File size: 6,171 Bytes
9c120fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"""Magic"""

from typing import List
from functools import partial

import datasets

import pandas


VERSION = datasets.Version("1.0.0")
_BASE_FEATURE_NAMES = [
    "major_axis_length"
    "minor_axis_length"
    "log_of_sum_of_content"
    "ratio_of_sum_of_highest_pixels_and_size"
    "ratio_of_highest_pixel_and_size"
    "projected_distance_highest_to_center_pixel"
    "third_root_of_third_moment_along_major_axis"
    "third_root_of_third_moment_along_minor_axis"
    "angle_major_axis_to_origin"
    "distance_origin_to_center"
    "class"
]


DESCRIPTION = "Magic dataset from the UCI ML repository."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Magic"
_URLS = ("https://archive.ics.uci.edu/ml/datasets/Magic")
_CITATION = """
@misc{misc_magic_gamma_telescope_159,
  author       = {Bock,R.},
  title        = {{MAGIC Gamma Telescope}},
  year         = {2007},
  howpublished = {UCI Machine Learning Repository},
  note         = {{DOI}: \\url{10.24432/C52C8B}}
}"""

# Dataset info
urls_per_split = {
    "train": "https://huggingface.co/datasets/mstz/magic/raw/main/magic04.data"
}
features_types_per_config = {
    "magic": {
        "major_axis_length": datasets.Value("float64"),
        "minor_axis_length": datasets.Value("float64"),
        "log_of_sum_of_content": datasets.Value("float64"),
        "ratio_of_sum_of_highest_pixels_and_size": datasets.Value("float64"),
        "ratio_of_highest_pixel_and_size": datasets.Value("float64"),
        "projected_distance_highest_to_center_pixel": datasets.Value("float64"),
        "third_root_of_third_moment_along_major_axis": datasets.Value("float64"),
        "third_root_of_third_moment_along_minor_axis": datasets.Value("float64"),
        "angle_major_axis_to_origin": datasets.Value("float64"),
        "distance_origin_to_center": datasets.Value("float64"),
        "class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
    }
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class MagicConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(MagicConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class Magic(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "magic"
    BUILDER_CONFIGS = [
        MagicConfig(name="magic",
                    description="Magic for binary classification.")
    ]


    def _info(self):
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
        ]
    
    def _generate_examples(self, filepath: str):
        if self.config.name == "encoding":
            data = self.encodings()

            for row_id, row in data.iterrows():
                data_row = dict(row)

                yield row_id, data_row

        elif self.config.name in ["magic", "magic-no race", "race"]:               
            data = pandas.read_csv(filepath)
            data = self.preprocess(data, config=self.config.name)

            for row_id, row in data.iterrows():
                data_row = dict(row)

                yield row_id, data_row

        else:
            raise ValueError(f"Unknown config: {self.config.name}")

    def encodings(self):
        data = [pandas.DataFrame([(feature, original_value, encoded_value)
                                   for original_value, encoded_value in d.items()],
                                 columns=["feature", "original_value", "encoded_value"])
                for feature, d in _ENCODING_DICS.items()]
        data.append(pandas.DataFrame([("race", original_value, encoded_value)
                                       for original_value, encoded_value in _RACE_ENCODING.items()],
                    columns=["feature", "original_value", "encoded_value"]))
        data.append(pandas.DataFrame([("education", original_value, encoded_value)
                                       for original_value, encoded_value in _EDUCATION_ENCODING.items()],
                    columns=["feature", "original_value", "encoded_value"]))
        data = pandas.concat(data, axis="rows").reset_index()
        data.drop("index", axis="columns", inplace=True)

        return data


    def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
        data.drop("education", axis="columns", inplace=True)
        data = data.rename(columns={"threshold": "over_threshold", "sex": "is_male"})

        data = data[["age", "capital_gain", "capital_loss", "education-num", "final_weight",
                     "hours_per_week", "marital_status", "native_country", "occupation",
                     "race", "relationship", "is_male", "workclass", "over_threshold"]]
        data.columns = _BASE_FEATURE_NAMES

        for feature in _ENCODING_DICS:
            encoding_function = partial(self.encode, feature)
            data.loc[:, feature] = data[feature].apply(encoding_function)
        

        if config == "magic":
            return data[list(features_types_per_config["magic"].keys())]
        elif config == "magic-no race":
            return data[list(features_types_per_config["magic-no race"].keys())]
        elif config =="race":
            data.loc[:, "race"] = data.race.apply(self.encode_race)
            data = data[list(features_types_per_config["race"].keys())]

            return data
        else:
            raise ValueError(f"Unknown config: {config}")
    
    def encode(self, feature, value):
        if feature in _ENCODING_DICS:
            return _ENCODING_DICS[feature][value]
        raise ValueError(f"Unknown feature: {feature}")
    
    def encode_race(self, race):
        return _RACE_ENCODING[race]