Datasets:
Upload magic.py
Browse files
magic.py
CHANGED
@@ -87,73 +87,10 @@ class Magic(datasets.GeneratorBasedBuilder):
|
|
87 |
]
|
88 |
|
89 |
def _generate_examples(self, filepath: str):
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
elif self.config.name in ["magic", "magic-no race", "race"]:
|
99 |
-
data = pandas.read_csv(filepath)
|
100 |
-
data = self.preprocess(data, config=self.config.name)
|
101 |
-
|
102 |
-
for row_id, row in data.iterrows():
|
103 |
-
data_row = dict(row)
|
104 |
-
|
105 |
-
yield row_id, data_row
|
106 |
-
|
107 |
-
else:
|
108 |
-
raise ValueError(f"Unknown config: {self.config.name}")
|
109 |
-
|
110 |
-
def encodings(self):
|
111 |
-
data = [pandas.DataFrame([(feature, original_value, encoded_value)
|
112 |
-
for original_value, encoded_value in d.items()],
|
113 |
-
columns=["feature", "original_value", "encoded_value"])
|
114 |
-
for feature, d in _ENCODING_DICS.items()]
|
115 |
-
data.append(pandas.DataFrame([("race", original_value, encoded_value)
|
116 |
-
for original_value, encoded_value in _RACE_ENCODING.items()],
|
117 |
-
columns=["feature", "original_value", "encoded_value"]))
|
118 |
-
data.append(pandas.DataFrame([("education", original_value, encoded_value)
|
119 |
-
for original_value, encoded_value in _EDUCATION_ENCODING.items()],
|
120 |
-
columns=["feature", "original_value", "encoded_value"]))
|
121 |
-
data = pandas.concat(data, axis="rows").reset_index()
|
122 |
-
data.drop("index", axis="columns", inplace=True)
|
123 |
-
|
124 |
-
return data
|
125 |
-
|
126 |
-
|
127 |
-
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
|
128 |
-
data.drop("education", axis="columns", inplace=True)
|
129 |
-
data = data.rename(columns={"threshold": "over_threshold", "sex": "is_male"})
|
130 |
-
|
131 |
-
data = data[["age", "capital_gain", "capital_loss", "education-num", "final_weight",
|
132 |
-
"hours_per_week", "marital_status", "native_country", "occupation",
|
133 |
-
"race", "relationship", "is_male", "workclass", "over_threshold"]]
|
134 |
-
data.columns = _BASE_FEATURE_NAMES
|
135 |
-
|
136 |
-
for feature in _ENCODING_DICS:
|
137 |
-
encoding_function = partial(self.encode, feature)
|
138 |
-
data.loc[:, feature] = data[feature].apply(encoding_function)
|
139 |
-
|
140 |
-
|
141 |
-
if config == "magic":
|
142 |
-
return data[list(features_types_per_config["magic"].keys())]
|
143 |
-
elif config == "magic-no race":
|
144 |
-
return data[list(features_types_per_config["magic-no race"].keys())]
|
145 |
-
elif config =="race":
|
146 |
-
data.loc[:, "race"] = data.race.apply(self.encode_race)
|
147 |
-
data = data[list(features_types_per_config["race"].keys())]
|
148 |
-
|
149 |
-
return data
|
150 |
-
else:
|
151 |
-
raise ValueError(f"Unknown config: {config}")
|
152 |
-
|
153 |
-
def encode(self, feature, value):
|
154 |
-
if feature in _ENCODING_DICS:
|
155 |
-
return _ENCODING_DICS[feature][value]
|
156 |
-
raise ValueError(f"Unknown feature: {feature}")
|
157 |
-
|
158 |
-
def encode_race(self, race):
|
159 |
-
return _RACE_ENCODING[race]
|
|
|
87 |
]
|
88 |
|
89 |
def _generate_examples(self, filepath: str):
|
90 |
+
data = pandas.read_csv(filepath)
|
91 |
+
data = self.preprocess(data, config=self.config.name)
|
92 |
+
|
93 |
+
for row_id, row in data.iterrows():
|
94 |
+
data_row = dict(row)
|
95 |
+
|
96 |
+
yield row_id, data_row
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|