Datasets:
Parquet conversion and README yaml editing
Browse files- UsenetArchiveIT.py +188 -0
UsenetArchiveIT.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import DatasetBuilder, SplitGenerator, Split, Features, Value, ClassLabel, BuilderConfig, Version, DatasetInfo, DownloadManager, ArrowBasedBuilder
|
2 |
+
import glob
|
3 |
+
import json
|
4 |
+
import multiprocessing as mp
|
5 |
+
import os
|
6 |
+
import pyarrow as pa
|
7 |
+
import pyarrow.parquet as pq
|
8 |
+
import pandas as pd
|
9 |
+
import pyarrow as pa
|
10 |
+
import pyarrow.json
|
11 |
+
# jsonl
|
12 |
+
|
13 |
+
pattern="*.bz2"
|
14 |
+
|
15 |
+
paths=glob.glob(pattern)
|
16 |
+
|
17 |
+
# exclude txt files
|
18 |
+
|
19 |
+
paths=[file for file in paths if not ".txt." in file]
|
20 |
+
|
21 |
+
n_files=len(paths)
|
22 |
+
|
23 |
+
# labels are file names without the extension .jsonl.bz2
|
24 |
+
|
25 |
+
labels=[file.replace(".jsonl.bz2","") for file in paths]
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
## handle parquet conversion
|
30 |
+
|
31 |
+
# create parquet directory
|
32 |
+
|
33 |
+
dl_manager = DownloadManager()
|
34 |
+
|
35 |
+
parquet_dir="parquet"
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
def convert_jsonl_to_parquet(file_list, parquet_dir, chunk_size=100000):
|
41 |
+
"""Converts JSONL files to Parquet with memory efficiency.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
file_list (list): List of JSONL file paths.
|
45 |
+
parquet_dir (str): Path to store output Parquet files.
|
46 |
+
chunk_size (int): Number of records to write to each Parquet file.
|
47 |
+
"""
|
48 |
+
|
49 |
+
os.makedirs(parquet_dir, exist_ok=True) # Create output directory
|
50 |
+
|
51 |
+
parquet_file_index = 0
|
52 |
+
current_records = []
|
53 |
+
file_index = 0
|
54 |
+
for file in file_list:
|
55 |
+
# try:
|
56 |
+
reader = pa.json.read_json(file) # PyArrow JSON reader
|
57 |
+
|
58 |
+
for batch in reader:
|
59 |
+
pandas_df = batch.to_pandas()
|
60 |
+
print(pandas_df.shape)
|
61 |
+
current_records.extend(pandas_df.to_dict('list'))
|
62 |
+
if len(current_records) >= chunk_size:
|
63 |
+
table = pa.Table.from_pandas(pd.DataFrame(current_records))
|
64 |
+
parquet_filename = f"output_{parquet_file_index}.parquet"
|
65 |
+
parquet_path = os.path.join(parquet_dir, parquet_filename)
|
66 |
+
pq.write_table(table, parquet_path)
|
67 |
+
|
68 |
+
current_records = []
|
69 |
+
parquet_file_index += 1
|
70 |
+
# except Exception as e:
|
71 |
+
# print(f"Error in file {file} with error {e}")
|
72 |
+
file_index += 1
|
73 |
+
print(f"Finished processing file {file_index} of {len(file_list)}")
|
74 |
+
print(f"Writing last chunk to parquet file {parquet_file_index}")
|
75 |
+
# Write any remaining data in the last chunk
|
76 |
+
if current_records:
|
77 |
+
table = pa.Table.from_pandas(pd.DataFrame(current_records))
|
78 |
+
parquet_filename = f"output_{parquet_file_index}.parquet"
|
79 |
+
parquet_path = os.path.join(parquet_dir, parquet_filename)
|
80 |
+
pq.write_table(table, parquet_path)
|
81 |
+
|
82 |
+
print(f"Conversion complete, wrote {parquet_file_index + 1} Parquet files.")
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
class UsenetConfig(BuilderConfig):
|
89 |
+
def __init__(self, version, **kwargs):
|
90 |
+
().__init__(version, **kwargs)
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
class UsenetArchiveIt(ArrowBasedBuilder):
|
101 |
+
VERSION = "1.0.0" # Example version
|
102 |
+
|
103 |
+
BUILDER_CONFIG_CLASS = UsenetConfig
|
104 |
+
|
105 |
+
BUILDER_CONFIGS = [
|
106 |
+
UsenetConfig(
|
107 |
+
name="usenet_archive_it",
|
108 |
+
version=Version("1.0.0"),
|
109 |
+
description="Usenet Archive-It dataset",
|
110 |
+
),
|
111 |
+
]
|
112 |
+
|
113 |
+
def _info(self):
|
114 |
+
# Specify dataset features here
|
115 |
+
return DatasetInfo(
|
116 |
+
features=Features({
|
117 |
+
"title": Value("string"),
|
118 |
+
"author": Value("string"),
|
119 |
+
"id": Value("int32"),
|
120 |
+
"timestamp": Value("string"),
|
121 |
+
"progressive_number": Value("int32"),
|
122 |
+
"original_url": Value("string"),
|
123 |
+
"newsgroup": Value("string"), # this could be a label but difficult to get all possible labels
|
124 |
+
"text": Value("string"),
|
125 |
+
}),)
|
126 |
+
|
127 |
+
def _split_generators(self, dl_manager):
|
128 |
+
n = mp.cpu_count()//10 # Number of paths to process at a time
|
129 |
+
print(f"Extracting {n} files at a time")
|
130 |
+
if not os.path.isdir('parquet'):
|
131 |
+
extracted_files = []
|
132 |
+
for i in range(0, len(paths), n):
|
133 |
+
|
134 |
+
files = paths[i:i+n]
|
135 |
+
extracted_files.extend(dl_manager.extract(files, num_proc=len(files)))
|
136 |
+
print(f"Extracted {files}")
|
137 |
+
else:
|
138 |
+
extracted_files = glob.glob(parquet_dir + "/*.parquet")
|
139 |
+
|
140 |
+
return [
|
141 |
+
SplitGenerator(
|
142 |
+
name=Split.TRAIN,
|
143 |
+
gen_kwargs={"filepath": extracted_files},
|
144 |
+
),
|
145 |
+
|
146 |
+
]
|
147 |
+
|
148 |
+
def _generate_tables(self, filepath):
|
149 |
+
|
150 |
+
# print("Filepath: ", filepath)
|
151 |
+
|
152 |
+
# if parquet files are not present, convert jsonl to parquet
|
153 |
+
if not os.path.exists(parquet_dir):
|
154 |
+
print("Generating parquet files from jsonl files...")
|
155 |
+
convert_jsonl_to_parquet(filepath, parquet_dir)
|
156 |
+
|
157 |
+
# read parquet files
|
158 |
+
parquet_files=glob.glob(parquet_dir+"/*.parquet")
|
159 |
+
|
160 |
+
|
161 |
+
for index, file in enumerate(parquet_files):
|
162 |
+
table = pq.read_table(file)
|
163 |
+
yield index, table
|
164 |
+
|
165 |
+
|
166 |
+
# for file in parquet_files:
|
167 |
+
# table = pq.read_table(file)
|
168 |
+
# df = table.to_pandas()
|
169 |
+
# for index, row in df.iterrows():
|
170 |
+
# yield index, row.to_dict()
|
171 |
+
|
172 |
+
|
173 |
+
# Yields (key, example) tuples from the dataset
|
174 |
+
# id=0
|
175 |
+
# for file in filepath:
|
176 |
+
# # Open and yield examples from the compressed JSON files
|
177 |
+
# with open(file, "r") as f:
|
178 |
+
# for i, line in enumerate(f):
|
179 |
+
# try:
|
180 |
+
# data = json.loads(line)
|
181 |
+
# yield id, data
|
182 |
+
# id+=1
|
183 |
+
# except Exception as e:
|
184 |
+
# print(f"Error in file {file} at line {i} with error {e}")
|
185 |
+
|
186 |
+
|
187 |
+
# Finally, set the name of the dataset to match the script name
|
188 |
+
datasets = UsenetArchiveIt
|