label
int64 0
1
| func1
stringlengths 23
97k
| id
int64 0
27.3k
|
---|---|---|
0 | bool colo_supported(void) { return true; } | 499 |
0 | static uint64_t pxa2xx_i2s_read(void *opaque, hwaddr addr, unsigned size) { PXA2xxI2SState *s = (PXA2xxI2SState *) opaque; switch (addr) { case SACR0: return s->control[0]; case SACR1: return s->control[1]; case SASR0: return s->status; case SAIMR: return s->mask; case SAICR: return 0; case SADIV: return s->clk; case SADR: if (s->rx_len > 0) { s->rx_len --; pxa2xx_i2s_update(s); return s->codec_in(s->opaque); } return 0; default: printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); break; } return 0; } | 500 |
0 | char *desc_get_buf(DescInfo *info, bool read_only) { PCIDevice *dev = PCI_DEVICE(info->ring->r); size_t size = read_only ? le16_to_cpu(info->desc.tlv_size) : le16_to_cpu(info->desc.buf_size); if (size > info->buf_size) { info->buf = g_realloc(info->buf, size); info->buf_size = size; } if (!info->buf) { return NULL; } if (pci_dma_read(dev, le64_to_cpu(info->desc.buf_addr), info->buf, size)) { return NULL; } return info->buf; } | 502 |
0 | static void copy_context_after_encode(MpegEncContext *d, MpegEncContext *s, int type){ int i; memcpy(d->mv, s->mv, 2*4*2*sizeof(int)); memcpy(d->last_mv, s->last_mv, 2*2*2*sizeof(int)); //FIXME is memcpy faster then a loop? /* mpeg1 */ d->mb_incr= s->mb_incr; for(i=0; i<3; i++) d->last_dc[i]= s->last_dc[i]; /* statistics */ d->mv_bits= s->mv_bits; d->i_tex_bits= s->i_tex_bits; d->p_tex_bits= s->p_tex_bits; d->i_count= s->i_count; d->p_count= s->p_count; d->skip_count= s->skip_count; d->misc_bits= s->misc_bits; d->mb_intra= s->mb_intra; d->mb_skiped= s->mb_skiped; d->mv_type= s->mv_type; d->mv_dir= s->mv_dir; d->pb= s->pb; d->block= s->block; for(i=0; i<6; i++) d->block_last_index[i]= s->block_last_index[i]; } | 503 |
0 | static inline int gen_intermediate_code_internal (CPUState *env, TranslationBlock *tb, int search_pc) { DisasContext ctx, *ctxp = &ctx; opc_handler_t **table, *handler; target_ulong pc_start; uint16_t *gen_opc_end; int j, lj = -1; pc_start = tb->pc; gen_opc_ptr = gen_opc_buf; gen_opc_end = gen_opc_buf + OPC_MAX_SIZE; gen_opparam_ptr = gen_opparam_buf; nb_gen_labels = 0; ctx.nip = pc_start; ctx.tb = tb; ctx.exception = EXCP_NONE; ctx.spr_cb = env->spr_cb; #if defined(CONFIG_USER_ONLY) ctx.mem_idx = msr_le; #if defined(TARGET_PPC64) ctx.mem_idx |= msr_sf << 1; #endif #else ctx.supervisor = 1 - msr_pr; ctx.mem_idx = ((1 - msr_pr) << 1) | msr_le; #if defined(TARGET_PPC64) ctx.mem_idx |= msr_sf << 2; #endif #endif #if defined(TARGET_PPC64) ctx.sf_mode = msr_sf; #endif ctx.fpu_enabled = msr_fp; #if defined(TARGET_PPCEMB) ctx.spe_enabled = msr_spe; #endif ctx.singlestep_enabled = env->singlestep_enabled; #if defined (DO_SINGLE_STEP) && 0 /* Single step trace mode */ msr_se = 1; #endif /* Set env in case of segfault during code fetch */ while (ctx.exception == EXCP_NONE && gen_opc_ptr < gen_opc_end) { if (unlikely(env->nb_breakpoints > 0)) { for (j = 0; j < env->nb_breakpoints; j++) { if (env->breakpoints[j] == ctx.nip) { gen_update_nip(&ctx, ctx.nip); gen_op_debug(); break; } } } if (unlikely(search_pc)) { j = gen_opc_ptr - gen_opc_buf; if (lj < j) { lj++; while (lj < j) gen_opc_instr_start[lj++] = 0; gen_opc_pc[lj] = ctx.nip; gen_opc_instr_start[lj] = 1; } } #if defined PPC_DEBUG_DISAS if (loglevel & CPU_LOG_TB_IN_ASM) { fprintf(logfile, "----------------\n"); fprintf(logfile, "nip=" ADDRX " super=%d ir=%d\n", ctx.nip, 1 - msr_pr, msr_ir); } #endif ctx.opcode = ldl_code(ctx.nip); if (msr_le) { ctx.opcode = ((ctx.opcode & 0xFF000000) >> 24) | ((ctx.opcode & 0x00FF0000) >> 8) | ((ctx.opcode & 0x0000FF00) << 8) | ((ctx.opcode & 0x000000FF) << 24); } #if defined PPC_DEBUG_DISAS if (loglevel & CPU_LOG_TB_IN_ASM) { fprintf(logfile, "translate opcode %08x (%02x %02x %02x) (%s)\n", ctx.opcode, opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode), msr_le ? "little" : "big"); } #endif ctx.nip += 4; table = env->opcodes; handler = table[opc1(ctx.opcode)]; if (is_indirect_opcode(handler)) { table = ind_table(handler); handler = table[opc2(ctx.opcode)]; if (is_indirect_opcode(handler)) { table = ind_table(handler); handler = table[opc3(ctx.opcode)]; } } /* Is opcode *REALLY* valid ? */ if (unlikely(handler->handler == &gen_invalid)) { if (loglevel != 0) { fprintf(logfile, "invalid/unsupported opcode: " "%02x - %02x - %02x (%08x) 0x" ADDRX " %d\n", opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode), ctx.opcode, ctx.nip - 4, msr_ir); } else { printf("invalid/unsupported opcode: " "%02x - %02x - %02x (%08x) 0x" ADDRX " %d\n", opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode), ctx.opcode, ctx.nip - 4, msr_ir); } } else { if (unlikely((ctx.opcode & handler->inval) != 0)) { if (loglevel != 0) { fprintf(logfile, "invalid bits: %08x for opcode: " "%02x -%02x - %02x (%08x) 0x" ADDRX "\n", ctx.opcode & handler->inval, opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode), ctx.opcode, ctx.nip - 4); } else { printf("invalid bits: %08x for opcode: " "%02x -%02x - %02x (%08x) 0x" ADDRX "\n", ctx.opcode & handler->inval, opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode), ctx.opcode, ctx.nip - 4); } RET_INVAL(ctxp); break; } } (*(handler->handler))(&ctx); #if defined(DO_PPC_STATISTICS) handler->count++; #endif /* Check trace mode exceptions */ #if 0 // XXX: buggy on embedded PowerPC if (unlikely((msr_be && ctx.exception == EXCP_BRANCH) || /* Check in single step trace mode * we need to stop except if: * - rfi, trap or syscall * - first instruction of an exception handler */ (msr_se && (ctx.nip < 0x100 || ctx.nip > 0xF00 || (ctx.nip & 0xFC) != 0x04) && ctx.exception != EXCP_SYSCALL && ctx.exception != EXCP_SYSCALL_USER && ctx.exception != EXCP_TRAP))) { RET_EXCP(ctxp, EXCP_TRACE, 0); } #endif /* if we reach a page boundary or are single stepping, stop * generation */ if (unlikely(((ctx.nip & (TARGET_PAGE_SIZE - 1)) == 0) || (env->singlestep_enabled))) { break; } #if defined (DO_SINGLE_STEP) break; #endif } if (ctx.exception == EXCP_NONE) { gen_goto_tb(&ctx, 0, ctx.nip); } else if (ctx.exception != EXCP_BRANCH) { gen_op_reset_T0(); /* Generate the return instruction */ gen_op_exit_tb(); } *gen_opc_ptr = INDEX_op_end; if (unlikely(search_pc)) { j = gen_opc_ptr - gen_opc_buf; lj++; while (lj <= j) gen_opc_instr_start[lj++] = 0; } else { tb->size = ctx.nip - pc_start; } #if defined(DEBUG_DISAS) if (loglevel & CPU_LOG_TB_CPU) { fprintf(logfile, "---------------- excp: %04x\n", ctx.exception); cpu_dump_state(env, logfile, fprintf, 0); } if (loglevel & CPU_LOG_TB_IN_ASM) { int flags; flags = env->bfd_mach; flags |= msr_le << 16; fprintf(logfile, "IN: %s\n", lookup_symbol(pc_start)); target_disas(logfile, pc_start, ctx.nip - pc_start, flags); fprintf(logfile, "\n"); } if (loglevel & CPU_LOG_TB_OP) { fprintf(logfile, "OP:\n"); dump_ops(gen_opc_buf, gen_opparam_buf); fprintf(logfile, "\n"); } #endif return 0; } | 504 |
0 | void *address_space_map(AddressSpace *as, target_phys_addr_t addr, target_phys_addr_t *plen, bool is_write) { AddressSpaceDispatch *d = as->dispatch; target_phys_addr_t len = *plen; target_phys_addr_t todo = 0; int l; target_phys_addr_t page; MemoryRegionSection *section; ram_addr_t raddr = RAM_ADDR_MAX; ram_addr_t rlen; void *ret; while (len > 0) { page = addr & TARGET_PAGE_MASK; l = (page + TARGET_PAGE_SIZE) - addr; if (l > len) l = len; section = phys_page_find(d, page >> TARGET_PAGE_BITS); if (!(memory_region_is_ram(section->mr) && !section->readonly)) { if (todo || bounce.buffer) { break; } bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); bounce.addr = addr; bounce.len = l; if (!is_write) { address_space_read(as, addr, bounce.buffer, l); } *plen = l; return bounce.buffer; } if (!todo) { raddr = memory_region_get_ram_addr(section->mr) + memory_region_section_addr(section, addr); } len -= l; addr += l; todo += l; } rlen = todo; ret = qemu_ram_ptr_length(raddr, &rlen); *plen = rlen; return ret; } | 505 |
0 | GenericList *visit_next_list(Visitor *v, GenericList **list, size_t size) { assert(list && size >= sizeof(GenericList)); return v->next_list(v, list, size); } | 506 |
0 | static void *vring_map(MemoryRegion **mr, hwaddr phys, hwaddr len, bool is_write) { MemoryRegionSection section = memory_region_find(get_system_memory(), phys, len); if (!section.mr || int128_get64(section.size) < len) { goto out; } if (is_write && section.readonly) { goto out; } if (!memory_region_is_ram(section.mr)) { goto out; } /* Ignore regions with dirty logging, we cannot mark them dirty */ if (memory_region_is_logging(section.mr)) { goto out; } *mr = section.mr; return memory_region_get_ram_ptr(section.mr) + section.offset_within_region; out: memory_region_unref(section.mr); *mr = NULL; return NULL; } | 507 |
0 | uint32_t ldl_be_phys(target_phys_addr_t addr) { return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN); } | 508 |
0 | stream_push(StreamSlave *sink, uint8_t *buf, size_t len, uint32_t *app) { StreamSlaveClass *k = STREAM_SLAVE_GET_CLASS(sink); return k->push(sink, buf, len, app); } | 509 |
0 | static int raw_write(BlockDriverState *bs, int64_t sector_num, const uint8_t *buf, int nb_sectors) { return bdrv_write(bs->file, sector_num, buf, nb_sectors); } | 511 |
0 | static void tftp_handle_rrq(Slirp *slirp, struct tftp_t *tp, int pktlen) { struct tftp_session *spt; int s, k; size_t prefix_len; char *req_fname; /* check if a session already exists and if so terminate it */ s = tftp_session_find(slirp, tp); if (s >= 0) { tftp_session_terminate(&slirp->tftp_sessions[s]); } s = tftp_session_allocate(slirp, tp); if (s < 0) { return; } spt = &slirp->tftp_sessions[s]; /* unspecifed prefix means service disabled */ if (!slirp->tftp_prefix) { tftp_send_error(spt, 2, "Access violation", tp); return; } /* skip header fields */ k = 0; pktlen -= ((uint8_t *)&tp->x.tp_buf[0] - (uint8_t *)tp); /* prepend tftp_prefix */ prefix_len = strlen(slirp->tftp_prefix); spt->filename = qemu_malloc(prefix_len + TFTP_FILENAME_MAX + 2); memcpy(spt->filename, slirp->tftp_prefix, prefix_len); spt->filename[prefix_len] = '/'; /* get name */ req_fname = spt->filename + prefix_len + 1; while (1) { if (k >= TFTP_FILENAME_MAX || k >= pktlen) { tftp_send_error(spt, 2, "Access violation", tp); return; } req_fname[k] = (char)tp->x.tp_buf[k]; if (req_fname[k++] == '\0') { break; } } /* check mode */ if ((pktlen - k) < 6) { tftp_send_error(spt, 2, "Access violation", tp); return; } if (memcmp(&tp->x.tp_buf[k], "octet\0", 6) != 0) { tftp_send_error(spt, 4, "Unsupported transfer mode", tp); return; } k += 6; /* skipping octet */ /* do sanity checks on the filename */ if (!strncmp(req_fname, "../", 3) || req_fname[strlen(req_fname) - 1] == '/' || strstr(req_fname, "/../")) { tftp_send_error(spt, 2, "Access violation", tp); return; } /* check if the file exists */ if (tftp_read_data(spt, 0, NULL, 0) < 0) { tftp_send_error(spt, 1, "File not found", tp); return; } if (tp->x.tp_buf[pktlen - 1] != 0) { tftp_send_error(spt, 2, "Access violation", tp); return; } while (k < pktlen) { const char *key, *value; key = (const char *)&tp->x.tp_buf[k]; k += strlen(key) + 1; if (k >= pktlen) { tftp_send_error(spt, 2, "Access violation", tp); return; } value = (const char *)&tp->x.tp_buf[k]; k += strlen(value) + 1; if (strcmp(key, "tsize") == 0) { int tsize = atoi(value); struct stat stat_p; if (tsize == 0) { if (stat(spt->filename, &stat_p) == 0) tsize = stat_p.st_size; else { tftp_send_error(spt, 1, "File not found", tp); return; } } tftp_send_oack(spt, "tsize", tsize, tp); return; } } tftp_send_data(spt, 1, tp); } | 513 |
0 | static MegasasCmd *megasas_next_frame(MegasasState *s, target_phys_addr_t frame) { MegasasCmd *cmd = NULL; int num = 0, index; cmd = megasas_lookup_frame(s, frame); if (cmd) { trace_megasas_qf_found(cmd->index, cmd->pa); return cmd; } index = s->reply_queue_head; num = 0; while (num < s->fw_cmds) { if (!s->frames[index].pa) { cmd = &s->frames[index]; break; } index = megasas_next_index(s, index, s->fw_cmds); num++; } if (!cmd) { trace_megasas_qf_failed(frame); } trace_megasas_qf_new(index, cmd); return cmd; } | 515 |
1 | static int hnm_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { AVFrame *frame = data; Hnm4VideoContext *hnm = avctx->priv_data; int ret; uint16_t chunk_id; if (avpkt->size < 8) { if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) return ret; chunk_id = AV_RL16(avpkt->data + 4); if (chunk_id == HNM4_CHUNK_ID_PL) { hnm_update_palette(avctx, avpkt->data, avpkt->size); frame->palette_has_changed = 1; } else if (chunk_id == HNM4_CHUNK_ID_IZ) { unpack_intraframe(avctx, avpkt->data + 12, avpkt->size - 12); memcpy(hnm->previous, hnm->current, hnm->width * hnm->height); if (hnm->version == 0x4a) memcpy(hnm->processed, hnm->current, hnm->width * hnm->height); else postprocess_current_frame(avctx); copy_processed_frame(avctx, frame); frame->pict_type = AV_PICTURE_TYPE_I; frame->key_frame = 1; memcpy(frame->data[1], hnm->palette, 256 * 4); *got_frame = 1; } else if (chunk_id == HNM4_CHUNK_ID_IU) { if (hnm->version == 0x4a) { decode_interframe_v4a(avctx, avpkt->data + 8, avpkt->size - 8); memcpy(hnm->processed, hnm->current, hnm->width * hnm->height); } else { decode_interframe_v4(avctx, avpkt->data + 8, avpkt->size - 8); postprocess_current_frame(avctx); copy_processed_frame(avctx, frame); frame->pict_type = AV_PICTURE_TYPE_P; frame->key_frame = 0; memcpy(frame->data[1], hnm->palette, 256 * 4); *got_frame = 1; hnm_flip_buffers(hnm); } else { av_log(avctx, AV_LOG_ERROR, "invalid chunk id: %d\n", chunk_id); return avpkt->size; | 516 |
1 | static void test_nesting(void) { Coroutine *root; NestData nd = { .n_enter = 0, .n_return = 0, .max = 128, }; root = qemu_coroutine_create(nest); qemu_coroutine_enter(root, &nd); /* Must enter and return from max nesting level */ g_assert_cmpint(nd.n_enter, ==, nd.max); g_assert_cmpint(nd.n_return, ==, nd.max); } | 517 |
1 | static int fdctrl_connect_drives(FDCtrl *fdctrl) { unsigned int i; FDrive *drive; for (i = 0; i < MAX_FD; i++) { drive = &fdctrl->drives[i]; drive->fdctrl = fdctrl; if (drive->bs) { if (bdrv_get_on_error(drive->bs, 0) != BLOCK_ERR_STOP_ENOSPC) { error_report("fdc doesn't support drive option werror"); return -1; } if (bdrv_get_on_error(drive->bs, 1) != BLOCK_ERR_REPORT) { error_report("fdc doesn't support drive option rerror"); return -1; } } fd_init(drive); fd_revalidate(drive); if (drive->bs) { bdrv_set_dev_ops(drive->bs, &fdctrl_block_ops, drive); } } return 0; } | 518 |
1 | static int ac3_sync(uint64_t state, AACAC3ParseContext *hdr_info, int *need_next_header, int *new_frame_start) { int err; union { uint64_t u64; uint8_t u8[8]; } tmp = { av_be2ne64(state) }; AC3HeaderInfo hdr, *phdr = &hdr; GetBitContext gbc; init_get_bits(&gbc, tmp.u8+8-AC3_HEADER_SIZE, 54); err = avpriv_ac3_parse_header2(&gbc, &phdr); if(err < 0) return 0; hdr_info->sample_rate = hdr.sample_rate; hdr_info->bit_rate = hdr.bit_rate; hdr_info->channels = hdr.channels; hdr_info->channel_layout = hdr.channel_layout; hdr_info->samples = hdr.num_blocks * 256; hdr_info->service_type = hdr.bitstream_mode; if (hdr.bitstream_mode == 0x7 && hdr.channels > 1) hdr_info->service_type = AV_AUDIO_SERVICE_TYPE_KARAOKE; if(hdr.bitstream_id>10) hdr_info->codec_id = AV_CODEC_ID_EAC3; else if (hdr_info->codec_id == AV_CODEC_ID_NONE) hdr_info->codec_id = AV_CODEC_ID_AC3; *need_next_header = (hdr.frame_type != EAC3_FRAME_TYPE_AC3_CONVERT); *new_frame_start = (hdr.frame_type != EAC3_FRAME_TYPE_DEPENDENT); return hdr.frame_size; } | 519 |
1 | static bool use_goto_tb(DisasContext *ctx, target_ulong dest) { /* Suppress goto_tb in the case of single-steping and IO. */ if ((ctx->base.tb->cflags & CF_LAST_IO) || ctx->base.singlestep_enabled) { return false; } return true; } | 520 |
1 | QEMUFile *qemu_bufopen(const char *mode, QEMUSizedBuffer *input) { QEMUBuffer *s; if (mode == NULL || (mode[0] != 'r' && mode[0] != 'w') || mode[1] != '\0') { error_report("qemu_bufopen: Argument validity check failed"); return NULL; } s = g_malloc0(sizeof(QEMUBuffer)); if (mode[0] == 'r') { s->qsb = input; } if (s->qsb == NULL) { s->qsb = qsb_create(NULL, 0); } if (!s->qsb) { g_free(s); error_report("qemu_bufopen: qsb_create failed"); return NULL; } if (mode[0] == 'r') { s->file = qemu_fopen_ops(s, &buf_read_ops); } else { s->file = qemu_fopen_ops(s, &buf_write_ops); } return s->file; } | 522 |
1 | static void mips_cpu_class_init(ObjectClass *c, void *data) { MIPSCPUClass *mcc = MIPS_CPU_CLASS(c); CPUClass *cc = CPU_CLASS(c); DeviceClass *dc = DEVICE_CLASS(c); mcc->parent_realize = dc->realize; dc->realize = mips_cpu_realizefn; mcc->parent_reset = cc->reset; cc->reset = mips_cpu_reset; cc->has_work = mips_cpu_has_work; cc->do_interrupt = mips_cpu_do_interrupt; cc->cpu_exec_interrupt = mips_cpu_exec_interrupt; cc->dump_state = mips_cpu_dump_state; cc->set_pc = mips_cpu_set_pc; cc->synchronize_from_tb = mips_cpu_synchronize_from_tb; cc->gdb_read_register = mips_cpu_gdb_read_register; cc->gdb_write_register = mips_cpu_gdb_write_register; #ifdef CONFIG_USER_ONLY cc->handle_mmu_fault = mips_cpu_handle_mmu_fault; #else cc->do_unassigned_access = mips_cpu_unassigned_access; cc->do_unaligned_access = mips_cpu_do_unaligned_access; cc->get_phys_page_debug = mips_cpu_get_phys_page_debug; cc->vmsd = &vmstate_mips_cpu; #endif cc->disas_set_info = mips_cpu_disas_set_info; cc->gdb_num_core_regs = 73; cc->gdb_stop_before_watchpoint = true; /* * Reason: mips_cpu_initfn() calls cpu_exec_init(), which saves * the object in cpus -> dangling pointer after final * object_unref(). */ dc->cannot_destroy_with_object_finalize_yet = true; } | 523 |
1 | static void check_pointer_type_change(Notifier *notifier, void *data) { VncState *vs = container_of(notifier, VncState, mouse_mode_notifier); int absolute = qemu_input_is_absolute(); if (vnc_has_feature(vs, VNC_FEATURE_POINTER_TYPE_CHANGE) && vs->absolute != absolute) { vnc_lock_output(vs); vnc_write_u8(vs, VNC_MSG_SERVER_FRAMEBUFFER_UPDATE); vnc_write_u8(vs, 0); vnc_write_u16(vs, 1); vnc_framebuffer_update(vs, absolute, 0, surface_width(vs->vd->ds), surface_height(vs->vd->ds), VNC_ENCODING_POINTER_TYPE_CHANGE); vnc_unlock_output(vs); vnc_flush(vs); } vs->absolute = absolute; } | 524 |
1 | static MMSSCPacketType get_tcp_server_response(MMSContext *mms) { int read_result; MMSSCPacketType packet_type= -1; for(;;) { if((read_result= url_read_complete(mms->mms_hd, mms->in_buffer, 8))==8) { // handle command packet. if(AV_RL32(mms->in_buffer + 4)==0xb00bface) { mms->incoming_flags= mms->in_buffer[3]; read_result= url_read_complete(mms->mms_hd, mms->in_buffer+8, 4); if(read_result == 4) { int length_remaining= AV_RL32(mms->in_buffer+8) + 4; int hr; dprintf(NULL, "Length remaining is %d\n", length_remaining); // read the rest of the packet. if (length_remaining < 0 || length_remaining > sizeof(mms->in_buffer) - 12) { dprintf(NULL, "Incoming message len %d exceeds buffer len %d\n", length_remaining, sizeof(mms->in_buffer) - 12); read_result = url_read_complete(mms->mms_hd, mms->in_buffer + 12, length_remaining) ; if (read_result == length_remaining) { packet_type= AV_RL16(mms->in_buffer+36); } else { dprintf(NULL, "read for packet type failed%d!\n", read_result); } else { dprintf(NULL, "read for length remaining failed%d!\n", read_result); } else { int length_remaining; int packet_id_type; int tmp; assert(mms->remaining_in_len==0); // note we cache the first 8 bytes, // then fill up the buffer with the others tmp = AV_RL16(mms->in_buffer + 6); length_remaining = (tmp - 8) & 0xffff; mms->incoming_packet_seq = AV_RL32(mms->in_buffer); packet_id_type = mms->in_buffer[4]; mms->incoming_flags = mms->in_buffer[5]; if (length_remaining < 0 || length_remaining > sizeof(mms->in_buffer) - 8) { dprintf(NULL, "Incoming data len %d exceeds buffer len %d\n", length_remaining, sizeof(mms->in_buffer)); mms->remaining_in_len = length_remaining; mms->read_in_ptr = mms->in_buffer; read_result= url_read_complete(mms->mms_hd, mms->in_buffer, length_remaining); if(read_result != length_remaining) { dprintf(NULL, "read_bytes result: %d asking for %d\n", read_result, length_remaining); } else { // if we successfully read everything. if(packet_id_type == mms->header_packet_id) { packet_type = SC_PKT_ASF_HEADER; // Store the asf header if(!mms->header_parsed) { void *p = av_realloc(mms->asf_header, mms->asf_header_size + mms->remaining_in_len); if (!p) { av_freep(&mms->asf_header); return AVERROR(ENOMEM); mms->asf_header = p; memcpy(mms->asf_header + mms->asf_header_size, mms->read_in_ptr, mms->remaining_in_len); mms->asf_header_size += mms->remaining_in_len; } else if(packet_id_type == mms->packet_id) { packet_type = SC_PKT_ASF_MEDIA; } else { dprintf(NULL, "packet id type %d is old.", packet_id_type); continue; // preprocess some packet type if(packet_type == SC_PKT_KEEPALIVE) { send_keepalive_packet(mms); continue; } else if(packet_type == SC_PKT_STREAM_CHANGING) { handle_packet_stream_changing_type(mms); } else if(packet_type == SC_PKT_ASF_MEDIA) { pad_media_packet(mms); return packet_type; } else { if(read_result<0) { dprintf(NULL, "Read error (or cancelled) returned %d!\n", read_result); packet_type = SC_PKT_CANCEL; } else { dprintf(NULL, "Read result of zero?!\n"); packet_type = SC_PKT_NO_DATA; return packet_type; | 525 |
1 | get_sigframe(struct emulated_sigaction *ka, CPUX86State *env, size_t frame_size) { unsigned long esp; /* Default to using normal stack */ esp = env->regs[R_ESP]; #if 0 /* This is the X/Open sanctioned signal stack switching. */ if (ka->sa.sa_flags & SA_ONSTACK) { if (sas_ss_flags(esp) == 0) esp = current->sas_ss_sp + current->sas_ss_size; } /* This is the legacy signal stack switching. */ else if ((regs->xss & 0xffff) != __USER_DS && !(ka->sa.sa_flags & SA_RESTORER) && ka->sa.sa_restorer) { esp = (unsigned long) ka->sa.sa_restorer; } #endif return (void *)((esp - frame_size) & -8ul); } | 527 |
1 | static uint32_t add_weights(uint32_t w1, uint32_t w2) { uint32_t max = (w1 & 0xFF) > (w2 & 0xFF) ? (w1 & 0xFF) : (w2 & 0xFF); return ((w1 & 0xFFFFFF00) + (w2 & 0xFFFFFF00)) | (1 + max); } | 528 |
1 | static void decode_rlc_opc(CPUTriCoreState *env, DisasContext *ctx, uint32_t op1) { int32_t const16; int r1, r2; const16 = MASK_OP_RLC_CONST16_SEXT(ctx->opcode); r1 = MASK_OP_RLC_S1(ctx->opcode); r2 = MASK_OP_RLC_D(ctx->opcode); switch (op1) { case OPC1_32_RLC_ADDI: gen_addi_d(cpu_gpr_d[r2], cpu_gpr_d[r1], const16); break; case OPC1_32_RLC_ADDIH: gen_addi_d(cpu_gpr_d[r2], cpu_gpr_d[r1], const16 << 16); break; case OPC1_32_RLC_ADDIH_A: tcg_gen_addi_tl(cpu_gpr_a[r2], cpu_gpr_a[r1], const16 << 16); break; case OPC1_32_RLC_MFCR: const16 = MASK_OP_RLC_CONST16(ctx->opcode); gen_mfcr(env, cpu_gpr_d[r2], const16); break; case OPC1_32_RLC_MOV: tcg_gen_movi_tl(cpu_gpr_d[r2], const16); break; case OPC1_32_RLC_MOV_64: if (tricore_feature(env, TRICORE_FEATURE_16)) { if ((r2 & 0x1) != 0) { /* TODO: raise OPD trap */ } tcg_gen_movi_tl(cpu_gpr_d[r2], const16); tcg_gen_movi_tl(cpu_gpr_d[r2+1], const16 >> 15); } else { /* TODO: raise illegal opcode trap */ } break; case OPC1_32_RLC_MOV_U: const16 = MASK_OP_RLC_CONST16(ctx->opcode); tcg_gen_movi_tl(cpu_gpr_d[r2], const16); break; case OPC1_32_RLC_MOV_H: tcg_gen_movi_tl(cpu_gpr_d[r2], const16 << 16); break; case OPC1_32_RLC_MOVH_A: tcg_gen_movi_tl(cpu_gpr_a[r2], const16 << 16); break; case OPC1_32_RLC_MTCR: const16 = MASK_OP_RLC_CONST16(ctx->opcode); gen_mtcr(env, ctx, cpu_gpr_d[r1], const16); break; } } | 529 |
1 | static bool ga_open_pidfile(const char *pidfile) { int pidfd; char pidstr[32]; pidfd = open(pidfile, O_CREAT|O_WRONLY, S_IRUSR|S_IWUSR); if (pidfd == -1 || lockf(pidfd, F_TLOCK, 0)) { g_critical("Cannot lock pid file, %s", strerror(errno)); if (pidfd != -1) { close(pidfd); } return false; } if (ftruncate(pidfd, 0) || lseek(pidfd, 0, SEEK_SET)) { g_critical("Failed to truncate pid file"); goto fail; } snprintf(pidstr, sizeof(pidstr), "%d\n", getpid()); if (write(pidfd, pidstr, strlen(pidstr)) != strlen(pidstr)) { g_critical("Failed to write pid file"); goto fail; } return true; fail: unlink(pidfile); return false; } | 530 |
1 | static void video_image_display(VideoState *is) { Frame *vp; Frame *sp = NULL; SDL_Rect rect; vp = frame_queue_peek_last(&is->pictq); if (vp->bmp) { if (is->subtitle_st) { if (frame_queue_nb_remaining(&is->subpq) > 0) { sp = frame_queue_peek(&is->subpq); if (vp->pts >= sp->pts + ((float) sp->sub.start_display_time / 1000)) { if (!sp->uploaded) { uint8_t *pixels; int pitch; int i; if (!sp->width || !sp->height) { sp->width = vp->width; sp->height = vp->height; } if (realloc_texture(&is->sub_texture, SDL_PIXELFORMAT_ARGB8888, sp->width, sp->height, SDL_BLENDMODE_BLEND, 1) < 0) return; for (i = 0; i < sp->sub.num_rects; i++) { AVSubtitleRect *sub_rect = sp->sub.rects[i]; sub_rect->x = av_clip(sub_rect->x, 0, sp->width ); sub_rect->y = av_clip(sub_rect->y, 0, sp->height); sub_rect->w = av_clip(sub_rect->w, 0, sp->width - sub_rect->x); sub_rect->h = av_clip(sub_rect->h, 0, sp->height - sub_rect->y); is->sub_convert_ctx = sws_getCachedContext(is->sub_convert_ctx, sub_rect->w, sub_rect->h, AV_PIX_FMT_PAL8, sub_rect->w, sub_rect->h, AV_PIX_FMT_BGRA, 0, NULL, NULL, NULL); if (!is->sub_convert_ctx) { av_log(NULL, AV_LOG_FATAL, "Cannot initialize the conversion context\n"); return; } if (!SDL_LockTexture(is->sub_texture, (SDL_Rect *)sub_rect, (void **)&pixels, &pitch)) { sws_scale(is->sub_convert_ctx, (const uint8_t * const *)sub_rect->data, sub_rect->linesize, 0, sub_rect->h, &pixels, &pitch); SDL_UnlockTexture(is->sub_texture); } } sp->uploaded = 1; } } else sp = NULL; } } calculate_display_rect(&rect, is->xleft, is->ytop, is->width, is->height, vp->width, vp->height, vp->sar); if (!vp->uploaded) { if (upload_texture(vp->bmp, vp->frame, &is->img_convert_ctx) < 0) return; vp->uploaded = 1; vp->flip_v = vp->frame->linesize[0] < 0; } SDL_RenderCopyEx(renderer, vp->bmp, NULL, &rect, 0, NULL, vp->flip_v ? SDL_FLIP_VERTICAL : 0); if (sp) { #if USE_ONEPASS_SUBTITLE_RENDER SDL_RenderCopy(renderer, is->sub_texture, NULL, &rect); #else int i; double xratio = (double)rect.w / (double)sp->width; double yratio = (double)rect.h / (double)sp->height; for (i = 0; i < sp->sub.num_rects; i++) { SDL_Rect *sub_rect = (SDL_Rect*)sp->sub.rects[i]; SDL_Rect target = {.x = rect.x + sub_rect->x * xratio, .y = rect.y + sub_rect->y * yratio, .w = sub_rect->w * xratio, .h = sub_rect->h * yratio}; SDL_RenderCopy(renderer, is->sub_texture, sub_rect, &target); } #endif } } } | 531 |
0 | static int rtmp_server_handshake(URLContext *s, RTMPContext *rt) { uint8_t buffer[RTMP_HANDSHAKE_PACKET_SIZE]; uint32_t hs_epoch; uint32_t hs_my_epoch; uint8_t hs_c1[RTMP_HANDSHAKE_PACKET_SIZE]; uint8_t hs_s1[RTMP_HANDSHAKE_PACKET_SIZE]; uint32_t zeroes; uint32_t temp = 0; int randomidx = 0; int inoutsize = 0; int ret; inoutsize = ffurl_read_complete(rt->stream, buffer, 1); // Receive C0 if (inoutsize <= 0) { av_log(s, AV_LOG_ERROR, "Unable to read handshake\n"); return AVERROR(EIO); } // Check Version if (buffer[0] != 3) { av_log(s, AV_LOG_ERROR, "RTMP protocol version mismatch\n"); return AVERROR(EIO); } if (ffurl_write(rt->stream, buffer, 1) <= 0) { // Send S0 av_log(s, AV_LOG_ERROR, "Unable to write answer - RTMP S0\n"); return AVERROR(EIO); } /* Receive C1 */ ret = rtmp_receive_hs_packet(rt, &hs_epoch, &zeroes, hs_c1, RTMP_HANDSHAKE_PACKET_SIZE); if (ret) { av_log(s, AV_LOG_ERROR, "RTMP Handshake C1 Error\n"); return ret; } if (zeroes) av_log(s, AV_LOG_WARNING, "Erroneous C1 Message zero != 0\n"); /* Send S1 */ /* By now same epoch will be sent */ hs_my_epoch = hs_epoch; /* Generate random */ for (randomidx = 0; randomidx < (RTMP_HANDSHAKE_PACKET_SIZE); randomidx += 4) AV_WB32(hs_s1 + 8 + randomidx, av_get_random_seed()); ret = rtmp_send_hs_packet(rt, hs_my_epoch, 0, hs_s1, RTMP_HANDSHAKE_PACKET_SIZE); if (ret) { av_log(s, AV_LOG_ERROR, "RTMP Handshake S1 Error\n"); return ret; } /* Send S2 */ ret = rtmp_send_hs_packet(rt, hs_epoch, 0, hs_c1, RTMP_HANDSHAKE_PACKET_SIZE); if (ret) { av_log(s, AV_LOG_ERROR, "RTMP Handshake S2 Error\n"); return ret; } /* Receive C2 */ ret = rtmp_receive_hs_packet(rt, &temp, &zeroes, buffer, RTMP_HANDSHAKE_PACKET_SIZE); if (ret) { av_log(s, AV_LOG_ERROR, "RTMP Handshake C2 Error\n"); return ret; } if (temp != hs_my_epoch) av_log(s, AV_LOG_WARNING, "Erroneous C2 Message epoch does not match up with C1 epoch\n"); if (memcmp(buffer + 8, hs_s1 + 8, RTMP_HANDSHAKE_PACKET_SIZE - 8)) av_log(s, AV_LOG_WARNING, "Erroneous C2 Message random does not match up\n"); return 0; } | 532 |
0 | int hw_device_setup_for_encode(OutputStream *ost) { enum AVHWDeviceType type; HWDevice *dev; type = hw_device_match_type_in_name(ost->enc->name); if (type != AV_HWDEVICE_TYPE_NONE) { dev = hw_device_get_by_type(type); if (!dev) { av_log(ost->enc_ctx, AV_LOG_WARNING, "No device available " "for encoder (device type %s for codec %s).\n", av_hwdevice_get_type_name(type), ost->enc->name); return 0; } ost->enc_ctx->hw_device_ctx = av_buffer_ref(dev->device_ref); if (!ost->enc_ctx->hw_device_ctx) return AVERROR(ENOMEM); return 0; } else { // No device required. return 0; } } | 533 |
1 | e1000e_cleanup_msix(E1000EState *s) { if (msix_enabled(PCI_DEVICE(s))) { e1000e_unuse_msix_vectors(s, E1000E_MSIX_VEC_NUM); msix_uninit(PCI_DEVICE(s), &s->msix, &s->msix); } } | 535 |
1 | ASSStyle *ff_ass_style_get(ASSSplitContext *ctx, const char *style) { ASS *ass = &ctx->ass; int i; if (!style || !*style) style = "Default"; for (i=0; i<ass->styles_count; i++) if (!strcmp(ass->styles[i].name, style)) return ass->styles + i; return NULL; } | 537 |
1 | static void vnc_dpy_copy(DisplayChangeListener *dcl, int src_x, int src_y, int dst_x, int dst_y, int w, int h) { VncDisplay *vd = container_of(dcl, VncDisplay, dcl); VncState *vs, *vn; uint8_t *src_row; uint8_t *dst_row; int i, x, y, pitch, inc, w_lim, s; int cmp_bytes; vnc_refresh_server_surface(vd); QTAILQ_FOREACH_SAFE(vs, &vd->clients, next, vn) { if (vnc_has_feature(vs, VNC_FEATURE_COPYRECT)) { vs->force_update = 1; vnc_update_client(vs, 1, true); /* vs might be free()ed here */ /* do bitblit op on the local surface too */ pitch = vnc_server_fb_stride(vd); src_row = vnc_server_fb_ptr(vd, src_x, src_y); dst_row = vnc_server_fb_ptr(vd, dst_x, dst_y); y = dst_y; inc = 1; if (dst_y > src_y) { /* copy backwards */ src_row += pitch * (h-1); dst_row += pitch * (h-1); pitch = -pitch; y = dst_y + h - 1; inc = -1; w_lim = w - (VNC_DIRTY_PIXELS_PER_BIT - (dst_x % VNC_DIRTY_PIXELS_PER_BIT)); if (w_lim < 0) { w_lim = w; } else { w_lim = w - (w_lim % VNC_DIRTY_PIXELS_PER_BIT); for (i = 0; i < h; i++) { for (x = 0; x <= w_lim; x += s, src_row += cmp_bytes, dst_row += cmp_bytes) { if (x == w_lim) { if ((s = w - w_lim) == 0) break; } else if (!x) { s = (VNC_DIRTY_PIXELS_PER_BIT - (dst_x % VNC_DIRTY_PIXELS_PER_BIT)); s = MIN(s, w_lim); } else { s = VNC_DIRTY_PIXELS_PER_BIT; cmp_bytes = s * VNC_SERVER_FB_BYTES; if (memcmp(src_row, dst_row, cmp_bytes) == 0) continue; memmove(dst_row, src_row, cmp_bytes); QTAILQ_FOREACH(vs, &vd->clients, next) { if (!vnc_has_feature(vs, VNC_FEATURE_COPYRECT)) { set_bit(((x + dst_x) / VNC_DIRTY_PIXELS_PER_BIT), vs->dirty[y]); src_row += pitch - w * VNC_SERVER_FB_BYTES; dst_row += pitch - w * VNC_SERVER_FB_BYTES; y += inc; QTAILQ_FOREACH(vs, &vd->clients, next) { if (vnc_has_feature(vs, VNC_FEATURE_COPYRECT)) { vnc_copy(vs, src_x, src_y, dst_x, dst_y, w, h); | 538 |
1 | static inline void RENAME(yuv2yuvX)(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize, int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize, uint8_t *dest, uint8_t *uDest, uint8_t *vDest, long dstW, long chrDstW) { #ifdef HAVE_MMX if(c->flags & SWS_ACCURATE_RND){ if(uDest){ YSCALEYUV2YV12X_ACCURATE( 0, CHR_MMX_FILTER_OFFSET, uDest, chrDstW) YSCALEYUV2YV12X_ACCURATE(4096, CHR_MMX_FILTER_OFFSET, vDest, chrDstW) } YSCALEYUV2YV12X_ACCURATE(0, LUM_MMX_FILTER_OFFSET, dest, dstW) }else{ if(uDest){ YSCALEYUV2YV12X( 0, CHR_MMX_FILTER_OFFSET, uDest, chrDstW) YSCALEYUV2YV12X(4096, CHR_MMX_FILTER_OFFSET, vDest, chrDstW) } YSCALEYUV2YV12X(0, LUM_MMX_FILTER_OFFSET, dest, dstW) } #else #ifdef HAVE_ALTIVEC yuv2yuvX_altivec_real(lumFilter, lumSrc, lumFilterSize, chrFilter, chrSrc, chrFilterSize, dest, uDest, vDest, dstW, chrDstW); #else //HAVE_ALTIVEC yuv2yuvXinC(lumFilter, lumSrc, lumFilterSize, chrFilter, chrSrc, chrFilterSize, dest, uDest, vDest, dstW, chrDstW); #endif //!HAVE_ALTIVEC #endif } | 540 |
1 | static int vorbis_residue_decode(vorbis_context *vc, vorbis_residue *vr, uint_fast8_t ch, uint_fast8_t *do_not_decode, float *vec, uint_fast16_t vlen) { GetBitContext *gb=&vc->gb; uint_fast8_t c_p_c=vc->codebooks[vr->classbook].dimensions; uint_fast16_t n_to_read=vr->end-vr->begin; uint_fast16_t ptns_to_read=n_to_read/vr->partition_size; uint_fast8_t classifs[ptns_to_read*vc->audio_channels]; uint_fast8_t pass; uint_fast8_t ch_used; uint_fast8_t i,j,l; uint_fast16_t k; if (vr->type==2) { for(j=1;j<ch;++j) { do_not_decode[0]&=do_not_decode[j]; // FIXME - clobbering input } if (do_not_decode[0]) return 0; ch_used=1; } else { ch_used=ch; } AV_DEBUG(" residue type 0/1/2 decode begin, ch: %d cpc %d \n", ch, c_p_c); for(pass=0;pass<=vr->maxpass;++pass) { // FIXME OPTIMIZE? uint_fast16_t voffset; uint_fast16_t partition_count; uint_fast16_t j_times_ptns_to_read; voffset=vr->begin; for(partition_count=0;partition_count<ptns_to_read;) { // SPEC error if (!pass) { uint_fast32_t inverse_class = ff_inverse[vr->classifications]; for(j_times_ptns_to_read=0, j=0;j<ch_used;++j) { if (!do_not_decode[j]) { uint_fast32_t temp=get_vlc2(gb, vc->codebooks[vr->classbook].vlc.table, vc->codebooks[vr->classbook].nb_bits, 3); AV_DEBUG("Classword: %d \n", temp); assert(vr->classifications > 1 && temp<=65536); //needed for inverse[] for(i=0;i<c_p_c;++i) { uint_fast32_t temp2; temp2=(((uint_fast64_t)temp) * inverse_class)>>32; if (partition_count+c_p_c-1-i < ptns_to_read) { classifs[j_times_ptns_to_read+partition_count+c_p_c-1-i]=temp-temp2*vr->classifications; } temp=temp2; } } j_times_ptns_to_read+=ptns_to_read; } } for(i=0;(i<c_p_c) && (partition_count<ptns_to_read);++i) { for(j_times_ptns_to_read=0, j=0;j<ch_used;++j) { uint_fast16_t voffs; if (!do_not_decode[j]) { uint_fast8_t vqclass=classifs[j_times_ptns_to_read+partition_count]; int_fast16_t vqbook=vr->books[vqclass][pass]; if (vqbook>=0) { uint_fast16_t coffs; unsigned dim= vc->codebooks[vqbook].dimensions; // not uint_fast8_t: 64bit is slower here on amd64 uint_fast16_t step= dim==1 ? vr->partition_size : FASTDIV(vr->partition_size, dim); vorbis_codebook codebook= vc->codebooks[vqbook]; if (vr->type==0) { voffs=voffset+j*vlen; for(k=0;k<step;++k) { coffs=get_vlc2(gb, codebook.vlc.table, codebook.nb_bits, 3) * dim; for(l=0;l<dim;++l) { vec[voffs+k+l*step]+=codebook.codevectors[coffs+l]; // FPMATH } } } else if (vr->type==1) { voffs=voffset+j*vlen; for(k=0;k<step;++k) { coffs=get_vlc2(gb, codebook.vlc.table, codebook.nb_bits, 3) * dim; for(l=0;l<dim;++l, ++voffs) { vec[voffs]+=codebook.codevectors[coffs+l]; // FPMATH AV_DEBUG(" pass %d offs: %d curr: %f change: %f cv offs.: %d \n", pass, voffs, vec[voffs], codebook.codevectors[coffs+l], coffs); } } } else if (vr->type==2 && ch==2 && (voffset&1)==0 && (dim&1)==0) { // most frequent case optimized voffs=voffset>>1; if(dim==2) { for(k=0;k<step;++k) { coffs=get_vlc2(gb, codebook.vlc.table, codebook.nb_bits, 3) * 2; vec[voffs+k ]+=codebook.codevectors[coffs ]; // FPMATH vec[voffs+k+vlen]+=codebook.codevectors[coffs+1]; // FPMATH } } else for(k=0;k<step;++k) { coffs=get_vlc2(gb, codebook.vlc.table, codebook.nb_bits, 3) * dim; for(l=0;l<dim;l+=2, voffs++) { vec[voffs ]+=codebook.codevectors[coffs+l ]; // FPMATH vec[voffs+vlen]+=codebook.codevectors[coffs+l+1]; // FPMATH AV_DEBUG(" pass %d offs: %d curr: %f change: %f cv offs.: %d+%d \n", pass, voffset/ch+(voffs%ch)*vlen, vec[voffset/ch+(voffs%ch)*vlen], codebook.codevectors[coffs+l], coffs, l); } } } else if (vr->type==2) { voffs=voffset; for(k=0;k<step;++k) { coffs=get_vlc2(gb, codebook.vlc.table, codebook.nb_bits, 3) * dim; for(l=0;l<dim;++l, ++voffs) { vec[voffs/ch+(voffs%ch)*vlen]+=codebook.codevectors[coffs+l]; // FPMATH FIXME use if and counter instead of / and % AV_DEBUG(" pass %d offs: %d curr: %f change: %f cv offs.: %d+%d \n", pass, voffset/ch+(voffs%ch)*vlen, vec[voffset/ch+(voffs%ch)*vlen], codebook.codevectors[coffs+l], coffs, l); } } } else { av_log(vc->avccontext, AV_LOG_ERROR, " Invalid residue type while residue decode?! \n"); return 1; } } } j_times_ptns_to_read+=ptns_to_read; } ++partition_count; voffset+=vr->partition_size; } } } return 0; } | 541 |
1 | static CharDriverState *qmp_chardev_open_parallel(ChardevHostdev *parallel, Error **errp) { #ifdef HAVE_CHARDEV_PARPORT int fd; fd = qmp_chardev_open_file_source(parallel->device, O_RDWR, errp); if (error_is_set(errp)) { return NULL; } return qemu_chr_open_pp_fd(fd); #else error_setg(errp, "character device backend type 'parallel' not supported"); return NULL; #endif } | 542 |
1 | void cpu_exit(CPUArchState *env) { CPUState *cpu = ENV_GET_CPU(env); cpu->exit_request = 1; cpu_unlink_tb(cpu); } | 543 |
0 | static int hdcd_envelope(int32_t *samples, int count, int stride, int gain, int target_gain, int extend) { int i; int32_t *samples_end = samples + stride * count; if (extend) { for (i = 0; i < count; i++) { int32_t sample = samples[i * stride]; int32_t asample = abs(sample) - 0x5981; if (asample >= 0) sample = sample >= 0 ? peaktab[asample] : -peaktab[asample]; else sample <<= 15; samples[i * stride] = sample; } } else { for (i = 0; i < count; i++) samples[i * stride] <<= 15; } if (gain <= target_gain) { int len = FFMIN(count, target_gain - gain); /* attenuate slowly */ for (i = 0; i < len; i++) { ++gain; APPLY_GAIN(*samples, gain); samples += stride; } count -= len; } else { int len = FFMIN(count, (gain - target_gain) >> 3); /* amplify quickly */ for (i = 0; i < len; i++) { gain -= 8; APPLY_GAIN(*samples, gain); samples += stride; } if (gain - 8 < target_gain) gain = target_gain; count -= len; } /* hold a steady level */ if (gain == 0) { if (count > 0) samples += count * stride; } else { while (--count >= 0) { APPLY_GAIN(*samples, gain); samples += stride; } } av_assert0(samples == samples_end); return gain; } | 544 |
0 | static QObject *parse_array(JSONParserContext *ctxt, va_list *ap) { QList *list = NULL; QObject *token, *peek; token = parser_context_pop_token(ctxt); assert(token && token_get_type(token) == JSON_LSQUARE); list = qlist_new(); peek = parser_context_peek_token(ctxt); if (peek == NULL) { parse_error(ctxt, NULL, "premature EOI"); goto out; } if (token_get_type(peek) != JSON_RSQUARE) { QObject *obj; obj = parse_value(ctxt, ap); if (obj == NULL) { parse_error(ctxt, token, "expecting value"); goto out; } qlist_append_obj(list, obj); token = parser_context_pop_token(ctxt); if (token == NULL) { parse_error(ctxt, NULL, "premature EOI"); goto out; } while (token_get_type(token) != JSON_RSQUARE) { if (token_get_type(token) != JSON_COMMA) { parse_error(ctxt, token, "expected separator in list"); goto out; } obj = parse_value(ctxt, ap); if (obj == NULL) { parse_error(ctxt, token, "expecting value"); goto out; } qlist_append_obj(list, obj); token = parser_context_pop_token(ctxt); if (token == NULL) { parse_error(ctxt, NULL, "premature EOI"); goto out; } } } else { (void)parser_context_pop_token(ctxt); } return QOBJECT(list); out: QDECREF(list); return NULL; } | 545 |
0 | static void raw_aio_unplug(BlockDriverState *bs) { #ifdef CONFIG_LINUX_AIO BDRVRawState *s = bs->opaque; if (s->use_aio) { laio_io_unplug(bs, s->aio_ctx, true); } #endif } | 546 |
0 | void hmp_info_tpm(Monitor *mon, const QDict *qdict) { TPMInfoList *info_list, *info; Error *err = NULL; unsigned int c = 0; TPMPassthroughOptions *tpo; info_list = qmp_query_tpm(&err); if (err) { monitor_printf(mon, "TPM device not supported\n"); error_free(err); return; } if (info_list) { monitor_printf(mon, "TPM device:\n"); } for (info = info_list; info; info = info->next) { TPMInfo *ti = info->value; monitor_printf(mon, " tpm%d: model=%s\n", c, TpmModel_lookup[ti->model]); monitor_printf(mon, " \\ %s: type=%s", ti->id, TpmTypeOptionsKind_lookup[ti->options->kind]); switch (ti->options->kind) { case TPM_TYPE_OPTIONS_KIND_PASSTHROUGH: tpo = ti->options->passthrough; monitor_printf(mon, "%s%s%s%s", tpo->has_path ? ",path=" : "", tpo->has_path ? tpo->path : "", tpo->has_cancel_path ? ",cancel-path=" : "", tpo->has_cancel_path ? tpo->cancel_path : ""); break; case TPM_TYPE_OPTIONS_KIND_MAX: break; } monitor_printf(mon, "\n"); c++; } qapi_free_TPMInfoList(info_list); } | 548 |
0 | static void tap_set_sndbuf(TAPState *s, int sndbuf, Monitor *mon) { #ifdef TUNSETSNDBUF if (ioctl(s->fd, TUNSETSNDBUF, &sndbuf) == -1) { config_error(mon, "TUNSETSNDBUF ioctl failed: %s\n", strerror(errno)); } #else config_error(mon, "No '-net tap,sndbuf=<nbytes>' support available\n"); #endif } | 549 |
0 | ssize_t pcnet_receive(VLANClientState *nc, const uint8_t *buf, size_t size_) { PCNetState *s = DO_UPCAST(NICState, nc, nc)->opaque; int is_padr = 0, is_bcast = 0, is_ladr = 0; uint8_t buf1[60]; int remaining; int crc_err = 0; int size = size_; if (CSR_DRX(s) || CSR_STOP(s) || CSR_SPND(s) || !size) return -1; #ifdef PCNET_DEBUG printf("pcnet_receive size=%d\n", size); #endif /* if too small buffer, then expand it */ if (size < MIN_BUF_SIZE) { memcpy(buf1, buf, size); memset(buf1 + size, 0, MIN_BUF_SIZE - size); buf = buf1; size = MIN_BUF_SIZE; } if (CSR_PROM(s) || (is_padr=padr_match(s, buf, size)) || (is_bcast=padr_bcast(s, buf, size)) || (is_ladr=ladr_match(s, buf, size))) { pcnet_rdte_poll(s); if (!(CSR_CRST(s) & 0x8000) && s->rdra) { struct pcnet_RMD rmd; int rcvrc = CSR_RCVRC(s)-1,i; target_phys_addr_t nrda; for (i = CSR_RCVRL(s)-1; i > 0; i--, rcvrc--) { if (rcvrc <= 1) rcvrc = CSR_RCVRL(s); nrda = s->rdra + (CSR_RCVRL(s) - rcvrc) * (BCR_SWSTYLE(s) ? 16 : 8 ); RMDLOAD(&rmd, nrda); if (GET_FIELD(rmd.status, RMDS, OWN)) { #ifdef PCNET_DEBUG_RMD printf("pcnet - scan buffer: RCVRC=%d PREV_RCVRC=%d\n", rcvrc, CSR_RCVRC(s)); #endif CSR_RCVRC(s) = rcvrc; pcnet_rdte_poll(s); break; } } } if (!(CSR_CRST(s) & 0x8000)) { #ifdef PCNET_DEBUG_RMD printf("pcnet - no buffer: RCVRC=%d\n", CSR_RCVRC(s)); #endif s->csr[0] |= 0x1000; /* Set MISS flag */ CSR_MISSC(s)++; } else { uint8_t *src = s->buffer; target_phys_addr_t crda = CSR_CRDA(s); struct pcnet_RMD rmd; int pktcount = 0; if (!s->looptest) { memcpy(src, buf, size); /* no need to compute the CRC */ src[size] = 0; src[size + 1] = 0; src[size + 2] = 0; src[size + 3] = 0; size += 4; } else if (s->looptest == PCNET_LOOPTEST_CRC || !CSR_DXMTFCS(s) || size < MIN_BUF_SIZE+4) { uint32_t fcs = ~0; uint8_t *p = src; while (p != &src[size]) CRC(fcs, *p++); *(uint32_t *)p = htonl(fcs); size += 4; } else { uint32_t fcs = ~0; uint8_t *p = src; while (p != &src[size-4]) CRC(fcs, *p++); crc_err = (*(uint32_t *)p != htonl(fcs)); } #ifdef PCNET_DEBUG_MATCH PRINT_PKTHDR(buf); #endif RMDLOAD(&rmd, PHYSADDR(s,crda)); /*if (!CSR_LAPPEN(s))*/ SET_FIELD(&rmd.status, RMDS, STP, 1); #define PCNET_RECV_STORE() do { \ int count = MIN(4096 - GET_FIELD(rmd.buf_length, RMDL, BCNT),remaining); \ target_phys_addr_t rbadr = PHYSADDR(s, rmd.rbadr); \ s->phys_mem_write(s->dma_opaque, rbadr, src, count, CSR_BSWP(s)); \ src += count; remaining -= count; \ SET_FIELD(&rmd.status, RMDS, OWN, 0); \ RMDSTORE(&rmd, PHYSADDR(s,crda)); \ pktcount++; \ } while (0) remaining = size; PCNET_RECV_STORE(); if ((remaining > 0) && CSR_NRDA(s)) { target_phys_addr_t nrda = CSR_NRDA(s); #ifdef PCNET_DEBUG_RMD PRINT_RMD(&rmd); #endif RMDLOAD(&rmd, PHYSADDR(s,nrda)); if (GET_FIELD(rmd.status, RMDS, OWN)) { crda = nrda; PCNET_RECV_STORE(); #ifdef PCNET_DEBUG_RMD PRINT_RMD(&rmd); #endif if ((remaining > 0) && (nrda=CSR_NNRD(s))) { RMDLOAD(&rmd, PHYSADDR(s,nrda)); if (GET_FIELD(rmd.status, RMDS, OWN)) { crda = nrda; PCNET_RECV_STORE(); } } } } #undef PCNET_RECV_STORE RMDLOAD(&rmd, PHYSADDR(s,crda)); if (remaining == 0) { SET_FIELD(&rmd.msg_length, RMDM, MCNT, size); SET_FIELD(&rmd.status, RMDS, ENP, 1); SET_FIELD(&rmd.status, RMDS, PAM, !CSR_PROM(s) && is_padr); SET_FIELD(&rmd.status, RMDS, LFAM, !CSR_PROM(s) && is_ladr); SET_FIELD(&rmd.status, RMDS, BAM, !CSR_PROM(s) && is_bcast); if (crc_err) { SET_FIELD(&rmd.status, RMDS, CRC, 1); SET_FIELD(&rmd.status, RMDS, ERR, 1); } } else { SET_FIELD(&rmd.status, RMDS, OFLO, 1); SET_FIELD(&rmd.status, RMDS, BUFF, 1); SET_FIELD(&rmd.status, RMDS, ERR, 1); } RMDSTORE(&rmd, PHYSADDR(s,crda)); s->csr[0] |= 0x0400; #ifdef PCNET_DEBUG printf("RCVRC=%d CRDA=0x%08x BLKS=%d\n", CSR_RCVRC(s), PHYSADDR(s,CSR_CRDA(s)), pktcount); #endif #ifdef PCNET_DEBUG_RMD PRINT_RMD(&rmd); #endif while (pktcount--) { if (CSR_RCVRC(s) <= 1) CSR_RCVRC(s) = CSR_RCVRL(s); else CSR_RCVRC(s)--; } pcnet_rdte_poll(s); } } pcnet_poll(s); pcnet_update_irq(s); return size_; } | 550 |
0 | static void gen_stda_asi(DisasContext *dc, TCGv hi, TCGv addr, int insn, int rd) { TCGv_i32 r_asi, r_size; TCGv lo = gen_load_gpr(dc, rd + 1); TCGv_i64 t64 = tcg_temp_new_i64(); tcg_gen_concat_tl_i64(t64, lo, hi); r_asi = gen_get_asi(dc, insn); r_size = tcg_const_i32(8); gen_helper_st_asi(cpu_env, addr, t64, r_asi, r_size); tcg_temp_free_i32(r_size); tcg_temp_free_i32(r_asi); tcg_temp_free_i64(t64); } | 551 |
0 | void s390_pci_iommu_enable(S390PCIBusDevice *pbdev) { memory_region_init_iommu(&pbdev->iommu_mr, OBJECT(&pbdev->mr), &s390_iommu_ops, "iommu-s390", pbdev->pal + 1); memory_region_add_subregion(&pbdev->mr, 0, &pbdev->iommu_mr); pbdev->iommu_enabled = true; } | 552 |
0 | void vnc_disconnect_finish(VncState *vs) { int i; vnc_jobs_join(vs); /* Wait encoding jobs */ vnc_lock_output(vs); vnc_qmp_event(vs, QAPI_EVENT_VNC_DISCONNECTED); buffer_free(&vs->input); buffer_free(&vs->output); #ifdef CONFIG_VNC_WS buffer_free(&vs->ws_input); buffer_free(&vs->ws_output); #endif /* CONFIG_VNC_WS */ qapi_free_VncClientInfo(vs->info); vnc_zlib_clear(vs); vnc_tight_clear(vs); vnc_zrle_clear(vs); #ifdef CONFIG_VNC_TLS vnc_tls_client_cleanup(vs); #endif /* CONFIG_VNC_TLS */ #ifdef CONFIG_VNC_SASL vnc_sasl_client_cleanup(vs); #endif /* CONFIG_VNC_SASL */ audio_del(vs); vnc_release_modifiers(vs); if (vs->initialized) { QTAILQ_REMOVE(&vs->vd->clients, vs, next); qemu_remove_mouse_mode_change_notifier(&vs->mouse_mode_notifier); } if (vs->vd->lock_key_sync) qemu_remove_led_event_handler(vs->led); vnc_unlock_output(vs); qemu_mutex_destroy(&vs->output_mutex); if (vs->bh != NULL) { qemu_bh_delete(vs->bh); } buffer_free(&vs->jobs_buffer); for (i = 0; i < VNC_STAT_ROWS; ++i) { g_free(vs->lossy_rect[i]); } g_free(vs->lossy_rect); g_free(vs); } | 553 |
0 | void msix_write_config(PCIDevice *dev, uint32_t addr, uint32_t val, int len) { unsigned enable_pos = dev->msix_cap + MSIX_CONTROL_OFFSET; if (addr + len <= enable_pos || addr > enable_pos) return; if (msix_enabled(dev)) qemu_set_irq(dev->irq[0], 0); } | 554 |
0 | type_init(pflash_cfi02_register_types) pflash_t *pflash_cfi02_register(hwaddr base, DeviceState *qdev, const char *name, hwaddr size, BlockDriverState *bs, uint32_t sector_len, int nb_blocs, int nb_mappings, int width, uint16_t id0, uint16_t id1, uint16_t id2, uint16_t id3, uint16_t unlock_addr0, uint16_t unlock_addr1, int be) { DeviceState *dev = qdev_create(NULL, TYPE_CFI_PFLASH02); if (bs && qdev_prop_set_drive(dev, "drive", bs)) { abort(); } qdev_prop_set_uint32(dev, "num-blocks", nb_blocs); qdev_prop_set_uint32(dev, "sector-length", sector_len); qdev_prop_set_uint8(dev, "width", width); qdev_prop_set_uint8(dev, "mappings", nb_mappings); qdev_prop_set_uint8(dev, "big-endian", !!be); qdev_prop_set_uint16(dev, "id0", id0); qdev_prop_set_uint16(dev, "id1", id1); qdev_prop_set_uint16(dev, "id2", id2); qdev_prop_set_uint16(dev, "id3", id3); qdev_prop_set_uint16(dev, "unlock-addr0", unlock_addr0); qdev_prop_set_uint16(dev, "unlock-addr1", unlock_addr1); qdev_prop_set_string(dev, "name", name); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); return CFI_PFLASH02(dev); } | 556 |
0 | static void akita_init(int ram_size, int vga_ram_size, int boot_device, DisplayState *ds, const char **fd_filename, int snapshot, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { spitz_common_init(ram_size, vga_ram_size, ds, kernel_filename, kernel_cmdline, initrd_filename, akita, 0x2e8); } | 557 |
0 | static void tcg_out_qemu_ld(TCGContext *s, TCGReg data, TCGReg addr, TCGMemOpIdx oi, bool is_64) { TCGMemOp memop = get_memop(oi); #ifdef CONFIG_SOFTMMU unsigned memi = get_mmuidx(oi); TCGReg addrz, param; tcg_insn_unit *func; tcg_insn_unit *label_ptr; addrz = tcg_out_tlb_load(s, addr, memi, memop & MO_SIZE, offsetof(CPUTLBEntry, addr_read)); /* The fast path is exactly one insn. Thus we can perform the entire TLB Hit in the (annulled) delay slot of the branch over the TLB Miss case. */ /* beq,a,pt %[xi]cc, label0 */ label_ptr = s->code_ptr; tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT | (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0); /* delay slot */ tcg_out_ldst_rr(s, data, addrz, TCG_REG_O1, qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]); /* TLB Miss. */ param = TCG_REG_O1; if (!SPARC64 && TARGET_LONG_BITS == 64) { /* Skip the high-part; we'll perform the extract in the trampoline. */ param++; } tcg_out_mov(s, TCG_TYPE_REG, param++, addr); /* We use the helpers to extend SB and SW data, leaving the case of SL needing explicit extending below. */ if ((memop & MO_SSIZE) == MO_SL) { func = qemu_ld_trampoline[memop & (MO_BSWAP | MO_SIZE)]; } else { func = qemu_ld_trampoline[memop & (MO_BSWAP | MO_SSIZE)]; } assert(func != NULL); tcg_out_call_nodelay(s, func); /* delay slot */ tcg_out_movi(s, TCG_TYPE_I32, param, oi); /* Recall that all of the helpers return 64-bit results. Which complicates things for sparcv8plus. */ if (SPARC64) { /* We let the helper sign-extend SB and SW, but leave SL for here. */ if (is_64 && (memop & MO_SSIZE) == MO_SL) { tcg_out_arithi(s, data, TCG_REG_O0, 0, SHIFT_SRA); } else { tcg_out_mov(s, TCG_TYPE_REG, data, TCG_REG_O0); } } else { if ((memop & MO_SIZE) == MO_64) { tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O0, 32, SHIFT_SLLX); tcg_out_arithi(s, TCG_REG_O1, TCG_REG_O1, 0, SHIFT_SRL); tcg_out_arith(s, data, TCG_REG_O0, TCG_REG_O1, ARITH_OR); } else if (is_64) { /* Re-extend from 32-bit rather than reassembling when we know the high register must be an extension. */ tcg_out_arithi(s, data, TCG_REG_O1, 0, memop & MO_SIGN ? SHIFT_SRA : SHIFT_SRL); } else { tcg_out_mov(s, TCG_TYPE_I32, data, TCG_REG_O1); } } *label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr)); #else if (SPARC64 && TARGET_LONG_BITS == 32) { tcg_out_arithi(s, TCG_REG_T1, addr, 0, SHIFT_SRL); addr = TCG_REG_T1; } tcg_out_ldst_rr(s, data, addr, (guest_base ? TCG_GUEST_BASE_REG : TCG_REG_G0), qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]); #endif /* CONFIG_SOFTMMU */ } | 558 |
0 | petalogix_ml605_init(QEMUMachineInitArgs *args) { ram_addr_t ram_size = args->ram_size; const char *cpu_model = args->cpu_model; MemoryRegion *address_space_mem = get_system_memory(); DeviceState *dev, *dma, *eth0; Object *peer; MicroBlazeCPU *cpu; SysBusDevice *busdev; CPUMBState *env; DriveInfo *dinfo; int i; hwaddr ddr_base = MEMORY_BASEADDR; MemoryRegion *phys_lmb_bram = g_new(MemoryRegion, 1); MemoryRegion *phys_ram = g_new(MemoryRegion, 1); qemu_irq irq[32], *cpu_irq; /* init CPUs */ if (cpu_model == NULL) { cpu_model = "microblaze"; } cpu = cpu_mb_init(cpu_model); env = &cpu->env; /* Attach emulated BRAM through the LMB. */ memory_region_init_ram(phys_lmb_bram, "petalogix_ml605.lmb_bram", LMB_BRAM_SIZE); vmstate_register_ram_global(phys_lmb_bram); memory_region_add_subregion(address_space_mem, 0x00000000, phys_lmb_bram); memory_region_init_ram(phys_ram, "petalogix_ml605.ram", ram_size); vmstate_register_ram_global(phys_ram); memory_region_add_subregion(address_space_mem, ddr_base, phys_ram); dinfo = drive_get(IF_PFLASH, 0, 0); /* 5th parameter 2 means bank-width * 10th paremeter 0 means little-endian */ pflash_cfi01_register(FLASH_BASEADDR, NULL, "petalogix_ml605.flash", FLASH_SIZE, dinfo ? dinfo->bdrv : NULL, (64 * 1024), FLASH_SIZE >> 16, 2, 0x89, 0x18, 0x0000, 0x0, 0); cpu_irq = microblaze_pic_init_cpu(env); dev = xilinx_intc_create(INTC_BASEADDR, cpu_irq[0], 4); for (i = 0; i < 32; i++) { irq[i] = qdev_get_gpio_in(dev, i); } serial_mm_init(address_space_mem, UART16550_BASEADDR + 0x1000, 2, irq[5], 115200, serial_hds[0], DEVICE_LITTLE_ENDIAN); /* 2 timers at irq 2 @ 100 Mhz. */ xilinx_timer_create(TIMER_BASEADDR, irq[2], 0, 100 * 1000000); /* axi ethernet and dma initialization. */ qemu_check_nic_model(&nd_table[0], "xlnx.axi-ethernet"); eth0 = qdev_create(NULL, "xlnx.axi-ethernet"); dma = qdev_create(NULL, "xlnx.axi-dma"); /* FIXME: attach to the sysbus instead */ object_property_add_child(qdev_get_machine(), "xilinx-eth", OBJECT(eth0), NULL); object_property_add_child(qdev_get_machine(), "xilinx-dma", OBJECT(dma), NULL); peer = object_property_get_link(OBJECT(dma), "axistream-connected-target", NULL); xilinx_axiethernet_init(eth0, &nd_table[0], STREAM_SLAVE(peer), 0x82780000, irq[3], 0x1000, 0x1000); peer = object_property_get_link(OBJECT(eth0), "axistream-connected-target", NULL); xilinx_axidma_init(dma, STREAM_SLAVE(peer), 0x84600000, irq[1], irq[0], 100 * 1000000); { SSIBus *spi; dev = qdev_create(NULL, "xlnx.xps-spi"); qdev_prop_set_uint8(dev, "num-ss-bits", NUM_SPI_FLASHES); qdev_init_nofail(dev); busdev = SYS_BUS_DEVICE(dev); sysbus_mmio_map(busdev, 0, 0x40a00000); sysbus_connect_irq(busdev, 0, irq[4]); spi = (SSIBus *)qdev_get_child_bus(dev, "spi"); for (i = 0; i < NUM_SPI_FLASHES; i++) { qemu_irq cs_line; dev = ssi_create_slave(spi, "n25q128"); cs_line = qdev_get_gpio_in(dev, 0); sysbus_connect_irq(busdev, i+1, cs_line); } } microblaze_load_kernel(cpu, ddr_base, ram_size, BINARY_DEVICE_TREE_FILE, machine_cpu_reset); } | 559 |
0 | void virtio_queue_set_num(VirtIODevice *vdev, int n, int num) { if (num <= VIRTQUEUE_MAX_SIZE) { vdev->vq[n].vring.num = num; virtqueue_init(&vdev->vq[n]); } } | 560 |
0 | static void arm_cpu_realizefn(DeviceState *dev, Error **errp) { CPUState *cs = CPU(dev); ARMCPU *cpu = ARM_CPU(dev); ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); CPUARMState *env = &cpu->env; int pagebits; Error *local_err = NULL; cpu_exec_realizefn(cs, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } /* Some features automatically imply others: */ if (arm_feature(env, ARM_FEATURE_V8)) { set_feature(env, ARM_FEATURE_V7); set_feature(env, ARM_FEATURE_ARM_DIV); set_feature(env, ARM_FEATURE_LPAE); } if (arm_feature(env, ARM_FEATURE_V7)) { set_feature(env, ARM_FEATURE_VAPA); set_feature(env, ARM_FEATURE_THUMB2); set_feature(env, ARM_FEATURE_MPIDR); if (!arm_feature(env, ARM_FEATURE_M)) { set_feature(env, ARM_FEATURE_V6K); } else { set_feature(env, ARM_FEATURE_V6); } /* Always define VBAR for V7 CPUs even if it doesn't exist in * non-EL3 configs. This is needed by some legacy boards. */ set_feature(env, ARM_FEATURE_VBAR); } if (arm_feature(env, ARM_FEATURE_V6K)) { set_feature(env, ARM_FEATURE_V6); set_feature(env, ARM_FEATURE_MVFR); } if (arm_feature(env, ARM_FEATURE_V6)) { set_feature(env, ARM_FEATURE_V5); if (!arm_feature(env, ARM_FEATURE_M)) { set_feature(env, ARM_FEATURE_AUXCR); } } if (arm_feature(env, ARM_FEATURE_V5)) { set_feature(env, ARM_FEATURE_V4T); } if (arm_feature(env, ARM_FEATURE_M)) { set_feature(env, ARM_FEATURE_THUMB_DIV); } if (arm_feature(env, ARM_FEATURE_ARM_DIV)) { set_feature(env, ARM_FEATURE_THUMB_DIV); } if (arm_feature(env, ARM_FEATURE_VFP4)) { set_feature(env, ARM_FEATURE_VFP3); set_feature(env, ARM_FEATURE_VFP_FP16); } if (arm_feature(env, ARM_FEATURE_VFP3)) { set_feature(env, ARM_FEATURE_VFP); } if (arm_feature(env, ARM_FEATURE_LPAE)) { set_feature(env, ARM_FEATURE_V7MP); set_feature(env, ARM_FEATURE_PXN); } if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { set_feature(env, ARM_FEATURE_CBAR); } if (arm_feature(env, ARM_FEATURE_THUMB2) && !arm_feature(env, ARM_FEATURE_M)) { set_feature(env, ARM_FEATURE_THUMB_DSP); } if (arm_feature(env, ARM_FEATURE_V7) && !arm_feature(env, ARM_FEATURE_M) && !arm_feature(env, ARM_FEATURE_MPU)) { /* v7VMSA drops support for the old ARMv5 tiny pages, so we * can use 4K pages. */ pagebits = 12; } else { /* For CPUs which might have tiny 1K pages, or which have an * MPU and might have small region sizes, stick with 1K pages. */ pagebits = 10; } if (!set_preferred_target_page_bits(pagebits)) { /* This can only ever happen for hotplugging a CPU, or if * the board code incorrectly creates a CPU which it has * promised via minimum_page_size that it will not. */ error_setg(errp, "This CPU requires a smaller page size than the " "system is using"); return; } /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. * We don't support setting cluster ID ([16..23]) (known as Aff2 * in later ARM ARM versions), or any of the higher affinity level fields, * so these bits always RAZ. */ if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { uint32_t Aff1 = cs->cpu_index / ARM_DEFAULT_CPUS_PER_CLUSTER; uint32_t Aff0 = cs->cpu_index % ARM_DEFAULT_CPUS_PER_CLUSTER; cpu->mp_affinity = (Aff1 << ARM_AFF1_SHIFT) | Aff0; } if (cpu->reset_hivecs) { cpu->reset_sctlr |= (1 << 13); } if (cpu->cfgend) { if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { cpu->reset_sctlr |= SCTLR_EE; } else { cpu->reset_sctlr |= SCTLR_B; } } if (!cpu->has_el3) { /* If the has_el3 CPU property is disabled then we need to disable the * feature. */ unset_feature(env, ARM_FEATURE_EL3); /* Disable the security extension feature bits in the processor feature * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12]. */ cpu->id_pfr1 &= ~0xf0; cpu->id_aa64pfr0 &= ~0xf000; } if (!cpu->has_el2) { unset_feature(env, ARM_FEATURE_EL2); } if (!cpu->has_pmu || !kvm_enabled()) { cpu->has_pmu = false; unset_feature(env, ARM_FEATURE_PMU); } if (!arm_feature(env, ARM_FEATURE_EL2)) { /* Disable the hypervisor feature bits in the processor feature * registers if we don't have EL2. These are id_pfr1[15:12] and * id_aa64pfr0_el1[11:8]. */ cpu->id_aa64pfr0 &= ~0xf00; cpu->id_pfr1 &= ~0xf000; } if (!cpu->has_mpu) { unset_feature(env, ARM_FEATURE_MPU); } if (arm_feature(env, ARM_FEATURE_MPU) && arm_feature(env, ARM_FEATURE_V7)) { uint32_t nr = cpu->pmsav7_dregion; if (nr > 0xff) { error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); return; } if (nr) { env->pmsav7.drbar = g_new0(uint32_t, nr); env->pmsav7.drsr = g_new0(uint32_t, nr); env->pmsav7.dracr = g_new0(uint32_t, nr); } } if (arm_feature(env, ARM_FEATURE_EL3)) { set_feature(env, ARM_FEATURE_VBAR); } register_cp_regs_for_features(cpu); arm_cpu_register_gdb_regs_for_features(cpu); init_cpreg_list(cpu); #ifndef CONFIG_USER_ONLY if (cpu->has_el3) { cs->num_ases = 2; } else { cs->num_ases = 1; } if (cpu->has_el3) { AddressSpace *as; if (!cpu->secure_memory) { cpu->secure_memory = cs->memory; } as = address_space_init_shareable(cpu->secure_memory, "cpu-secure-memory"); cpu_address_space_init(cs, as, ARMASIdx_S); } cpu_address_space_init(cs, address_space_init_shareable(cs->memory, "cpu-memory"), ARMASIdx_NS); #endif qemu_init_vcpu(cs); cpu_reset(cs); acc->parent_realize(dev, errp); } | 561 |
0 | static bool nbd_process_legacy_socket_options(QDict *output_options, QemuOpts *legacy_opts, Error **errp) { const char *path = qemu_opt_get(legacy_opts, "path"); const char *host = qemu_opt_get(legacy_opts, "host"); const char *port = qemu_opt_get(legacy_opts, "port"); const QDictEntry *e; if (!path && !host && !port) { return true; } for (e = qdict_first(output_options); e; e = qdict_next(output_options, e)) { if (strstart(e->key, "server.", NULL)) { error_setg(errp, "Cannot use 'server' and path/host/port at the " "same time"); return false; } } if (path && host) { error_setg(errp, "path and host may not be used at the same time"); return false; } else if (path) { if (port) { error_setg(errp, "port may not be used without host"); return false; } qdict_put(output_options, "server.type", qstring_from_str("unix")); qdict_put(output_options, "server.data.path", qstring_from_str(path)); } else if (host) { qdict_put(output_options, "server.type", qstring_from_str("inet")); qdict_put(output_options, "server.data.host", qstring_from_str(host)); qdict_put(output_options, "server.data.port", qstring_from_str(port ?: stringify(NBD_DEFAULT_PORT))); } return true; } | 562 |
0 | static void cirrus_linear_bitblt_write(void *opaque, target_phys_addr_t addr, uint64_t val, unsigned size) { CirrusVGAState *s = opaque; if (s->cirrus_srcptr != s->cirrus_srcptr_end) { /* bitblt */ *s->cirrus_srcptr++ = (uint8_t) val; if (s->cirrus_srcptr >= s->cirrus_srcptr_end) { cirrus_bitblt_cputovideo_next(s); } } } | 563 |
0 | static int default_monitor_get_fd(Monitor *mon, const char *name, Error **errp) { error_setg(errp, "only QEMU supports file descriptor passing"); return -1; } | 564 |
0 | uint64_t helper_st_virt_to_phys (uint64_t virtaddr) { uint64_t tlb_addr, physaddr; int index, mmu_idx; void *retaddr; mmu_idx = cpu_mmu_index(env); index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); redo: tlb_addr = env->tlb_table[mmu_idx][index].addr_write; if ((virtaddr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend; } else { /* the page is not in the TLB : fill it */ retaddr = GETPC(); tlb_fill(virtaddr, 1, mmu_idx, retaddr); goto redo; } return physaddr; } | 565 |
0 | static int decode_recovery_point(H264Context *h) { h->sei_recovery_frame_cnt = get_ue_golomb(&h->gb); /* 1b exact_match_flag, * 1b broken_link_flag, * 2b changing_slice_group_idc */ skip_bits(&h->gb, 4); if (h->avctx->debug & FF_DEBUG_PICT_INFO) av_log(h->avctx, AV_LOG_DEBUG, "sei_recovery_frame_cnt: %d\n", h->sei_recovery_frame_cnt); h->has_recovery_point = 1; return 0; } | 567 |
1 | static int mkv_write_header(AVFormatContext *s) { MatroskaMuxContext *mkv = s->priv_data; AVIOContext *pb = s->pb; ebml_master ebml_header; AVDictionaryEntry *tag; int ret, i, version = 2; int64_t creation_time; if (!strcmp(s->oformat->name, "webm")) mkv->mode = MODE_WEBM; else mkv->mode = MODE_MATROSKAv2; if (mkv->mode != MODE_WEBM || av_dict_get(s->metadata, "stereo_mode", NULL, 0) || av_dict_get(s->metadata, "alpha_mode", NULL, 0)) version = 4; for (i = 0; i < s->nb_streams; i++) { if (s->streams[i]->codecpar->codec_id == AV_CODEC_ID_ATRAC3 || s->streams[i]->codecpar->codec_id == AV_CODEC_ID_COOK || s->streams[i]->codecpar->codec_id == AV_CODEC_ID_RA_288 || s->streams[i]->codecpar->codec_id == AV_CODEC_ID_SIPR || s->streams[i]->codecpar->codec_id == AV_CODEC_ID_RV10 || s->streams[i]->codecpar->codec_id == AV_CODEC_ID_RV20) { av_log(s, AV_LOG_ERROR, "The Matroska muxer does not yet support muxing %s\n", avcodec_get_name(s->streams[i]->codecpar->codec_id)); return AVERROR_PATCHWELCOME; } if (s->streams[i]->codecpar->codec_id == AV_CODEC_ID_OPUS || av_dict_get(s->streams[i]->metadata, "stereo_mode", NULL, 0) || av_dict_get(s->streams[i]->metadata, "alpha_mode", NULL, 0)) version = 4; } mkv->tracks = av_mallocz_array(s->nb_streams, sizeof(*mkv->tracks)); if (!mkv->tracks) { ret = AVERROR(ENOMEM); goto fail; } ebml_header = start_ebml_master(pb, EBML_ID_HEADER, 0); put_ebml_uint (pb, EBML_ID_EBMLVERSION , 1); put_ebml_uint (pb, EBML_ID_EBMLREADVERSION , 1); put_ebml_uint (pb, EBML_ID_EBMLMAXIDLENGTH , 4); put_ebml_uint (pb, EBML_ID_EBMLMAXSIZELENGTH , 8); put_ebml_string (pb, EBML_ID_DOCTYPE , s->oformat->name); put_ebml_uint (pb, EBML_ID_DOCTYPEVERSION , version); put_ebml_uint (pb, EBML_ID_DOCTYPEREADVERSION , 2); end_ebml_master(pb, ebml_header); mkv->segment = start_ebml_master(pb, MATROSKA_ID_SEGMENT, 0); mkv->segment_offset = avio_tell(pb); // we write 2 seek heads - one at the end of the file to point to each // cluster, and one at the beginning to point to all other level one // elements (including the seek head at the end of the file), which // isn't more than 10 elements if we only write one of each other // currently defined level 1 element mkv->main_seekhead = mkv_start_seekhead(pb, mkv->segment_offset, 10); if (!mkv->main_seekhead) { ret = AVERROR(ENOMEM); goto fail; } ret = mkv_add_seekhead_entry(mkv->main_seekhead, MATROSKA_ID_INFO, avio_tell(pb)); if (ret < 0) goto fail; ret = start_ebml_master_crc32(pb, &mkv->info_bc, mkv, &mkv->info, MATROSKA_ID_INFO, 0); if (ret < 0) return ret; pb = mkv->info_bc; put_ebml_uint(pb, MATROSKA_ID_TIMECODESCALE, 1000000); if ((tag = av_dict_get(s->metadata, "title", NULL, 0))) put_ebml_string(pb, MATROSKA_ID_TITLE, tag->value); if (!(s->flags & AVFMT_FLAG_BITEXACT)) { put_ebml_string(pb, MATROSKA_ID_MUXINGAPP, LIBAVFORMAT_IDENT); if ((tag = av_dict_get(s->metadata, "encoding_tool", NULL, 0))) put_ebml_string(pb, MATROSKA_ID_WRITINGAPP, tag->value); else put_ebml_string(pb, MATROSKA_ID_WRITINGAPP, LIBAVFORMAT_IDENT); if (mkv->mode != MODE_WEBM) { uint32_t segment_uid[4]; AVLFG lfg; av_lfg_init(&lfg, av_get_random_seed()); for (i = 0; i < 4; i++) segment_uid[i] = av_lfg_get(&lfg); put_ebml_binary(pb, MATROSKA_ID_SEGMENTUID, segment_uid, 16); } } else { const char *ident = "Lavf"; put_ebml_string(pb, MATROSKA_ID_MUXINGAPP , ident); put_ebml_string(pb, MATROSKA_ID_WRITINGAPP, ident); } if (ff_parse_creation_time_metadata(s, &creation_time, 0) > 0) { // Adjust time so it's relative to 2001-01-01 and convert to nanoseconds. int64_t date_utc = (creation_time - 978307200000000LL) * 1000; uint8_t date_utc_buf[8]; AV_WB64(date_utc_buf, date_utc); put_ebml_binary(pb, MATROSKA_ID_DATEUTC, date_utc_buf, 8); } // reserve space for the duration mkv->duration = 0; mkv->duration_offset = avio_tell(pb); if (!mkv->is_live) { int64_t metadata_duration = get_metadata_duration(s); if (s->duration > 0) { int64_t scaledDuration = av_rescale(s->duration, 1000, AV_TIME_BASE); put_ebml_float(pb, MATROSKA_ID_DURATION, scaledDuration); av_log(s, AV_LOG_DEBUG, "Write early duration from recording time = %" PRIu64 "\n", scaledDuration); } else if (metadata_duration > 0) { int64_t scaledDuration = av_rescale(metadata_duration, 1000, AV_TIME_BASE); put_ebml_float(pb, MATROSKA_ID_DURATION, scaledDuration); av_log(s, AV_LOG_DEBUG, "Write early duration from metadata = %" PRIu64 "\n", scaledDuration); } else { put_ebml_void(pb, 11); // assumes double-precision float to be written } } if (s->pb->seekable && !mkv->is_live) put_ebml_void(s->pb, avio_tell(pb)); else end_ebml_master_crc32(s->pb, &mkv->info_bc, mkv, mkv->info); pb = s->pb; // initialize stream_duration fields mkv->stream_durations = av_mallocz(s->nb_streams * sizeof(int64_t)); mkv->stream_duration_offsets = av_mallocz(s->nb_streams * sizeof(int64_t)); ret = mkv_write_tracks(s); if (ret < 0) goto fail; for (i = 0; i < s->nb_chapters; i++) mkv->chapter_id_offset = FFMAX(mkv->chapter_id_offset, 1LL - s->chapters[i]->id); if (mkv->mode != MODE_WEBM) { ret = mkv_write_chapters(s); if (ret < 0) goto fail; ret = mkv_write_attachments(s); if (ret < 0) goto fail; ret = mkv_write_tags(s); if (ret < 0) goto fail; } if (!s->pb->seekable && !mkv->is_live) mkv_write_seekhead(pb, mkv); mkv->cues = mkv_start_cues(mkv->segment_offset); if (!mkv->cues) { ret = AVERROR(ENOMEM); goto fail; } if (pb->seekable && mkv->reserve_cues_space) { mkv->cues_pos = avio_tell(pb); put_ebml_void(pb, mkv->reserve_cues_space); } av_init_packet(&mkv->cur_audio_pkt); mkv->cur_audio_pkt.size = 0; mkv->cluster_pos = -1; avio_flush(pb); // start a new cluster every 5 MB or 5 sec, or 32k / 1 sec for streaming or // after 4k and on a keyframe if (pb->seekable) { if (mkv->cluster_time_limit < 0) mkv->cluster_time_limit = 5000; if (mkv->cluster_size_limit < 0) mkv->cluster_size_limit = 5 * 1024 * 1024; } else { if (mkv->cluster_time_limit < 0) mkv->cluster_time_limit = 1000; if (mkv->cluster_size_limit < 0) mkv->cluster_size_limit = 32 * 1024; } return 0; fail: mkv_free(mkv); return ret; } | 568 |
1 | static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) { uint32_t tmp; if (n < CPU_NB_REGS) { env->regs[gpr_map[n]] = ldtul_p(mem_buf); return sizeof(target_ulong); } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { #ifdef USE_X86LDOUBLE /* FIXME: byteswap float values - after fixing fpregs layout. */ memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10); #endif return 10; } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { n -= IDX_XMM_REGS; env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf); env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8); return 16; } else { switch (n) { case IDX_IP_REG: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong); case IDX_FLAGS_REG: env->eflags = ldl_p(mem_buf); return 4; #if defined(CONFIG_USER_ONLY) #define LOAD_SEG(index, sreg)\ tmp = ldl_p(mem_buf);\ if (tmp != env->segs[sreg].selector)\ cpu_x86_load_seg(env, sreg, tmp);\ return 4 #else /* FIXME: Honor segment registers. Needs to avoid raising an exception when the selector is invalid. */ #define LOAD_SEG(index, sreg) return 4 #endif case IDX_SEG_REGS: LOAD_SEG(10, R_CS); case IDX_SEG_REGS + 1: LOAD_SEG(11, R_SS); case IDX_SEG_REGS + 2: LOAD_SEG(12, R_DS); case IDX_SEG_REGS + 3: LOAD_SEG(13, R_ES); case IDX_SEG_REGS + 4: LOAD_SEG(14, R_FS); case IDX_SEG_REGS + 5: LOAD_SEG(15, R_GS); case IDX_FP_REGS + 8: env->fpuc = ldl_p(mem_buf); return 4; case IDX_FP_REGS + 9: tmp = ldl_p(mem_buf); env->fpstt = (tmp >> 11) & 7; env->fpus = tmp & ~0x3800; return 4; case IDX_FP_REGS + 10: /* ftag */ return 4; case IDX_FP_REGS + 11: /* fiseg */ return 4; case IDX_FP_REGS + 12: /* fioff */ return 4; case IDX_FP_REGS + 13: /* foseg */ return 4; case IDX_FP_REGS + 14: /* fooff */ return 4; case IDX_FP_REGS + 15: /* fop */ return 4; case IDX_MXCSR_REG: env->mxcsr = ldl_p(mem_buf); return 4; } } /* Unrecognised register. */ return 0; } | 570 |
1 | static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUS390XState *env) { int i; rt_sigframe *frame; abi_ulong frame_addr; frame_addr = get_sigframe(ka, env, sizeof *frame); qemu_log("%s: frame_addr 0x%llx\n", __FUNCTION__, (unsigned long long)frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto give_sigsegv; } qemu_log("%s: 1\n", __FUNCTION__); copy_siginfo_to_user(&frame->info, info); /* Create the ucontext. */ __put_user(0, &frame->uc.tuc_flags); __put_user((abi_ulong)0, (abi_ulong *)&frame->uc.tuc_link); __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &frame->uc.tuc_stack.ss_flags); __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); save_sigregs(env, &frame->uc.tuc_mcontext); for (i = 0; i < TARGET_NSIG_WORDS; i++) { __put_user((abi_ulong)set->sig[i], (abi_ulong *)&frame->uc.tuc_sigmask.sig[i]); } /* Set up to return from userspace. If provided, use a stub already in userspace. */ if (ka->sa_flags & TARGET_SA_RESTORER) { env->regs[14] = (unsigned long) ka->sa_restorer | PSW_ADDR_AMODE; } else { env->regs[14] = (unsigned long) frame->retcode | PSW_ADDR_AMODE; if (__put_user(S390_SYSCALL_OPCODE | TARGET_NR_rt_sigreturn, (uint16_t *)(frame->retcode))) { goto give_sigsegv; } } /* Set up backchain. */ if (__put_user(env->regs[15], (abi_ulong *) frame)) { goto give_sigsegv; } /* Set up registers for signal handler */ env->regs[15] = frame_addr; env->psw.addr = (target_ulong) ka->_sa_handler | PSW_ADDR_AMODE; env->regs[2] = sig; //map_signal(sig); env->regs[3] = frame_addr + offsetof(typeof(*frame), info); env->regs[4] = frame_addr + offsetof(typeof(*frame), uc); return; give_sigsegv: qemu_log("%s: give_sigsegv\n", __FUNCTION__); unlock_user_struct(frame, frame_addr, 1); force_sig(TARGET_SIGSEGV); } | 571 |
1 | static int dxv_decompress_dxt5(AVCodecContext *avctx) { DXVContext *ctx = avctx->priv_data; GetByteContext *gbc = &ctx->gbc; uint32_t value, op; int idx, prev, state = 0; int pos = 4; int run = 0; int probe, check; /* Copy the first four elements */ AV_WL32(ctx->tex_data + 0, bytestream2_get_le32(gbc)); AV_WL32(ctx->tex_data + 4, bytestream2_get_le32(gbc)); AV_WL32(ctx->tex_data + 8, bytestream2_get_le32(gbc)); AV_WL32(ctx->tex_data + 12, bytestream2_get_le32(gbc)); /* Process input until the whole texture has been filled */ while (pos + 2 <= ctx->tex_size / 4) { if (run) { run--; prev = AV_RL32(ctx->tex_data + 4 * (pos - 4)); AV_WL32(ctx->tex_data + 4 * pos, prev); pos++; prev = AV_RL32(ctx->tex_data + 4 * (pos - 4)); AV_WL32(ctx->tex_data + 4 * pos, prev); pos++; } else { if (state == 0) { value = bytestream2_get_le32(gbc); state = 16; } op = value & 0x3; value >>= 2; state--; switch (op) { case 0: /* Long copy */ check = bytestream2_get_byte(gbc) + 1; if (check == 256) { do { probe = bytestream2_get_le16(gbc); check += probe; } while (probe == 0xFFFF); } while (check && pos + 4 <= ctx->tex_size / 4) { prev = AV_RL32(ctx->tex_data + 4 * (pos - 4)); AV_WL32(ctx->tex_data + 4 * pos, prev); pos++; prev = AV_RL32(ctx->tex_data + 4 * (pos - 4)); AV_WL32(ctx->tex_data + 4 * pos, prev); pos++; prev = AV_RL32(ctx->tex_data + 4 * (pos - 4)); AV_WL32(ctx->tex_data + 4 * pos, prev); pos++; prev = AV_RL32(ctx->tex_data + 4 * (pos - 4)); AV_WL32(ctx->tex_data + 4 * pos, prev); pos++; check--; } /* Restart (or exit) the loop */ continue; break; case 1: /* Load new run value */ run = bytestream2_get_byte(gbc); if (run == 255) { do { probe = bytestream2_get_le16(gbc); run += probe; } while (probe == 0xFFFF); } /* Copy two dwords from previous data */ prev = AV_RL32(ctx->tex_data + 4 * (pos - 4)); AV_WL32(ctx->tex_data + 4 * pos, prev); pos++; prev = AV_RL32(ctx->tex_data + 4 * (pos - 4)); AV_WL32(ctx->tex_data + 4 * pos, prev); pos++; break; case 2: /* Copy two dwords from a previous index */ idx = 8 + bytestream2_get_le16(gbc); if (idx > pos || (unsigned int)(pos - idx) + 2 > ctx->tex_size / 4) prev = AV_RL32(ctx->tex_data + 4 * (pos - idx)); AV_WL32(ctx->tex_data + 4 * pos, prev); pos++; prev = AV_RL32(ctx->tex_data + 4 * (pos - idx)); AV_WL32(ctx->tex_data + 4 * pos, prev); pos++; break; case 3: /* Copy two dwords from input */ prev = bytestream2_get_le32(gbc); AV_WL32(ctx->tex_data + 4 * pos, prev); pos++; prev = bytestream2_get_le32(gbc); AV_WL32(ctx->tex_data + 4 * pos, prev); pos++; break; } } CHECKPOINT(4); if (pos + 2 > ctx->tex_size / 4) /* Copy two elements from a previous offset or from the input buffer */ if (op) { if (idx > pos || (unsigned int)(pos - idx) + 2 > ctx->tex_size / 4) prev = AV_RL32(ctx->tex_data + 4 * (pos - idx)); AV_WL32(ctx->tex_data + 4 * pos, prev); pos++; prev = AV_RL32(ctx->tex_data + 4 * (pos - idx)); AV_WL32(ctx->tex_data + 4 * pos, prev); pos++; } else { CHECKPOINT(4); if (op && (idx > pos || (unsigned int)(pos - idx) + 2 > ctx->tex_size / 4)) if (op) prev = AV_RL32(ctx->tex_data + 4 * (pos - idx)); else prev = bytestream2_get_le32(gbc); AV_WL32(ctx->tex_data + 4 * pos, prev); pos++; CHECKPOINT(4); if (op) prev = AV_RL32(ctx->tex_data + 4 * (pos - idx)); else prev = bytestream2_get_le32(gbc); AV_WL32(ctx->tex_data + 4 * pos, prev); pos++; } } return 0; } | 575 |
1 | static void gd_update_geometry_hints(VirtualConsole *vc) { GtkDisplayState *s = vc->s; GdkWindowHints mask = 0; GdkGeometry geo = {}; GtkWidget *geo_widget = NULL; GtkWindow *geo_window; if (vc->type == GD_VC_GFX) { if (!vc->gfx.ds) { return; } if (s->free_scale) { geo.min_width = surface_width(vc->gfx.ds) * VC_SCALE_MIN; geo.min_height = surface_height(vc->gfx.ds) * VC_SCALE_MIN; mask |= GDK_HINT_MIN_SIZE; } else { geo.min_width = surface_width(vc->gfx.ds) * vc->gfx.scale_x; geo.min_height = surface_height(vc->gfx.ds) * vc->gfx.scale_y; mask |= GDK_HINT_MIN_SIZE; } geo_widget = vc->gfx.drawing_area; gtk_widget_set_size_request(geo_widget, geo.min_width, geo.min_height); #if defined(CONFIG_VTE) } else if (vc->type == GD_VC_VTE) { VteTerminal *term = VTE_TERMINAL(vc->vte.terminal); GtkBorder *ib; geo.width_inc = vte_terminal_get_char_width(term); geo.height_inc = vte_terminal_get_char_height(term); mask |= GDK_HINT_RESIZE_INC; geo.base_width = geo.width_inc; geo.base_height = geo.height_inc; mask |= GDK_HINT_BASE_SIZE; geo.min_width = geo.width_inc * VC_TERM_X_MIN; geo.min_height = geo.height_inc * VC_TERM_Y_MIN; mask |= GDK_HINT_MIN_SIZE; gtk_widget_style_get(vc->vte.terminal, "inner-border", &ib, NULL); geo.base_width += ib->left + ib->right; geo.base_height += ib->top + ib->bottom; geo.min_width += ib->left + ib->right; geo.min_height += ib->top + ib->bottom; geo_widget = vc->vte.terminal; #endif } geo_window = GTK_WINDOW(vc->window ? vc->window : s->window); gtk_window_set_geometry_hints(geo_window, geo_widget, &geo, mask); } | 576 |
1 | static uint32_t cc_calc_abs_64(int64_t dst) { if ((uint64_t)dst == 0x8000000000000000ULL) { return 3; } else if (dst) { return 1; } else { return 0; } } | 577 |
1 | static void virtio_serial_device_unrealize(DeviceState *dev, Error **errp) { VirtIODevice *vdev = VIRTIO_DEVICE(dev); VirtIOSerial *vser = VIRTIO_SERIAL(dev); QLIST_REMOVE(vser, next); g_free(vser->ivqs); g_free(vser->ovqs); g_free(vser->ports_map); if (vser->post_load) { g_free(vser->post_load->connected); timer_del(vser->post_load->timer); timer_free(vser->post_load->timer); g_free(vser->post_load); } virtio_cleanup(vdev); } | 579 |
1 | static int flashsv2_prime(FlashSVContext *s, uint8_t *src, int size) { z_stream zs; int zret; // Zlib return code zs.zalloc = NULL; zs.zfree = NULL; zs.opaque = NULL; s->zstream.next_in = src; s->zstream.avail_in = size; s->zstream.next_out = s->tmpblock; s->zstream.avail_out = s->block_size * 3; inflate(&s->zstream, Z_SYNC_FLUSH); if (deflateInit(&zs, 0) != Z_OK) return -1; zs.next_in = s->tmpblock; zs.avail_in = s->block_size * 3 - s->zstream.avail_out; zs.next_out = s->deflate_block; zs.avail_out = s->deflate_block_size; deflate(&zs, Z_SYNC_FLUSH); deflateEnd(&zs); if ((zret = inflateReset(&s->zstream)) != Z_OK) { av_log(s->avctx, AV_LOG_ERROR, "Inflate reset error: %d\n", zret); return AVERROR_UNKNOWN; } s->zstream.next_in = s->deflate_block; s->zstream.avail_in = s->deflate_block_size - zs.avail_out; s->zstream.next_out = s->tmpblock; s->zstream.avail_out = s->block_size * 3; inflate(&s->zstream, Z_SYNC_FLUSH); return 0; } | 580 |
1 | static void sbr_hf_assemble(int Y1[38][64][2], const int X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2]) { int e, i, j, m; const int h_SL = 4 * !sbr->bs_smoothing_mode; const int kx = sbr->kx[1]; const int m_max = sbr->m[1]; static const SoftFloat h_smooth[5] = { { 715827883, -1 }, { 647472402, -1 }, { 937030863, -2 }, { 989249804, -3 }, { 546843842, -4 }, }; SoftFloat (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp; int indexnoise = ch_data->f_indexnoise; int indexsine = ch_data->f_indexsine; if (sbr->reset) { for (i = 0; i < h_SL; i++) { memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0])); memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0])); } } else if (h_SL) { for (i = 0; i < 4; i++) { memcpy(g_temp[i + 2 * ch_data->t_env[0]], g_temp[i + 2 * ch_data->t_env_num_env_old], sizeof(g_temp[0])); memcpy(q_temp[i + 2 * ch_data->t_env[0]], q_temp[i + 2 * ch_data->t_env_num_env_old], sizeof(q_temp[0])); } } for (e = 0; e < ch_data->bs_num_env; e++) { for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) { memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0])); memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0])); } } for (e = 0; e < ch_data->bs_num_env; e++) { for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) { SoftFloat g_filt_tab[48]; SoftFloat q_filt_tab[48]; SoftFloat *g_filt, *q_filt; if (h_SL && e != e_a[0] && e != e_a[1]) { g_filt = g_filt_tab; q_filt = q_filt_tab; for (m = 0; m < m_max; m++) { const int idx1 = i + h_SL; g_filt[m].mant = g_filt[m].exp = 0; q_filt[m].mant = q_filt[m].exp = 0; for (j = 0; j <= h_SL; j++) { g_filt[m] = av_add_sf(g_filt[m], av_mul_sf(g_temp[idx1 - j][m], h_smooth[j])); q_filt[m] = av_add_sf(q_filt[m], av_mul_sf(q_temp[idx1 - j][m], h_smooth[j])); } } } else { g_filt = g_temp[i + h_SL]; q_filt = q_temp[i]; } sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max, i + ENVELOPE_ADJUSTMENT_OFFSET); if (e != e_a[0] && e != e_a[1]) { sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e], q_filt, indexnoise, kx, m_max); } else { int idx = indexsine&1; int A = (1-((indexsine+(kx & 1))&2)); int B = (A^(-idx)) + idx; int *out = &Y1[i][kx][idx]; int shift, round; SoftFloat *in = sbr->s_m[e]; for (m = 0; m+1 < m_max; m+=2) { shift = 22 - in[m ].exp; if (shift < 32) { round = 1 << (shift-1); out[2*m ] += (in[m ].mant * A + round) >> shift; } shift = 22 - in[m+1].exp; if (shift < 32) { round = 1 << (shift-1); out[2*m+2] += (in[m+1].mant * B + round) >> shift; } } if(m_max&1) { shift = 22 - in[m ].exp; if (shift < 32) { round = 1 << (shift-1); out[2*m ] += (in[m ].mant * A + round) >> shift; } } } indexnoise = (indexnoise + m_max) & 0x1ff; indexsine = (indexsine + 1) & 3; } } ch_data->f_indexnoise = indexnoise; ch_data->f_indexsine = indexsine; } | 581 |
0 | static int vid_probe(AVProbeData *p) { // little endian VID tag, file starts with "VID\0" if (p->buf_size < 4 || AV_RL32(p->buf) != MKTAG('V', 'I', 'D', 0)) return 0; return AVPROBE_SCORE_MAX; } | 582 |
1 | static inline void gen_intermediate_code_internal(X86CPU *cpu, TranslationBlock *tb, bool search_pc) { CPUState *cs = CPU(cpu); CPUX86State *env = &cpu->env; DisasContext dc1, *dc = &dc1; target_ulong pc_ptr; uint16_t *gen_opc_end; CPUBreakpoint *bp; int j, lj; uint64_t flags; target_ulong pc_start; target_ulong cs_base; int num_insns; int max_insns; /* generate intermediate code */ pc_start = tb->pc; cs_base = tb->cs_base; flags = tb->flags; dc->pe = (flags >> HF_PE_SHIFT) & 1; dc->code32 = (flags >> HF_CS32_SHIFT) & 1; dc->ss32 = (flags >> HF_SS32_SHIFT) & 1; dc->addseg = (flags >> HF_ADDSEG_SHIFT) & 1; dc->f_st = 0; dc->vm86 = (flags >> VM_SHIFT) & 1; dc->cpl = (flags >> HF_CPL_SHIFT) & 3; dc->iopl = (flags >> IOPL_SHIFT) & 3; dc->tf = (flags >> TF_SHIFT) & 1; dc->singlestep_enabled = cs->singlestep_enabled; dc->cc_op = CC_OP_DYNAMIC; dc->cc_op_dirty = false; dc->cs_base = cs_base; dc->tb = tb; dc->popl_esp_hack = 0; /* select memory access functions */ dc->mem_index = 0; if (flags & HF_SOFTMMU_MASK) { dc->mem_index = cpu_mmu_index(env); } dc->cpuid_features = env->features[FEAT_1_EDX]; dc->cpuid_ext_features = env->features[FEAT_1_ECX]; dc->cpuid_ext2_features = env->features[FEAT_8000_0001_EDX]; dc->cpuid_ext3_features = env->features[FEAT_8000_0001_ECX]; dc->cpuid_7_0_ebx_features = env->features[FEAT_7_0_EBX]; #ifdef TARGET_X86_64 dc->lma = (flags >> HF_LMA_SHIFT) & 1; dc->code64 = (flags >> HF_CS64_SHIFT) & 1; #endif dc->flags = flags; dc->jmp_opt = !(dc->tf || cs->singlestep_enabled || (flags & HF_INHIBIT_IRQ_MASK) #ifndef CONFIG_SOFTMMU || (flags & HF_SOFTMMU_MASK) #endif ); #if 0 /* check addseg logic */ if (!dc->addseg && (dc->vm86 || !dc->pe || !dc->code32)) printf("ERROR addseg\n"); #endif cpu_T[0] = tcg_temp_new(); cpu_T[1] = tcg_temp_new(); cpu_A0 = tcg_temp_new(); cpu_tmp0 = tcg_temp_new(); cpu_tmp1_i64 = tcg_temp_new_i64(); cpu_tmp2_i32 = tcg_temp_new_i32(); cpu_tmp3_i32 = tcg_temp_new_i32(); cpu_tmp4 = tcg_temp_new(); cpu_ptr0 = tcg_temp_new_ptr(); cpu_ptr1 = tcg_temp_new_ptr(); cpu_cc_srcT = tcg_temp_local_new(); gen_opc_end = tcg_ctx.gen_opc_buf + OPC_MAX_SIZE; dc->is_jmp = DISAS_NEXT; pc_ptr = pc_start; lj = -1; num_insns = 0; max_insns = tb->cflags & CF_COUNT_MASK; if (max_insns == 0) max_insns = CF_COUNT_MASK; gen_tb_start(); for(;;) { if (unlikely(!QTAILQ_EMPTY(&cs->breakpoints))) { QTAILQ_FOREACH(bp, &cs->breakpoints, entry) { if (bp->pc == pc_ptr && !((bp->flags & BP_CPU) && (tb->flags & HF_RF_MASK))) { gen_debug(dc, pc_ptr - dc->cs_base); break; } } } if (search_pc) { j = tcg_ctx.gen_opc_ptr - tcg_ctx.gen_opc_buf; if (lj < j) { lj++; while (lj < j) tcg_ctx.gen_opc_instr_start[lj++] = 0; } tcg_ctx.gen_opc_pc[lj] = pc_ptr; gen_opc_cc_op[lj] = dc->cc_op; tcg_ctx.gen_opc_instr_start[lj] = 1; tcg_ctx.gen_opc_icount[lj] = num_insns; } if (num_insns + 1 == max_insns && (tb->cflags & CF_LAST_IO)) gen_io_start(); pc_ptr = disas_insn(env, dc, pc_ptr); num_insns++; /* stop translation if indicated */ if (dc->is_jmp) break; /* if single step mode, we generate only one instruction and generate an exception */ /* if irq were inhibited with HF_INHIBIT_IRQ_MASK, we clear the flag and abort the translation to give the irqs a change to be happen */ if (dc->tf || dc->singlestep_enabled || (flags & HF_INHIBIT_IRQ_MASK)) { gen_jmp_im(pc_ptr - dc->cs_base); gen_eob(dc); break; } /* if too long translation, stop generation too */ if (tcg_ctx.gen_opc_ptr >= gen_opc_end || (pc_ptr - pc_start) >= (TARGET_PAGE_SIZE - 32) || num_insns >= max_insns) { gen_jmp_im(pc_ptr - dc->cs_base); gen_eob(dc); break; } if (singlestep) { gen_jmp_im(pc_ptr - dc->cs_base); gen_eob(dc); break; } } if (tb->cflags & CF_LAST_IO) gen_io_end(); gen_tb_end(tb, num_insns); *tcg_ctx.gen_opc_ptr = INDEX_op_end; /* we don't forget to fill the last values */ if (search_pc) { j = tcg_ctx.gen_opc_ptr - tcg_ctx.gen_opc_buf; lj++; while (lj <= j) tcg_ctx.gen_opc_instr_start[lj++] = 0; } #ifdef DEBUG_DISAS if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) { int disas_flags; qemu_log("----------------\n"); qemu_log("IN: %s\n", lookup_symbol(pc_start)); #ifdef TARGET_X86_64 if (dc->code64) disas_flags = 2; else #endif disas_flags = !dc->code32; log_target_disas(env, pc_start, pc_ptr - pc_start, disas_flags); qemu_log("\n"); } #endif if (!search_pc) { tb->size = pc_ptr - pc_start; tb->icount = num_insns; } } | 584 |
1 | static always_inline void gen_op_subfo (void) { gen_op_move_T2_T0(); gen_op_subf(); gen_op_check_subfo(); } | 586 |
1 | static void fd_accept_incoming_migration(void *opaque) { QEMUFile *f = opaque; qemu_set_fd_handler2(qemu_get_fd(f), NULL, NULL, NULL, NULL); process_incoming_migration(f); } | 587 |
1 | hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr) { CPUPPCState *env = &cpu->env; ppc_slb_t *slb; hwaddr pte_offset; ppc_hash_pte64_t pte; unsigned apshift; if (msr_dr == 0) { /* In real mode the top 4 effective address bits are ignored */ return addr & 0x0FFFFFFFFFFFFFFFULL; } slb = slb_lookup(cpu, addr); if (!slb) { return -1; } pte_offset = ppc_hash64_htab_lookup(cpu, slb, addr, &pte); if (pte_offset == -1) { return -1; } apshift = hpte_page_shift(slb->sps, pte.pte0, pte.pte1); if (!apshift) { return -1; } return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr) & TARGET_PAGE_MASK; } | 588 |
1 | static int adx_read_header(AVFormatContext *s) { ADXDemuxerContext *c = s->priv_data; AVCodecParameters *par; AVStream *st = avformat_new_stream(s, NULL); if (!st) return AVERROR(ENOMEM); par = s->streams[0]->codecpar; if (avio_rb16(s->pb) != 0x8000) return AVERROR_INVALIDDATA; c->header_size = avio_rb16(s->pb) + 4; avio_seek(s->pb, -4, SEEK_CUR); if (ff_get_extradata(s, par, s->pb, c->header_size) < 0) return AVERROR(ENOMEM); if (par->extradata_size < 12) { av_log(s, AV_LOG_ERROR, "Invalid extradata size.\n"); return AVERROR_INVALIDDATA; } par->channels = AV_RB8 (par->extradata + 7); par->sample_rate = AV_RB32(par->extradata + 8); if (par->channels <= 0) { av_log(s, AV_LOG_ERROR, "invalid number of channels %d\n", par->channels); return AVERROR_INVALIDDATA; } if (par->sample_rate <= 0) { av_log(s, AV_LOG_ERROR, "Invalid sample rate %d\n", par->sample_rate); return AVERROR_INVALIDDATA; } par->codec_type = AVMEDIA_TYPE_AUDIO; par->codec_id = s->iformat->raw_codec_id; par->bit_rate = par->sample_rate * par->channels * BLOCK_SIZE * 8LL / BLOCK_SAMPLES; avpriv_set_pts_info(st, 64, BLOCK_SAMPLES, par->sample_rate); return 0; } | 589 |
1 | static void virgl_cmd_get_capset(VirtIOGPU *g, struct virtio_gpu_ctrl_command *cmd) { struct virtio_gpu_get_capset gc; struct virtio_gpu_resp_capset *resp; uint32_t max_ver, max_size; VIRTIO_GPU_FILL_CMD(gc); virgl_renderer_get_cap_set(gc.capset_id, &max_ver, &max_size); if (!max_size) { cmd->error = VIRTIO_GPU_RESP_ERR_INVALID_PARAMETER; return; } resp = g_malloc(sizeof(*resp) + max_size); resp->hdr.type = VIRTIO_GPU_RESP_OK_CAPSET; virgl_renderer_fill_caps(gc.capset_id, gc.capset_version, (void *)resp->capset_data); virtio_gpu_ctrl_response(g, cmd, &resp->hdr, sizeof(*resp) + max_size); g_free(resp); } | 590 |
1 | static int qcow2_open(BlockDriverState *bs, QDict *options, int flags) { BDRVQcowState *s = bs->opaque; int len, i, ret = 0; QCowHeader header; QemuOpts *opts; Error *local_err = NULL; uint64_t ext_end; uint64_t l1_vm_state_index; ret = bdrv_pread(bs->file, 0, &header, sizeof(header)); if (ret < 0) { be32_to_cpus(&header.magic); be32_to_cpus(&header.version); be64_to_cpus(&header.backing_file_offset); be32_to_cpus(&header.backing_file_size); be64_to_cpus(&header.size); be32_to_cpus(&header.cluster_bits); be32_to_cpus(&header.crypt_method); be64_to_cpus(&header.l1_table_offset); be32_to_cpus(&header.l1_size); be64_to_cpus(&header.refcount_table_offset); be32_to_cpus(&header.refcount_table_clusters); be64_to_cpus(&header.snapshots_offset); be32_to_cpus(&header.nb_snapshots); if (header.magic != QCOW_MAGIC) { ret = -EMEDIUMTYPE; if (header.version < 2 || header.version > 3) { report_unsupported(bs, "QCOW version %d", header.version); ret = -ENOTSUP; s->qcow_version = header.version; /* Initialise version 3 header fields */ if (header.version == 2) { header.incompatible_features = 0; header.compatible_features = 0; header.autoclear_features = 0; header.refcount_order = 4; header.header_length = 72; } else { be64_to_cpus(&header.incompatible_features); be64_to_cpus(&header.compatible_features); be64_to_cpus(&header.autoclear_features); be32_to_cpus(&header.refcount_order); be32_to_cpus(&header.header_length); if (header.header_length > sizeof(header)) { s->unknown_header_fields_size = header.header_length - sizeof(header); s->unknown_header_fields = g_malloc(s->unknown_header_fields_size); ret = bdrv_pread(bs->file, sizeof(header), s->unknown_header_fields, s->unknown_header_fields_size); if (ret < 0) { if (header.backing_file_offset) { ext_end = header.backing_file_offset; } else { ext_end = 1 << header.cluster_bits; /* Handle feature bits */ s->incompatible_features = header.incompatible_features; s->compatible_features = header.compatible_features; s->autoclear_features = header.autoclear_features; if (s->incompatible_features & ~QCOW2_INCOMPAT_MASK) { void *feature_table = NULL; qcow2_read_extensions(bs, header.header_length, ext_end, &feature_table); report_unsupported_feature(bs, feature_table, s->incompatible_features & ~QCOW2_INCOMPAT_MASK); ret = -ENOTSUP; /* Check support for various header values */ if (header.refcount_order != 4) { report_unsupported(bs, "%d bit reference counts", 1 << header.refcount_order); ret = -ENOTSUP; if (header.cluster_bits < MIN_CLUSTER_BITS || header.cluster_bits > MAX_CLUSTER_BITS) { ret = -EINVAL; if (header.crypt_method > QCOW_CRYPT_AES) { ret = -EINVAL; s->crypt_method_header = header.crypt_method; if (s->crypt_method_header) { bs->encrypted = 1; s->cluster_bits = header.cluster_bits; s->cluster_size = 1 << s->cluster_bits; s->cluster_sectors = 1 << (s->cluster_bits - 9); s->l2_bits = s->cluster_bits - 3; /* L2 is always one cluster */ s->l2_size = 1 << s->l2_bits; bs->total_sectors = header.size / 512; s->csize_shift = (62 - (s->cluster_bits - 8)); s->csize_mask = (1 << (s->cluster_bits - 8)) - 1; s->cluster_offset_mask = (1LL << s->csize_shift) - 1; s->refcount_table_offset = header.refcount_table_offset; s->refcount_table_size = header.refcount_table_clusters << (s->cluster_bits - 3); s->snapshots_offset = header.snapshots_offset; s->nb_snapshots = header.nb_snapshots; /* read the level 1 table */ s->l1_size = header.l1_size; l1_vm_state_index = size_to_l1(s, header.size); if (l1_vm_state_index > INT_MAX) { ret = -EFBIG; s->l1_vm_state_index = l1_vm_state_index; /* the L1 table must contain at least enough entries to put header.size bytes */ if (s->l1_size < s->l1_vm_state_index) { ret = -EINVAL; s->l1_table_offset = header.l1_table_offset; if (s->l1_size > 0) { s->l1_table = g_malloc0( align_offset(s->l1_size * sizeof(uint64_t), 512)); ret = bdrv_pread(bs->file, s->l1_table_offset, s->l1_table, s->l1_size * sizeof(uint64_t)); if (ret < 0) { for(i = 0;i < s->l1_size; i++) { be64_to_cpus(&s->l1_table[i]); /* alloc L2 table/refcount block cache */ s->l2_table_cache = qcow2_cache_create(bs, L2_CACHE_SIZE); s->refcount_block_cache = qcow2_cache_create(bs, REFCOUNT_CACHE_SIZE); s->cluster_cache = g_malloc(s->cluster_size); /* one more sector for decompressed data alignment */ s->cluster_data = qemu_blockalign(bs, QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size + 512); s->cluster_cache_offset = -1; s->flags = flags; ret = qcow2_refcount_init(bs); if (ret != 0) { QLIST_INIT(&s->cluster_allocs); QTAILQ_INIT(&s->discards); /* read qcow2 extensions */ if (qcow2_read_extensions(bs, header.header_length, ext_end, NULL)) { ret = -EINVAL; /* read the backing file name */ if (header.backing_file_offset != 0) { len = header.backing_file_size; if (len > 1023) { len = 1023; ret = bdrv_pread(bs->file, header.backing_file_offset, bs->backing_file, len); if (ret < 0) { bs->backing_file[len] = '\0'; ret = qcow2_read_snapshots(bs); if (ret < 0) { /* Clear unknown autoclear feature bits */ if (!bs->read_only && s->autoclear_features != 0) { s->autoclear_features = 0; ret = qcow2_update_header(bs); if (ret < 0) { /* Initialise locks */ qemu_co_mutex_init(&s->lock); /* Repair image if dirty */ if (!(flags & BDRV_O_CHECK) && !bs->read_only && (s->incompatible_features & QCOW2_INCOMPAT_DIRTY)) { BdrvCheckResult result = {0}; ret = qcow2_check(bs, &result, BDRV_FIX_ERRORS); if (ret < 0) { /* Enable lazy_refcounts according to image and command line options */ opts = qemu_opts_create_nofail(&qcow2_runtime_opts); qemu_opts_absorb_qdict(opts, options, &local_err); if (error_is_set(&local_err)) { qerror_report_err(local_err); error_free(local_err); ret = -EINVAL; s->use_lazy_refcounts = qemu_opt_get_bool(opts, QCOW2_OPT_LAZY_REFCOUNTS, (s->compatible_features & QCOW2_COMPAT_LAZY_REFCOUNTS)); s->discard_passthrough[QCOW2_DISCARD_NEVER] = false; s->discard_passthrough[QCOW2_DISCARD_ALWAYS] = true; s->discard_passthrough[QCOW2_DISCARD_REQUEST] = qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_REQUEST, flags & BDRV_O_UNMAP); s->discard_passthrough[QCOW2_DISCARD_SNAPSHOT] = qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_SNAPSHOT, true); s->discard_passthrough[QCOW2_DISCARD_OTHER] = qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_OTHER, false); qemu_opts_del(opts); if (s->use_lazy_refcounts && s->qcow_version < 3) { qerror_report(ERROR_CLASS_GENERIC_ERROR, "Lazy refcounts require " "a qcow2 image with at least qemu 1.1 compatibility level"); ret = -EINVAL; #ifdef DEBUG_ALLOC { BdrvCheckResult result = {0}; qcow2_check_refcounts(bs, &result, 0); #endif return ret; fail: g_free(s->unknown_header_fields); cleanup_unknown_header_ext(bs); qcow2_free_snapshots(bs); qcow2_refcount_close(bs); g_free(s->l1_table); if (s->l2_table_cache) { qcow2_cache_destroy(bs, s->l2_table_cache); g_free(s->cluster_cache); qemu_vfree(s->cluster_data); return ret; | 591 |
1 | static void decode_subband(DiracContext *s, GetBitContext *gb, int quant, int slice_x, int slice_y, int bits_end, SubBand *b1, SubBand *b2) { int left = b1->width * slice_x / s->num_x; int right = b1->width *(slice_x+1) / s->num_x; int top = b1->height * slice_y / s->num_y; int bottom = b1->height *(slice_y+1) / s->num_y; int qfactor = qscale_tab[quant & 0x7f]; int qoffset = qoffset_intra_tab[quant & 0x7f] + 2; uint8_t *buf1 = b1->ibuf + top * b1->stride; uint8_t *buf2 = b2 ? b2->ibuf + top * b2->stride: NULL; int x, y; /* we have to constantly check for overread since the spec explicitly requires this, with the meaning that all remaining coeffs are set to 0 */ if (get_bits_count(gb) >= bits_end) return; if (s->pshift) { for (y = top; y < bottom; y++) { for (x = left; x < right; x++) { PARSE_VALUES(int32_t, x, gb, bits_end, buf1, buf2); } buf1 += b1->stride; if (buf2) buf2 += b2->stride; } } else { for (y = top; y < bottom; y++) { for (x = left; x < right; x++) { PARSE_VALUES(int16_t, x, gb, bits_end, buf1, buf2); } buf1 += b1->stride; if (buf2) buf2 += b2->stride; } } } | 592 |
0 | int spapr_h_cas_compose_response(sPAPRMachineState *spapr, target_ulong addr, target_ulong size, bool cpu_update, sPAPROptionVector *ov5_updates) { void *fdt, *fdt_skel; sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; size -= sizeof(hdr); /* Create sceleton */ fdt_skel = g_malloc0(size); _FDT((fdt_create(fdt_skel, size))); _FDT((fdt_begin_node(fdt_skel, ""))); _FDT((fdt_end_node(fdt_skel))); _FDT((fdt_finish(fdt_skel))); fdt = g_malloc0(size); _FDT((fdt_open_into(fdt_skel, fdt, size))); g_free(fdt_skel); /* Fixup cpu nodes */ if (cpu_update) { _FDT((spapr_fixup_cpu_dt(fdt, spapr))); } if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { return -1; } /* Pack resulting tree */ _FDT((fdt_pack(fdt))); if (fdt_totalsize(fdt) + sizeof(hdr) > size) { trace_spapr_cas_failed(size); return -1; } cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); g_free(fdt); return 0; } | 593 |
0 | void kvmppc_hash64_write_pte(CPUPPCState *env, target_ulong pte_index, target_ulong pte0, target_ulong pte1) { int htab_fd; struct kvm_get_htab_fd ghf; struct kvm_get_htab_buf hpte_buf; ghf.flags = 0; ghf.start_index = 0; /* Ignored */ htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf); if (htab_fd < 0) { goto error_out; } hpte_buf.header.n_valid = 1; hpte_buf.header.n_invalid = 0; hpte_buf.header.index = pte_index; hpte_buf.hpte[0] = pte0; hpte_buf.hpte[1] = pte1; /* * Write the hpte entry. * CAUTION: write() has the warn_unused_result attribute. Hence we * need to check the return value, even though we do nothing. */ if (write(htab_fd, &hpte_buf, sizeof(hpte_buf)) < 0) { goto out_close; } out_close: close(htab_fd); return; error_out: return; } | 594 |
0 | int tcp_start_outgoing_migration(MigrationState *s, const char *host_port, Error **errp) { s->get_error = socket_errno; s->write = socket_write; s->close = tcp_close; s->fd = inet_connect(host_port, false, errp); if (!error_is_set(errp)) { migrate_fd_connect(s); } else if (error_is_type(*errp, QERR_SOCKET_CONNECT_IN_PROGRESS)) { DPRINTF("connect in progress\n"); qemu_set_fd_handler2(s->fd, NULL, NULL, tcp_wait_for_connect, s); } else if (error_is_type(*errp, QERR_SOCKET_CREATE_FAILED)) { DPRINTF("connect failed\n"); return -1; } else if (error_is_type(*errp, QERR_SOCKET_CONNECT_FAILED)) { DPRINTF("connect failed\n"); migrate_fd_error(s); return -1; } else { DPRINTF("unknown error\n"); return -1; } return 0; } | 595 |
0 | static void virtio_9p_device_realize(DeviceState *dev, Error **errp) { VirtIODevice *vdev = VIRTIO_DEVICE(dev); V9fsVirtioState *v = VIRTIO_9P(dev); V9fsState *s = &v->state; if (v9fs_device_realize_common(s, errp)) { goto out; } v->config_size = sizeof(struct virtio_9p_config) + strlen(s->fsconf.tag); virtio_init(vdev, "virtio-9p", VIRTIO_ID_9P, v->config_size); v->vq = virtio_add_queue(vdev, MAX_REQ, handle_9p_output); v9fs_register_transport(s, &virtio_9p_transport); out: return; } | 596 |
0 | static void trigger_access_exception(CPUS390XState *env, uint32_t type, uint32_t ilen, uint64_t tec) { S390CPU *cpu = s390_env_get_cpu(env); if (kvm_enabled()) { kvm_s390_access_exception(cpu, type, tec); } else { CPUState *cs = CPU(cpu); stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec); trigger_pgm_exception(env, type, ilen); } } | 597 |
0 | static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); Error *local_err = NULL; PCDIMMDevice *dimm = PC_DIMM(dev); PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); MemoryRegion *mr = ddc->get_memory_region(dimm); uint64_t size = memory_region_size(mr); uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; uint64_t addr_start, addr; int i; sPAPRDRConnector *drc; sPAPRDRConnectorClass *drck; sPAPRDIMMState *ds; addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err); if (local_err) { goto out; } ds = g_malloc0(sizeof(sPAPRDIMMState)); ds->nr_lmbs = nr_lmbs; ds->dimm = dimm; spapr_pending_dimm_unplugs_add(spapr, ds); addr = addr_start; for (i = 0; i < nr_lmbs; i++) { drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, addr / SPAPR_MEMORY_BLOCK_SIZE); g_assert(drc); drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); drck->detach(drc, dev, spapr_lmb_release, NULL, errp); addr += SPAPR_MEMORY_BLOCK_SIZE; } drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, addr_start / SPAPR_MEMORY_BLOCK_SIZE); drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs, drck->get_index(drc)); out: error_propagate(errp, local_err); } | 598 |
0 | static void l2x0_priv_write(void *opaque, target_phys_addr_t offset, uint64_t value, unsigned size) { l2x0_state *s = (l2x0_state *)opaque; offset &= 0xfff; if (offset >= 0x730 && offset < 0x800) { /* ignore */ return; } switch (offset) { case 0x100: s->ctrl = value & 1; break; case 0x104: s->aux_ctrl = value; break; case 0x108: s->tag_ctrl = value; break; case 0x10C: s->data_ctrl = value; break; case 0xC00: s->filter_start = value; break; case 0xC04: s->filter_end = value; break; case 0xF40: return; case 0xF60: return; case 0xF80: return; default: fprintf(stderr, "l2x0_priv_write: Bad offset %x\n", (int)offset); break; } } | 600 |
0 | static void json_emit_element(QJSON *json, const char *name) { /* Check whether we need to print a , before an element */ if (json->omit_comma) { json->omit_comma = false; } else { qstring_append(json->str, ", "); } if (name) { qstring_append(json->str, "\""); qstring_append(json->str, name); qstring_append(json->str, "\" : "); } } | 601 |
0 | static bool vfio_pci_host_match(PCIHostDeviceAddress *host1, PCIHostDeviceAddress *host2) { return (host1->domain == host2->domain && host1->bus == host2->bus && host1->slot == host2->slot && host1->function == host2->function); } | 602 |
0 | int ff_ivi_dec_huff_desc(GetBitContext *gb, int desc_coded, int which_tab, IVIHuffTab *huff_tab, AVCodecContext *avctx) { int i, result; IVIHuffDesc new_huff; if (!desc_coded) { /* select default table */ huff_tab->tab = (which_tab) ? &ff_ivi_blk_vlc_tabs[7] : &ff_ivi_mb_vlc_tabs [7]; } else { huff_tab->tab_sel = get_bits(gb, 3); if (huff_tab->tab_sel == 7) { /* custom huffman table (explicitly encoded) */ new_huff.num_rows = get_bits(gb, 4); for (i = 0; i < new_huff.num_rows; i++) new_huff.xbits[i] = get_bits(gb, 4); /* Have we got the same custom table? Rebuild if not. */ if (ff_ivi_huff_desc_cmp(&new_huff, &huff_tab->cust_desc)) { ff_ivi_huff_desc_copy(&huff_tab->cust_desc, &new_huff); if (huff_tab->cust_tab.table) ff_free_vlc(&huff_tab->cust_tab); result = ff_ivi_create_huff_from_desc(&huff_tab->cust_desc, &huff_tab->cust_tab, 0); if (result) { av_log(avctx, AV_LOG_ERROR, "Error while initializing custom vlc table!\n"); return -1; } } huff_tab->tab = &huff_tab->cust_tab; } else { /* select one of predefined tables */ huff_tab->tab = (which_tab) ? &ff_ivi_blk_vlc_tabs[huff_tab->tab_sel] : &ff_ivi_mb_vlc_tabs [huff_tab->tab_sel]; } } return 0; } | 603 |
0 | int check_params(char *buf, int buf_size, const char * const *params, const char *str) { const char *p; int i; p = str; while (*p != '\0') { p = get_opt_name(buf, buf_size, p, '='); if (*p != '=') { return -1; } p++; for (i = 0; params[i] != NULL; i++) { if (!strcmp(params[i], buf)) { break; } } if (params[i] == NULL) { return -1; } p = get_opt_value(NULL, 0, p); if (*p != ',') { break; } p++; } return 0; } | 604 |
0 | static void memory_region_update_container_subregions(MemoryRegion *subregion) { hwaddr offset = subregion->addr; MemoryRegion *mr = subregion->container; MemoryRegion *other; memory_region_transaction_begin(); memory_region_ref(subregion); QTAILQ_FOREACH(other, &mr->subregions, subregions_link) { if (subregion->may_overlap || other->may_overlap) { continue; } if (int128_ge(int128_make64(offset), int128_add(int128_make64(other->addr), other->size)) || int128_le(int128_add(int128_make64(offset), subregion->size), int128_make64(other->addr))) { continue; } #if 0 printf("warning: subregion collision %llx/%llx (%s) " "vs %llx/%llx (%s)\n", (unsigned long long)offset, (unsigned long long)int128_get64(subregion->size), subregion->name, (unsigned long long)other->addr, (unsigned long long)int128_get64(other->size), other->name); #endif } QTAILQ_FOREACH(other, &mr->subregions, subregions_link) { if (subregion->priority >= other->priority) { QTAILQ_INSERT_BEFORE(other, subregion, subregions_link); goto done; } } QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link); done: memory_region_update_pending |= mr->enabled && subregion->enabled; memory_region_transaction_commit(); } | 605 |
0 | static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs, int64_t sector_num, int nb_sectors, int *pnum) { BDRVQEDState *s = bs->opaque; size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE; QEDIsAllocatedCB cb = { .bs = bs, .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE, .status = BDRV_BLOCK_OFFSET_MASK, .pnum = pnum, }; QEDRequest request = { .l2_table = NULL }; qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb); /* Now sleep if the callback wasn't invoked immediately */ while (cb.status == BDRV_BLOCK_OFFSET_MASK) { cb.co = qemu_coroutine_self(); qemu_coroutine_yield(); } qed_unref_l2_cache_entry(request.l2_table); return cb.status; } | 606 |
0 | static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid) { sPAPRPHBState *sphb; QLIST_FOREACH(sphb, &spapr->phbs, list) { if (sphb->buid != buid) { continue; } return sphb; } return NULL; } | 607 |
0 | static void ahci_mem_write(void *opaque, target_phys_addr_t addr, uint64_t val, unsigned size) { AHCIState *s = opaque; /* Only aligned reads are allowed on AHCI */ if (addr & 3) { fprintf(stderr, "ahci: Mis-aligned write to addr 0x" TARGET_FMT_plx "\n", addr); return; } if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) { DPRINTF(-1, "(addr 0x%08X), val 0x%08"PRIX64"\n", (unsigned) addr, val); switch (addr) { case HOST_CAP: /* R/WO, RO */ /* FIXME handle R/WO */ break; case HOST_CTL: /* R/W */ if (val & HOST_CTL_RESET) { DPRINTF(-1, "HBA Reset\n"); ahci_reset(s); } else { s->control_regs.ghc = (val & 0x3) | HOST_CTL_AHCI_EN; ahci_check_irq(s); } break; case HOST_IRQ_STAT: /* R/WC, RO */ s->control_regs.irqstatus &= ~val; ahci_check_irq(s); break; case HOST_PORTS_IMPL: /* R/WO, RO */ /* FIXME handle R/WO */ break; case HOST_VERSION: /* RO */ /* FIXME report write? */ break; default: DPRINTF(-1, "write to unknown register 0x%x\n", (unsigned)addr); } } else if ((addr >= AHCI_PORT_REGS_START_ADDR) && (addr < (AHCI_PORT_REGS_START_ADDR + (s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) { ahci_port_write(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7, addr & AHCI_PORT_ADDR_OFFSET_MASK, val); } } | 608 |
0 | static void jpeg_term_destination(j_compress_ptr cinfo) { VncState *vs = cinfo->client_data; Buffer *buffer = &vs->tight_jpeg; buffer->offset = buffer->capacity - cinfo->dest->free_in_buffer; } | 609 |
0 | static void qdict_destroy_obj(QObject *obj) { int i; QDict *qdict; assert(obj != NULL); qdict = qobject_to_qdict(obj); for (i = 0; i < QDICT_BUCKET_MAX; i++) { QDictEntry *entry = QLIST_FIRST(&qdict->table[i]); while (entry) { QDictEntry *tmp = QLIST_NEXT(entry, next); QLIST_REMOVE(entry, next); qentry_destroy(entry); entry = tmp; } } g_free(qdict); } | 610 |
0 | static int pte64_check (mmu_ctx_t *ctx, target_ulong pte0, target_ulong pte1, int h, int rw) { return _pte_check(ctx, 1, pte0, pte1, h, rw); } | 611 |
0 | static GenericList *qobject_input_next_list(Visitor *v, GenericList *tail, size_t size) { QObjectInputVisitor *qiv = to_qiv(v); StackObject *so = QSLIST_FIRST(&qiv->stack); if (!so->entry) { return NULL; } tail->next = g_malloc0(size); return tail->next; } | 612 |
0 | static int coroutine_fn v9fs_do_readdir_with_stat(V9fsPDU *pdu, V9fsFidState *fidp, uint32_t max_count) { V9fsPath path; V9fsStat v9stat; int len, err = 0; int32_t count = 0; struct stat stbuf; off_t saved_dir_pos; struct dirent *dent; /* save the directory position */ saved_dir_pos = v9fs_co_telldir(pdu, fidp); if (saved_dir_pos < 0) { return saved_dir_pos; } while (1) { v9fs_path_init(&path); v9fs_readdir_lock(&fidp->fs.dir); err = v9fs_co_readdir(pdu, fidp, &dent); if (err || !dent) { break; } err = v9fs_co_name_to_path(pdu, &fidp->path, dent->d_name, &path); if (err < 0) { break; } err = v9fs_co_lstat(pdu, &path, &stbuf); if (err < 0) { break; } err = stat_to_v9stat(pdu, &path, dent->d_name, &stbuf, &v9stat); if (err < 0) { break; } /* 11 = 7 + 4 (7 = start offset, 4 = space for storing count) */ len = pdu_marshal(pdu, 11 + count, "S", &v9stat); v9fs_readdir_unlock(&fidp->fs.dir); if ((len != (v9stat.size + 2)) || ((count + len) > max_count)) { /* Ran out of buffer. Set dir back to old position and return */ v9fs_co_seekdir(pdu, fidp, saved_dir_pos); v9fs_stat_free(&v9stat); v9fs_path_free(&path); return count; } count += len; v9fs_stat_free(&v9stat); v9fs_path_free(&path); saved_dir_pos = dent->d_off; } v9fs_readdir_unlock(&fidp->fs.dir); v9fs_path_free(&path); if (err < 0) { return err; } return count; } | 613 |
0 | static int decode_block_refinement(MJpegDecodeContext *s, DCTELEM *block, uint8_t *last_nnz, int ac_index, int16_t *quant_matrix, int ss, int se, int Al, int *EOBRUN) { int code, i=ss, j, sign, val, run; int last = FFMIN(se, *last_nnz); OPEN_READER(re, &s->gb); if(*EOBRUN) (*EOBRUN)--; else { for(;;i++) { UPDATE_CACHE(re, &s->gb); GET_VLC(code, re, &s->gb, s->vlcs[1][ac_index].table, 9, 2) /* Progressive JPEG use AC coeffs from zero and this decoder sets offset 16 by default */ code -= 16; if(code & 0xF) { run = ((unsigned) code) >> 4; UPDATE_CACHE(re, &s->gb); val = SHOW_UBITS(re, &s->gb, 1); LAST_SKIP_BITS(re, &s->gb, 1); ZERO_RUN; j = s->scantable.permutated[i]; val--; block[j] = ((quant_matrix[j]^val)-val) << Al; if(i == se) { if(i > *last_nnz) *last_nnz = i; CLOSE_READER(re, &s->gb) return 0; } }else{ run = ((unsigned) code) >> 4; if(run == 0xF){ ZERO_RUN; }else{ val = run; run = (1 << run); if(val) { UPDATE_CACHE(re, &s->gb); run += SHOW_UBITS(re, &s->gb, val); LAST_SKIP_BITS(re, &s->gb, val); } *EOBRUN = run - 1; break; } } } if(i > *last_nnz) *last_nnz = i; } for(;i<=last;i++) { j = s->scantable.permutated[i]; if(block[j]) REFINE_BIT(j) } CLOSE_READER(re, &s->gb); return 0; } | 614 |
1 | static void destroy_buffers(SANMVideoContext *ctx) { av_freep(&ctx->frm0); av_freep(&ctx->frm1); av_freep(&ctx->frm2); av_freep(&ctx->stored_frame); av_freep(&ctx->rle_buf); ctx->frm0_size = ctx->frm1_size = ctx->frm2_size = 0; } | 615 |
1 | void cpu_state_reset(CPUMIPSState *env) { MIPSCPU *cpu = mips_env_get_cpu(env); CPUState *cs = CPU(cpu); /* Reset registers to their default values */ env->CP0_PRid = env->cpu_model->CP0_PRid; env->CP0_Config0 = env->cpu_model->CP0_Config0; #ifdef TARGET_WORDS_BIGENDIAN env->CP0_Config0 |= (1 << CP0C0_BE); #endif env->CP0_Config1 = env->cpu_model->CP0_Config1; env->CP0_Config2 = env->cpu_model->CP0_Config2; env->CP0_Config3 = env->cpu_model->CP0_Config3; env->CP0_Config4 = env->cpu_model->CP0_Config4; env->CP0_Config4_rw_bitmask = env->cpu_model->CP0_Config4_rw_bitmask; env->CP0_Config5 = env->cpu_model->CP0_Config5; env->CP0_Config5_rw_bitmask = env->cpu_model->CP0_Config5_rw_bitmask; env->CP0_Config6 = env->cpu_model->CP0_Config6; env->CP0_Config7 = env->cpu_model->CP0_Config7; env->CP0_LLAddr_rw_bitmask = env->cpu_model->CP0_LLAddr_rw_bitmask << env->cpu_model->CP0_LLAddr_shift; env->CP0_LLAddr_shift = env->cpu_model->CP0_LLAddr_shift; env->SYNCI_Step = env->cpu_model->SYNCI_Step; env->CCRes = env->cpu_model->CCRes; env->CP0_Status_rw_bitmask = env->cpu_model->CP0_Status_rw_bitmask; env->CP0_TCStatus_rw_bitmask = env->cpu_model->CP0_TCStatus_rw_bitmask; env->CP0_SRSCtl = env->cpu_model->CP0_SRSCtl; env->current_tc = 0; env->SEGBITS = env->cpu_model->SEGBITS; env->SEGMask = (target_ulong)((1ULL << env->cpu_model->SEGBITS) - 1); #if defined(TARGET_MIPS64) if (env->cpu_model->insn_flags & ISA_MIPS3) { env->SEGMask |= 3ULL << 62; } #endif env->PABITS = env->cpu_model->PABITS; env->CP0_SRSConf0_rw_bitmask = env->cpu_model->CP0_SRSConf0_rw_bitmask; env->CP0_SRSConf0 = env->cpu_model->CP0_SRSConf0; env->CP0_SRSConf1_rw_bitmask = env->cpu_model->CP0_SRSConf1_rw_bitmask; env->CP0_SRSConf1 = env->cpu_model->CP0_SRSConf1; env->CP0_SRSConf2_rw_bitmask = env->cpu_model->CP0_SRSConf2_rw_bitmask; env->CP0_SRSConf2 = env->cpu_model->CP0_SRSConf2; env->CP0_SRSConf3_rw_bitmask = env->cpu_model->CP0_SRSConf3_rw_bitmask; env->CP0_SRSConf3 = env->cpu_model->CP0_SRSConf3; env->CP0_SRSConf4_rw_bitmask = env->cpu_model->CP0_SRSConf4_rw_bitmask; env->CP0_SRSConf4 = env->cpu_model->CP0_SRSConf4; env->CP0_PageGrain_rw_bitmask = env->cpu_model->CP0_PageGrain_rw_bitmask; env->CP0_PageGrain = env->cpu_model->CP0_PageGrain; env->CP0_EBaseWG_rw_bitmask = env->cpu_model->CP0_EBaseWG_rw_bitmask; env->active_fpu.fcr0 = env->cpu_model->CP1_fcr0; env->active_fpu.fcr31_rw_bitmask = env->cpu_model->CP1_fcr31_rw_bitmask; env->active_fpu.fcr31 = env->cpu_model->CP1_fcr31; env->msair = env->cpu_model->MSAIR; env->insn_flags = env->cpu_model->insn_flags; #if defined(CONFIG_USER_ONLY) env->CP0_Status = (MIPS_HFLAG_UM << CP0St_KSU); # ifdef TARGET_MIPS64 /* Enable 64-bit register mode. */ env->CP0_Status |= (1 << CP0St_PX); # endif # ifdef TARGET_ABI_MIPSN64 /* Enable 64-bit address mode. */ env->CP0_Status |= (1 << CP0St_UX); # endif /* Enable access to the CPUNum, SYNCI_Step, CC, and CCRes RDHWR hardware registers. */ env->CP0_HWREna |= 0x0000000F; if (env->CP0_Config1 & (1 << CP0C1_FP)) { env->CP0_Status |= (1 << CP0St_CU1); } if (env->CP0_Config3 & (1 << CP0C3_DSPP)) { env->CP0_Status |= (1 << CP0St_MX); } # if defined(TARGET_MIPS64) /* For MIPS64, init FR bit to 1 if FPU unit is there and bit is writable. */ if ((env->CP0_Config1 & (1 << CP0C1_FP)) && (env->CP0_Status_rw_bitmask & (1 << CP0St_FR))) { env->CP0_Status |= (1 << CP0St_FR); } # endif #else if (env->hflags & MIPS_HFLAG_BMASK) { /* If the exception was raised from a delay slot, come back to the jump. */ env->CP0_ErrorEPC = (env->active_tc.PC - (env->hflags & MIPS_HFLAG_B16 ? 2 : 4)); } else { env->CP0_ErrorEPC = env->active_tc.PC; } env->active_tc.PC = env->exception_base; env->CP0_Random = env->tlb->nb_tlb - 1; env->tlb->tlb_in_use = env->tlb->nb_tlb; env->CP0_Wired = 0; env->CP0_GlobalNumber = (cs->cpu_index & 0xFF) << CP0GN_VPId; env->CP0_EBase = (cs->cpu_index & 0x3FF); if (kvm_enabled()) { env->CP0_EBase |= 0x40000000; } else { env->CP0_EBase |= (int32_t)0x80000000; } if (env->CP0_Config3 & (1 << CP0C3_CMGCR)) { env->CP0_CMGCRBase = 0x1fbf8000 >> 4; } env->CP0_EntryHi_ASID_mask = (env->CP0_Config4 & (1 << CP0C4_AE)) ? 0x3ff : 0xff; env->CP0_Status = (1 << CP0St_BEV) | (1 << CP0St_ERL); /* vectored interrupts not implemented, timer on int 7, no performance counters. */ env->CP0_IntCtl = 0xe0000000; { int i; for (i = 0; i < 7; i++) { env->CP0_WatchLo[i] = 0; env->CP0_WatchHi[i] = 0x80000000; } env->CP0_WatchLo[7] = 0; env->CP0_WatchHi[7] = 0; } /* Count register increments in debug mode, EJTAG version 1 */ env->CP0_Debug = (1 << CP0DB_CNT) | (0x1 << CP0DB_VER); cpu_mips_store_count(env, 1); if (env->CP0_Config3 & (1 << CP0C3_MT)) { int i; /* Only TC0 on VPE 0 starts as active. */ for (i = 0; i < ARRAY_SIZE(env->tcs); i++) { env->tcs[i].CP0_TCBind = cs->cpu_index << CP0TCBd_CurVPE; env->tcs[i].CP0_TCHalt = 1; } env->active_tc.CP0_TCHalt = 1; cs->halted = 1; if (cs->cpu_index == 0) { /* VPE0 starts up enabled. */ env->mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP); env->CP0_VPEConf0 |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA); /* TC0 starts up unhalted. */ cs->halted = 0; env->active_tc.CP0_TCHalt = 0; env->tcs[0].CP0_TCHalt = 0; /* With thread 0 active. */ env->active_tc.CP0_TCStatus = (1 << CP0TCSt_A); env->tcs[0].CP0_TCStatus = (1 << CP0TCSt_A); } } #endif if ((env->insn_flags & ISA_MIPS32R6) && (env->active_fpu.fcr0 & (1 << FCR0_F64))) { /* Status.FR = 0 mode in 64-bit FPU not allowed in R6 */ env->CP0_Status |= (1 << CP0St_FR); } /* MSA */ if (env->CP0_Config3 & (1 << CP0C3_MSAP)) { msa_reset(env); } compute_hflags(env); restore_fp_status(env); restore_pamask(env); cs->exception_index = EXCP_NONE; if (semihosting_get_argc()) { /* UHI interface can be used to obtain argc and argv */ env->active_tc.gpr[4] = -1; } } | 616 |
1 | static void spapr_vio_quiesce_one(VIOsPAPRDevice *dev) { dev->flags &= ~VIO_PAPR_FLAG_DMA_BYPASS; if (dev->rtce_table) { size_t size = (dev->rtce_window_size >> SPAPR_VIO_TCE_PAGE_SHIFT) * sizeof(VIOsPAPR_RTCE); memset(dev->rtce_table, 0, size); } dev->crq.qladdr = 0; dev->crq.qsize = 0; dev->crq.qnext = 0; } | 617 |
1 | int av_image_alloc(uint8_t *pointers[4], int linesizes[4], int w, int h, enum AVPixelFormat pix_fmt, int align) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); int i, ret; uint8_t *buf; if (!desc) return AVERROR(EINVAL); if ((ret = av_image_check_size(w, h, 0, NULL)) < 0) return ret; if ((ret = av_image_fill_linesizes(linesizes, pix_fmt, align>7 ? FFALIGN(w, 8) : w)) < 0) return ret; for (i = 0; i < 4; i++) linesizes[i] = FFALIGN(linesizes[i], align); if ((ret = av_image_fill_pointers(pointers, pix_fmt, h, NULL, linesizes)) < 0) return ret; buf = av_malloc(ret + align); if (!buf) return AVERROR(ENOMEM); if ((ret = av_image_fill_pointers(pointers, pix_fmt, h, buf, linesizes)) < 0) { av_free(buf); return ret; if (desc->flags & AV_PIX_FMT_FLAG_PAL || desc->flags & AV_PIX_FMT_FLAG_PSEUDOPAL) avpriv_set_systematic_pal2((uint32_t*)pointers[1], pix_fmt); return ret; | 618 |