|
import openai |
|
import pandas as pd |
|
import pandas as pd |
|
import json |
|
import urllib |
|
import math |
|
import time |
|
import random |
|
import re |
|
from tqdm import tqdm |
|
from io import StringIO |
|
import exp_lib |
|
|
|
def experiment_1_trial(data_df, model_name): |
|
x = data_df.sample(frac=1) |
|
train_df = x.drop_duplicates('Misconception ID') |
|
test_df = x.iloc[::-1].drop_duplicates('Misconception ID') |
|
test_df = test_df.reset_index() |
|
prompt = exp_lib.generate_prompt_test_batch(train_df.to_dict(orient='records'), test_df.to_dict(orient='records')) |
|
response = exp_lib.get_gpt4_diagnosis(model_name, prompt) |
|
response_df = pd.read_csv(StringIO(response), header=None, names=["test_example", "diagnosis"]) |
|
test_df["Predicted Diagnosis"] = response_df["diagnosis"].str.strip() |
|
test_df["Model"] = model_name |
|
return test_df[['Misconception ID', 'Example Number', 'Topic', 'Predicted Diagnosis', 'Model']] |
|
|
|
|
|
def experiment_1(input_file_path, model_name, num_iterations, output_file_path): |
|
data_df = pd.read_json(input_file_path) |
|
experiment_1_results_list = [] |
|
for i in tqdm(range(num_iterations)): |
|
try: |
|
trial_result = experiment_1_trial(data_df, model_name) |
|
trial_result['Trial'] = i |
|
experiment_1_results_list.append(trial_result) |
|
except Exception as e: |
|
print(e) |
|
experiment_1_results_df = pd.concat(experiment_1_results_list) |
|
experiment_1_results_df['Correct'] = (experiment_1_results_df['Misconception ID'] == experiment_1_results_df['Predicted Diagnosis']) |
|
experiment_1_results_df.to_csv(output_file_path) |
|
|
|
|
|
if __name__ == '__main__': |
|
experiment_name = 'experiment_1' |
|
input_file_path = 'data/data.json' |
|
model_name = 'gpt-4-turbo' |
|
num_iterations = 100 |
|
output_file_path = f'outputs/{experiment_name}_{model_name}_{num_iterations}iters.csv' |
|
|
|
experiment_1( |
|
input_file_path, |
|
model_name, |
|
num_iterations, |
|
output_file_path |
|
) |
|
|
|
|