHQSIGKHYSSGYGQGDVLGFYINLPEDTETAKSLPDTYKDKALIKFKSYLYFEEKDFVDKAEKSLKQTPHSEIIFYKNGVNQGVAYKDIFEGVYFPAISLYKSCTVSINFGPCFKYPPKDLTYRPMSDMGWGAVVEHTLADVLYHVETEVDGRRSPPWEP
Transcriptional regulator . Component or associated component of some histone methyltransferase complexes which regulates transcription through recruitment of those complexes to gene promoters . Component of the Set1/Ash2 histone methyltransferase (HMT) complex, a complex that specifically methylates 'Lys-4' of histone H3, but not if the neighboring 'Lys-9' residue is already methylated . As part of the MLL1/MLL complex it is involved in methylation and dimethylation at 'Lys-4' of histone H3 . May play a role in hematopoiesis . In association with RBBP5 and WDR5, stimulates the histone methyltransferase activities of KMT2A, KMT2B, KMT2C, KMT2D, SETD1A and SETD1B (, ). Subcellular locations: Nucleus Ubiquitously expressed. Predominantly expressed in adult heart and testis and fetal lung and liver, with barely detectable expression in adult lung, liver, kidney, prostate, and peripheral leukocytes.
ASSY_HUMAN
Homo sapiens
MSSKGSVVLAYSGGLDTSCILVWLKEQGYDVIAYLANIGQKEDFEEARKKALKLGAKKVFIEDVSREFVEEFIWPAIQSSALYEDRYLLGTSLARPCIARKQVEIAQREGAKYVSHGATGKGNDQVRFELSCYSLAPQIKVIAPWRMPEFYNRFKGRNDLMEYAKQHGIPIPVTPKNPWSMDENLMHISYEAGILENPKNQAPPGLYTKTQDPAKAPNTPDILEIEFKKGVPVKVTNVKDGTTHQTSLELFMYLNEVAGKHGVGRIDIVENRFIGMKSRGIYETPAGTILYHAHLDIEAFTMDREVRKIKQGLGLKFAELVYTGFWHSPECEFVRHCIAKSQERVEGKVQVSVLKGQVYILGRESPLSLYNEELVSMNVQGDYEPTDATGFININSLRLKEYHRLQSKVTAK
One of the enzymes of the urea cycle, the metabolic pathway transforming neurotoxic amonia produced by protein catabolism into inocuous urea in the liver of ureotelic animals. Catalyzes the formation of arginosuccinate from aspartate, citrulline and ATP and together with ASL it is responsible for the biosynthesis of arginine in most body tissues. Subcellular locations: Cytoplasm, Cytosol Expressed in adult liver.
ASTRC_PONAB
Pongo abelii
MEGAPTVRQVMNEGDSSLATELQEDVEENPSPTVEENNVVVKKQGPNLHNWSGDWSFWISSSTYKDRNEEYRRQFTHLPDTERLIADYACALQRDILLQGRLYLSENWLCFYSNIFRWETTISIALKNITFMTKEKTARLIPNAIQIVTESEKFFFTSFGARDRSYLSIFRLWQNVLLDKSLTRQEFWQLLQQNYGTELGLNAEEMENLSLSIEDVRPRSPGRSSLDDSGERDEKLSKSISFTSESISRVSETESFDGNSSKGGLGKEESQNEKQTKKSLLPTLEKKLTRVPSKSLDLNKNEYLSLEKSSTSDSVDEENVPEKDLHGRLFINRIFHISADRMFELLFTSSRFMQKFASSRNIIDVVSTPWTAELGGDQLRTMTYTIVLNSPLTGKCTAATEKQTLYKESREARFYMVDSEVLTHDVPYHDYFYTVDRYCIIRSSKQKCRLRVSTDLKYRKQPWGLVKSLIEKNSWGSLEDYFKHLESDLLIEESILNQAIEDPGKLTGLRRRRRTFNRTAETVPKLSSQHSSGDVGLGTKADITGKKKEMENYNITLIVVMSIFVLLLVLLNVTLFLKLSKIEHAAQSFYRLRLQEEKSLNLASDVVSRAETIQNNKDQAHRLKGVLRDSIVMLEQLKSSLIMLQKTFDLLNKNKTGMAVES
Cholesterol transporter that mediates non-vesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) (By similarity). Contains unique domains for binding cholesterol and the PM, thereby serving as a molecular bridge for the transfer of cholesterol from the PM to the ER (By similarity). Plays a crucial role in cholesterol homeostasis and has the unique ability to localize to the PM based on the level of membrane cholesterol (By similarity). In lipid-poor conditions localizes to the ER membrane and in response to excess cholesterol in the PM is recruited to the endoplasmic reticulum-plasma membrane contact sites (EPCS) which is mediated by the GRAM domain (By similarity). At the EPCS, the sterol-binding VASt/ASTER domain binds to the cholesterol in the PM and facilitates its transfer from the PM to ER (By similarity). Subcellular locations: Endoplasmic reticulum membrane, Cell membrane In lipid-poor conditions localizes to the ER membrane and in response to excess cholesterol in the PM is recruited to the endoplasmic reticulum-plasma membrane contact sites (EPCS).
ASURF_HUMAN
Homo sapiens
MPSRGTRPEDSSVLIPTDNSTPHKEDLSSKIKEQKIVVDELSNLKKNRKVYRQQQNSNIFFLADRTEMLSESKNILDELKKEYQEIENLDKTKIKK
Subcellular locations: Cytoplasm
ASXL1_HUMAN
Homo sapiens
MKDKQKKKKERTWAEAARLVLENYSDAPMTPKQILQVIEAEGLKEMRSGTSPLACLNAMLHSNSRGGEGLFYKLPGRISLFTLKKDALQWSRHPATVEGEEPEDTADVESCGSNEASTVSGENDVSLDETSSNASCSTESQSRPLSNPRDSYRASSQANKQKKKTGVMLPRVVLTPLKVNGAHVESASGFSGCHADGESGSPSSSSSGSLALGSAAIRGQAEVTQDPAPLLRGFRKPATGQMKRNRGEEIDFETPGSILVNTNLRALINSRTFHALPSHFQQQLLFLLPEVDRQVGTDGLLRLSSSALNNEFFTHAAQSWRERLADGEFTHEMQVRIRQEMEKEKKVEQWKEKFFEDYYGQKLGLTKEESLQQNVGQEEAEIKSGLCVPGESVRIQRGPATRQRDGHFKKRSRPDLRTRARRNLYKKQESEQAGVAKDAKSVASDVPLYKDGEAKTDPAGLSSPHLPGTSSAAPDLEGPEFPVESVASRIQAEPDNLARASASPDRIPSLPQETVDQEPKDQKRKSFEQAASASFPEKKPRLEDRQSFRNTIESVHTEKPQPTKEEPKVPPIRIQLSRIKPPWVVKGQPTYQICPRIIPTTESSCRGWTGARTLADIKARALQVRGARGHHCHREAATTAIGGGGGPGGGGGGATDEGGGRGSSSGDGGEACGHPEPRGGPSTPGKCTSDLQRTQLLPPYPLNGEHTQAGTAMSRARREDLPSLRKEESCLLQRATVGLTDGLGDASQLPVAPTGDQPCQALPLLSSQTSVAERLVEQPQLHPDVRTECESGTTSWESDDEEQGPTVPADNGPIPSLVGDDTLEKGTGQALDSHPTMKDPVNVTPSSTPESSPTDCLQNRAFDDELGLGGSCPPMRESDTRQENLKTKALVSNSSLHWIPIPSNDEVVKQPKPESREHIPSVEPQVGEEWEKAAPTPPALPGDLTAEEGLDPLDSLTSLWTVPSRGGSDSNGSYCQQVDIEKLKINGDSEALSPHGESTDTASDFEGHLTEDSSEADTREAAVTKGSSVDKDEKPNWNQSAPLSKVNGDMRLVTRTDGMVAPQSWVSRVCAVRQKIPDSLLLASTEYQPRAVCLSMPGSSVEATNPLVMQLLQGSLPLEKVLPPAHDDSMSESPQVPLTKDQSHGSLRMGSLHGLGKNSGMVDGSSPSSLRALKEPLLPDSCETGTGLARIEATQAPGAPQKNCKAVPSFDSLHPVTNPITSSRKLEEMDSKEQFSSFSCEDQKEVRAMSQDSNSNAAPGKSPGDLTTSRTPRFSSPNVISFGPEQTGRALGDQSNVTGQGKKLFGSGNVAATLQRPRPADPMPLPAEIPPVFPSGKLGPSTNSMSGGVQTPREDWAPKPHAFVGSVKNEKTFVGGPLKANAENRKATGHSPLELVGHLEGMPFVMDLPFWKLPREPGKGLSEPLEPSSLPSQLSIKQAFYGKLSKLQLSSTSFNYSSSSPTFPKGLAGSVVQLSHKANFGASHSASLSLQMFTDSSTVESISLQCACSLKAMIMCQGCGAFCHDDCIGPSKLCVLCLVVR
Probable Polycomb group (PcG) protein involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor gamma (PPARG) . Acts as a coactivator of RARA and RXRA through association with NCOA1 . Acts as a corepressor for PPARG and suppresses its adipocyte differentiation-inducing activity (By similarity). Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) . Acts as a sensor of N(6)-methyladenosine methylation on DNA (m6A): recognizes and binds m6A DNA, leading to its ubiquitination and degradation by TRIP12, thereby inactivating the PR-DUB complex and regulating Polycomb silencing . Subcellular locations: Nucleus Widely expressed at low level. Expressed in heart, brain, skeletal muscle, placenta, pancreas, spleen, prostate, small intestine, colon, peripheral blood, leukocytes, bone marrow and fetal liver. Highly expressed in testes.
ASXL2_HUMAN
Homo sapiens
MREKGRRKKGRTWAEAAKTVLEKYPNTPMSHKEILQVIQREGLKEIRSGTSPLACLNAMLHTNSRGEEGIFYKVPGRMGVYTLKKDVPDGVKELSEGSEESSDGQSDSQSSENSSSSSDGGSNKEGKKSRWKRKVSSSSPQSGCPSPTIPAGKVISPSQKHSKKALKQALKQQQQKKQQQQCRPSISISSNQHLSLKTVKAASDSVPAKPATWEGKQSDGQTGSPQNSNSSFSSSVKVENTLLGLGKKSFQRSERLHTRQMKRTKCADIDVETPDSILVNTNLRALINKHTFSVLPGDCQQRLLLLLPEVDRQVGPDGLMKLNGSALNNEFFTSAAQGWKERLSEGEFTPEMQVRIRQEIEKEKKVEPWKEQFFESYYGQSSGLSLEDSKKLTASPSDPKVKKTPAEQPKSMPVSEASLIRIVPVVSQSECKEEALQMSSPGRKEECESQGEVQPNFSTSSEPLLSSALNTHELSSILPIKCPKDEDLLEQKPVTSAEQESEKNHLTTASNYNKSESQESLVTSPSKPKSPGVEKPIVKPTAGAGPQETNMKEPLATLVDQSPESLKRKSSLTQEEAPVSWEKRPRVTENRQHQQPFQVSPQPFLNRGDRIQVRKVPPLKIPVSRISPMPFHPSQVSPRARFPVSITSPNRTGARTLADIKAKAQLVKAQRAAAAAAAAAAAAASVGGTIPGPGPGGGQGPGEGGEGQTARGGSPGSDRVSETGKGPTLELAGTGSRGGTRELLPCGPETQPQSETKTTPSQAQPHSVSGAQLQQTPPVPPTPAVSGACTSVPSPAHIEKLDNEKLNPTRATATVASVSHPQGPSSCRQEKAPSPTGPALISGASPVHCAADGTVELKAGPSKNIPNPSASSKTDASVPVAVTPSPLTSLLTTATLEKLPVPQVSATTAPAGSAPPSSTLPAASSLKTPGTSLNMNGPTLRPTSSIPANNPLVTQLLQGKDVPMEQILPKPLTKVEMKTVPLTAKEERGMGALIATNTTENSTREEVNERQSHPATQQQLGKTLQSKQLPQVPRPLQLFSAKELRDSSIDTHQYHEGLSKATQDQILQTLIQRVRRQNLLSVVPPSQFNFAHSGFQLEDISTSQRFMLGFAGRRTSKPAMAGHYLLNISTYGRGSESFRRTHSVNPEDRFCLSSPTEALKMGYTDCKNATGESSSSKEDDTDEESTGDEQESVTVKEEPQVSQSAGKGDTSSGPHSRETLSTSDCLASKNVKAEIPLNEQTTLSKENYLFTRGQTFDEKTLARDLIQAAQKQMAHAVRGKAIRSSPELFSSTVLPLPADSPTHQPLLLPPLQTPKLYGSPTQIGPSYRGMINVSTSSDMDHNSAVPGSQVSSNVGDVMSFSVTVTTIPASQAMNPSSHGQTIPVQAFSEENSIEGTPSKCYCRLKAMIMCKGCGAFCHDDCIGPSKLCVSCLVVR
Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Subcellular locations: Nucleus
ASXL3_HUMAN
Homo sapiens
MKDKRKKKDRTWAEAARLALEKHPNSPMTAKQILEVIQKEGLKETSGTSPLACLNAMLHTNTRIGDGTFFKIPGKSGLYALKKEESSCPADGTLDLVCESELDGTDMAEANAHGEENGVCSKQVTDEASSTRDSSLTNTAVQSKLVSSFQQHTKKALKQALRQQQKRRNGVSMMVNKTVPRVVLTPLKVSDEQSDSPSGSESKNGEADSSDKEMKHGQKSPTGKQTSQHLKRLKKSGLGHLKWTKAEDIDIETPGSILVNTNLRALINKHTFASLPQHFQQYLLLLLPEVDRQMGSDGILRLSTSALNNEFFAYAAQGWKQRLAEGEFTPEMQLRIRQEIEKEKKTEPWKEKFFERFYGEKLGMSREESVKLTTGPNNAGAQSSSSCGTSGLPVSAQTALAEQQPKSMKSPASPEPGFCATLCPMVEIPPKDIMAELESEDILIPEESVIQEEIAEEVETSICECQDENHKTIPEFSEEAESLTNSHEEPQIAPPEDNLESCVMMNDVLETLPHIEVKIEGKSESPQEEMTVVIDQLEVCDSLIPSTSSMTHVSDTEHKESETAVETSTPKIKTGSSSLEGQFPNEGIAIDMELQSDPEEQLSENACISETSFSSESPEGACTSLPSPGGETQSTSEESCTPASLETTFCSEVSSTENTDKYNQRNSTDENFHASLMSEISPISTSPEISEASLMSNLPLTSEASPVSNLPLTSETSPMSDLPLTSETSSVSSMLLTSETTFVSSLPLPSETSPISNSSINERMAHQQRKSPSVSEEPLSPQKDESSATAKPLGENLTSQQKNLSNTPEPIIMSSSSIAPEAFPSEDLHNKTLSQQTCKSHVDTEKPYPASIPELASTEMIKVKNHSVLQRTEKKVLPSPLELSVFSEGTDNKGNELPSAKLQDKQYISSVDKAPFSEGSRNKTHKQGSTQSRLETSHTSKSSEPSKSPDGIRNESRDSEISKRKTAEQHSFGICKEKRARIEDDQSTRNISSSSPPEKEQPPREEPRVPPLKIQLSKIGPPFIIKSQPVSKPESRASTSTSVSGGRNTGARTLADIKARAQQARAQREAAAAAAVAAAASIVSGAMGSPGEGGKTRTLAHIKEQTKAKLFAKHQARAHLFQTSKETRLPPPLSSKEGPPNLEVSSTPETKMEGSTGVIIVNPNCRSPSNKSAHLRETTTVLQQSLNPSKLPETATDLSVHSSDENIPVSHLSEKIVSSTSSENSSVPMLFNKNSVPVSVCSTAISGAIKEHPFVSSVDKSSVLMSVDSANTTISACNISMLKTIQGTDTPCIAIIPKCIESTPISATTEGSSISSSMDDKQLLISSSSASNLVSTQYTSVPTPSIGNNLPNLSTSSVLIPPMGINNRFPSEKIAIPGSEEQATVSMGTTVRAALSCSDSVAVTDSLVAHPTVAMFTGNMLTINSYDSPPKLSAESLDKNSGPRNRADNSGKPQQPPGGFAPAAINRSIPCKVIVDHSTTLTSSLSLTVSVESSEASLDLQGRPVRTEASVQPVACPQVSVISRPEPVANEGIDHSSTFIAASAAKQDSKTLPATCTSLRELPLVPDKLNEPTAPSHNFAEQARGPAPFKSEADTTCSNQYNPSNRICWNDDGMRSTGQPLVTHSGSSKQKEYLEQSCPKAIKTEHANYLNVSELHPRNLVTNVALPVKSELHEADKGFRMDTEDFPGPELPPPAAEGASSVQQTQNMKASTSSPMEEAISLATDALKRVPGAGSSGCRLSSVEANNPLVTQLLQGNLPLEKVLPQPRLGAKLEINRLPLPLQTTSVGKTAPERNVEIPPSSPNPDGKGYLAGTLAPLQMRKRENHPKKRVARTVGEHTQVKCEPGKLLVEPDVKGVPCVISSGISQLGHSQPFKQEWLNKHSMQNRIVHSPEVKQQKRLLPSCSFQQNLFHVDKNGGFHTDAGTSHRQQFYQMPVAARGPIPTAALLQASSKTPVGCNAFAFNRHLEQKGLGEVSLSSAPHQLRLANMLSPNMPMKEGDEVGGTAHTMPNKALVHPPPPPPPPPPPPLALPPPPPPPPPLPPPLPNAEVPSDQKQPPVTMETTKRLSWPQSTGICSNIKSEPLSFEEGLSSSCELGMKQVSYDQNEMKEQLKAFALKSADFSSYLLSEPQKPFTQLAAQKMQVQQQQQLCGNYPTIHFGSTSFKRAASAIEKSIGILGSGSNPATGLSGQNAQMPVQNFADSSNADELELKCSCRLKAMIVCKGCGAFCHDDCIGPSKLCVACLVVR
Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Subcellular locations: Nucleus Expressed in pancreatic islets, testis, neuroblastoma, head and neck tumor.
AT5F1_HUMAN
Homo sapiens
MLSRVVLSAAATAAPSLKNAAFLGPGVLQATRTFHTGQPHLVPVPPLPEYGGKVRYGLIPEEFFQFLYPKTGVTGPYVLGTGLILYALSKEIYVISAETFTALSVLGVMVYGIKKYGPFVADFADKLNEQKLAQLEEAKQASIQHIQNAIDTEKSQQALVQKRHYLFDVQRNNIAMALEVTYRERLYRVYKEVKNRLDYHISVQNMMRRKEQEHMINWVEKHVVQSISTQQEKETIAKCIADLKLLAKKAQAQPVM
Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(0) domain and the peripheric stalk, which acts as a stator to hold the catalytic alpha(3)beta(3) subcomplex and subunit a/ATP6 static relative to the rotary elements. Subcellular locations: Mitochondrion, Mitochondrion inner membrane
AT5F1_PONAB
Pongo abelii
MLSRVVLSAAATAASSLKNAAFLGPGVLQATRTFHTGQPHLAPVPPLPEYGGKVRYGLIPEEFFQFLYPKTGVTGPYVLGTGLILYALSKEIYVISAETFTALSLIGVMVYGIKKYGPAVADFADKLNEQKLAQLEEAKQTSIQQIQNAIDMEKSQQALVQKRHYLFDVQRNNIAMALEVTYRERLYRVYKEVKNRLDYHIYVQNMMRQKEQEHMVNWVEKHVVQSISTQQEKETIAKCIADLKLLAKKAQAQPVM
Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(0) domain and the peripheric stalk, which acts as a stator to hold the catalytic alpha(3)beta(3) subcomplex and subunit a/ATP6 static relative to the rotary elements. Subcellular locations: Mitochondrion, Mitochondrion inner membrane
AT5G1_HUMAN
Homo sapiens
MQTAGALFISPALIRCCTRGLIRPVSASFLNSPVNSSKQPSYSNFPLQVARREFQTSVVSRDIDTAAKFIGAGAATVGVAGSGAGIGTVFGSLIIGYARNPSLKQQLFSYAILGFALSEAMGLFCLMVAFLILFAM
Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(0) domain. A homomeric c-ring of probably 10 subunits is part of the complex rotary element. Subcellular locations: Mitochondrion membrane
AT5G2_HUMAN
Homo sapiens
MFACSKFVSTPSLVKSTSQLLSRPLSAVVLKRPEILTDESLSSLAVSCPLTSLVSSRSFQTSAISRDIDTAAKFIGAGAATVGVAGSGAGIGTVFGSLIIGYARNPSLKQQLFSYAILGFALSEAMGLFCLMVAFLILFAM
Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(0) domain. A homomeric c-ring of probably 10 subunits is part of the complex rotary element. Subcellular locations: Mitochondrion membrane
AT5G2_PONAB
Pongo abelii
MFSCFKFISTPSLVKSTSQLLSRPLSAVVLKRPEILTDESLSSLAVSRPLTSLVSSRNFQTSAISRDIDTAAKFIGAGAATVGVAGSGAGIGTVFGSLIIGYARNPSLKQQLFSYAILGFALSEAMGLFCLMVAFLILFAM
Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(0) domain. A homomeric c-ring of probably 10 subunits is part of the complex rotary element. Subcellular locations: Mitochondrion membrane
ATCAY_HUMAN
Homo sapiens
MGTTEATLRMENVDVKEEWQDEDLPRPLPEETGVELLGSPVEDTSSPPNTLNFNGAHRKRKTLVAPEINISLDQSEGSLLSDDFLDTPDDLDINVDDIETPDETDSLEFLGNGNELEWEDDTPVATAKNMPGDSADLFGDGTTEDGSAANGRLWRTVIIGEQEHRIDLHMIRPYMKVVTHGGYYGEGLNAIIVFAACFLPDSSLPDYHYIMENLFLYVISSLELLVAEDYMIVYLNGATPRRRMPGIGWLKKCYQMIDRRLRKNLKSLIIVHPSWFIRTVLAISRPFISVKFINKIQYVHSLEDLEQLIPMEHVQIPDCVLQYEEERLKARRESARPQPEFVLPRSEEKPEVAPVENRSALVSEDQETSMS
Functions in the development of neural tissues, particularly the postnatal maturation of the cerebellar cortex. May play a role in neurotransmission through regulation of glutaminase/GLS, an enzyme responsible for the production in neurons of the glutamate neurotransmitter. Alternatively, may regulate the localization of mitochondria within axons and dendrites. Subcellular locations: Cell projection, Axon, Cell projection, Dendrite, Presynapse, Mitochondrion, Cell projection, Growth cone, Cytoplasm
ATCAY_MACFA
Macaca fascicularis
MGTTEATLRMENVDVKEEWQDEDLPRPLPEETGVELLGSPVEDTSSPPNTLNFNGAHRKRKTLVAPDINISLDQSEGSLLSDDFLDTPDDLDINVDDIETPDETDSLEFLGNGNELEWGDDTPVATAKNMPGDSADLFGDGTTEDGGAANGRLWRTVIIGEQEHRIDLHMIRPYMKVVTHGGYYGEGLNAIIVFAACFLPDSSLPDYHYIMENLFLYVISSLELLVAEDYMIVYLNGATPRRRMPGIGWLKKCYQMIDRRLRKNLKSLIIVHPSWFIRTVLAISRPFISVKFINKIQYVHSLEDLEQLIPMEHVQIPDCVLQYEEERLKARRESARPQPEFVMPRSEEKPEVAPVENRSAPVTEDQETSMS
Functions in the development of neural tissues, particularly the postnatal maturation of the cerebellar cortex. May play a role in neurotransmission through regulation of glutaminase/GLS, an enzyme responsible for the production in neurons of the glutamate neurotransmitter. Alternatively, may regulate the localization of mitochondria within axons and dendrites (By similarity). Subcellular locations: Cell projection, Axon, Cell projection, Dendrite, Presynapse, Mitochondrion, Cell projection, Growth cone, Cytoplasm
ATG2A_HUMAN
Homo sapiens
MSRWLWPWSNCVKERVCRYLLHHYLGHFFQEHLSLDQLSLDLYKGSVALRDIHLEIWSVNEVLESMESPLELVEGFVGSIEVAVPWAALLTDHCTVRVSGLQLTLQPRRGPAPGAADSQSWASCMTTSLQLAQECLRDGLPEPSEPPQPLEGLEMFAQTIETVLRRIKVTFLDTVVRVEHSPGDGERGVAVEVRVQRLEYCDEAVRDPSQAPPVDVHQPPAFLHKLLQLAGVRLHYEELPAQEEPPEPPLQIGSCSGYMELMVKLKQNEAFPGPKLEVAGQLGSLHLLLTPRQLQQLQELLSAVSLTDHEGLADKLNKSRPLGAEDLWLIEQDLNQQLQAGAVAEPLSPDPLTNPLLNLDNTDLFFSMAGLTSSVASALSELSLSDVDLASSVRSDMASRRLSAQAHPAGKMAPNPLLDTMRPDSLLKMTLGGVTLTLLQTSAPSSGPPDLATHFFTEFDATKDGPFGSRDFHHLRPRFQRACPCSHVRLTGTAVQLSWELRTGSRGRRTTSMEVHFGQLEVLECLWPRGTSEPEYTEILTFPGTLGSQASARPCAHLRHTQILRRVPKSRPRRSVACHCHSELALDLANFQADVELGALDRLAALLRLATVPAEPPAGLLTEPLPAMEQQTVFRLSAPRATLRLRFPIADLRPEPDPWAGQAVRAEQLRLELSEPQFRSELSSGPGPPVPTHLELTCSDLHGIYEDGGKPPVPCLRVSKALDPKSTGRKYFLPQVVVTVNPQSSSTQWEVAPEKGEELELSVESPCELREPEPSPFSSKRTMYETEEMVIPGDPEEMRTFQSRTLALSRCSLEVILPSVHIFLPSKEVYESIYNRINNDLLMWEPADLLPTPDPAAQPSGFPGPSGFWHDSFKMCKSAFKLANCFDLTPDSDSDDEDAHFFSVGASGGPQAAAPEAPSLHLQSTFSTLVTVLKGRITALCETKDEGGKRLEAVHGELVLDMEHGTLFSVSQYCGQPGLGYFCLEAEKATLYHRAAVDDYPLPSHLDLPSFAPPAQLAPTIYPSEEGVTERGASGRKGQGRGPHMLSTAVRIHLDPHKNVKEFLVTLRLHKATLRHYMALPEQSWHSQLLEFLDVLDDPVLGYLPPTVITILHTHLFSCSVDYRPLYLPVRVLITAETFTLSSNIIMDTSTFLLRFILDDSALYLSDKCEVETLDLRRDYVCVLDVDLLELVIKTWKGSTEGKLSQPLFELRCSNNVVHVHSCADSCALLVNLLQYVMSTGDLHPPPRPPSPTEIAGQKLSESPASLPSCPPVETALINQRDLADALLDTERSLRELAQPSGGHLPQASPISVYLFPGERSGAPPPSPPVGGPAGSLGSCSEEKEDEREEEGDGDTLDSDEFCILDAPGLGIPPRDGEPVVTQLHPGPIVVRDGYFSRPIGSTDLLRAPAHFPVPSTRVVLREVSLVWHLYGGRDFGPHPGHRARTGLSGPRSSPSRCSGPNRPQNSWRTQGGSGRQHHVLMEIQLSKVSFQHEVYPAEPATGPAAPSQELEERPLSRQVFIVQELEVRDRLASSQINKFLYLHTSERMPRRAHSNMLTIKALHVAPTTNLGGPECCLRVSLMPLRLNVDQDALFFLKDFFTSLVAGINPVVPGETSAEARPETRAQPSSPLEGQAEGVETTGSQEAPGGGHSPSPPDQQPIYFREFRFTSEVPIWLDYHGKHVTMDQVGTFAGLLIGLAQLNCSELKLKRLCCRHGLLGVDKVLGYALNEWLQDIRKNQLPGLLGGVGPMHSVVQLFQGFRDLLWLPIEQYRKDGRLMRGLQRGAASFGSSTASAALELSNRLVQAIQATAETVYDILSPAAPVSRSLQDKRSARRLRRGQQPADLREGVAKAYDTVREGILDTAQTICDVASRGHEQKGLTGAVGGVIRQLPPTVVKPLILATEATSSLLGGMRNQIVPDAHKDHALKWRSDSAQD
Lipid transfer protein involved in autophagosome assembly ( ). Tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum (ER) and mediates direct lipid transfer from ER to IM for IM expansion (, ). Binds to the ER exit site (ERES), which is the membrane source for autophagosome formation, and extracts phospholipids from the membrane source and transfers them to ATG9 (ATG9A or ATG9B) to the IM for membrane expansion (, ). Lipid transfer activity is enhanced by WIPI1 and WDR45/WIPI4, which promote ATG2A-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes . Also regulates lipid droplets morphology and distribution within the cell (, ). Subcellular locations: Preautophagosomal structure membrane, Lipid droplet, Endoplasmic reticulum membrane Localizes to endoplasmic reticulum-autophagosome contact sites.
ATG2B_HUMAN
Homo sapiens
MPWPFSESIKKRACRYLLQRYLGHFLQEKLSLEQLSLDLYQGTGSLAQVPLDKWCLNEILESADAPLEVTEGFIQSISLSVPWGSLLQDNCALEVRGLEMVFRPRPRPATGSEPMYWSSFMTSSMQLAKECLSQKLTDEQGEGSQPFEGLEKFAETIETVLRRVKVTFIDTVLRIEHVPENSKTGTALEIRIERTVYCDETADESSGINVHQPTAFAHKLLQLSGVSLFWDEFSASAKSSPVCSTAPVETEPKLSPSWNPKIIYEPHPQLTRNLPEIAPSDPVQIGRLIGRLELSLTLKQNEVLPGAKLDVDGQIDSIHLLLSPRQVHLLLDMLAAIAGPENSSKIGLANKDRKNRPMQQEDEYRIQMELNRYYLRKDSLSVGVSSEQSFYETETARTPSSREEEVFFSMADMDMSHSLSSLPPLGDPPNMDLELSLTSTYTNTPAGSPLSATVLQPTWGEFLDHHKEQPVRGSTFPSNLVHPTPLQKTSLPSRSVSVDESRPELIFRLAVGTFSISVLHIDPLSPPETSQNLNPLTPMAVAFFTCIEKIDPARFSTEDFKSFRAVFAEACSHDHLRFIGTGIKVSYEQRQRSASRYFSTDMSIGQMEFLECLFPTDFHSVPPHYTELLTFHSKEETGSHSPVCLQLHYKHSENRGPQGNQARLSSVPHKAELQIKLNPVCCELDISIVDRLNSLLQPQKLATVEMMASHMYTSYNKHISLHKAFTEVFLDDSHSPANCRISVQVATPALNLSVRFPIPDLRSDQERGPWFKKSLQKEILYLAFTDLEFKTEFIGGSTPEQIKLELTFRELIGSFQEEKGDPSIKFFHVSSGVDGDTTSSDDFDWPRIVLKINPPAMHSILERIAAEEEEENDGHYQEEEEGGAHSLKDVCDLRRPAPSPFSSRRVMFENEQMVMPGDPVEMTEFQDKAISNSHYVLELTLPNIYVTLPNKSFYEKLYNRIFNDLLLWEPTAPSPVETFENISYGIGLSVASQLINTFNKDSFSAFKSAVHYDEESGSEEETLQYFSTVDPNYRSRRKKKLDSQNKNSQSFLSVLLNINHGLIAVFTDVKQDNGDLLENKHGEFWLEFNSGSLFCVTKYEGFDDKHYICLHSSSFSLYHKGIVNGVILPTETRLPSSTRPHWLEPTIYSSEEDGLSKTSSDGVGGDSLNMLSVAVKILSDKSESNTKEFLIAVGLKGATLQHRMLPSGLSWHEQILYFLNIADEPVLGYNPPTSFTTFHVHLWSCALDYRPLYLPIRSLLTVETFSVSSSVALDKSSSTLRIILDEAALHLSDKCNTVTINLSRDYVRVMDMGLLELTITAVKSDSDGEQTEPRFELHCSSDVVHIRTCSDSCAALMNLIQYIASYGDLQTPNKADMKPGAFQRRSKVDSSGRSSSRGPVLPEADQQMLRDLMSDAMEEIDMQQGTSSVKPQANGVLDEKSQIQEPCCSDLFLFPDESGNVSQESGPTYASFSHHFISDAMTGVPTENDDFCILFAPKAAMQEKEEEPVIKIMVDDAIVIRDNYFSLPVNKTDTSKAPLHFPIPVIRYVVKEVSLVWHLYGGKDFGIVPPTSPAKSYISPHSSPSHTPTRHGRNTVCGGKGRNHDFLMEIQLSKVKFQHEVYPPCKPDCDSSLSEHPVSRQVFIVQDLEIRDRLATSQMNKFLYLYCSKEMPRKAHSNMLTVKALHVCPESGRSPQECCLRVSLMPLRLNIDQDALFFLKDFFTSLSAEVELQMTPDPEVKKSPGADVTCSLPRHLSTSKEPNLVISFSGPKQPSQNDSANSVEVVNGMEEKNFSAEEASFRDQPVFFREFRFTSEVPIRLDYHGKHVSMDQGTLAGILIGLAQLNCSELKLKRLSYRHGLLGVDKLFSYAITEWLNDIKKNQLPGILGGVGPMHSLVQLVQGLKDLVWLPIEQYRKDGRIVRGFQRGAASFGTSTAMAALELTNRMVQTIQAAAETAYDMVSPGTLSIEPKKTKRFPHHRLAHQPVDLREGVAKAYSVVKEGITDTAQTIYETAAREHESRGVTGAVGEVLRQIPPAVVKPLIVATEATSNVLGGMRNQIRPDVRQDESQKWRHGDD
Lipid transfer protein required for both autophagosome formation and regulation of lipid droplet morphology and dispersion (, ). Tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum (ER) and mediates direct lipid transfer from ER to IM for IM expansion (, ). Binds to the ER exit site (ERES), which is the membrane source for autophagosome formation, and extracts phospholipids from the membrane source and transfers them to ATG9 (ATG9A or ATG9B) to the IM for membrane expansion (By similarity). Lipid transfer activity is enhanced by WDR45/WIPI4, which promotes ATG2B-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes . Subcellular locations: Preautophagosomal structure membrane, Lipid droplet, Endoplasmic reticulum membrane
ATG5_PONAB
Pongo abelii
MTDDKDVLRDVWFGRIPTCFTLCQDEITEREAEPYYLLLPRVSYLTLVTDKVKKHFQKVMRQEDISEIWFEYEGTPLKWHYPIGLLFDLLASSSALPWNITVHFKSFPEKDLLHCPSKDAIEAHFMSCMKEADALKHKSQVINEMQKKDHKQLWMGLQNDRFDQFWAINRKLMEYPAEENGFRYIPFRIYQTTTERPFIQKLFRPVAADGQLHTLGDLLKEVCPSAVDPEDGEKKNQVMIHGIEPMLETPLQWLSEHLSYPDNFLHISIIPQPTD
Involved in autophagic vesicle formation. Conjugation with ATG12, through a ubiquitin-like conjugating system involving ATG7 as an E1-like activating enzyme and ATG10 as an E2-like conjugating enzyme, is essential for its function. The ATG12-ATG5 conjugate acts as an E3-like enzyme which is required for lipidation of ATG8 family proteins and their association to the vesicle membranes. Involved in mitochondrial quality control after oxidative damage, and in subsequent cellular longevity. Plays a critical role in multiple aspects of lymphocyte development and is essential for both B and T lymphocyte survival and proliferation. Required for optimal processing and presentation of antigens for MHC II. Involved in the maintenance of axon morphology and membrane structures, as well as in normal adipocyte differentiation. Promotes primary ciliogenesis through removal of OFD1 from centriolar satellites and degradation of IFT20 via the autophagic pathway. May play an important role in the apoptotic process, possibly within the modified cytoskeleton. Its expression is a relatively late event in the apoptotic process, occurring downstream of caspase activity. Plays a crucial role in IFN-gamma-induced autophagic cell death by interacting with FADD. Subcellular locations: Cytoplasm, Preautophagosomal structure membrane The conjugate detaches from the membrane immediately before or after autophagosome formation is completed.
ATMIN_HUMAN
Homo sapiens
MAASEAAAAAGSAALAAGARAVPAATTGAAAAASGPWVPPGPRLRGSRPRPAGATQQPAVPAPPAGELIQPSVSELSRAVRTNILCTVRGCGKILPNSPALNMHLVKSHRLQDGIVNPTIRKDLKTGPKFYCCPIEGCPRGPERPFSQFSLVKQHFMKMHAEKKHKCSKCSNSYGTEWDLKRHAEDCGKTFRCTCGCPYASRTALQSHIYRTGHEIPAEHRDPPSKKRKMENCAQNQKLSNKTIESLNNQPIPRPDTQELEASEIKLEPSFEDSCGSNTDKQTLTTPPRYPQKLLLPKPKVALVKLPVMQFSVMPVFVPTADSSAQPVVLGVDQGSATGAVHLMPLSVGTLILGLDSEACSLKESLPLFKIANPIAGEPISTGVQVNFGKSPSNPLQELGNTCQKNSISSINVQTDLSYASQNFIPSAQWATADSSVSSCSQTDLSFDSQVSLPISVHTQTFLPSSKVTSSIAAQTDAFMDTCFQSGGVSRETQTSGIESPTDDHVQMDQAGMCGDIFESVHSSYNVATGNIISNSLVAETVTHSLLPQNEPKTLNQDIEKSAPIINFSAQNSMLPSQNMTDNQTQTIDLLSDLENILSSNLPAQTLDHRSLLSDTNPGPDTQLPSGPAQNPGIDFDIEEFFSASNIQTQTEESELSTMTTEPVLESLDIETQTDFLLADTSAQSYGCRGNSNFLGLEMFDTQTQTDLNFFLDSSPHLPLGSILKHSSFSVSTDSSDTETQTEGVSTAKNIPALESKVQLNSTETQTMSSGFETLGSLFFTSNETQTAMDDFLLADLAWNTMESQFSSVETQTSAEPHTVSNF
Transcription factor. Plays a crucial role in cell survival and RAD51 foci formation in response to methylating DNA damage. Involved in regulating the activity of ATM in the absence of DNA damage. May play a role in stabilizing ATM. Binds to the DYNLL1 promoter and activates its transcription. Subcellular locations: Nucleus Nuclear, in discrete foci during G1 phase. Ubiquitously expressed in normal tissues and cancer cell lines with highest levels in placenta and skeletal muscle.
ATP6_PONAB
Pongo abelii
MNESLFTPFITPTVLGLPAAVLVILFPPLLIPTSKHLINNRLIIIQQWLIRLILKQMMTTHNAKGRTWSLMLTSLIIFIASTNLLGLLPYSFTPTTQLSMNLAMAIPLWASTVAMGLRFKAKITLTHLLPQGTPTPLIPMLIIIETVSLFIQPLALAVRLTANITAGHLLMHLIGSSALAMLAINLPLTLITLTILTLLTILETAIALIQAYVFTLLVSLYLHDNS
Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Key component of the proton channel; it may play a direct role in the translocation of protons across the membrane. Subcellular locations: Mitochondrion inner membrane
ATP6_PONPY
Pongo pygmaeus
MNEDLFTPFTTPTVLGLPAAILVILFPPLLVPTSKHFINNRLITTQQWLIRLTLKQMMITHNTKGRTWSLMLTSLIIFIASTNLLGLFPYSFTPTTQLSMNLAMAIPLWASTVAMGLRFKAKISLAHLLPQGTPTPLIPMLIIIETISLFIQPLALAVRLTANITAGHLLMHLIGSATLTMLTINLPLTLITLTILTLLTILEIAVALIQAYVFTLLVSLYLHDNS
Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Key component of the proton channel; it may play a direct role in the translocation of protons across the membrane. Subcellular locations: Mitochondrion inner membrane
ATP8_SYMSY
Symphalangus syndactylus
MPQLNTTVWPTIITSMLLTLFLLMQLKTLNMYYHPPASPKLMNIKPHNNPWEHKWTKIYSLHSLPLQS
Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(0) domain. Minor subunit located with subunit a in the membrane (By similarity). Subcellular locations: Mitochondrion membrane
ATP9A_HUMAN
Homo sapiens
MTDNIPLQPVRQKKRMDSRPRAGCCEWLRCCGGGEARPRTVWLGHPEKRDQRYPRNVINNQKYNFFTFLPGVLFNQFKYFFNLYFLLLACSQFVPEMRLGALYTYWVPLGFVLAVTVIREAVEEIRCYVRDKEVNSQVYSRLTARGTVKVKSSNIQVGDLIIVEKNQRVPADMIFLRTSEKNGSCFLRTDQLDGETDWKLRLPVACTQRLPTAADLLQIRSYVYAEEPNIDIHNFVGTFTREDSDPPISESLSIENTLWAGTVVASGTVVGVVLYTGRELRSVMNTSNPRSKIGLFDLEVNCLTKILFGALVVVSLVMVALQHFAGRWYLQIIRFLLLFSNIIPISLRVNLDMGKIVYSWVIRRDSKIPGTVVRSSTIPEQLGRISYLLTDKTGTLTQNEMIFKRLHLGTVAYGLDSMDEVQSHIFSIYTQQSQDPPAQKGPTLTTKVRRTMSSRVHEAVKAIALCHNVTPVYESNGVTDQAEAEKQYEDSCRVYQASSPDEVALVQWTESVGLTLVGRDQSSMQLRTPGDQILNFTILQIFPFTYESKRMGIIVRDESTGEITFYMKGADVVMAGIVQYNDWLEEECGNMAREGLRVLVVAKKSLAEEQYQDFEARYVQAKLSVHDRSLKVATVIESLEMEMELLCLTGVEDQLQADVRPTLETLRNAGIKVWMLTGDKLETATCTAKNAHLVTRNQDIHVFRLVTNRGEAHLELNAFRRKHDCALVISGDSLEVCLKYYEYEFMELACQCPAVVCCRCAPTQKAQIVRLLQERTGKLTCAVGDGGNDVSMIQESDCGVGVEGKEGKQASLAADFSITQFKHLGRLLMVHGRNSYKRSAALSQFVIHRSLCISTMQAVFSSVFYFASVPLYQGFLIIGYSTIYTMFPVFSLVLDKDVKSEVAMLYPELYKDLLKGRPLSYKTFLIWVLISIYQGSTIMYGALLLFESEFVHIVAISFTSLILTELLMVALTIQTWHWLMTVAELLSLACYIASLVFLHEFIDVYFIATLSFLWKVSVITLVSCLPLYVLKYLRRRFSPPSYSKLTS
Plays a role in regulating membrane trafficking of cargo proteins, namely endosome to plasma membrane recycling, probably acting through RAB5 and RAB11 activation ( ). Also involved in endosome to trans-Golgi network retrograde transport (, ). In complex with MON2 and DOP1B, regulates SNX3 retromer-mediated endosomal sorting of WLS, a transporter of Wnt morphogens in developing tissues. Participates in the formation of endosomal carriers that direct WLS trafficking back to Golgi, away from lysosomal degradation . Appears to be implicated in intercellular communication by negatively regulating the release of exosomes . The flippase activity towards membrane lipids and its role in membrane asymmetry remains to be proved . Required for the maintenance of neurite morphology and synaptic transmission (By similarity). Subcellular locations: Early endosome membrane, Recycling endosome membrane, Late endosome membrane, Golgi apparatus, Trans-Golgi network membrane, Cell membrane Efficient exit from the endoplasmic reticulum does not require TMEM30A, nor TMEM30B . Transiently expressed in the cell membrane .
ATP9B_HUMAN
Homo sapiens
MADQIPLYPVRSAAAAAANRKRAAYYSAAGPRPGADRHSRYQLEDESAHLDEMPLMMSEEGFENEESDYHTLPRARIMQRKRGLEWFVCDGWKFLCTSCCGWLINICRRKKELKARTVWLGCPEKCEEKHPRNSIKNQKYNVFTFIPGVLYEQFKFFLNLYFLVISCSQFVPALKIGYLYTYWAPLGFVLAVTMTREAIDEFRRFQRDKEVNSQLYSKLTVRGKVQVKSSDIQVGDLIIVEKNQRIPSDMVFLRTSEKAGSCFIRTDQLDGETDWKLKVAVSCTQQLPALGDLFSISAYVYAQKPQMDIHSFEGTFTREDSDPPIHESLSIENTLWASTIVASGTVIGVVIYTGKETRSVMNTSNPKNKVGLLDLELNRLTKALFLALVALSIVMVTLQGFVGPWYRNLFRFLLLFSYIIPISLRVNLDMGKAVYGWMMMKDENIPGTVVRTSTIPEELGRLVYLLTDKTGTLTQNEMIFKRLHLGTVSYGADTMDEIQSHVRDSYSQMQSQAGGNNTGSTPLRKAQSSAPKVRKSVSSRIHEAVKAIVLCHNVTPVYESRAGVTEETEFAEADQDFSDENRTYQASSPDEVALVQWTESVGLTLVSRDLTSMQLKTPSGQVLSFCILQLFPFTSESKRMGVIVRDESTAEITFYMKGADVAMSPIVQYNDWLEEECGNMAREGLRTLVVAKKALTEEQYQDFESRYTQAKLSMHDRSLKVAAVVESLEREMELLCLTGVEDQLQADVRPTLEMLRNAGIKIWMLTGDKLETATCIAKSSHLVSRTQDIHIFRQVTSRGEAHLELNAFRRKHDCALVISGDSLEVCLKYYEHEFVELACQCPAVVCCRCSPTQKARIVTLLQQHTGRRTCAIGDGGNDVSMIQAADCGIGIEGKEGKQASLAADFSITQFRHIGRLLMVHGRNSYKRSAALGQFVMHRGLIISTMQAVFSSVFYFASVPLYQGFLMVGYATIYTMFPVFSLVLDQDVKPEMAMLYPELYKDLTKGRSLSFKTFLIWVLISIYQGGILMYGALVLFESEFVHVVAISFTALILTELLMVALTVRTWHWLMVVAEFLSLGCYVSSLAFLNEYFGIGRVSFGAFLDVAFITTVTFLWKVSAITVVSCLPLYVLKYLRRKLSPPSYCKLAS
Subcellular locations: Golgi apparatus, Trans-Golgi network membrane Efficient exit from the endoplasmic reticulum does not require TMEM30A, nor TMEM30B.
ATPG_HUMAN
Homo sapiens
MFSRAGVAGLSAWTLQPQWIQVRNMATLKDITRRLKSIKNIQKITKSMKMVAAAKYARAERELKPARIYGLGSLALYEKADIKGPEDKKKHLLIGVSSDRGLCGAIHSSIAKQMKSEVATLTAAGKEVMLVGIGDKIRGILYRTHSDQFLVAFKEVGRKPPTFGDASVIALELLNSGYEFDEGSIIFNKFRSVISYKTEEKPIFSLNTVASADSMSIYDDIDADVLQNYQEYNLANIIYYSLKESTTSEQSARMTAMDNASKNASEMIDKLTLTFNRTRQAVITKELIEIISGAAALD
Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(1) domain and the central stalk which is part of the complex rotary element. The gamma subunit protrudes into the catalytic domain formed of alpha(3)beta(3). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits. Subcellular locations: Mitochondrion inner membrane Isoform Heart is expressed specifically in the heart and skeletal muscle, which require rapid energy supply. Isoform Liver is expressed in the brain, liver and kidney. Isoform Heart and Isoform Liver are expressed in the skin, intestine, stomach and aorta.
ATX2L_HUMAN
Homo sapiens
MLKPQPLQQPSQPQQPPPTQQAVARRPPGGTSPPNGGLPGPLATSAAPPGPPAAASPCLGPVAAAGSGLRRGAEGILAPQPPPPQQHQERPGAAAIGSARGQSTGKGPPQSPVFEGVYNNSRMLHFLTAVVGSTCDVKVKNGTTYEGIFKTLSSKFELAVDAVHRKASEPAGGPRREDIVDTMVFKPSDVMLVHFRNVDFNYATKDKFTDSAIAMNSKVNGEHKEKVLQRWEGGDSNSDDYDLESDMSNGWDPNEMFKFNEENYGVKTTYDSSLSSYTVPLEKDNSEEFRQRELRAAQLAREIESSPQYRLRIAMENDDGRTEEEKHSAVQRQGSGRESPSLASREGKYIPLPQRVREGPRGGVRCSSSRGGRPGLSSLPPRGPHHLDNSSPGPGSEARGINGGPSRMSPKAQRPLRGAKTLSSPSNRPSGETSVPPPPAVGRMYPPRSPKSAAPAPISASCPEPPIGSAVPTSSASIPVTSSVSDPGVGSISPASPKISLAPTDVKELSTKEPGRTLEPQELARIAGKVPGLQNEQKRFQLEELRKFGAQFKLQPSSSPENSLDPFPPRILKEEPKGKEKEVDGLLTSEPMGSPVSSKTESVSDKEDKPPLAPSGGTEGPEQPPPPCPSQTGSPPVGLIKGEDKDEGPVAEQVKKSTLNPNAKEFNPTKPLLSVNKSTSTPTSPGPRTHSTPSIPVLTAGQSGLYSPQYISYIPQIHMGPAVQAPQMYPYPVSNSVPGQQGKYRGAKGSLPPQRSDQHQPASAPPMMQAAAAAGPPLVAATPYSSYIPYNPQQFPGQPAMMQPMAHYPSQPVFAPMLQSNPRMLTSGSHPQAIVSSSTPQYPSAEQPTPQALYATVHQSYPHHATQLHAHQPQPATTPTGSQPQSQHAAPSPVQHQAGQAPHLGSGQPQQNLYHPGALTGTPPSLPPGPSAQSPQSSFPQPAAVYAIHHQQLPHGFTNMAHVTQAHVQTGITAAPPPHPGAPHPPQVMLLHPPQSHGGPPQGAVPQSGVPALSASTPSPYPYIGHPQGEQPGQAPGFPGGADDRIREFSLAGGIWHGRAEGLQVGQDARVLGGE
Involved in the regulation of stress granule and P-body formation. Subcellular locations: Membrane, Cytoplasm, Nucleus speckle, Cytoplasmic granule Predominantly cytoplasmic but is also detected in nuclear speckles . Component of cytoplasmic stress granules . Inhibition of methylation alters nuclear localization . Methylation does not seem to be required for localization to stress granules under stress conditions . Expressed at high levels in thymus, lymph node, spleen, fetal kidney and adult testis. Constitutively associated with MPL and EPOR in hematopoietic cells.
ATX2_HUMAN
Homo sapiens
MRSAAAAPRSPAVATESRRFAAARWPGWRSLQRPARRSGRGGGGAAPGPYPSAAPPPPGPGPPPSRQSSPPSASDCFGSNGNGGGAFRPGSRRLLGLGGPPRPFVVLLLPLASPGAPPAAPTRASPLGARASPPRSGVSLARPAPGCPRPACEPVYGPLTMSLKPQQQQQQQQQQQQQQQQQQQQQQQPPPAAANVRKPGGSGLLASPAAAPSPSSSSVSSSSATAPSSVVAATSGGGRPGLGRGRNSNKGLPQSTISFDGIYANMRMVHILTSVVGSKCEVQVKNGGIYEGVFKTYSPKCDLVLDAAHEKSTESSSGPKREEIMESILFKCSDFVVVQFKDMDSSYAKRDAFTDSAISAKVNGEHKEKDLEPWDAGELTANEELEALENDVSNGWDPNDMFRYNEENYGVVSTYDSSLSSYTVPLERDNSEEFLKREARANQLAEEIESSAQYKARVALENDDRSEEEKYTAVQRNSSEREGHSINTRENKYIPPGQRNREVISWGSGRQNSPRMGQPGSGSMPSRSTSHTSDFNPNSGSDQRVVNGGVPWPSPCPSPSSRPPSRYQSGPNSLPPRAATPTRPPSRPPSRPSRPPSHPSAHGSPAPVSTMPKRMSSEGPPRMSPKAQRHPRNHRVSAGRGSISSGLEFVSHNPPSEAATPPVARTSPSGGTWSSVVSGVPRLSPKTHRPRSPRQNSIGNTPSGPVLASPQAGIIPTEAVAMPIPAASPTPASPASNRAVTPSSEAKDSRLQDQRQNSPAGNKENIKPNETSPSFSKAENKGISPVVSEHRKQIDDLKKFKNDFRLQPSSTSESMDQLLNKNREGEKSRDLIKDKIEPSAKDSFIENSSSNCTSGSSKPNSPSISPSILSNTEHKRGPEVTSQGVQTSSPACKQEKDDKEEKKDAAEQVRKSTLNPNAKEFNPRSFSQPKPSTTPTSPRPQAQPSPSMVGHQQPTPVYTQPVCFAPNMMYPVPVSPGVQPLYPIPMTPMPVNQAKTYRAVPNMPQQRQDQHHQSAMMHPASAAGPPIAATPPAYSTQYVAYSPQQFPNQPLVQHVPHYQSQHPHVYSPVIQGNARMMAPPTHAQPGLVSSSATQYGAHEQTHAMYACPKLPYNKETSPSFYFAISTGSLAQQYAHPNATLHPHTPHPQPSATPTGQQQSQHGGSHPAPSPVQHHQHQAAQALHLASPQQQSAIYHAGLAPTPPSMTPASNTQSPQNSFPAAQQTVFTIHPSHVQPAYTNPPHMAHVPQAHVQSGMVPSHPTAHAPMMLMTTQPPGGPQAALAQSALQPIPVSTTAHFPYMTHPSVQAHHQQQL
Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. Subcellular locations: Cytoplasm Expressed in the brain, heart, liver, skeletal muscle, pancreas and placenta. Isoform 1 is predominant in the brain and spinal cord. Isoform 4 is more abundant in the cerebellum. In the brain, broadly expressed in the amygdala, caudate nucleus, corpus callosum, hippocampus, hypothalamus, substantia nigra, subthalamic nucleus and thalamus.
ATX3L_HUMAN
Homo sapiens
MDFIFHEKQEGFLCAQHCLNNLLQGEYFSPVELASIAHQLDEEERMRMAEGGVTSEEYLAFLQQPSENMDDTGFFSIQVISNALKFWGLEIIHFNNPEYQKLGIDPINERSFICNYKQHWFTIRKFGKHWFNLNSLLAGPELISDTCLANFLARLQQQAYSVFVVKGDLPDCEADQLLQIISVEEMDTPKLNGKKLVKQKEHRVYKTVLEKVSEESDESGTSDQDEEDFQRALELSRQETNREDEHLRSTIELSMQGSSGNTSQDLPKTSCVTPASEQPKKIKEDYFEKHQQEQKQQQQQSDLPGHSSYLHERPTTSSRAIESDLSDDISEGTVQAAVDTILEIMRKNLKIKGEK
Deubiquitinating enzyme that cleaves both 'Lys-48'-linked and 'Lys-63'-linked poly-ubiquitin chains (in vitro) . Acts as a deubiquitinating enzyme for the transcription factor KLF5, playing a role in the regulation of KLF5 stability . Subcellular locations: Nucleus Widely expressed.
AVIL_HUMAN
Homo sapiens
MPLTSAFRAVDNDPGIIVWRIEKMELALVPVSAHGNFYEGDCYVILSTRRVASLLSQDIHFWIGKDSSQDEQSCAAIYTTQLDDYLGGSPVQHREVQYHESDTFRGYFKQGIIYKQGGVASGMKHVETNTYDVKRLLHVKGKRNIRATEVEMSWDSFNRGDVFLLDLGKVIIQWNGPESNSGERLKAMLLAKDIRDRERGGRAKIGVIEGDKEAASPELMKVLQDTLGRRSIIKPTVPDEIIDQKQKSTIMLYHISDSAGQLAVTEVATRPLVQDLLNHDDCYILDQSGTKIYVWKGKGATKAEKQAAMSKALGFIKMKSYPSSTNVETVNDGAESAMFKQLFQKWSVKDQTMGLGKTFSIGKIAKVFQDKFDVTLLHTKPEVAAQERMVDDGNGKVEVWRIENLELVPVEYQWYGFFYGGDCYLVLYTYEVNGKPHHILYIWQGRHASQDELAASAYQAVEVDRQFDGAAVQVRVRMGTEPRHFMAIFKGKLVIFEGGTSRKGNAEPDPPVRLFQIHGNDKSNTKAVEVPAFASSLNSNDVFLLRTQAEHYLWYGKGSSGDERAMAKELASLLCDGSENTVAEGQEPAEFWDLLGGKTPYANDKRLQQEILDVQSRLFECSNKTGQFVVTEITDFTQDDLNPTDVMLLDTWDQVFLWIGAEANATEKESALATAQQYLHTHPSGRDPDTPILIIKQGFEPPIFTGWFLAWDPNIWSAGKTYEQLKEELGDAAAIMRITADMKNATLSLNSNDSEPKYYPIAVLLKNQNQELPEDVNPAKKENYLSEQDFVSVFGITRGQFAALPGWKQLQMKKEKGLF
Ca(2+)-regulated actin-binding protein which plays an important role in actin bundling . May have a unique function in the morphogenesis of neuronal cells which form ganglia. Required for SREC1-mediated regulation of neurite-like outgrowth. Plays a role in regenerative sensory axon outgrowth and remodeling processes after peripheral injury in neonates. Involved in the formation of long fine actin-containing filopodia-like structures in fibroblast. Plays a role in ciliogenesis. In podocytes, controls lamellipodia formation through the regulation of EGF-induced diacylglycerol generation by PLCE1 and ARP2/3 complex assembly . Subcellular locations: Cytoplasm, Cytoskeleton, Cell projection, Lamellipodium, Cell junction, Focal adhesion, Cell projection, Neuron projection, Cell projection, Axon In podocytes, present in the F-actin-enriched cell periphery that generates lamellipodia and focal adhesions. Most highly expressed in the small intestine and colonic lining. Weaker expression also detected in the thymus, prostate, testes and uterus . Expressed in podocytes (at protein level) .
AVL9_HUMAN
Homo sapiens
MEKARRGGDGVPRGPVLHIVVVGFHHKKGCQVEFSYPPLIPGDGHDSHTLPEEWKYLPFLALPDGAHNYQEDTVFFHLPPRNGNGATVFGISCYRQIEAKALKVRQADITRETVQKSVCVLSKLPLYGLLQAKLQLITHAYFEEKDFSQISILKELYEHMNSSLGGASLEGSQVYLGLSPRDLVLHFRHKVLILFKLILLEKKVLFYISPVNKLVGALMTVLSLFPGMIEHGLSDCSQYRPRKSMSEDGGLQESNPCADDFVSASTADVSHTNLGTIRKVMAGNHGEDAAMKTEEPLFQVEDSSKGQEPNDTNQYLKPPSRPSPDSSESDWETLDPSVLEDPNLKEREQLGSDQTNLFPKDSVPSESLPITVQPQANTGQVVLIPGLISGLEEDQYGMPLAIFTKGYLCLPYMALQQHHLLSDVTVRGFVAGATNILFRQQKHLSDAIVEVEEALIQIHDPELRKLLNPTTADLRFADYLVRHVTENRDDVFLDGTGWEGGDEWIRAQFAVYIHALLAATLQLDNEKILSDYGTTFVTAWKNTHNYRVWNSNKHPALAEINPNHPFQGQYSVSDMKLRFSHSVQNSERGKKIGNVMVTTSRNVVQTGKAVGQSVGGAFSSAKTAMSSWLSTFTTSTSQSLTEPPDEKP
Functions in cell migration. Subcellular locations: Recycling endosome, Membrane
AVL9_PONAB
Pongo abelii
MEKARRGGDGVPRGPVLHIVVVGFHHKKGCQVEFSYPPLIPGDGHDSHTLPEEWKYLPFLALPDGAHNYQEDTVFFHLPPRNGNGATVFGISCYRQIEAKALKVRQADITRETVQKSVCVLSKLPLYGLLQAKLQLITHAYFEEKDFSQISILKELYEHMNSSLGGASLEGSQVYLGLSPRDLVLHFRHKVLILFKLILLEKKVLFYISPVNKLVGALMTVLSLFPGMIEHGLSDCSQYRPRKSMSEDGGLQESNPCADDFVSASTADVSHTNLGTVRKVIAGNHGEDAAMKTEEPLFQVEDSSKGQEPNDTNQYLKPPSRPSPDSSESDWETLDPSVLEDPNSKEREQLGSDQTNLFPKDSVPSESLPITVQPQANTGQVVLIPGLISGLEEDQYGMPLAIFTKGYLCLPYMALQQHHLLSDVTVRGFVAGATNILFRQQKHLGDAIVEVEEALIQIHDPELRKLLNPTTADLRFADYLVRHVTENRDDVFLDGTGWEGGDEWIRAQFAVYIHALLAATLQLDNEKILSDYGTTFVTAWKNTHDYRVWNSNKHPALAEINPNSVQNSERGKKIGNVMVTTSRNVVQTGKAVGQSVGGAFSSAKTAMSSWLSTFTTSTSQSLTEPPDGKP
Functions in cell migration. Subcellular locations: Recycling endosome, Membrane
AXDN1_MACFA
Macaca fascicularis
MSLPKTPSTPLNSASTSESKKLVSVATEGTRGLPELKEKKNMVDRSKPLPTSLLNEFIPKEVLLSLTYAANAGPCPENLLPPKKIKTPKGTLPRLVDHVWHHPVRRNKFKYLIDHPVSLTGAGRDISFLYDVKYTKGQTREKAVCPPHLARSLQSHDGVIVPHKPKTLTDTLIPEEFHIVSSTGVSGLECYDDKYTTLLTDSENRLLLFPSMKPNKRVEVAQLNDVMDTMLERAGVENQEYTGPTKMHKLLHILKKEQTIYNTIFHELIRQVSVDCADRGELLSKVRERYVQMLDQIARQMIDFYKDLVTQRVMDQRILEELYNFKHVIEELTRELCLVRAHDVKLTKETEKAHKDLAQALLDAEKNAKMVEEYHDLYTLQRERMENDMKQLMAERDIWSSATYELALKVIERNRVILARRLYLNEKGWNKYTKHLIILLANKDTEDLALLQKLTQKWRNLVNKFKQEVEEMEESTRETLKIVEKGLTKWQESFNEKDILSPNNGNVFDSVILDFKQWQKMLNEKKEEFTGDVLLSKYDTLKIIKHLQENWTDIGLGIFNRHKSLEGELPSERQYMEEIIKNIQKLYKEYEIRINGDNGYSKILPILISSLDFCSFKLENLEFPDTPLEEWQEIDEKINEMKLQLDLLLNLTGIVPQHIDMDSVSVLQAYIFNMIQQWLLKIGNEINNGNIELQRHMDELHISMIQWMVNLLILMIPNFTDQDCLLKLEEESAEKHDIGVARLELDAIELTRKLYQYSRYLSSSCEGMVTAMALSKSTTSHRNATEDLYEVDKLKKECYEWINTCSCLLSNIKGRKITLLTYEEIEQLLEEEAVKEFIEPEMDESLLCSRRILLP
May be essential for spermiogenesis and male fertility probably by regulating the manchette dynamics, spermatid head shaping and sperm flagellum assembly. Subcellular locations: Cytoplasm
B3A3_PLEMO
Plecturocebus moloch
MANGVIPPPGGASPLPQVRVPLEEPPLSPDVEEEDDDLGKTLAVSRFGDLISKPPAWDPEKPSRSYSERDFEFHRHTSHHTHHPLSARLPPPHKLRRLPPTSGRHTRRKRKKEKTSVPPSEGTPPIQEEGGAGVDEEEEEEEEEEGESEAEPVEPPPSGSPPKAKFSIGSDEDDSPGLPGRAAVTKPLPSVGPRTDKSPQHSGSFPSPRARASRLAGEKSRPWSPSASYDLRERLCPGSALGNPGGPEQQVPTDEAEAQMLGSADLDDMKSHRLEDNPGVRRHLVKKPSRTQGGRGSPSGLAPILRRKKKKKKLDRRPHEVFVELNELMLDRSQEPHWRETARWIKFEEDVEEETERWGKPHVASLSFRSLLELRRTIAHGAALLDLEQTTLPGIAHLVVETMIVSDQIRPEDRASVLRTLLLKHSHPNDDKDSGFFPRNPSSSSMNSVLGNHHPTPSHGPDGAVPTMADDLGEPAPLWPHDPDAKEKPLHMPGGDSHRGKSLKLLEKIPEDAEATVVLVGCVPFLEQPAAAFVRLNEAVLLESVLEVPVPVRFLFVMLGPSHTSTDYHELGRSIATLMSDKLFHEAAYQADDRQDLLSAISEFLDGSIVIPPSEVEGRDLLRSVAAFQRELLRKRREREQTKVEMTTRGGYTAPGKELSLELGGSEATPEDDPLLRTGSIFGGLVRDVRRRYPYYPSDLRDALHSQCVAAVLFIYFAALSPAITFGGLLGEKTEGLMGVSELIVSTAVLGVLFSLLGAQPLLVVGFSGPLLVFEEAFFKFCRAQDLEYLTGRVWVGLWLVVFVLALVAAEGSFLVRYISPFTQEIFAFLISLIFIYETFYKLYKVFTEHPLLPFYPPEGALEGSLEAGLEPNGSALPPTEGPRGPRNQPNTALLSLILMLGTFFIAFFLRKFRNSRFLGGKARRIIGDFGIPISILVMVLVDYSITDTYTQKLTVPTGLSVTSPDKRSWFIPPLGSARPFPPWMMVAAAVPALLVLILIFMETQITALIVSQKARRLLKGSGFHLDLLLIGSLGGLCGLFGLPWLTAATVRSVTHVNALTVMRTAIAPGDKPQIQEVREQRVTGVLIASLVGLSIVMGAVLRRIPLAVLFGIFLYMGVTSLSGIQLSQRLLLILMPAKHHPEQPYVTKVKTWRMHLFTCIQLGCIALLWVVKSTAASLAFPFLLLLTVPLRHCLLPRLFQDRELQALDSEDAEPNFDEDGQDEYNELHMPV
Sodium-independent anion exchanger which mediates the electroneutral exchange of chloride for bicarbonate ions across the cell membrane. May be involved in the regulation of intracellular pH, and the modulation of cardiac action potential. Subcellular locations: Cell membrane
B3A3_PONAB
Pongo abelii
MANGVIPPPGGASPLPQVRVPLEEPPLSPDVEEEDDDLGKTLAVSRFGDLISKPPAWDPEKPSRSYSERDFEFHRHTSHHTHHPLSARLPPPHKLRRLPPTSARHTRRKRKKEKTSAPPSEETPPIQEEGGAGVEEEEEEEEEEEGESEAEPVEPPPSGTPQKAKFSIGSDEDDSPGLPGRAAVTKPLPSVGPQTDKSPQHSSSSPSPRAQASRLAGEKSRPWSPSASYDLRERLCPGSALGNSGGPEQQVPTDEAEAQMLGSADLDDMKSHRLEDNPGVRRHLVKKPSRTQGGRGSPSGLAPILRRKKKKKKLDRRPHEVFVELNELMLDRSQEPHWRETARWIKFEEDVEEETERWGKPHVASLSFRSLLELRRTIAHGAALLDLEQTTLPGIAHLVVETMIVSDQIRPEDRASVLRTLLLKHSHPNDDKDSGFFPRNPSSSSMNSVLGNHHPTPSHGPDGAVPTMADDLGEPAPLWPHDPDAKEKPLHMPGGDGHRGKSLKLLEKIPEDAEATVVLVGCVPFLEQPAAAFVRLNEAVLLESVLEVPVPVCFLFVMLGPSHTSTDYHELGRSIATLMSDKLFHEAAYQADDRQDLLSAISEFLDGSIVIPPSEVEGRDLLRSVAAFQRELLRKRREREQTKVEMTTRGGYTAPGKELSLELGGSEATPEDDPLLRTGSVFGGLVRDVRRRYPHYPSDLRDALHSQCVAAVLFIYFAALSPAITFGGLLGEKTEGLMGVSELIVSTAVLGVLFSLLGAQPLLVVGFSGPLLVFEEAFFKFCRAQDLEYLTGRVWVGLWLVVFVLALVAAEGSFLVRYISPFTQEIFAFLISLIFIYETFYKLYKVFTEHPLLPFYPPEGALEGSLDAGLEPNGSALPPTEGPPSPRNQPNTALLSLILMLGTFFIAFFLRKFRNSRFLGGKARRIIGDFGIPISILVMVLVDYSITDTYTQKLTVPTGLSVTPPDKRSWFIPPLGSARPFPPWMMVAAAVPALLVLILIFMETQITALIVSQKARRLLKGSGFHLDLLLIGSLGGLCGLFGLPWLTAATVRSVTHVNALTVMRTAIAPGDKPQIQEVREQRVTGVLIASLVGLSIVMGAVLRRIPLAVLFGIFLYMGVTSLSGIQLSQRLLLILMPAKHHPEQPYVTKVKTWRMHLFICIQLGCIALLWVVKSTAASLAFPFLLLLTVPLRHCLLPRLFQDRELQALDSEDAEPNFDEDGQDEYNELHMPV
Sodium-independent anion exchanger which mediates the electroneutral exchange of chloride for bicarbonate ions across the cell membrane. May be involved in the regulation of intracellular pH, and the modulation of cardiac action potential. Subcellular locations: Cell membrane
B3A4_HUMAN
Homo sapiens
MEMKLPGQEGFEASSAPRNIPSGELDSNPDPGTGPSPDGPSDTESKELGVPKDPLLFIQLNELLGWPQALEWRETGSSSASLLLDMGEMPSITLSTHLHHRWVLFEEKLEVAAGRWSAPHVPTLALPSLQKLRSLLAEGLVLLDCPAQSLLELVEQVTRVESLSPELRGQLQALLLQRPQHYNQTTGTRPCWGSTHPRKASDNEEAPLREQCQNPLRQKLPPGAEAGTVLAGELGFLAQPLGAFVRLRNPVVLGSLTEVSLPSRFFCLLLGPCMLGKGYHEMGRAAAVLLSDPQFQWSVRRASNLHDLLAALDAFLEEVTVLPPGRWDPTARIPPPKCLPSQHKRLPSQQREIRGPAVPRLTSAEDRHRHGPHAHSPELQRTGRLFGGLIQDVRRKVPWYPSDFLDALHLQCFSAVLYIYLATVTNAITFGGLLGDATDGAQGVLESFLGTAVAGAAFCLMAGQPLTILSSTGPVLVFERLLFSFSRDYSLDYLPFRLWVGIWVATFCLVLVATEASVLVRYFTRFTEEGFCALISLIFIYDAVGKMLNLTHTYPIQKPGSSAYGCLCQYPGPGGNESQWIRTRPKDRDDIVSMDLGLINASLLPPPECTRQGGHPRGPGCHTVPDIAFFSLLLFLTSFFFAMALKCVKTSRFFPSVVRKGLSDFSSVLAILLGCGLDAFLGLATPKLMVPREFKPTLPGRGWLVSPFGANPWWWSVAAALPALLLSILIFMDQQITAVILNRMEYRLQKGAGFHLDLFCVAVLMLLTSALGLPWYVSATVISLAHMDSLRRESRACAPGERPNFLGIREQRLTGLVVFILTGASIFLAPVLKFIPMPVLYGIFLYMGVAALSSIQFTNRVKLLLMPAKHQPDLLLLRHVPLTRVHLFTAIQLACLGLLWIIKSTPAAIIFPLMLLGLVGVRKALERVFSPQELLWLDELMPEEERSIPEKGLEPEHSFSGSDSEDSELMYQPKAPEINISVN
Electroneutral Cl(-)/HCO3(-) antiporter that favors chloride ion entry and efflux of hydrogencarbonate and sodium ion across the basolateral membrane and may participate in salivary secretion . Also mediates Cl(-)/HCO3(-) exchange activity in the presence of K(+) as well as Cs(+), Li(+), and Rb(+) (By similarity). Does not contribute to Cl(-)/HCO3(-) exchanger in the apical membrane of the upper villous epithelium (By similarity). Subcellular locations: Basolateral cell membrane Localized in the basolateral membrane of the cortical collecting duct (CCD)and submandibular gland (SMG) duct. Kidney specific.